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Structure learning methods for covariance and concentration graphs are often validated 
on synthetic models, usually obtained by randomly generating: (i) an undirected graph, 
and (ii) a compatible symmetric positive definite (SPD) matrix. In order to ensure 
positive definiteness in (ii), a dominant diagonal is usually imposed. In this work we 
investigate different methods to generate random symmetric positive definite matrices 
with undirected graphical constraints. We show that if the graph is chordal it is possible 
to sample uniformly from the set of correlation matrices compatible with the graph, while 
for general undirected graphs we rely on a partial orthogonalization method.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Structure learning algorithms in graphical models are validated using either benchmark or randomly generated synthetic 
models from which data is sampled. This allows to evaluate their performance by comparing the recovered graph, obtained 
by running the algorithm over the generated data, with the known true structure. The synthetic graphical models are 
typically constructed in a two-step manner: a graph structure is selected at random or chosen so that it is representative of 
the problem at hand; and, similarly, its parameters are fixed or randomly sampled.

Covariance [6,14] and concentration graphs [9,17] are graphical models where the variables are assumed to follow a 
multivariate Gaussian distribution, and the structure is directly read off in the covariance or concentration matrix, respec-
tively. Looking at the literature on these models, one finds that typical benchmark structures are Toeplitz, banded, diagonally 
spiked and block diagonal covariance or concentration matrices [34,33,18], with parameters fixed to ensure positive defi-
niteness.

The issue of positive definiteness is especially relevant when the structure is randomly generated. One approach to ensure 
it is to sample from a matrix distribution with support over the symmetric positive definite matrices compatible with the 
undirected graph structure. The hyper Wishart distributions [8,20] are the most developed in this context, since they form 
a conjugate family for Bayesian analysis. However, while sampling algorithms are available for general concentration graphs 
[3,19], in covariance graphs they have been developed only in the decomposable case [15].

In general, hyper Wishart distributions are rarely used in validation scenarios [32], and instead in the literature the 
most common approach to ensure positive definiteness is to enforce diagonal dominance in the covariance or concentration 
matrix [22,1,28]. However, when the undirected graph is moderately dense, the off-diagonal elements in the generated 
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matrices, often interpreted as link strengths, are extremely small with respect to the diagonal entries and structure recovery 
becomes a challenge, thereby compromising the structure learning algorithm validation [26,27,16,2].

In this paper, we propose alternative methods to generate positive definite matrices with undirected graphical con-
straints: the partial orthogonalization method proposed in [4], uniform sampling when the graph is chordal and a combi-
nation of uniform sampling and partial orthogonalization for general graphs. We show that the partial orthogonalization 
method could suffer from drawbacks similar to the diagonal dominance when the matrix factor is obtained with i.i.d. el-
ements. For this reason we propose to combine uniform sampling for chordal graphs and the partial orthogonalization 
method.

We also use our simulation method in a validation setting and show how the performance ranking of the various struc-
ture learning algorithms changes dramatically, thereby modifying the conclusions drawn if only using diagonally dominant 
matrices for comparison.

The rest of the paper is organized as follows. Preliminaries are introduced in Section 2, where we briefly overview con-
centration, covariance graphs and directed graphical models. Next, in Section 3, we present the classical diagonal dominance 
method, a proposed partial orthogonalization method and the uniform sampling for chordal graphs. Section 4 contains a 
description of the experiment set-up we have considered, and the interpretation of the results obtained. Finally, in Section 5
we conclude the paper and outline our plans for future research.

2. Preliminaries

In the remainder of the paper, we will use the following notation. We let X1, . . . , Xp denote p random variables and X
the random vector they form. For each subset I ⊆ {1, . . . , p}, X I will be the subvector of X indexed by I , that is, (Xi)i∈I . 
We follow [7] and abbreviate conditional independence in the joint distribution of X as X I ⊥⊥ X J | X K , meaning that X I is 
conditionally independent of X J given X K , with I, J , K pairwise disjoint subsets of indices. Entries in a matrix are denoted 
with the respective lower case letter, for example, mij denotes the (i, j) entry in matrix M.

With S and Sp
>0 we denote the sets of symmetric and symmetric positive definite matrices of dimension p × p. We 

denote the set of symmetric positive definite matrices with unit diagonal as,

Ep = {M ∈ Sp
>0 s.t. mii = 1 for i = 1, . . . , p}.

The set Ep is called the elliptope of dimension p [29] and its volume has been obtained by [12] and [21].
With Sk+ we denote the k-dimensional hemisphere with positive first coordinate,

Sk+ = {v ∈Rk s.t. ||v||2 = 1 and v1 > 0}.
We will also use U p to denote the set of upper triangular matrices of dimension p × p with positive diagonal, that is, 

the sets of Cholesky factors for positive definite matrices. With U p
1 ⊂ U p we denote the subset with unit rows, that is the 

Cholesky factors for correlation matrices.

2.1. Undirected Gaussian graphical models

Covariance and concentration graphs are graphical models where it is assumed that the statistical independences in 
the distribution of a multivariate Gaussian random vector X = (X1, . . . , Xp) can be represented by an undirected graph 
G = (V , E). Typically, X is assumed to have zero mean for lighter notation, and V = {1, . . . , p} so that it indexes the 
random vector, that is, X V = X . We will represent the edge set E as a subset of V × V , therefore (i, j) ∈ E if and only if 
( j, i) ∈ E .

In covariance graphs, the independences represented are marginal, meaning that whenever there is a missing edge (i, j)
in G , the random variables Xi and X j are marginally independent. More formally, this is called the pairwise Markov property 
of covariance graphs [6,14],

Xi ⊥⊥ X j for i, j ∈ V s.t. i �G j,

where i ∼G j is the adjacency relationship on the graph G , that is, i ∼G j if and only if (i, j) ∈ E . Note further that Xi ⊥⊥ X j
if and only if σi j = 0.

By contrast, in concentration graphs, a missing edge implies a conditional independence; specifically, in this case the 
pairwise Markov property [17] becomes

Xi ⊥⊥ X j | X V \{i, j} for i, j ∈ V s.t. i �G j.

In turn, this can be read off in the concentration matrix � = �−1, that is, Xi ⊥⊥ X j | X V \{i, j} ⇐⇒ ωi j = 0.
Therefore, the statistical independences implied by both covariance and concentration graph models are in correspon-

dence with zero entries in a symmetric positive definite matrix. Thus, in the following we will focus on how to simulate 
such kind of matrices. For a fixed undirected graph G let Mp(G) be the set of matrices with zeros in the entries represented 
by the missing edges in G , that is,
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Mp(G) = {M ∈Rp×p : mij = m ji = 0 if (i, j) /∈ E}.
Let Sp(G) = Sp ∩ Mp(G) and Sp

>0(G) = S>0 ∩Mp(G) be the sets of symmetric and symmetric positive definite matrices 
with undirected graphical constraints. Similarly Ep(G) = Ep ∩ Mp(G) is the set of correlation matrices with undirected 
graphical constraints.

Note that the covariance matrix � of a Gaussian random vector X whose distribution belongs to a covariance graph with 
structure G satisfies that � ∈ Sp

>0(G). Analogously, if the distribution belongs to a concentration graph with structure G , 
then � = �−1 ∈ Sp

>0(G). In either case it is clear that the goal is to simulate elements belonging to Sp
>0(G), or to E p(G).

2.2. Cholesky factorization and directed graphical models

If G = (V = {1, . . . , p}, E) is an acyclic directed graph and we assume that 1 ≺ · · · ≺ p is a topological order, that is, 
pa(i) ⊆ {1, . . . , i − 1} for all i ∈ V , then we can define the ordered Markov property for the Bayesian network model,

Xi ⊥⊥ X j|Xpa(i) for all i ∈ V , j /∈ pa(i), j<i. (1)

If the ordered Markov property holds for a Gaussian distribution it is equivalent to saying that the coefficient βi j of variable 
X j in the regression of Xi on X1, . . . , Xi−1 is zero for all j /∈ pa(i). Therefore, the set of edges E in a Gaussian Bayesian 
network can be expressed as

E = {( j, i) s.t. βi j �= 0}. (2)

We can rewrite the above Markov property as a triangular regression system [30]. Specifically, for each i ∈ V , Xi can be 
written as a regression over its parents,

Xi =
∑
j<i

βi j X j + εi =
∑

j∈pa(i)

βi j X j + εi, (3)

where ε1, . . . , εp is a vector of zero-mean independent Gaussian noise.
We can write Equation (3) in matrix notation as X = BX + ε, with B strictly lower triangular, since 1, . . . , p is assumed 

to be a topological order of G . Rearranging the equation we obtain X = (Ip − B)−1ε. Taking variances on both sides, we 
arrive at the upper Cholesky factorization of the precision matrix [24]

�−1 = � = (Ip − B)t V−1(Ip − B) = UUt, (4)

where U = (Ip − B)t
√

V−1 ∈ U p and V is a diagonal matrix with vii = var(εi)= var(Xi |Xpa(i)).
The upper Cholesky factorization in Equation (4) is closely related to the classical/lower Cholesky factorization, as follows. 

Let �̃ be the matrix obtained from � by reordering the variables so that they follow the reverse of a perfect/topological 
ordering, also known as fill-in free or perfect elimination ordering [see25, for example]. Then if �̃ = LLt is its standard lower 
Cholesky decomposition, it can be verified that Lt is equal to the transpose of U (Equation (4)) with respect to its anti-
diagonal. Furthermore, the parameters of the Gaussian Bayesian network are obtained from U [31] as

βi j = −u ji

uii
; var(Xi|Xpa(i)) = 1

u2
ii

. (5)

The upper Cholesky factorization in Equation (4) can be used as a parametrization of the inverse covariance matrix for 
Gaussian distributions satisfying the ordered Markov property, that is, Gaussian Bayesian networks: from Equation (5) we 
have that, for j<i,

( j, i) /∈ E ⇐⇒ Xi ⊥⊥ X j|Xpa(i) ⇐⇒ βi j = 0 ⇐⇒ u ji = 0. (6)

The Gaussian Bayesian network model can thus be expressed as

B(G) = {� = �−1 = UUt s.t. U ∈ U p and u ji = 0 if ( j, i) /∈ E}, (7)

where G = (V , E) is an acyclic digraph with 1≺ · · · ≺p being a topological order of G .

2.3. Markov equivalence between Gaussian graphical models

The intersection between Markov and Bayesian network models occurs at what are called decomposable/chordal/triangu-
lated undirected graphs, or, equivalently, acyclic digraphs with no v-structures. An undirected graph G is said to be chordal 
if all cycles of length at least 4 have a chord. A v-structure in an acyclic digraph G with edge set E , is a configuration 
where if (i, j) ∈ E , (k, j) ∈ E and i �= k, then (i, k) /∈ E and (k, i) /∈ E , that is, a v-structure is when two vertices share a 
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Algorithm 1 Simulation of a matrix in Sp
>0(G) using diagonal dominance.

Input: Undirected graph G
Output: Matrix belonging to Sp

>0(G)

1: M ← random matrix in Sp(G)

2: for i = 1, . . . , p do
3: mii ← ∑

i �= j |mij |+ random positive perturbation
4: end for
5: return M

common child but they are not adjacent. If an acyclic digraph has no v-structures, then for each node the set of parents 
is completely connected. The skeleton of an acyclic digraph with no v-structures is chordal; and, equivalently, any chordal 
undirected graph can be oriented into an acyclic digraph with no v-structures, as follows: let C1, . . . , Ck denote a perfect 
sequence of cliques in an undirected chordal graph G = (V , E), and write H j = C1 ∪ . . . ∪ C j , R j = C j \ H j−1, following 
Lauritzen [17]. A perfect ordering, v1 ≺ · · · ≺ v p , for the vertices of G is formed by first taking the vertices in C1, then 
those in R2, until Rk . This ordering has associated an acyclic directed orientation of G , G D = (V , E D), which has no v-
structures. In fact, v1 ≺ · · · ≺ v p is a topological ordering for G D . Therefore, denoting for vi ∈ V as pr(vi) = {v1, . . . , vi−1}
and bd(vi) = {v j ∈ V : (vi, v j) ∈ E}, then we have

|E| =
p∑

i=1

|bd(vi) ∩ pr(vi)| =
p∑

i=1

|pa(vi)| = |E D |.

In the Gaussian case, this implies that if 1 ≺ · · · ≺ p is a perfect ordering for G . Therefore, the theory of Section 2.2 for 
Gaussian Bayesian networks applies and �−1 = UUt with U ∈ U p and the same zero pattern as in the upper triangle of 
� = �−1,

( j, i) /∈ E D ⇐⇒ u ji = 0 ⇐⇒ ω ji = ωi j = 0 ⇐⇒ (i, j) /∈ E. (8)

Thus we have that if G is a chordal undirected graph, then Sp
>0(G) = B(G D) [30,23].

3. Methods

3.1. Diagonal dominance

When a matrix M ∈ Sp satisfies that mii >
∑

j �=i |mij | for each i ∈ {1, . . . , p}, then M belongs to Sp
>0. Thus a simple 

method to generate a matrix in Sp
>0(G) consists in generating a random matrix in Sp(G) and then choosing diagonal 

elements so the final matrix is diagonally dominant, as in Algorithm 1. The usual approach for generating the initial matrix 
in line 1 is to use independent and identically distributed (i.i.d.) nonzero entries. The diagonal dominance method has been 
extensively used in the literature mainly due to its simplicity and the ability to control the singularity of the generated 
matrices, as we will now explain.

Obviously it is then possible to generate correlation matrices in Sp
>0(G) using Algorithm 1 and then rescaling them to 

be in E p(G).
It is even possible to control the minimum eigenvalue of a matrix by varying its diagonal elements [11]. In particular, 

let G be an undirected graph, M a matrix in Sp(G), and ε > 0 the desired lower-bound on the eigenvalues. If λmin is the 
minimum eigenvalue of M, then M + (λ−

min + ε)Ip belongs to Sp
>0(G) and has eigenvalues greater or equal to ε , where 

λ−
min = max (−λmin,0) denotes the negative part of λmin .

Similarly, one can control the condition number, that is, the ratio of the largest to smallest eigenvalue, of the generated 
matrix as in [2]: if κ0 > 1 is the desired condition number and we already have a matrix M ∈ Sp(G) with maximum 
eigenvalue λmax > 0, then

M + λmax − κ0λmin

κ0 − 1
Ip

belongs to Sp
>0(G) and has condition number equal to κ0. Covariance and concentration matrices with an upper bound on 

the condition number are appealing in certain estimation scenarios [13].

3.2. Partial orthogonalization

If we consider a full rank matrix Q ∈ Rp×p the product QQt is a symmetric positive definite matrix. Moreover, QQt ∈
Sp

>0(G), for a given undirected graph G , if and only if:

qi ⊥ q j for i �G j,
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Algorithm 2 Simulation of a matrix in E p(G) using partial orthogonalization.
Input: Undirected graph G
Output: Matrix belonging to E p(G)

1: Q ← random p × p matrix
2: for i = 1, . . . , p do
3: orthogonalize qi with respect to the span of {q j s.t. i �G j and j < i}
4: normalize qi , qi = qi/‖qi‖2

5: end for
6: return QQt

where ⊥ denotes orthogonality with respect to the standard scalar product on Rp , and qi is the i-th row of Q.
This fact suggests a very simple idea to generate matrices in Sp

>0(G): given an undirected graph G , we can impose 
Markov properties for the matrix QQt simply by orthogonalizing the respective rows of Q. If moreover we also normalize 
the rows of Q we generate a matrix in the elliptope with graphical constrains E p(G). The pseudocode for the described 
procedure can be found in Algorithm 2.

In particular we can use a modified Gram-Schmidt orthogonalization procedure that iteratively orthogonalizes every row 
qi with respect to the set of rows i⊥ = {q j s.t. i �G j and j < i}.

3.3. Uniform sampling for chordal graphs

When G is a chordal graph, it is possible to sample uniformly from the set E p(G) extending the results in [5]. In 
particular, for an undirected chordal graph G where 1 ≺ · · · ≺ p is a perfect ordering, we consider the parametrization of 
E p(G) induced by the Cholesky factorization (Section 2.3),

E p(G) = {M = UUt s.t. U ∈ U p
1 and uij = 0 if (i, j) /∈ E}.

Thus, if we further define the set,

U p
1 (G) = {U ∈ U p

1 s.t. uij = 0 if (i, j) /∈ E},
then

	 : U p
1 (G) → E p(G)

U �→ UUt

is a one-to-one parametrization of E p(G). The Jacobian of 	 has been obtained by [25] and in [5], as

det ( J	(U)) = 2p
p∏

i=1

upa(i)+1
ii (9)

where pa(i) denotes the set of parents of node i in G D , the acyclic directed orientation of G (which has 1 ≺ · · · ≺ p as a 
topological ordering, see Section 2.3).

To sample from the uniform distribution over E p(G) using parametrization 	, we apply the area formula as Diaconis 
et al. [10], Theorem 1: we sample matrices in U p

1 (G) from a density proportional to det ( J	(U)) and then we apply the 
parametrization 	. We observe that the Jacobian of 	 in Equation (9) factorizes across the rows ui of U, and thus we can 
sample the rows of U independently. In particular, for the i-th row of U, we have that

uij = 0 j < i,

uii > 0,

uik = 0 k /∈ ch(i),

where ch(i) denotes the children set of node i in graph G D . Therefore, for each i ∈ {1, . . . , p}, the vector of non-zero entries 
in the i-th row of U has to be sampled in the hemisphere S | ch(i)|

+ from a density proportional to a power of the first non-
zero entry in such row, uii . This task can be done with the same Metropolis sampling procedure described in detail in [5]
and outlined in Algorithm 4 for completeness (with default noise variance σε and burn-in time tb).

3.4. Combining uniform sampling and partial orthogonalization

When the undirected graph G is not chordal it is not possible to direct the edges without creating v-structures. This 
implies that applying Algorithm 3 to a triangulation of a non-chordal graph G will result in a matrix with more non-
zeros entries than the desired ones. To overcome such issue we propose to combine the two approaches in the previous 
sections and first sample the Cholesky factor as in Algorithm 3 for the triangulated graph, and then apply the partial 
orthogonalization procedure as in Algorithm 2 to obtain a matrix in E p(G).

The method is detailed in Algorithm 5.
For chordal graphs, Algorithm 5 obviously reduces to the uniform sampling of Algorithm 3.
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Algorithm 3 Uniform sampling in E p(G).
Input: Chordal graph G with 1 ≺ · · · ≺ p as a perfect ordering
Output: A matrix uniformly sampled in E p(G)

1: G D ← acyclic directed orientation of G
2: Un ← 0p

3: for i ∈ {1, . . . , p} do
4: v ← mh_sphere(α = | ch(i)|, γ = |pa(i)| + 1)

5: uii ← v1

6: ui ch(i) ← v−1 // Vector v except its first entry
7: end for
8: return 	(U) = UUt

Algorithm 4 mh_sphere: Metropolis sampling of a vector v in Sα+ from f (v) ∝ vγ
1 .

Input: Dimension α of the sphere and power γ of the density
Output: A vector sampled in Sα+

1: v0 ← random standard multivariate Gaussian observation of dimension α + 1
2: v01 ← |v01|
3: v0 ← normalize v0

4: for t = 0, . . . , tb + 1 do
5: for j = 1, . . . , α + 1 do
6: ε j ← random Gaussian observation with zero mean and variance σ 2

ε

7: end for
8: v ′ ← vt + ε
9: v ′ ← normalize v ′ , v ′ = v ′/‖v ′‖2

10: δ ← random uniform observation on [0, 1]
11: if v ′

1 ≥ 0 and δ ≤ (v ′
1/vt1)γ then

12: vt ← v ′
13: end if
14: end for
15: return vtb+1

Algorithm 5 Simulation of a matrix in E p(G) combining uniform sampling with respect to a triangulation and partial 
orthogonalization.
Input: Undirected graph G
Output: Matrix belonging to E p(G)

1: G ′ ← triangulation of G following a perfect ordering defined by permutation σ
2: G D ← acyclic directed orientation of G ′
3: U ← 0
4: for i = 1, . . . , p do
5: v ← mh_sphere(α = | ch(σ (i))|, γ = |pa(σ (i))| + 1)

6: uii ← v1

7: ui ch(σ (i)) ← v−1 // Vector v except its first entry
8: end for
9: Q ← permute rows and columns in U with σ−1 // Revert the perfect ordering to retrieve original ordering of the nodes in G

10: for i = 1, . . . , p do
11: orthogonalize qi with respect to the span of {q j s.t. i �G j and j < i}
12: normalize qi , qi = qi/‖qi‖2

13: end for
14: return QQt

4. Experiments

In this section we report the results of numerical experiments performed to explore the behaviour of the methods 
presented. The implementation of the methods in the previous sections can be found in the R package gmat.1 The partial 
orthogonalization procedure has been implemented in C for improved performance. The experiments can be reproduced 
following the instructions and using the code available at the repository https://github .com /irenecrsn /ggmsim.

4.1. Three variables

We consider the simple chordal graph G = ({1, 2, 3}, {{1, 2}, {2, 3}}) over three variables depicted in Fig. 1, and we ana-
lyze graphically how the three proposed methods behave.

We sample 5000 correlation matrices from E3(G) using the diagonal dominance method (Algorithm 1), the partial or-
thogonalization method (Algorithm 2) and the uniform sampling (Algorithm 3). We use independent standard Gaussian 

1 Version in development: https://github .com /irenecrsn /gmat.

https://github.com/irenecrsn/ggmsim
https://github.com/irenecrsn/gmat
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Fig. 1. Chordal undirected graph with three variables.

Fig. 2. Scatter plot of the two non-zero entries for correlation matrices sampled from E3(G), with G as in Fig. 1.

Fig. 3. Marginal densities of the non-zero entries of matrices sampled from E50(G); where G is a random graph with 50 vertices and probability of edges 
0.05. The first entry in the lower triangle (2, 1) corresponds to the red colour, while the last entry in the last row of the lower triangle (50, 49) corresponds 
to the pink colour. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

random variables to initialize the random matrices in both Algorithms 1 and 2. Matrices in E3(G) have two non-zero upper 
triangular entries (1, 2) and (2, 3), and moreover E3(G) can be represented as the interior of the two dimensional unit ball:

E3(G) =
⎧⎨
⎩

⎛
⎝

1 x 0
x 1 y
0 y 1

⎞
⎠ s.t. x2 + y2 < 1

⎫⎬
⎭ � {(x, y) ∈R2 s.t. x2 + y2 < 1}

The scatter plot of the two non-zero upper triangular entries for the three sampling methods is shown in Fig. 2.
We can see that, as expected, the uniform sampling method obtains a uniform distribution over E3(G) while the diago-

nal dominance method and the partial orthogonalization methods have somehow the opposite behaviour. Matrices sampled 
with partial orthogonalization tend to have large off-diagonal values, while the diagonal dominance method produces ma-
trices with smaller values for the off-diagonal entries.

4.2. Marginal distribution of matrix entries

We investigate here the marginal distribution of non-zeros matrix entries sampled from E p(G) with the different meth-
ods, for both chordal and non-chordal graphs.

We generate a random undirected graph G over 50 vertices using the Erdős-Rényi model with a probability of edges 
equal to 0.05. We sample 5000 matrices from E50(G) using Algorithms 1, 2 and 5. We then plot the marginal densities of 
the non-zero entries for the three methods. The results are shown in Fig. 3.

We also consider G ′ , the triangulation of G and we generate again 5000 matrices in E50(G ′) using the three methods. 
Plots of the marginal densities of the non-zero entries are shown in Fig. 4.

From both Figs. 3 and 4 we can observe that the diagonal dominance method produces matrices with off-diagonal 
entries more concentrated around 0, as also pointed-out in [4]. In apparent contrast to the finding in [4], also the partial 
orthogonalization method seems to produce matrices with entries more concentrated around 0. Intuitively this can be 
seen as a consequence of the fact that vectors of independent random components are approximately orthogonal in high-
dimensions. To further prove this problem of the partial orthogonalization algorithm, we simulate 5000 matrices from 
E50(Gchain), where Gchain = ({1, . . . ,50}, {{1,2}, {2,3}, . . . , {49,50}}) (see Fig. 5).

As usual we plot the marginal densities of the 49 non-zero entries of the generated matrices with the three different 
methods (Gchain is chordal and thus we can sample uniformly) (see Fig. 6).

We observe that for this graph the distribution induced on the matrix entries is completely different for the three 
methods. In particular it is interesting to note that the partial orthogonalization method produces matrices M ∈ E50(Gchain)

with the first non-zero entries m1,2, m2,3, m3,4, . . . more centred around 0 than the last entries . . . , m48,49, m49,50. On the 
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Fig. 4. Marginal densities of the non-zero entries of matrices sampled from E50(G ′); where G ′ is the chordal graphs obtained as the triangulation of a 
random graph with 50 vertices and probability of edges 0.05. The first entry in the lower triangle (2, 1) corresponds to the red colour, while the last entry 
in the last row of the lower triangle (50, 49) corresponds to the pink colour.

Fig. 5. Chordal undirected graph Gchain with 50 variables and 49 edges.

Fig. 6. Marginal densities of the non-zero entries of matrices sampled from E50(Gchain). The first entry in the lower triangle, (2, 1), corresponds to the red 
colour, while the last entry in the last row of the lower triangle, (49, 48), corresponds to the pink colour.

contrary the uniform sampling, correctly produces matrices with the same marginal densities for the entries. This behaviour 
of the partial orthogonalization procedure is due to the i.i.d. sampling of the elements of factor Q in Algorithm 2 and not 
to the orthogonalization part, that instead mitigates this fact (the first entries of the matrix m1,2, m2,3 are the ones where 
no-orthogonalization is applied by Algorithm 2). We remark that such problem for the partial orthogonalization procedure 
applied to a random matrix Q with i.i.d. entries can be disturbing since it introduces some asymmetries in the distribution 
of the matrices that are absent in graph G .

4.3. Validation of structure learning algorithms

The main motivation for the proposed method are the observations that can be found in the literature on covariance 
and concentration graphs regarding the difficulties of validating the performance of structure learning algorithms [26,16,2]. 
We have selected the work of Krämer et al. [16, page 7], who highlight how they obtain significantly poorer graph recovery 
results as the density d of the graphs grows. They simulate the corresponding concentration graph models using the diagonal 
dominance method, so we have replicated their experiments but using instead as true models those generated with our 
proposed method.

The results can be seen in Figs. 7 and 8, where we have plotted the true positive rate (TPR, also called power by 
Krämer et al. [16]) and the positive predictive value (PPV) or precision for p = 100 and their sparsest (d = 0.05) and 
densest (d = 0.25) scenarios, using matrices simulated with the diagonal dominance (Algorithm 1) and our proposed method 
(Algorithm 5). The different structure learning methods are the same as those studied by Krämer et al. [16]. Note that in 
this work we correctly define, in the computations for TPR and PPV, the indefinite fraction 0

0 to be equal to 1. For some 
learning methods such as shrink and pls this drastically affects their curve when comparing to [4].

Note that there is a significant improvement in the densest case (d = 0.25) when using our method (Algorithm 5). All 
the learning algorithms are close to zero TPR for every sample size when validating on diagonally dominant matrices, which 
highlights a poor performance (the high PPVs are thus not significant). However, when using matrices obtained via partial 
orthogonalization, some methods (lasso and adalasso) are able to achieve a TPR of 0.5 approximately. Importantly, 
partial least squares regression (pls) and the shrinkage estimator (shrink) greatly improve, whereas when only using 
diagonal dominance one could erroneously conclude that those methods are not well fitted for dense structure scenarios. In 
the sparsest scenario (d = 0.05) we observe that the PPV for partial least squares extremely drops when using our proposed 
simulation method, while the other algorithms rank similarly using either one. This behaviour is expected: the densest 
scenario (d = 0.25) is not intrinsically difficult, but it indeed poses special difficulties when using diagonally dominant 
matrices, because correlations are in general small (Figs. 3 – 6) and therefore structure recovery amounts to discriminating 
an absent edge from an extremely small entry, which is a significantly hard task.

The most important conclusion to draw from these results is that sampling procedures for covariance or concentration 
graph matrices highly influence how the respective structure learning algorithms are ranked. However, it would be incorrect 
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Fig. 7. True positive rate (TPR) and positive predictive value (PPV) of the structure learning algorithms for concentration graphs validated in [16], for the 
highest density, 0.25. The number of variables (vertices in the undirected graph and dimension of the generated matrices) is fixed at 100. adalasso: 
Adaptive l1 regularization; lasso: l1 regularization; pls: partial least squares regression; shrink: shrinkage estimator of Schäfer and Strimmer [27];
ridge: l2 regularization; diagdom: Diagonal dominance sampling method; port_chol: Uniform sampling with partial orthogonalization of the Cholesky 
factor.

Fig. 8. True positive rate (TPR) and positive predictive value (PPV) of the structure learning algorithms for concentration graphs validated in [16], for the 
lowest density, 0.05, that is, the sparsest scenario. The number of variables (vertices in the undirected graph and dimension of the generated matrices) 
is fixed at 100. adalasso: Adaptive l1 regularization; lasso: l1 regularization; pls: partial least squares regression; shrink: shrinkage estimator 
of Schäfer and Strimmer [27]; ridge: l2 regularization; diagdom: Diagonal dominance sampling method; port_chol: Uniform sampling with partial 
orthogonalization of the Cholesky factor.

to claim that one of the simulation methods is superior to the other. Indeed, we want to highlight the importance of 
choosing the correct simulation method for each numerical validation scenario. If we want to assess performance for a 
wide range of covariance or concentration chordal graphs, then our proposed method (Algorithm 5) should be used, since 
it guarantees uniform sampling and therefore unbiased validation. On the contrary, if we know that our models exhibit 
small correlations, then using diagonally dominant concentration graph matrices would be justified because they exhibit 
such property. In doubt, we argue for the use of our method because it samples from a wider space range (Fig. 2), while 
the diagonal dominance method is largely biased towards matrices away from the space frontier.

5. Conclusions

In this work we introduced two methods to sample from the set E p(G) of correlation matrices with undirected graphical 
constraints, a general partial orthogonalization procedure and a uniform sampling method when the graph G is chordal. 
We showed with some numerical experiments that both the partial orthogonalization method and the classical diagonal 
dominance procedure suffer from some drawbacks in effectively exploring the space of correlation matrices with undirected 
graphical constraints. For chordal graphs, it is possible to sample from the uniform distribution easily, extending a method to 
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sample correlation matrices uniformly; while for non-chordal graphs we propose to combine the uniform sampling method 
and the partial orthogonalization by firstly sampling a Cholesky factor related to the triangulated graph and then applying 
the partial orthogonalization to remove the non-zeros entries related to the edges added in the triangulation. The proposed 
method has shown to be helpful in the validation of structure learning algorithms overcoming the problems of the diagonal 
dominance method. The main direction for future research is to investigate how to sample uniformly form the space E p(G)

for a non-chordal graph G .
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