Pedro Larrañaga

plarranaga_grecort2

Pedro Larranaga is Full Professor in Computer Science and Artificial Intelligence at the Technical University of Madrid (UPM) since 2007. He received the MSc degree in mathematics (statistics) from the University of Valladolid and the PhD degree in computer science from the University of the Basque Country (“excellence award”). Before moving to UPM, his academic career has been developed at the University of the Basque Country (UPV-EHU) at several faculty ranks: Assistant Professor (1985-1998), Associate Professor (1998-2004) and Full Professor (2004-2007). He earned the habilitation qualification for Full Professor in 2003.

His research interests are primarily in the areas of probabilistic graphical models, metaheuristics for optimization, data mining, classification models, and real applications, like biomedicine, bioinformatics and neuroscience. He has published more than 150 papers in impact factor journals and has supervised more than 20 PhD theses. He is ECCAI felow since 2012 and he has been awared the 2013 Spanish National Prize in Computer Science.

Contact Google Scholar Profile Curriculum vitae
ResearcherID SCOPUS Author Profile DBPL Profile
PhD Seminar

Journal Publications

2017
Anton-Sanchez, L., P. Larrañaga, R. Benavides-Piccione, I. Fernaud, J. DeFelipe, and C. Bielza, "Three-dimensional spatial modeling of spines along dendritic networks in human cortical pyramidal neurons", PLoS ONE 12(6): e0180400, 2017.
Anton-Sanchez, L., C. Bielza, and P. Larrañaga, "Network Design through Forests with Degree- and Role-constrained Minimum Spanning Trees", Journal of Heuristics, vol. 23, issue 1, pp. 31-51, 2017.
Benjumeda, M., C. Bielza, and P. Larrañaga, "Tractability of Most Probable Explanations in Multidimensional Bayesian Network Classifiers", International Journal of Approximate Reasoning, to appear, 2017.
Díaz-Rozo, J., C. Bielza, and P.. Larrañaga, "Machine Learning-based CPS for Clustering High throughput Machining Cycle Conditions", Procedia Manufacturing Elsevier (no JCR), vol. 10, pp. 997-1008, 2017.
Fernandez-Gonzalez, P., R. Benavides-Piccione, I. Leguey, C. Bielza, P. Larrañaga, and J. DeFelipe, "Dendritic branching angles of pyramidal neurons of the human cerebral cortex", Brain Structure and Function, vol. 222, issue 4, pp. 1847-1859, 2017.
Fernandez-Gonzalez, P., C. Bielza, and P. Larrañaga, "Univariate and bivariate truncated von Mises distributions", Progress in Artificial Intelligence (no JCR), pp. 1-10, 2017.
Mu, J., K. R. Chaudhuri, C. Bielza, D. Pedro J., P. Larrañaga, and P. Martínez-Martín, "Parkinson's Disease Subtypes Identified from Cluster Analysis of Motor and Non-motor Symptoms", Frontiers in Aging Neuroscience, vol. 9, 20/09/2017.
Rodriguez-Lujan, L., P. Larrañaga, and C. Bielza, "Frobenius norm regularization for the multivariate von Mises distribution", International Journal of Intelligent Systems, vol. 32, issue 2, pp. 153–176, 2017.
2016
Anton-Sanchez, L., C. Bielza, R. Benavides-Piccione, J. DeFelipe, and P. Larrañaga, "Dendritic and axonal wiring optimization of cortical GABAergic interneurons", Neuroinformatics, vol. 14, issue 4, pp. 453-464, 2016.
Anton-Sanchez, L., C. Bielza, P. Larrañaga, and J. DeFelipe, "Wiring Economy of Pyramidal Cells in the Juvenile Rat Somatosensory Cortex", PLoS ONE, vol. 11, issue 11, 2016.
Benjumeda, M., C. Bielza, and P. Larrañaga, "Learning Bayesian networks with low inference complexity", Progress in Artificial Intelligence (no JCR), vol. 5, issue 1, pp. 15-26, 2016.
Borchani, H., P. Larrañaga, J. Gama, and C. Bielza, "Mining multi-dimensional concept-drifting data streams using Bayesian network classifiers", Intelligent Data Analysis, vol. 20, no. 2, 2016.
Leguey, I., C. Bielza, P. Larrañaga, A. Kastanauskaite, C. Rojo, R. Benavides-Piccione, and J. DeFelipe, "Dendritic branching angles of pyramidal cells across layers of the juvenile rat somatosensory cortex", Journal of Comparative Neurology, vol. 524, issue 13, pp. 2567-2576, 2016.
Leitner, L., C. Bielza, S. L. Hill, and P. Larrañaga, "Data Publications Correlate with Citation Impact", Frontiers in Neuroscience, vol. 10, issue 419, 2016.
Rojo, C., I. Leguey, A. Kastanauskaite, C. Bielza, P.. Larrañaga, J.. DeFelipe, and R.. Benavides-Piccione, "Laminar differences in dendritic structure of pyramidal neurons in juvenile rat somatosensory cortex", Cerebral Cortex, vol. 26, issue 6, pp. 2811-2822, 2016.
Varando, G., C. Bielza, and P. Larrañaga, "Decision Functions for Chain Classifiers based on Bayesian Networks for Multi-Label Classification", International Journal of Approximate Reasoning, vol. 68, pp. 164-178, 2016.
2015
Borchani, H., G. Varando, C. Bielza, and P. Larrañaga, "A survey on multi-output regression", WIREs Data Mining and Knowledge Discovery, vol. 5, pp. 216--233, 2015.
Ibañez, A., R. Armañanzas, C. Bielza, and P. Larrañaga, "Genetic algorithms and Gaussian Bayesian networks to uncover the predictive core set of bibliometric indices", Journal of the American Society for Information Science and Technology, vol. 67, issue 7, pp. 1703–1721, 2015.
Karshenas, H., C. Bielza, and P. Larrañaga, "Interval-based ranking in noisy evolutionary multi-objective optimization", Computational Optimization and Applications, vol. 61, issue 2, pp. 517-555, 2015.
Larrañaga, A., C. Bielza, P. Pongrácz, T. Faragó, P. Bálint, and P. Larrañaga, "Comparing supervised learning methods for classifying sex, age, context and individual Mudi dogs from barking", Animal Cognition, vol. 18, no. 2, pp. 405-421, 2015.
Lopez-Cruz, P. L., C. Bielza, and P. Larrañaga, "Directional naive Bayes classifiers", Pattern Analysis and Applications, vol. 18, pp. 225-246, 2015.
Luengo-Sanchez, S., C. Bielza, R. Benavides-Piccione, I. Fernaud-Espinosa, J. DeFelipe, and P. Larrañaga, "A univocal definition of the neuronal soma morphology using Gaussian mixture models", Frontiers in Neuroanatomy, vol. 9, issue 137, 2015.
Masegosa, A., R. Armañanzas, M. A. Grau, V. Potenciano, S. Moral, P. Larrañaga, C. Bielza, and F. Matesanz, "Discretization of Expression Quantitative Trait Loci in Association Analysis Between Genotypes and Expression Data", Current Bioinformatics, vol. 10, no. 2, pp. 144-164, 2015.
Mihaljevic, B., R. Benavides-Piccione, C. Bielza, J. DeFelipe, and P. Larrañaga, "Bayesian network classifiers for categorizing cortical GABAergic interneurons", Neuroinformatics, vol. 13, no. 2, pp. 192–208, April, 2015.
Mihaljevic, B., R. Benavides-Piccione, L. Guerra, J. DeFelipe, P. Larrañaga, and C. Bielza, "Classifying GABAergic interneurons with semi-supervised projected model-based clustering", Artificial Intelligence in Medicine, vol. 65, issue 1, pp. 49-59, 2015.
Olazarán, J., M. Valentí, B. Frades, M. Ascensión Zea-Sevilla, M. Ávila-Villanueva, M. Ángel Fernández-Blázquez, M. Calero, J. Luis Dobato, J. Antonio Hernández-Tamames, B. León-Salas, L. Agüera-Ortiz, J. López-Álvarez, P. Larrañaga, C. Bielza, J. Álvarez-Linera, and P. Martínez-Martín, "The Vallecas Project: a cohort to identify early markers and mechanisms of Alzheimer’s disease", Frontiers in Aging Neuroscience, vol. 7, pp. 181, 2015.
Varando, G., C. Bielza, and P. Larrañaga, "Decision Boundary for Discrete Bayesian Network Classifiers", Journal of Machine Learning Research, vol. 16, pp. 2725-2749, 2015.
Varando, G., P. L. Lopez-Cruz, T. D. Nielsen, P. Larrañaga, and C. Bielza, "Conditional density approximations with mixtures of polynomials", International Journal of Intelligent Systems, vol. 30, no. 3, pp. 236–264, 2015.
2014
Anton-Sanchez, L., C. Bielza, A. Merchán-Pérez, J. R. Rodríguez, J. DeFelipe, and P. Larrañaga, "Three-dimensional distribution of cortical synapses: a replicated point pattern-based analysis", Frontiers in Neuroanatomy, vol. 8, pp. Article 85, 2014, Also available in the ebook: http://www.frontiersin.org/books/Quantitative_Analysis_of_Neuroanatomy/829.
Bielza, C., and P. Larrañaga, "Bayesian networks in neuroscience: A survey", Frontiers in Computational Neuroscience, vol. 8, pp. Article 131, 2014.
Bielza, C., R. Benavides-Piccione, P. L. Lopez-Cruz, P. Larrañaga, and J. DeFelipe, "Branching angles of pyramidal cell dendrites follow common geometrical design principles in different cortical areas", Scientific Reports, vol. 4, pp. Article 5909, 2014.
Bielza, C., and P. Larrañaga, "Discrete Bayesian Network Classifiers: A Survey", ACM Computing Surveys, vol. 47, no. 1, pp. Article 5, 2014.
Borchani, H., C. Bielza, P. Martínez-Martín, and P. Larrañaga, "Predicting EQ-5D from the Parkinson’s disease questionnaire PDQ-8 using multi-dimensional Bayesian network classifiers", Biomedical Engineering: Applications, Basis and Communications, vol. 26, no. 1, pp. 1450015, 2014.
Guerra, L., C. Bielza, V. Robles, and P. Larrañaga, "Semi-supervised projected model-based clustering", Data Mining and Knowledge Discovery, vol. 28, no. 4, pp. 882-917, 2014.
Ibañez, A., C. Bielza, and P. Larrañaga, "Cost-sensitive selective naive Bayes classifiers for predicting the increase of the h-index for scientific journals", Neurocomputing, vol. 135, no. 5, pp. 45-52, 2014.
Karshenas, H., R. Santana, C. Bielza, and P. Larrañaga, "Multi-objective estimation of distribution algorithm based on joint modeling of objectives and variables", IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 519-542, 2014.
Lopez-Cruz, P. L., P. Larrañaga, , and C. Bielza, "Bayesian network modeling of the consensus between experts: An application to neuron classification", International Journal of Approximate Reasoning, vol. 55, no. 1, pp. 3-22, 2014.
Lopez-Cruz, P. L., C. Bielza, and P. Larrañaga, "Learning mixtures of polynomials of multidimensional probability densities from data using B-spline interpolation", International Journal of Approximate Reasoning, vol. 55, no. 4, pp. 989–1010, 2014.
Merchán-Pérez, A., R. Rodríguez, S. González, V. Robles, J. DeFelipe, P. Larrañaga, and C. Bielza, "Three-dimensional spatial distribution of synapses in the neocortex: A dual-beam electron microscopy study", Cerebral Cortex, vol. 24, pp. 1579-1588, 2014.
Mihaljevic, B., C. Bielza, R. Benavides-Piccione, J. DeFelipe, and P. Larrañaga, "Multi-dimensional classification of GABAergic interneurons with Bayesian network-modeled label uncertainty", Frontiers in Computional Neuroscience, vol. 8, pp. Article 150, 2014.
Morales, J., R. Benavides-Piccione, M. Dar, I. Fernaud, A. Rodríguez, L. Anton-Sanchez, C. Bielza, P. Larrañaga, J. DeFelipe, and R. Yuste, "Random positions of dendritic spines in human cerebral cortex", Journal of Neuroscience, vol. 34, no. 30, pp. 10078-10084, 2014.
Read, J., C. Bielza, and P. Larrañaga, "Multi-dimensional classification with super-classes", IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 7, pp. 1720-1733, 2014.
Sucar, E., C. Bielza, E. F. Morales, P. Hernandez-Leal, J. H. Zaragoza, and P. Larrañaga, "Multi-label Classification with Bayesian Network-based Chain Classifiers", Pattern Recognition Letters, vol. 41, pp. 14-22, 2014.
2013
Armañanzas, R., L. Alonso-Nanclares, J. DeFelipe, A. Kastanauskaite, R. G. de Sola, J. DeFelipe, C. Bielza, and P. Larrañaga, "Machine learning approach for the outcome prediction of temporal lobe epilepsy surgery", PLoS ONE, vol. 8, no. 4, pp. e62819, 2013.
Armañanzas, R., C. Bielza, K. R. Chaudhuri, P. Martínez-Martín, and P. Larrañaga, "Unveiling relevant non-motor Parkinson's disease severity symptoms using a machine learning approach", Artificial Intelligence in Medicine, vol. 58, no. 3, pp. 195-202, 2013.
Bielza, C., J. A. Fernandez del Pozo, and P. Larrañaga, "Parameter control of genetic algorithms by learning and simulation of Bayesian Networks. A case study for the optimal ordering of tables", Journal of Computer Science and Technology, vol. 28, no. 4, pp. 720-731, 2013.
Borchani, H., C. Bielza, , and P. Larrañaga, "Predicting human immunodeficiency virus inhibitors using multi-dimensional Bayesian network classifiers", Artificial Intelligence in Medicine, vol. 57, no. 3, pp. 219-229, 2013.
DeFelipe, J., P. L. Lopez-Cruz, R. Benavides-Piccione, C. Bielza, P. Larrañaga, and et. al., "New insights into the classification and nomenclature of cortical GABAergic interneurons", Nature Reviews Neuroscience, vol. 14, no. 3, pp. 202-216, 2013.
Flores, J. L., I. Inza, P. Larrañaga, and B. Calvo, "A new measure for gene expression biclustering based on non-parametric correlation", Computer Methods and Programs in Biomedicine, vol. 113, no. 3, pp. 367-397, 2013.
García-Torres, M., R. Armañanzas, C. Bielza, and P. Larrañaga, "Comparison of metaheuristic strategies for peakbin selection in proteomic mass spectrometry data", Information Sciences, vol. 222, pp. 229-246, 2013.
Ibañez, A., P. Larrañaga, and C. Bielza, "Cluster methods for assessing research performance: exploring Spanish computer science", Scientometrics, vol. 97, pp. 571-600, 2013.
Ibañez, A., C. Bielza, and P. Larrañaga, "Análisis de la actividad científica de las universidades públicas españolas en el área de las tecnologías informáticas", Revista Española de Documentación Científica, vol. 36, no. 1, pp. e002, 2013.
Ibañez, A., C. Bielza, and P. Larrañaga, "Relationship among research collaboration, number of documents and number of citations. A case study in Spanish computer science production in 2000-2009", Scientometrics, vol. 95, no. 2, pp. 689-716, 2013.
Karshenas, H., R. Santana, C. Bielza, and P. Larrañaga, "Regularized continuous estimation of distribution algorithms", Applied Soft Computing, vol. 13, no. 5, pp. 2412–2432, 2013.
Larrañaga, P., H. Karshenas, C. Bielza, and R. Santana, "A review on evolutionary algorithms in Bayesian network learning and inference tasks", Information Sciences, vol. 233, pp. 109-125, 2013.
Morales, D., Y. Vives-Gilabert, B. Gómez-Ansón, E. Bengoetxea, P. Larrañaga, C. Bielza, J. Pagonabarraga, J. Kulisevsky, I. Corcuera-Solano, and M. Delfino, "Predicting dementia development in Parkinson's disease using Bayesian network classifiers", Psychiatry Research: NeuroImaging, vol. 213, pp. 92-98, 2013.
Santana, R., R. Armañanzas, C. Bielza, and P. Larrañaga, "Network measures for information extraction in evolutionary algorithms", International Journal of Computational Intelligence Systems, vol. 6, no. 6, pp. 1163-1188, 2013.
Santana, R., L. McGarry, C. Bielza, P. Larrañaga, and R. Yuste, "Classification of neocortical interneurons using affinity propagation", Frontiers in Neural Circuits, vol. 7:185, 2013.
Vidaurre, D., C. Bielza, and P. Larrañaga, "An L1-regularized naive Bayes-inspired classifier for discarding redundant and irrelevant predictors", International Journal on Artificial Intelligence Tools, vol. 22, no. 4, pp. 1350019, 2013.
Vidaurre, D., C. Bielza, and P. Larrañaga, "A survey on L1-regression", International Statistical Review, vol. 81, no. 3, pp. 361-387, 2013.
Vidaurre, D., C. Bielza, and P. Larrañaga, "Classification of neural signals from sparse autoregressive features", Neurocomputing, vol. 111, pp. 21-26, 2013.
Vidaurre, D., C. Bielza, and P. Larrañaga, "Sparse regularized local regression", Computational Statistics and Data Analysis, vol. 62, pp. 122-135, 2013.
Vidaurre, D., M. van Gerven, C. Bielza, P. Larrañaga, and T. Heskes, "Bayesian sparse partial least squares", Neural Computation, vol. 25, no. 12, pp. 3318–3339, 2013.
2012
Armañanzas, R., P. Larrañaga, and C. Bielza, "Ensemble transcript interaction networks: A case study on Alzheimer's disease", Computer Methods and Programs in Biomedicine, vol. 108, no. 1, pp. 442-450, 2012.
Borchani, H., C. Bielza, P. Martínez-Martín, and P. Larrañaga, "Markov blanket-based approach for learning multi-dimensional Bayesian network classifiers: An application to predict the European Quality of Life-5Dimensions (EQ-5D) from the 39-item Parkinson's Disease Questionnaire (PDQ-39)", Journal of Biomedical Informatics, vol. 45, pp. 1175-1184, 2012.
Calvo, B., I. Inza, P. Larrañaga, and J. A. Lozano, "Wrapper positive Bayesian network classifiers", Knowledge and Information Systems, vol. 33, no. 3, pp. 631-654, 2012.
García-Bilbao, A., R. Armañanzas, Z. Ispizua, B. Calvo, A. Alonso-Varona, I. Inza, P. Larrañaga, G. López-Vivanco, B. Suárez-Merino, and M. Betanzos, "Identification of a biomarker panel for colorectal cancer diagnosis", BMC Cancer, vol. 12, no. 43, 2012.
Guerra, L., V. Robles, C. Bielza, and P. Larrañaga, "A comparison of clustering quality indices using outliers and noise", Intelligent Data Analysis, vol. 16, no. 4, pp. 703-715, 2012.
Larrañaga, P., H. Karshenas, C. Bielza, and R. Santana, "A review on probabilistic graphical models in evolutionary computation", Journal of Heuristics, vol. 18, no. 5, pp. 795-819, 2012.
Santana, R., C. Bielza, and P. Larrañaga, "Regularized logistic regression and multi-objective variable selection for classifying MEG data", Biological Cybernetics, vol. 106, no. 6-7, pp. 389-405, 2012.
Santana, R., C. Bielza, and P. Larrañaga, "Conductance interaction identification by means of Boltzmann distribution and mutual information analysis in conductance-based neuron models", BMC Neuroscience, vol. 13, no. Suppl 1, pp. P100, 2012.
Vidaurre, D., C. Bielza, and P. Larrañaga, "Lazy lasso for local regression", Computational Statistics, vol. 27, no. 3, pp. 531-550, 2012.
Vidaurre, D., E. E. Rodríguez, C. Bielza, P. Larrañaga, and P. Rudomin, "A new feature extraction method for signal classification applied to cat spinal cord signals", Journal of Neural Engineering, vol. in press, 2012.
2011
Armañanzas, R., Y. Saeys, I. Inza, M. Garca-Torres, C. Bielza, Y. van de Peer, and P. Larrañaga, "Peakbin selection in mass spectrometry data using a consensus approach with estimation of distribution algorithms", IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 8, no. 3, pp. 760-774, 2011.
Bengoetxea, E., P. Larrañaga, C. Bielza, and J. A. Fernandez del Pozo, "Optimal Row and Column Ordering to Improve Table Interpretation Using Estimation of Distribution Algorithms", Journal of Heuristics, vol. 17, no. 5, pp. 567-588, 2011.
Bielza, C., G. Li, and P. Larrañaga, "Multi-Dimensional Classification with Bayesian Networks", International Journal of Approximate Reasoning, vol. 52, pp. 705-727, 2011.
Bielza, C., V. Robles, and P. Larrañaga, "Regularized Logistic Regression without a Penalty Term: An Application to Cancer Classification with Microarray Data", Expert Systems with Applications, vol. 38, pp. 5110-5118, 2011.
Borchani, H., P. Larrañaga, and C. Bielza, "Classifying evolving data streams with partially labeled data", Intelligent Data Analysis, vol. 15, no. 5, pp. 655-670, 2011.
Guerra, L., L. McGarry, V. Robles, C. Bielza, P. Larrañaga, and R. Yuste, "Comparison between Supervised and Unsupervised Classification of Neuronal Cell Types: A Case Study", Developmental Neurobiology, vol. 71, no. 1, pp. 71-82, 2011.
Ibañez, A., P. Larrañaga, and C. Bielza, "Using Bayesian networks to discover relationships between bibliometric indices. A case study of computer science and artificial intelligence journals", Scientometrics, vol. 89, no. 2, pp. 523-551, 2011.
Larrañaga, P., and S. Moral, "Probabilistic graphical models in artificial intelligence", Applied Soft Computing, vol. 11, no. 2, pp. 1511-1528, 2011.
Lopez-Cruz, P. L., C. Bielza, P. Larrañaga, R. Benavides-Piccione, and J. DeFelipe, "Models and simulation of 3D neuronal dendritic trees using Bayesian networks", Neuroinformatics, vol. 9, no. 4, pp. 347-369, 2011.
Santana, R., C. Bielza, and P. Larrañaga, "Optimizing brain networks topologies using multi-objective evolutionary computation", Neuroinformatics, vol. 9, no. 1, pp. 3-19, 2011.
Vidaurre, D., C. Bielza, and P. Larrañaga, "Forward Stagewise Naive Bayes", Progress in Artificial Intelligence, vol. In press, 2011.
Vidaurre, D., C. Bielza, and P. Larrañaga, "On nonlinearity in neural encoding models applied to the primary visual cortex", Network: Computation in Neural Systems, vol. 22, no. 1-4, pp. 97-125, 2011.
2009
Armañanzas, R., B. Calvo, I. Inza, M. López-Hoyos, V. Martínez-Taboada, E. Ucar, I. Bernales, A. Fullaondo, P. Larrañaga, and A. M. Zubiaga, "Microarray analysis of autoimmune diseases by machine learning procedures", IEEE Transactions on Information Technology in Biomedicine, vol. 13, no. 3, pp. 341-350, 2009.
Bielza, C., V. Robles, and P. Larrañaga, "Estimation of Distribution Algorithms as Logistic Regression Regularizers of Microarray Classifiers", Methods of Information in Medicine, vol. 48, no. 3, pp. 236-241, 2009.
Cuesta, I., C. Bielza, P. Larrañaga, M. Cuenca-Estrella, F. Laguna, D. Rodríguez-Pardo, B. Almirante, A. Pahissa, and J. L. Rodriguez-Tudela, "Data Mining Validation of EUCAST Fluconazole Breakpoints Established by the European Committee on Antimicrobial Susceptibility Testing", Antimicrobial Agents and Chemotherapy, vol. 53, no. 7, pp. 2949-2954, 2009.
Ibañez, A., P. Larrañaga, and C. Bielza, "Predicting Citation Count of Bioinformatics Papers within Four Years of Publication", Bioinformatics, vol. 25, no. 24, pp. 3303-3309, 2009.
Pérez, A., P. Larrañaga, and I. Inza, "Bayesian classifiers based on kernel estimation: Flexible classifiers", International Journal of Approximate Reasoning, vol. 50, no. 2, pp. 341-362, 2009.
Romero, T., and P. Larrañaga, "Triangulation of Bayesian networks with recursive estimation of distribution algorithms", International Journal of Approximate Reasoning, vol. 50, no. 3, pp. 472-484, 2009.
2008
Armañanzas, R., I. Inza, and P. Larrañaga, "Detecting reliable gene interactions by a hierarchy of Bayesian networks classifiers", Computer Methods and Programs in Biomedicine, vol. 91, pp. 110-121, 2008.
Furney, S. J., B. Calvo, P. Larrañaga, J. A. Lozano, and N. López-Bigas, "Prioritization of candidate cancer genes-an aid to oncogenomic studies", Nucleic Acids Research, pp. 1-9, 2008.
Morales, D., E. Bengoetxea, and P. Larrañaga, "Selection of human embryos for transfer by Bayesian classifiers", Computer in Biology and Medicine, vol. 38, pp. 1177-1186, 2008.
Morales, D., E. Bengoetxea, P. Larrañaga, M. Garca, Y. Franco-Iriarte, M. Fresnada, and M. Merino, "Bayesian classification for the selection of in-vitro human embryos using morphological and clinical data", Computer Methods and Programs in Biomedicine, no. 90, pp. 104-116, 2008.
Robles, V., C. Bielza, P. Larrañaga, S. González, and L. Ohno-Machado, "Optimizing Logistic Regression Coefficients for Discrimination and Calibration Using Estimation of Distribution Algorithms", TOP, vol. 16, pp. 345-366, 2008.
Santafé, G., J. A. Lozano, and P. Larrañaga, "Inference of population structure using genetic markers and a Bayesian model averaging approach for clustering", Journal of Computational Biology, vol. 15, no. 2, pp. 207-220, 2008.
Santana, R., J. A. Lozano, and P. Larrañaga, "Protein folding in simplified models with estimation of distribution algorithms", IEEE Transactions on Evolutionary Computation, vol. 12, no. 4, pp. 418-438, 2008.
Santana, R., P. Larrañaga, and J. A. Lozano, "Combining variable neighborhood search and estimation of distribution algorithms", Journal of Heuristics, vol. 14, pp. 519-547, 2008.
Zipritia, I., J. Elorriaga, A. Arruarte, P. Larrañaga, and R. Armañanzas, "What is behind a summary evaluation decision?", Behavior Research Methods, vol. 2, no. 40, pp. 597-612, 2008.
2007
Calvo, B., J. A. Lozano, and P. Larrañaga, "Learning Bayesian classifiers from positive and unlabeled examples", Pattern Recognition Letters, vol. 28, no. 16, pp. 2375-2384, 2007.
Calvo, B., N. López-Bigas, S. J. Furney, P. Larrañaga, and J. A. Lozano, "A partially supervised approach to dominant and recessive human disease gene prediction", Computer Methods and Programs in Biomedicine, vol. 85, no. 3, pp. 229-237, 2007.
Flores, J. L., I. Inza, and P. Larrañaga, "Wrapper discretization by means of estimation of distribution algorithms", Intelligent Data Analysis Journal, vol. 11, no. 5, pp. 525-546, 2007.
Miquelez, T., E. Bengoetxea, A. Mendiburu, and P. Larrañaga, "Combining Bayesian classifiers and estimation of distribution algorithms for optimization in continuous domains", Connection Science, vol. 19, no. 4, pp. 297-319, 2007.
Saeys, Y., I. Inza, and P. Larrañaga, "A review of feature selection techniques in bioinformatics", Bioinformatics, vol. 23, no. 19, pp. 2507-2517, 2007.
Santana, R., P. Larrañaga, and J. A. Lozano, "Side chain placement using estimation of distribution algorithms", Artificial Intelligence in Medicine, vol. 39, no. 1, pp. 49-63, 2007.
2006
Larrañaga, P., B. Calvo, R. Santana, C. Bielza, J. Galdiano, I. Inza, J. A. Lozano, R. Armañanzas, G. Santafé, and A. Pérez, "Machine Learning in Bioinformatics", Briefings in Bioinformatics, vol. 17, no. 1, pp. 86-112, 2006.
Pérez, A., P. Larrañaga, and I. Inza, "Supervised classification with conditional Gaussian networks: Increasing the structure complexity from naive Bayes", International Journal of Approximate Reasoning, vol. 43, pp. 1-25, 2006.
Santafé, G., J. A. Lozano, and P. Larrañaga, "Bayesian model averaging of naive Bayes for clustering", IEEE Transactions on Systems, Man, and Cybernetics, vol. 36, no. 5, pp. 1149-1161, 2006.
2004
Blanco, R., P. Larrañaga, I. Inza, and B. Sierra, "Gene selection for cancer classification using wrapper approaches", International Journal of Pattern Recognition and Artificial Intelligence, vol. 18, no. 8, pp. 1373-1390, 2004.
Inza, I., P. Larrañaga, R. Blanco, and A. J. Cerrolaza, "Filter versus wrapper gene selection approaches in DNA microarray domains", Artificial Intelligence in Medicine, no. 31, pp. 91-103, 2004.
Larrañaga, P., E. Menasalvas, J. M. Peña, and V. Robles, "Data mining in genomics and proteomics", Artificial Intelligence in Medicine, no. 31, pp. iii-iv, 2004.
Miquelez, T., E. Bengoetxea, and P. Larrañaga, "Evolutionary computation based on Bayesian classifiers", International Journal of Applied Mathematics and Computer Science, vol. 14, no. 3, pp. 101–115, 2004.
Peña, J. M., J. A. Lozano, and P. Larrañaga, "Unsupersived learning of Bayesian networks via estimation of distribution algorithms: an application to gene expression data clustering", International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 12, pp. 63-82, 2004.
Robles, V., P. Larrañaga, J. M. Peña, E. Menasalvas, M. S. Pérez, and V. Herves, "Bayesian networks as consensed voting system in the construction of a multi–classifier for protein secondary structure prediction", Artificial Intelligence in Medicine, no. 31, pp. 117–136, 2004.
Romero, T., P. Larrañaga, and B. Sierra, "Learning Bayesian networks in the space of orderings with estimation of distribution algorithms", International Journal of Pattern Recognition and Artificial Intelligence, vol. 18, no. 4, pp. 607–625, 2004.
2003
Blanco, R., I. Inza, and P. Larrañaga, "Learning Bayesian networks in the space of structures by estimation of distribution algorithms", International Journal of Intelligent Systems, vol. 18, pp. 205-220, 2003.
1996
Larrañaga, P., M. Poza, Y. Yurramendi, R. H. Murga, and C. M. H. Kuijpers, "Structure learning of Bayesian networks by genetic algorithms: A performance analysis of control parameters", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no. 9, pp. 912-926, 1996.
Larrañaga, P., C. M. H. Kuijpers, R. H. Murga, and Y. Yurramendi, "Learning Bayesian network structures by searching for the best ordering with genetic algorithms", IEEE Transactions on System, Man and Cybernetics. Part A: Systems and Humans, vol. 26, no. 4, pp. 487-493, 1996.