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a b s t r a c t

Machine learning community is not only interested in maximizing classification accuracy, but also in
minimizing the distances between the actual and the predicted class. Some ideas, like the cost-sensitive
learning approach, are proposed to face this problem. In this paper, we propose two greedy wrapper
forward cost-sensitive selective naive Bayes approaches. Both approaches readjust the probability
thresholds of each class to select the class with the minimum-expected cost. The first algorithm (CS-
SNB-Accuracy) considers adding each variable to the model and measures the performance of the
resulting model on the training data. The variable that most improves the accuracy, that is, the
percentage of well classified instances between the readjusted class and actual class, is permanently
added to the model. In contrast, the second algorithm (CS-SNB-Cost) considers adding variables that
reduce the misclassification cost, that is, the distance between the readjusted class and actual class. We
have tested our algorithms on the bibliometric indices prediction area. Considering the popularity of the
well-known h-index, we have researched and built several prediction models to forecast the annual
increase of the h-index for Neurosciences journals in a four-year time horizon. Results show that our
approaches, particularly CS-SNB-Accuracy, achieved higher accuracy values than the analyzed cost-
sensitive classifiers and Bayesian classifiers. Furthermore, we also noted that the CS-SNB-Cost always
achieved a lower average cost than all analyzed cost-sensitive and cost-insensitive classifiers. These cost-
sensitive selective naive Bayes approaches outperform the selective naive Bayes in terms of accuracy and
average cost, so the cost-sensitive learning approach could be also applied in different probabilistic
classification approaches.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Classification problems commonly assume that the class values
are unordered. But, these values have a natural order in many
practical applications. Given ordered classes, we are not only
interested in maximizing classification accuracy, but also in mini-
mizing the distances between the actual and the predicted class.
Some fields, like statistics, have faced this problem for many years,
developing several approaches [37,38], whereas other fields,
like machine learning, have only recently started to look at the
problem [7,8,18,19,28,34,40,43].

This paper is focused on solving the above problem using the
cost-sensitive learning approach. Cost-sensitive learning algo-
rithms take into account matrices of misclassification cost to
express relative distances between classes. This approach incor-
porates decision-making costs to define fixed and unequal

misclassification costs between classes. The cost model takes the
form of a cost matrix, where the cost of classifying a sample from a
true class j in class i corresponds to the matrix entry mij. The
diagonal elements of this matrix are usually set to zero, meaning
correct classification has no cost. The theory of cost-sensitive
learning is summarized in [16,51], describing how the misclassi-
fication cost plays a key role in different situations. Cost-sensitive
algorithms can be divided into several categories. Algorithms
belonging to the first category (direct methods) design classifiers
that are naturally cost-sensitive, using directly the misclassifica-
tion costs in the learning algorithms. In contrast, the second
category (indirect methods) converts existing cost-insensitive
classifiers into cost-sensitive classifiers.

We incorporate cost-sensitive learning and feature subset
selection into the well-known naive Bayes [39], which is the most
straightforward and widely tested method for probabilistic induc-
tion and has long been used within the field of pattern recognition
[11]. For this reason, we develop new cost-sensitive algorithms
based on the selective naive Bayes notions [33]. Specifically, we
develop two direct algorithms that add misclassification costs to
the learning algorithm, and use wrapper approaches to select
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relevant variables that maximize the accuracy (CS-SNB-Accuracy
algorithm) and minimize the cost (CS-SNB-Cost algorithm). The
objective of these approaches is to build parsimonious models.
These models will not include features that are irrelevant and
redundant. Some benefits of applying variable selection are better
classification performance, faster classification models, smaller
databases, and the ability to gain more insight into the process
that is being modeled.

We have tested our algorithms on the bibliometric indices
prediction area. Bibliometric indices (see reviews [1,14]) are
quantitative metrics for evaluating and comparing the research
activity of researchers, journals, institutions or countries according
to their output. Bibliometric indices are an increasingly important
topic for the scientific community nowadays. In fact, many funding
agencies and promotion committees use them to assess research
projects, recruit researchers and so on.

The interest and originality of our study is two-fold. First, we
develop two new classifiers (CS-SNB-Accuracy and CS-SNB-Cost)
that bring together the advantages of using the cost-sensitive
learning approach and the feature subset selection. Second, both
classifiers are used to predict the annual increase of the h-index for
scientific journals belonging to the Journal Citation Report Neu-
rosciences category across a 4-year time horizon using biblio-
metric indices.

The remainder of the paper is organized as follows. The next
section reviews some related work. Section 3 explains some
concepts related to Bayesian classifiers and cost-sensitive Bayesian
classifiers, focusing on our new cost-sensitive selective naive Bayes
approaches. Also, we review some standard classifiers and statis-
tical tests. Section 4 presents our results, including dataset con-
struction, data distribution, accuracy and average cost of models
and some examples. Finally, Section 5 outlines some conclusions
emphasizing the original contribution of the paper and future
research on the topic.

2. Related work

Researchers have tried to solve the problem of not only
maximizing classification accuracy, but also minimizing the dis-
tances between the actual and the predicted class. Different
approaches have been proposed in the literature. For example,
Kramer et al. [30] transformed the ordinal scales into numeric
values, and then solve the problem as a standard regression
problem. Herbrich et al. [21,22] applied the principle of structural
risk minimization used in support vector machines to learn
an algorithm based on large margin rank boundaries. Finally,
Frank and Hall [17] used binary decomposition techniques, trans-
forming the original problem involving k classes into k�1 binary
problems.

The cost-sensitive learning approach, which is analyzed in this
paper, is also used for the above purpose. Direct cost-sensitive
algorithms design classifiers that are naturally cost sensitive. The
main idea is for misclassification costs to be entered and used
directly in the learning algorithms. Several researchers have
proposed direct cost-sensitive learning algorithms, such as inex-
pensive classification with expensive tests [48], which use mis-
classification costs in the fitness function of genetic algorithms and
cost-sensitive decision trees, which use misclassification costs in
the tree building process [35], and in the tree pruning process [10].
In contrast, indirect cost-sensitive algorithms convert existing
cost-insensitive classifiers into cost-sensitive classifiers. These
classifiers can be further categorized into relabeling methods,
weighting methods and sampling methods. Relabeling methods
[9,49] relabel the classes of instances by applying the minimum

expected cost criterion [29]. This criterion is defined by fixed
misclassification costs and posterior probabilities. These methods
can be further divided into two branches: relabeling training
instances (e.g. MetaCost [9]) and relabeling test instances
(e.g. CostSensitiveClassifier [49]). Weighting methods [47] assign
a weight to each instance in terms of its class according to
misclassification costs, that is, instances, which carries a
higher misclassification cost, are assigned proportionally high
weights. These methods induce cost-sensitivity by directly inte-
grating instance weights. They work whenever the original cost-
insensitive classifiers can accept example weights. In this case,
the learning algorithm favors the class with high weight/
cost. Sampling methods [44,52] modify the class distribution
of training data according to their costs and then directly apply
cost-insensitive classifiers on the sampled data. Costing [52]
uses rejection sampling, whereas CSRoulette [44] uses a cost-
proportional roulette sampling technique to change the distri-
bution of the training set according to the cost matrix. The
difference between the above methods is that Costing generates
much smaller samples than the original training set, whereas
CSRoulette generates samples with the same size as the original
training set.

According to the bibliometric indices prediction area, some
studies have been proposed in the literature for this purpose (e.g.
[3,31]). These predictions used time series modeled by exponential
and exponential smoothing functions. Other methods, like Baye-
sian networks, logistic regression, decision trees and the K-NN
algorithm, were also used to make predictions [25]. Focusing on
the h-index, we noted that not many papers have tried to predict
this bibliometric index. The power law model [15] was used to
analyze the h-index as a function of time [12]. Nonlinear regression
was also used to predict the h-index of authors, journals and
universities [50]. Most research concerned with predicting the
h-index used only h-index sequences to indicate by extrapolation
what the value of the h-index would be in the near future. In a
previous study [26], we developed several prediction models to
forecast the h-index of Spanish professors for a 4-year time
horizon using a cost-sensitive naive Bayes approach. Although
the above papers all have a similar aim, the dataset, class variable,
predictive features and methods are different.

3. Methods

3.1. Bayesian classifiers

Naive Bayes is one of the simplest models for supervised
classification. It is one of the most efficient and effective inductive
learning algorithms for machine learning and data mining. A naive
Bayes classifier has two types of variables: the class variable C and
a set of predictive features X¼ fX1;X2;…;Xng. Fig. 1 represents the

Fig. 1. Naive Bayes structure.
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naive Bayes structure. The class variable C is discrete and takes
values in the set ΩðCÞ. The predictive features can be divided into
two sets: the set of discrete features fX1;…;Xmg and the set of
continuous features fXmþ1;…;Xng. This classifier is based on Bayes0

theorem under the assumption of conditional independence of
predictor features given the class variable:

cn ¼ arg max
cAΩðCÞ

∑
cAΩðCÞ

pðc∣xÞppðcÞ ∏
m

i ¼ 1
pðxi∣cÞ ∏

n

j ¼ mþ1
N ðxj; μcj;s2

cjÞ ð1Þ

Selective naive Bayes is a variant of naive Bayes that uses only a
subset of the given variables to make predictions. It improves
accuracy in domains with redundant and irrelevant variables.
The learning component adds the capability to exclude attributes
that introduce dependencies to the original naive Bayes classifier.
This process consists of searching the space of attribute subsets. The
direction of search could be forward or backward. A forward
selection method would start with the empty set and successively
add variables, whereas a backward elimination process would begin
with the full set and remove unwanted variables. The search process
stops adding or eliminating attributes when none of the alternatives
improves classification accuracy.

3.2. Cost-sensitive Bayesian classifiers

The objective of cost-sensitive methods is to take into account
misclassification costs different from 0 (hit) and 1 (miss). These
methods are concerned with classification accuracy and classifica-
tion costs. We develop two forward cost-sensitive selective naive
Bayes approaches. The search process of the first approach (CS-
SNB-Accuracy) is based on maximizing classification accuracy, that
is, it includes variables that improve classification accuracy,
whereas the search process of the second approach (CS-SNB-
Cost) is based on minimizing misclassification costs, that is, it
includes variables that reduce the distances between the actual
and the predicted class.

Given a cost matrix and a set of predicted class probabilities for
each instance, both approaches readjust the probability thresholds
of each class to select the class with the minimum-expected cost.
The expected cost of each prediction is obtained by multiplying
the associated costs by the predicted class probabilities. Unlike
selective naive Bayes, these approaches do not select the most
likely class value of the posterior distribution, they select the class
(cn) that minimizes the expected cost of predictions given a new
instance x:

cn ¼ arg min
cAΩðCÞ

∑
c0 AΩðCÞ

pðc0∣xÞ costðc∣c0Þ ð2Þ

where

pðc0∣xÞppðc0Þ ∏
m

i ¼ 1
pðxi∣c0Þ ∏

n

j ¼ mþ1
N ðxj; μc0j;s2

c0 jÞ ð3Þ

and costðc∣c0Þ is the associated misclassification cost.
In short, the first approach (CS-SNB-Accuracy) considers

adding each variable to the model and measures the performance
of the resulting model on the training data. The variable that
most improves the accuracy, that is, the percentage of well-
classified instances in the predicted class (cn) over the actual class,
is permanently added to the model. In contrast, the second
approach (CS-SNB-Cost) considers adding variables that reduce

the misclassification cost between the predicted and the actual
class.

Algorithm 1. Cost-sensitive selective naive Bayes – Accuracy
model.

Input: Dataset (feature variables and class variable) and cost
matrix

Output: Accuracy and cost of the cost-sensitive selective naive
Bayes - Accuracy model

for k’1 to folds do
// k�fold cross validation

trainingSet’trainingSetGenerationðdataset; kÞ;
testSet’testSetGenerationðdataset; kÞ;

// Training phase

model’fclassg;
initialProbability’estimateClassProbðtrainingSet;modelÞ;
thresholdAccuracy’maxðinitialProbabilityÞ;
accuracyVector’fg;
continue’true

while continue do
for variable’1 to sizeðnumVariablesÞ do
sw’isModelVariableðvariableÞ;
if sw then
for case’1 to sizeðtrainingSetÞ do
actualClass’getActualClassðcaseÞ;
predictedClass’predictClassðcase;modelÞ;
readjustedClass’readjustClassðpredictedClass; costMatrixÞ;
if ðactualClass¼ ¼ readjustedClassÞ then hit ¼ 1;
;

else hit ¼ 0;
modelAccuracy’calculateAccuracyðhitÞ

�������
��������
��

end

�������
��������
�������

end
accuracyVector½variable�’modelAccuracy

���
��������
��������
��������
�����

end
accuracy’maxðaccuracyVectorÞ;
if ðaccuracy4thresholdAccuracyÞ then
bestVariable’selectBestVariableðaccuracyVectorÞ;
model’addToModelðmodel; bestVariableÞ;
thresholdAccuracy’accuracy;

�������

else
jcontinue’false;
end

����
��������
��������
��������
�������
��������
��������
������

end
// Testphase

for case’1to sizeðtestSetÞ do
actualClass’getActualClassðtestSet; caseÞ;
predictedClass’predictClassðtestSet; modelÞ;
readjustedClass’readjustClassðpredictedClass; costMatrixÞ;
if ðactualClass¼ ¼ readjustedClassÞ then hit ¼ 1;
;

else hit ¼ 0;
accuracy’calculateAccuracyðhitÞ;
cost’calculateCostðactualClass; readjustedClassÞ;

��
��������
��������
��

end
finalAccuracyVector’addToVectorðaccuracyÞ;
finalCostVector’addToVectorðcostÞ;

���
��������
��������
��������
��������
�������
��������
��������
��������
��������
��������
�������
��������
��������
��������
�����

end
finalAccuracy ’mean(finalAccuracyVector);
finalCost ’mean(finalCostVector);
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Algorithm 2. Cost-sensitive selective naive Bayes – Cost model.

Input : Dataset (feature variables and class variable) and cost
matrix

Output : Accuracy and cost of the cost-sensitive selective naive
Bayes – Cost model

for k’1 to folds do
// k�fold cross validation

trainingSet’trainingSetGenerationðDataset; kÞ;
testSet’testSetGenerationðDataset; kÞ;

// Training phase

model’fclassg;
initialProbability’estimateClassProbðtrainingSet;modelÞ;
initialCost’classCostEstimationðinitialProbability; costMatrixÞ;
thresholdCost’minðinitialCostÞ;
accuracyVector’fg;
continue’true;

while continue do
for variable’1 to sizeðnumVariablesÞ do
sw’isModelVariableðvariableÞ;
if sw then
for case’1 to sizeðtrainingSetÞ do
actualClass’getActualClassðcaseÞ;
predictedClass’predictClass ðcase;modelÞ;
readjustedClass’readjustClass ðpredictedClass; costMatrixÞ;
modelCost’calculateCostðactualClass; readjustedClassÞ

����������

end

���������������

end
costVector½variable�’modelCost

�������������������������

end
cost’minðcostVectorÞ;
if ðcostothresholdCostÞ then
bestVariable’selectBestVariableðcostVectorÞ;
model’addToModelðmodel;bestVariableÞ;
thresholdCost’cost;

�������

else
jcontinue’false;
end

��������������������������������������������������

end
// Test phase

for case’1 to sizeðtestSetÞ do
actualClass’getActualClassðtestSet; caseÞ;
predictedClass’predictClassðtestSet; modelÞ;
readjustedClass’readjustClassðpredictedClass; costMatrixÞ;
if ðactualClass¼ ¼ readjustedClassÞ then hit ¼ 1;
;

else hit ¼ 0;
accuracy’calculateAccuracyðhitÞ;
cost’calculateCostðactualClass; readjustedClassÞ;

��������������������

end
finalAccuracyVector’addToVectorðaccuracyÞ;
finalCostVector’addToVectorðcostÞ;

������������������������������������������������������������������������������������������������������������������

end
finalAccuracy ’mean(finalAccuracyVector);
finalCost ’mean(finalCostVector);

3.2.1. Cost-sensitive selective naive Bayes – Accuracy
Algorithm 1 shows the pseudocode of the cost-sensitive selec-

tive naive Bayes – Accuracy model. This algorithm chooses k-fold
cross-validation [46] as the procedure for estimating the accuracy
and cost of models classifying new cases according to the value of
the predictive features. This method is stratified, that is, it divides
all cases into k disjoint subsets of approximately equal proportion
of class values and equal size. Each subset is used to test a model
that is learned from the other k�1 subsets. The trainingSet and

testSet functions provide the required subsets of cases in each
iteration. This algorithm initializes the model to the class variable,
that is, there is no predictive variables in the model yet. After
that, the algorithm saves the accuracy of the resulting model
(theresholdAccuracy) for subsequent comparisons. The accuracy
threshold is computed by means of estimateClassProb and max
functions, which, respectively, compute the initial class probabil-
ities given the training set and return the highest probability
value, that is, the probability of the most frequent class. In each
iteration, the algorithm checks if a specific variable belongs to the
model. The isModelVariable function returns true or false according
to the current model. The algorithm considers adding each unused
variable to the model on a trial basis and measures the perfor-
mance of the resulting model on the training data. First, the
predictClass function computes the predicted class, that is, the
most likely class value of the posterior distribution given a case of
the training set (see Eq. (1)). Then, the readjustClass function
readjusts the probability thresholds of each class to select the
class with the minimum-expected cost (see Eq. (2)). Finally,
the readjusted class and the actual class are used to calculate the
model0s accuracy (calculateAccuracy) using the selected unused
variable in each iteration. After computing the models0 accuracies
of all unused variables, the best variable (selectBestVariable), that
is, the variable related to the model with the highest accuracy is
preselected to be added to the final model. If the new accuracy
is higher than the current accuracy threshold, then the variable is
permanently added to the final model (addToModel). The algo-
rithm terminates when the addition of any variable results in
reduced accuracy. During the test phase, the algorithm computes
the accuracy (calculateAccuracy) and cost (calculateCost) of the
model classifying the cases belonging to the test set. Finally, the k
percentages of well-classified cases and the k misclassification
costs are averaged to output the estimated values of the model
learned from all cases to classify new cases.

3.2.2. Cost-sensitive selective naive Bayes – Cost
Algorithm 2 shows the pseudocode of the cost-sensitive selec-

tive naive Bayes – Cost model. This algorithm also chooses k-fold
cross-validation as the procedure for estimating the accuracy and
cost of the models. This algorithm initializes the model to the class
variable, that is, there is not predictive variables in the model yet.
After that, the algorithm saves the misclassification cost of the
resulting model (theresholdCost) for subsequent comparisons.
The cost threshold is computed by means of estimateClassProb,
classCostEstimation and min functions, which, respectively, com-
pute the initial class probabilities given the training set and the
model, compute the initial cost given the initial probabilities and
the cost matrix, and finally, return the lowest cost value. In each
iteration, the algorithm checks if a specific variable belongs to the
model. The isModelVariable function returns true or false according
to the current model. The algorithm considers adding each unused
variable to the model on a trial basis and measures the average
cost of the resulting model on the training data. First, the
predictClass function computes the predicted class, that is, the
most likely class value of the posterior distribution given a case of
the training set (see Eq. (1)). Then, the readjustClass function
readjusts the probability thresholds of each class to select the
class with the minimum-expected cost (see Eq. (2)). Finally,
the readjusted class and the actual class are used to calculate the
model0s cost (calculateCost) using the selected unused variable in
each iteration. After computing the costs of all models, the best
variable (selectBestVariable), that is, the variable associated with
the model with lowest misclassification cost is preselected to be
added to the final model. If the new model0s cost is lower than the
current cost threshold, then the variable is permanently added to
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the model (addToModel). The algorithm terminates when the
addition of any variable results in a higher cost. During the test
phase, the algorithm computes the accuracy (calculateAccuracy)
and cost (calculateCost) of the model classifying the cases belong-
ing to the test set. Finally, the k percentages of well-classified cases
and the k misclassification costs are averaged to output the
estimated values of the model learned from all cases to classify
new cases.

3.3. Other classification methods for comparisons

3.3.1. Decision tree
The C4.5 algorithm aims at inducing a decision tree that repre-

sents the knowledge of the problem with a tree structure by a
recursive division of the predictors0 space. This algorithm is an
improvement of the ID3 algorithm [41].

3.3.2. K-nearest neighbour
The basic idea of the K-nearest neighbors method is that a new

case will be classified as the most frequent class among its K
nearest neighbors. Euclidean distance is used to estimate the
nearest neighbors of a given case [20].

3.3.3. Logistic regression
The probability of an event is assumed to be a logistic function

of certain variables that are considered potentially influential. The
parameters of the model are estimated using the method of
maximum likelihood and describe the size of the contribution of
each variable to the model [24].

3.4. Statistical tests

Statistical tests determine whether there is enough evidence to
reject a conjecture about the data. The conjecture is called the null
hypothesis. Not rejecting the conjecture may be a good result if we
want to continue to act as if we believe the null hypothesis is true.
Or it may be a disappointing result, possibly indicating that we
may not yet have enough information to reject the null hypothesis.

Tests that do not make assumptions about the population
distribution are referred to as non-parametric tests. All commonly
used non-parametric tests rank the outcome variable from low to
high and then analyze the ranks.

In this paper, we use two non-parametric tests: Kruskal–Wallis
test [32] and Mann–Whitney test [36]. The Kruskal–Wallis test
analyzes whether three or more samples could have come from
the same distribution. The null hypothesis is that the populations
from which the samples originate have the same distribution.
When the Kruskal–Wallis test leads to significant results, then
at least one of the samples is different from the other samples.
The test does not identify where the differences occur or how
many differences actually occur. In contrast, the Mann–Whitney
test analyzes whether two samples could have come from the
same distribution. It is helpful for analyzing the specific sample
pairs for significant differences. The significance level of these
tests was 0.05 in all cases.

4. Results

4.1. Dataset construction

We have selected the Neurosciences category for our case
study. We have used Thomson Reuters0 Web of Science (WoS)
and Journal Citation Reports (JCR) platform to download publica-
tion and citation data. In the following, we illustrate the different

phases of dataset construction and explain each dataset variable,
that is, the predictive features.

First, we selected all journals belonging to the JCR Neuro-
sciences category from 2000 to 2011. There were 269 journals in
this category during the analyzed period. Then we obtained the
publication list and citation data for these journals from the WoS.
We downloaded all documents (1,044,811 papers) published by
the 269 journals until 2011. Using the above information, we
calculated some scientific impact indices associated with the
selected journals for each journal from 2000 to 2011. We also
downloaded other specific journal indices values from JCR. Finally,
we stored all information in a database designed for this purpose.

The bibliometric indices used in this case study were
documents, citations, the h-index, the g-index, the hg-index, the
a-index, the m-index, the q2-index, the hr-index, the hi-index, the
hc-index, impact factor, immediacy index, cited half-life, eigenfactor
and article influence. In the following, we describe each biblio-
metric index.

X1: Documents is an index associated with the number of
papers published by each journal. It represents the productivity
of each specific journal.

X2: Citations is an index associated with the number of citations
received by each journal. It represents the visibility of each specific
journal.

X3: One of the most successful indices was proposed by Jorge
Hirsch and is called the h-index [23]. It quantifies the scientific
output of a single researcher as a single-number criterion. It is a
simple new measure incorporating both the quantity and visibility
of publications. The h-index is based on a list of publications
ranked in descending order by number of citations. The value of h
is equal to the number of papers (N) in the list that have N or more
citations.

X4: Since the h-index tends to underestimate the achievement
of journals that have a “selective publication strategy”, that is,
journals that do not publish a lot of documents but have a major
international impact, the g-index, proposed in [13], is defined as
the highest rank such that the cumulative sum of the number of
citations received is greater than or equal to the square of this
rank. Unlike the h-index, the g-index takes into account the exact
number of citations received by highly cited papers, favoring
journals with a selective publication strategy.

X5: The hg-index, which is based on the h-index and the g-index,
is presented in [2]. It intends to provide a more balanced view of
the scientific production of journals. The hg-index of a journal is
computed as the geometric mean of its h-index and g-index, that is,

hg�index¼
ffiffiffiffiffiffiffiffiffi
h � g

p
;

where h corresponds to the value of the h-index, and g corresponds
to the value of the g-index.

X6: The a-index was proposed in [27]. This index is calculated
for papers that are in the h-core only, that is, the first h papers. It is
defined as the average number of citations received by the articles
included in the h-core. This index measures the citation intensity
in the h-core. The a-index can be very sensitive to just a very few
papers receiving extremely high citation counts.

X7: The m-index is proposed in [5] as a variation on the a-index.
As the distribution of citation counts is usually skewed, the
median and not the arithmetic mean should be used as the
measure of central tendency. This index, which was designed to
illustrate the impact of the papers in the h-core, is the median
number of citations received by papers in the h-core.

X8: The q2-index is developed in [6] to provide a more global
view of scientific production. This index is based on the geometric
mean of the h-index, describing the number of the papers
(quantitative dimension), and the m-index, depicting the impact
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of the papers (qualitative dimension), that is,

q2�index¼
ffiffiffiffiffiffiffiffiffiffiffi
h �m

p
;

where h corresponds to the value of the h-index, and m corre-
sponds to the value of the m-index.

X9: The hr-index, which is an extension of the original h-index,
was proposed in [42]. This index takes into account the number of
citations needed to increase the h-index by one unit. It measures the
distance to the next value of the h-index. Mathematically, this is

hr�index¼ ðhþ1Þ�Citðhþ1Þ
2hþ1

;

where h is the value of the h-index, and Cit(hþ1) is the number of
citations received by article hþ1.

X10: The hi-index, proposed in [4], is complementary to the h-
index and indicates the effective individual average productivity.
Mathematically, it is calculated as

hi�index¼ h
Na

;

where h is the value of the h-index, and Na is the mean number of
authors in the h papers.

X11: The original h-index cannot distinguish between inactive
journals and young journals and senior journals that are still
publishing nowadays. For this reason, there is a need to define a
new index that takes into account the “age” of papers. A novel
score Sc(i) is defined for a paper i based on citation counting:

ScðiÞ ¼ γ � ðYðnowÞ�YðiÞþ1Þ� δCitðiÞ;
where Y(now) is the current year, Y(i) is the publication year of
paper i; Cit(i) is the number of citations received by paper i; γ and δ
are arbitrary parameters.

Using the above score, the value of old papers gradually
declines, even if they still receive citations. Therefore, a new hc-
index is defined in [45]. Its definition states that a journal has index
hc, if hc of its published papers gets a score of ScðiÞZhc each, and
the other papers get a score of ScðiÞohc.

X12: The impact factor (IF) for a given journal in the year y is the
average number of times the articles that it published in the past
2 years were cited in year y. The impact factor is calculated by
dividing the number of citations during year y by the total number
of articles published by the journal in the previous 2 years.
Mathematically, this is

IFðyÞ ¼ Cites in year ðyÞ to items published in years ðy�1Þ and ðy�2Þ
Number of items published in years ðy�1Þ and ðy�2Þ

X13: The immediacy-index is the average number of times an
article is cited in the year that it is published. This index indicates
how quickly articles in a journal are cited. It is calculated by
dividing the number of citations to articles published in a given
year by the number of articles published in that year. Mathema-
tically, this is

immediacy�index ðyÞ ¼ Cites in year ðyÞ to items published in year ðyÞ
Number of items published in year ðyÞ

X14: The cited half-life for a journal is the median age of its
documents cited in the current JCR year. Half of the citations to the
journal are to documents published within the cited half-life. The
cited half-life calculation finds the number of publication years
from the current JCR year that account for 50% of citations received
by the journal.

X15: The eigenfactor calculation is calculated from the number
of times articles from the journal published in the past 5 years
which have been cited in the JCR year, but it also considers which
journals have contributed these citations so that highly cited
journals will influence the network more than lesser cited jour-
nals. References from one article in a journal to another article

from the same journal are removed, so that the eigenfactor is not
influenced by journal self-citation.

X16: The article influence determines the average influence of a
journal0s articles over the first 5 years after publication. It is
calculated by dividing a journal0s eigenfactor by the number of
articles in the journal, normalized as a fraction of all articles in all
publications. This measure is roughly analogous to the 5-year
impact factor in that it is a ratio of a journal0s citation influence to
the size of the journal0s article output over a period of 5 years.

4.2. Data distribution

After collecting the publication list and citation data of all
journals, we observed that the number of cases selected to build
the predictive models varied depending on the year. We used
journal data from 2000 to 2010 (2305 cases) to construct the
models assigned to the first-year. On the other hand, the models
for the second-year used journal data from 2000 to 2009 (2037
cases). Finally, the predictive models for the third- and fourth-year
used journal data from 2000 to 2008 (1785 cases) and from 2000
to 2007 (1449 cases), respectively. Clearly, the longer the predic-
tion horizon was the fewer the cases were used to induce the
models.

Fig. 2 shows the distribution of the journals selected according
to the annual increase of their h-index value within the first
4 years. Taking the first year as an example, we observed that
the lowest and the highest increment of the h-index was Δh¼ 0
(128 journals) and Δh¼ 24 (1 journal), respectively. We also noted
that 457 journals had an increase of Δh¼ 3, which was the mode
value for the first year. Regarding the second year, the minimum
value was Δh¼ 0 (42 journals), the maximum value was Δh¼ 45
(1 journal) and the mode value was Δh¼ 6 (235 journals). Finally,
we also noted that the h-index value increased from Δh¼ 0 to
Δh¼ 65 for third-year models and from Δh¼ 0 to Δh¼ 81 for
fourth-year models. Their mode values were Δh¼ 8 (163 journals)
and Δh¼ 12 (110 journals).

We discretized the class variable values into four intervals
with equal frequency. The increment of the h-index values was
assigned to one of the four possible class values (low, medium-
low, medium-high and high). In this way, first-year models
were discretized as low (Δh¼ ½0�1�), medium-low (Δh¼ ½2�),
medium-high (Δh¼ ½3�4�) and high (Δh¼ ½Z5�), whereas
fourth-year models were discretized as low (Δh¼ ½0�8�),
medium-low (Δh¼ ½9�12�), medium-high (Δh¼ ½13�18�) and
high (Δh¼ ½Z19�) The correspondence between Δh values and
class labels for all models is shown in Table 1.

4.3. Accuracy and average cost

We compared our approaches with the standard formulation of
selective naive Bayes in order to determine if their accuracy and
average cost values were reasonable. Table 2 shows the estimated
accuracy and the average cost for each model. Numbers in boldface
represent the highest accuracy value and lowest cost value for
each model.

We tested our methods with different cost matrices (Cð0;nÞ,
Cð0;n2Þ, Cð0;2nÞ and Cð0;nnÞ). The cost matrix Cð0;nÞ represents
costs where the correct classification has no costs and the
incorrect classification has linear costs. Similarly, Cð0;n2Þ, Cð0;2nÞ
and Cð0;nnÞ represents costs where the correct classification
has no costs and the incorrect classification has quadratic and
exponential costs.

Using the cost matrix Cð0;nnÞ, for example, we noted that our
models almost always outperform the selective naive Bayes
models in higher accuracy and lower cost. Although these models
achieved the highest accuracy (0.504) in the first year, our two
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new algorithms, specifically the CS-SNB-Accuracy, achieved the
highest accuracy in the second-year (0.518), third-year (0.542) and
fourth-year (0.532). By average cost, we observed that our models,
specifically the CS-SNB-Cost, always achieve a lower cost than the
selective naive Bayes. Taking the first-year as an example, we
noted that cost associated with the selective naive Bayes is 1.227,
whereas the cost related to the CS-SNB-Cost is 0.753.

Focusing on cost matrices, we observed that accuracy varied
across models and prediction years, but we did not find a general
pattern. The selective naive Bayes model achieved the highest
accuracy value for first year (0.507) using the cost matrix Cð0;2nÞ.
In contrast, the CS-SNB-Accuracy model obtained the highest
accuracy value in the second year (0.519) and third year (0.542)
with the cost matrices Cð0;2nÞ and Cð0;nnÞ, respectively. Finally,
CS-SNB-Cost achieved the highest accuracy values in the fourth
year (0.533) using the cost matrix Cð0;n2Þ. By costs, we found that
the lowest and the highest average cost were achieved by Cð0;nÞ
and Cð0;2nÞ. CS-SNB-Cost almost always achieved the lowest
average cost with the Cð0;nÞ matrix.

Regarding each algorithm, we noted that selective naive Bayes
achieved the highest accuracy values for first-year models no
matter which cost matrix was used. In contrast, CS-SNB-Accuracy
and CS-SNB-Cost predicted almost all the values more accurately
than selective naive Bayes for the other prediction years. Given the
cost matrix Cð0;2nÞ, for example, we noted that selective naive
Bayes achieved the highest accuracy (0.507) for first-year models,
CS-SNB-Accuracy achieved the highest accuracy for second- (0.519)
and third-year (0.538) models, and CS-SNB-Cost achieved the
highest accuracy (0.532) for fourth-year models. Analyzing aver-
age cost, we found that the selective naive Bayes value was never
the lowest. The lowest average cost values were always achieved

by cost-sensitive models. Specially, we noted that CS-SNB-Cost
usually obtained the lowest value. Given the cost matrix Cð0;n2Þ,
for example, we noted that CS-SNB-Accuracy achieved the lowest
average cost (0.721) for first-year models, whereas CS-SNB-Cost
achieved the lowest values for second- (0.775), third- (0.708) and
fourth-year (0.706) models. To summarize, we found that our cost-
sensitive approaches, particularly CS-SNB-Cost, almost always
achieved a lower average cost than selective naive Bayes. Also,
our approaches, specially CS-SNB-Accuracy, often obtained higher
accuracy values than selective naive Bayes.

Table 3 shows the accuracy and average cost of a set of classifiers
(naive Bayes , selective naive Bayes, cost-sensitive selective naive
Bayes – Accuracy, cost-sensitive selective naive Bayes – Cost, C4.5
decision tree, K-nearest neighbour and logistic regression) which are
learned using the cost matrix Cð0;nnÞ for all prediction years.

Analyzing the accuracy values, we distinguished three different
groups (low, medium and high values). The first group is com-
posed of the naive Bayes classifier which achieved the lower
values. In contrast, the second group is composed of three
classifiers (selective naive Bayes, cost-sensitive selective naive
Bayes – Accuracy, and cost-sensitive selective naive Bayes – Cost)
that achieve medium values, whereas the third group is composed
of non-Bayesian classifiers (C4.5 decision tree, K-nearest neigh-
bour and logistic regression), having the highest values. We noted
the above behavior no matter which prediction year was used.
The results of the Kruskal–Wallis test showed that there were
significant differences among the seven classifiers on the basis of
the accuracy. So, we run Mann–Whitney tests in order to find
out which classifiers rank better according to this criterion.
We compared the benchmark classifier, which had the highest
average value, with the other classifiers. Classifiers marked in
Table 3 with the symbol † had statistically significant differences
with respect to the benchmark classifier (highlighted in boldface).
Taking the second-year model as an example, results show that
there were significant differences between K-nearest neighbour
(benchmark classifier) and naive Bayes, selective naive Bayes,
CS-SNB-Accuracy, CS-SNB-Cost and logistic regression. In contrast,
results do not show statistically significant differences between
K-nearest neighbour and C4.5 decision tree.

Regarding the cost values, we also differentiated three groups.
In this case, naive Bayes and selective naive Bayes achieved higher

Table 1
Correspondence between Δh values and class labels (low, medium-low, medium-
high and high) after discretization with equal frequency.

Class labels First-year Second-year Third-year Fourth-year

Low values 0–1 0–4 0–6 0–8
Medium-low values 2 5–6 7–9 9–12
Medium-high values 3–4 7–9 10–14 13–18
High values Z5 Z10 Z15 Z19
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Fig. 2. Distribution of the increase of the h-index for different prediction years.
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costs, whereas C4.5 decision tree, K-nearest neighbour and logistic
regression achieved medium costs. Finally, our proposed classi-
fiers, CS-SNB-Accuracy and CS-SNB-Cost, achieved the lowest costs.
We also performed a Kruskal–Wallis test in order to compare
classifiers on the basis of the average cost. Taking the second-year
model as an example, results show that there were significant
differences between CS-SNB-Cost and naive Bayes, selective naive
Bayes, C4.5 decision tree, K-nearest neighbour and logistic regres-
sion. In contrast, results do not show statistically significant
differences between our cost-sensitive algorithms.

Analyzing different cost-sensitive approaches, we compare our
algorithms with MetaCost, CostSensitiveClassifier and CSRoulette.
These classifiers convert existing cost-insensitive classifiers (e.g.
naive Bayes) into cost-sensitive ones. Table 4 shows the accuracy
and average cost of the above classifiers which are learned using
the cost matrix Cð0;2nÞ for all prediction years.

Focusing on accuracy and cost values, we observed in Table 4
that our models outperform other cost-sensitive classifiers no
matter which prediction year was used. Taking the first-year as
an example, we noted that the CS-SNB-Accuracy achieved the
highest accuracy (0.480) whereas the CS-SNB-Cost achieved the
lowest cost (1.187). The results of the Kruskal–Wallis test showed
that there were significant differences among the classifiers on the
basis of accuracy and cost. So, we run Mann–Whitney tests in
order to find out which classifiers rank better according to these
criteria. We compared the benchmark classifier, which had the
best average value, with the other classifiers. Classifiers marked in
Table 4 with the symbol † had statistically significant differences
with respect to the benchmark classifier (highlighted in boldface).
Results show that there were significant differences between
CS-SNB-Accuracy (benchmark classifier) and MetaCost, CostSensi-
tiveClassifier, CSRoulette and CS-SNB-Cost in terms of accuracy.

Table 2
Accuracy and average cost of models which are learned using different selective naive Bayes approaches and cost matrices.

Methods First year Second year Third year Fourth year

Accur Cost Accur Cost Accur Cost Accur Cost

Cost matrix: Cð0;nÞ
Selective naive Bayes 0.502 0.608 0.506 0.644 0.530 0.563 0.517 0.584
CS-SNB-Accuracy 0.477 0.610 0.513 0.579 0.530 0.543 0.528 0.534
CS-SNB-Cost 0.458 0.596 0.519 0.577 0.534 0.538 0.532 0.546

Cost matrix: Cð0;n2Þ
Selective naive Bayes 0.503 0.828 0.501 1.005 0.525 0.758 0.532 0.742
CS-SNB-Accuracy 0.460 0.721 0.498 0.873 0.515 0.766 0.525 0.713
CS-SNB-Cost 0.451 0.735 0.514 0.775 0.532 0.708 0.533 0.706

Cost matrix: Cð0;2nÞ
Selective naive Bayes 0.507 1.211 0.509 1.299 0.514 1.171 0.518 1.170
CS-SNB-Accuracy 0.480 1.221 0.519 1.156 0.538 1.069 0.523 1.101
CS-SNB-Cost 0.460 1.187 0.507 1.168 0.533 1.080 0.532 1.086

Cost matrix: Cð0;nnÞ
Selective naive Bayes 0.504 1.227 0.506 1.327 0.526 1.133 0.516 1.190
CS-SNB-Accuracy 0.446 0.953 0.518 0.769 0.542 0.714 0.532 0.732
CS-SNB-Cost 0.419 0.753 0.500 0.772 0.513 0.695 0.516 0.705

Table 3
Accuracy and average cost of models which are learned using different classification methods. Results are achieved using the cost matrix C(0, nn) for all prediction years.

Methods First year Second year Third year Fourth year

Accur Cost Accur Cost Accur Cost Accur Cost

NB 0:262† 3:138† 0:343† 2:815† 0:306† 2:718† 0:303† 2:779†
SNB 0:504† 1:227† 0:506† 1:327† 0:526† 1:133† 0:516† 1:190†
CS-SNB-Accuracy 0:446† 0:953† 0:518† 0.769 0:542† 0.714 0:532† 0.732
CS-SNB-Cost 0:419† 0.753 0:500† 0.772 0:513† 0.695 0:516† 0.705
C4.5 0:525† 1:204† 0.598 1:073† 0.640 0:793† 0.654 0:879†
K-NN 0:553† 1:113† 0.609 1:080† 0.643 0:803† 0.655 0:857†
Logistic 0.587 0:978† 0:587† 1:058† 0.622 0:866† 0.625 0:878†

Naive Bayes (NB); Selective naive Bayes (SNB); C4.5 decision tree (C4.5); K-nearest neighbour (K-NN); Logistic regression (Logistic).

Table 4
Accuracy and average cost of models which are learned using different cost-sensitive approaches. Values achieved using the cost matrix Cð0;2nÞ for all prediction years.

Methods First year Second year Third year Fourth year

Accur Cost Accur Cost Accur Cost Accur Cost

MetaCost 0:116† 1:770† 0:315† 1:597† 0:326† 1:347† 0:188† 1:632†
CostSensitiveClassifier 0:253† 1:866† 0:329† 2:382† 0:300† 2:005† 0:238† 1:842†
CSRoulette 0:432† 2:878† 0.517 2:923† 0:521† 2:923† 0.526 2:892†
CS-SNB-Accuracy 0.480 1:221† 0.519 1.156 0.538 1.069 0.523 1.101
CS-SNB-Cost 0:460† 1.187 0:507† 1.168 0.533 1.080 0.532 1.086
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Results also show that there were significant differences between
CS-SNB-Cost (benchmark classifier) and MetaCost, CostSensitive-
Classifier, CSRoulette and CS-SNB-Accuracy in terms of costs.
To summarize, we found that our cost-sensitive approaches,
particularly CS-SNB-Cost, achieved a lower average cost than other
cost-sensitive classifiers. Also, our approaches, specially CS-SNB-
Accuracy, obtained higher accuracy values than other cost-sensitive
classifiers.

Let us now analyze the models in more detail. Table 5 shows
the specific variables, accuracy and cost for the CS-SNB-Cost model
by each fold of the cross-validation process. These values were
achieved using the cost matrix Cð0;n2Þ for all prediction years.
Analyzing Table 5, we found that the models always include the
impact factor (variable 12). The models also usually include other
variables like the hc-index (variable 11), the cited half-life (variable
14) and the article influence (variable 16). We also noted that fewer
models include the g-index (variable 4), the a-index (variable 6)
and the m-index (variable 7). We noted that first-year models
always had two variables, whereas second-, third-, and fourth-year
models almost always had three variables. Finally, we found that
the feature variables of the model that was most often induced
included impact factor, cited half-life and article influence. Not all
the models included these variables in all situations. This depends
on the cost matrix and prediction year. So, other models were

formed by different variables, although the impact factor, the cited
half-life and the article influence were also present.

4.4. Example

We predict the increase of the h-index value of a Neurosciences
journal in the first year using the cost matrix Cð0;nÞ. Table 6 shows
the parameters that define the model. All features are described by
means of the mean (μ) and the standard deviation (s).

Given a journal (x) with the following values: impact factor¼
2.582, cited half-life¼5.6, and article influence¼0.852, the Δh
values can be predicted using the formulation of cost-sensitive
selective naive Bayes (Algorithms 1 and 2) and the parameters
listed in Table 6.

After propagating the above evidence, the results predicted by CS-
SNB-Accuracy were pðΔh¼ low∣xÞ ¼ 0:076, pðΔh¼medium�
low∣xÞ ¼ 0:391, pðΔh¼medium�high∣xÞ ¼ 0:473 and pðΔh¼
high∣xÞ ¼ 0:060. Similarly, the results predicted by CS-SNB-Cost were
pðΔh¼ low∣xÞ ¼ 0:070, pðΔh¼medium�low∣xÞ ¼ 0:291, pðΔh¼
medium�high∣xÞ ¼ 0:504 and pðΔh¼ high∣xÞ ¼ 0:135. According to
both approaches the h-index of the above journal is likely to increase
by three or four units (medium-high) in the next year.

Table 7 shows other prediction years using the above conditions.
We found that both models predicted the same class for all years. Note

Table 5
Variables, accuracy and cost for the CS-SNB-Cost model by each fold of the cross-validation process. Values achieved using the cost matrix Cð0;n2Þ for all
prediction years.

k First year k Second year

Variables Accuracy Cost Variables Accuracy Cost

1 12,11 0.456 0.721 1 12,11,14 0.497 0.866
2 12,11 0.478 0.756 2 12,16,14 0.566 0.783
3 12,11 0.465 0.713 3 12,16,14 0.517 0.733
4 12,14 0.391 0.834 4 12,16,14 0.492 0.847
5 12,14 0.521 0.647 5 12,16 0.507 0.783
6 12,11 0.456 0.713 6 12,11,14 0.492 0.788
7 12,11 0.439 0.730 7 12,16,14 0.517 0.793
8 12,11 0.447 0.682 8 12,16,14 0.566 0.596
9 12,14 0.426 0.765 9 12,16 0.522 0.778
10 12,11 0.426 0.782 10 12,16,14 0.458 0.778

Mean values 0.451 0.735 0.514 0.775

k Third year k Fourth year

Variables Accuracy Cost Variables Accuracy Cost

1 12,14,16 0.522 0.707 1 12,14,16 0.551 0.662
2 12,11,14 0.500 0.797 2 12,14,6 0.564 0.759
3 12,11,14 0.544 0.623 3 16,12,14 0.493 0.753
4 12,16,14 0.533 0.752 4 12,16,14 0.525 0.701
5 12,14,7 0.533 0.685 5 12,16,14 0.558 0.636
6 12,14,6 0.561 0.775 6 12,16,14 0.538 0.655
7 12,11,14 0.556 0.646 7 12,16,14 0.545 0.668
8 12,14,7 0.522 0.752 8 12,14,4 0.506 0.766
9 12,14,4 0.511 0.707 9 12,16,14 0.493 0.798
10 12,14,4 0.533 0.634 10 12,14,6 0.538 0.655

Mean values 0.532 0.708 0.533 0.706

Table 6
Parameters that define a specific cost-sensitive selective naive Bayes classifier for first-year models. Feature
variables belonging to this classifier are impact factor, cited half-life and article influence.

Impact factor Cited half-life Article influence

Δh¼ low μ¼0.977 s¼0.906 μ¼5.573 s¼3.328 μ¼0.318 s¼0.354
Δh¼medium�low μ¼1.781 s¼1.021 μ¼6.335 s¼2.394 μ¼0.608 s¼0.414
Δh¼medium�high μ¼2.728 s¼1.724 μ¼5.985 s¼2.205 μ¼0.950 s¼0.830
Δh¼ high μ¼5.774 s¼4.802 μ¼5.643 s¼2.060 μ¼2.660 s¼3.202
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that accuracy is different for first- and second-year models, but the
same for third- and fourth-year models is equal. This is because the
induced first- and second-year models were different. Results show
that the increase of h-index for the above journal (x) will be medium-
high (Δh¼ ½3–4�) in the first year, and medium-low in the second
(Δh¼ ½5–6�), third (Δh¼ ½7–9�) and fourth (Δh¼ ½9–12�) years.

5. Conclusion

This paper presents new algorithms for predicting the increase
of the h-index for scientific journals based on the cost-sensitive
approach and the feature subset selection. We developed different
cost-sensitive methods, where the learning algorithm includes
the misclassification costs. These approaches take into account
misclassification costs different from 0 (hit) and 1 (miss). These
algorithms are concerned with classification accuracy and classi-
fication costs. Specially, we develop two forward cost-sensitive
selective naive Bayes approaches. The search process of the first
approach (CS-SNB-Accuracy) includes variables that improve clas-
sification accuracy, whereas the search process of the second
approach (CS-SNB-Cost) includes variables that reduce the dis-
tances between the actual and the predicted class.

The main objective of the proposed algorithms is to predict the
annual increase of the h-index for scientific journals. Models capable of
predicting the h-index that a scientific journal is likely to have in
coming years can be a useful tool for the scientific community.

Results show that our approaches, specially the CS-SNB-Accuracy,
achieved higher accuracy values than the analyzed cost-sensitive
classifiers and Bayesian classifiers. Furthermore, we also noted that
CS-SNB-Cost achieved a lower average cost than all analyzed classifiers.
These cost-sensitive selective naive Bayes approaches outperform the
original selective naive Bayes in terms of accuracy and average cost, so
the cost-sensitive learning approach could be used in different
probabilistic classification approaches.

In the future, we aim to build new cost-sensitive Bayesian
classifiers like the selective tree augmented naive Bayes. These
models could include other journal-based features e.g. 5-year
impact factor, percentage of documents published by a single
author, percentage of documents published in international colla-
boration and so on. Finally, the h-index value could vary depending
on the source consulted (Google Scholar, Scopus, ISI WoK, etc.),
which is a point to be taken into account.
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