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Abstract

We apply genetic algorithms to get the optimal, in a least squares sense, hierarchical clustering of a dataset. We base

this on the bijection between the set of hierarchical classi®cations of a dataset and the set of ultrametric distances. This

bijection makes it possible to measure how good a hierarchical classi®cation is, by calculating the L2 norm between the

ultrametric distance matrix associated with the hierarchical classi®cation and the proximity matrix of the dataset. Our

results are shown to improve on other methods which have been proposed, based on the ultrametric. Ó 1999 Elsevier

Science B.V. All rights reserved.
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1. Introduction

Hierarchical clustering (Gordon, 1991, 1996;
Jain and Dubes, 1988; Kaufman and Rousseeuw,
1990) is a technique of exploratory data analysis.
It builds a hierarchically-nested sequence of par-
titions of a dataset commonly represented in a
rooted tree diagram.

An n-tree in a set X is a subset T � P�X� of
parts of X such that:
1. X 2 T ,
2. ; 62 T ,
3. 8 x 2 X) fxg 2 T ,
4. 8 A;B 2 T ) A \ B 2 f;;A;Bg:

Formally a hierarchical classi®cation or dendro-
gram of X is a pair �T ; h� formed by an n-tree T
together with a non-negative function h that as-
signs a number to each node of T satisfying:
1. h�A� � 0() A � fxg for some x 2 X,
2. If A \ B 6� ; then A � B() h�A�6 h�B�.
There are two main sorts of algorithms which
build a hierarchical clustering of a dataset: the
agglomerative algorithms and the divisive algo-
rithms.

The approach that seems to have received more
attention is the agglomerative algorithm (Kauf-
man and Rousseeuw, 1990; Gordon, 1996). In
agglomerative algorithms, each point of the data-
set forms a cluster at ®rst, and at each step of the
algorithms two clusters are joined to form a new
cluster. Di�erent results can be obtained using
di�erent criteria to choose the clusters that have to
be joined. A summary of these kinds of criteria can
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be found in (Chandon and Pinson, 1980) and most
of them can be found implemented in commercial
software (SPSS, SAS, BMDP, etc.).

Divisive algorithms start with one cluster con-
taining the whole dataset. At each step of the al-
gorithm a cluster is divided into two new clusters
until there is only one point in each cluster. Again,
di�erent results can be obtained using di�erent
criteria in dividing the clusters. Some of them can
be found in (Kaufman and Rousseeuw, 1990).

Both agglomerative and divisive algorithms
have the same characteristic in that they are greedy
algorithms, i.e., they build the n-tree choosing the
best possibility at any stage without taking into
account any global criterion related to the whole
structure. In this work, we seek to avoid locally
optimal solutions.

Given a hierarchical classi®cation �T ; h� of a
dataset X, it is possible to build a distance U from
it, in the dataset, as follows:

U�x;x0� � min
A2T
fh�A� jx;x0 2 Ag:

This distance has the following special proper-
ties:
1. 8 x;x0 2 X) U�x;x0� � U�x0;x�,
2. 8 x 2 X) U�x;x� � 0,
3. 8 x;x0;x00 2 X
) U�x;x00�6 maxfU�x;x0�;U�x0;x00�g:

The latter property is called the ultrametric prop-
erty and this is the name given to this kind of
distance, ultrametric distance. An important result
given in separate papers in 1967 (Hartigan, 1967;
Jardine et al., 1967; Johnson, 1967) establishes
the existence of a bijection between the set of
hierarchical classi®cations of a dataset and the set
of ultrametric distances. Therefore, given a hier-
archical classi®cation, it is possible to get its as-
sociated ultrametric distance and compare it with
the initial dissimilarities (hereafter, we can assume
that the proximities are dissimilarities, the simi-
larity case being slightly di�erent) of the dataset.
Therefore, the better the ultrametric distance ®ts to
the dissimilarities of the dataset, the better the hi-
erarchical classi®cation will be. As a result,
the problem of searching for the best hierarchi-
cal clustering can be set as an optimisation
problem:

given a dissimilarity of a dataset, search for
the ultrametric distance closest to it.

If we can ®nd this closest ultrametric distance, we
will then ®nd the best hierarchical classi®cation of
the dataset.

Di�erent criteria could be used to measure the
®tting between an ultrametric distance and a set of
dissimilarities, many of them can be found in
(Carroll and Pruzansky, 1975), but the one that
has received the most attention is the L2 or
Euclidean norm. In this case the optimisation
problem can be rewritten as that of searching for
the least squares ultrametric distance of a dataset.
We use this norm in our approximation. Note that
the search for the least squares ultrametric
distance of a set of dissimilarities is equivalent to
looking for the ultrametric distance with the
biggest cophenetic correlation coe�cient (De So-
ete, 1984).

Genetic algorithms (Goldberg, 1989; Holland,
1975) (GAs) are probabilistic search algorithms
which simulate natural evolution. They are based
on the mechanics of natural selection and genetics.
They combine `survival of the ®ttest' among string
structures with a structured yet randomised in-
formation exchange. In GAs the search space of a
problem is represented as a collection of individ-
uals. The individuals are represented by character
strings, which are referred to as chromosomes. The
aim is to ®nd the individual from the search space
with the best `genetic material'. The quality of an
individual is measured with an objective function.
The part of the search space to be examined in
each iteration is called the population. A GA works
approximately as follows. To begin with, the initial
population is chosen at random, and the quality of
each of its individuals is determined. Next, in every
iteration, parents are selected from the population.
These parents produce children, which are added
to the population. For all the newly created indi-
viduals of the resulting population a near to zero
mutation probability will exist, i.e., the newly
created individual could change their hereditary
distinctions. The population is then reduced to its
initial size by removing some individuals according
to a selection criterion. One iteration of the algo-
rithm is referred to as a generation.
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2. Previous approaches to the problem

The problem of searching for an ultrametric
distance closest to the dissimilarity of a dataset
was set up in an early paper (Hartigan, 1967).
Hartigan tried to carry out this task in a local
form. He de®ned a group of local operations over
a tree structure, his aim being to get the best tree
for these local operations. He raised the idea of
searching the complete search space to ®nd the
best tree for the ®rst time. This work was further
improved in (Hartigan, 1985), but it still developed
a local algorithm.

An important paper in this topic was presented
by Chandon et al. (1980). They developed a
branch-and-bound algorithm which could ®nd the
optimal least squares ultrametric of a dataset. The
problem of this approximation is that it is very
time-consuming, so it can only be applied to small
datasets (size lower than 15). Their algorithm is
based on an important property that will be used
by us. If we denote the di�erent element pairs' set
of the dataset S � f�i; j� jxi 6� xjg, then any ul-
trametric distance U � �di;j�i;j�1;2;...;n can be de-
composed into a preorder relation on S denoted by
C:

C1 < C2 < � � � < Ck

and a sequence of numbers

d1 < d2 < � � � < dk;

such that

8 �i; j� 2 Cr ) di;j � dr 8r 2 f1; 2; . . . ; kg:
The above mentioned property says that if C is a
solution of the problem, then

dr � �1=nr�
X
�i;j�2Cr

di;j 8r 2 f1; 2; . . . ; kg;

where di;j is denoting the initial dissimilarity be-
tween the data xi and xj and nr the number of
pairs in Cr.

De Soete (1984), following the ideas of Carroll
and Pruzansky (1980), sets the problem up in a
di�erent way. He posed the problem as a mathe-
matical programming problem. The objective
function of this mathematical programming
problem was composed of two terms, one mea-

suring the di�erence between the dissimilarity of
the dataset and the proposed distance and the
other measuring (or penalising) how far the pro-
posed distance was from being ultrametric. The
last part depends on a parameter whose value in-
creases with the steps of the algorithm. The ®rst
part of the function can be written as

L�U� �
X
i<j

�di;j ÿ di;j�2

and the second part

P�U� �
X

K

�di;k ÿ dj;k�2;

where K is the set of triples that violate the ultra-
metric property:

K � f�i; j; k� jdi;j6 min�di;k; dj;k� and di;k 6� dj;kg:
Therefore, the function to minimise is

U�U ; q� � L�U� � qP �U� �q > 0�:
At each step of the algorithm a quadratic pro-
gramming problem without constraints was solved
and the value of the parameter q was increased.
This approximation, even faster than the branch-
and-bound algorithm, does not always guarantee
the ®nding of the global optimum.

A comparison between both methods can be
found in (Chandon and De Soete, 1984).

More recent work on this topic has been by
Hubert and Arabie (1995). The authors modi®ed,
in a heuristic way, an iterative projection algo-
rithm in convex sets for least squares problems, in
such a way that the convex sets (in our case the
inequalities) can be chosen in the execution of the
algorithm. This algorithm not only ®nds least
squares ultrametric distances, but tree distance or
more general structures. Again this is a heuristic
algorithm where the global optimum is not guar-
anteed.

A couple of papers related to this problem are
by Awargala et al. (1995) and Gascuel and Levy
(1996). In the former, an algorithm is proposed
to look for the best ultrametric distance to a
dissimilarity matrix; the norm used was L1. On
the other hand, Gascuel and Levy try to ®nd the
least squares tree distance of a set of dissimi-
larities.
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3. Our genetic-based algorithm

The problem we want to solve is, given a dis-
similarity matrix D � �di;j�i;j�1;2;...;n of a dataset, to
®nd the ultrametric distance matrix
U � �di;j�i;j�1;2;...;n that minimises the following
formula:X
i<j

�di;j ÿ di;j�2:

To solve this problem we have developed a new
genetic-based algorithm. We call it the order-based
approach. We have based this approach mainly on
two ideas. First of all, we know that given an ul-
trametric distance U on a dataset X, it is possible
to give a H order to the dataset X objects, with the
following property: if the rows and columns of the
U matrix are ordered according to H, then this
new matrix will comply with the following prop-
erties (Lerman, 1981):
1. 8i6 j) di;j6 di;j�1,
2. 8k 2 f1; 2; . . . ; ng if dk;k�1 � dk;k�2 � � � � �

dk;k�s�1 < dk;k�s�2; then
· dk�1;j6 dk;j 8k � 1 < j6 k � s� 1,
· dk�1;j � dk;j 8j > k � s� 1.

Therefore, given H, an order for the objects of the
dataset, and an n-tree structure T, it is then an easy
task to ®nd the least squares ultrametric distance
of the dissimilarity of the dataset for this order and
n-tree structure. The n-tree structure gives the en-
tries of the ultrametric distance that are equal.
Therefore, given the order and the tree structure,
the problem can be set up as a quadratic pro-
gramming problem with constraints in nÿ 1 vari-
ables.

We can see this with an example. Let us suppose
that X has 5 elements and the dissimilarity matrix
of the dataset in the H order is

0 4 3 5 1
0 2 8 3

0 6 2
0 9

0

0BBBB@
1CCCCA:

If the tree structure is given in Fig. 1, then the
ultrametric matrix has the following pattern:

0 d1 d1 d1 d1

0 d2 d3 d3

0 d3 d3

0 d4

0

0BBBB@
1CCCCA

(we have eliminated in this case the double sub-
scripts in order to emphasise the equal elements)
and the quadratic programming problem can be
written as follows:

min d1

� 
ÿ �4� 3� 5� 1�

4

�2

� �d2 ÿ 2�2

� d3

�
ÿ �8� 3� 6� 2�

4

�2

� �d4 ÿ 9�2
!

subject to the following constraints:

d3 ÿ d16 0; d2 ÿ d36 0; d4 ÿ d36 0;

di 2 R and di P 0; i � 1; 2; 3; 4: �1�
Hence, we are carrying out a search in the set of
orders H and n-tree structures T. For that an in-
dividual of our order-based GA is a permutation
of length n� �nÿ 2� of the numbers
1; 2; . . . ; 2nÿ 2. The individual codi®es an order
for the dataset and an n-tree structure. The num-
bers from 1 to n codify the order for the elements
of the dataset, and the numbers from n� 1 to
2nÿ 2 codify the n-tree structure. We know that
this representation is not unique. There exist dif-
ferent combinations of n-tree structures and orders
in the data that produce the same ultrametric
distance. In fact, an equivalence relation could be

Fig. 1. An example of a n-tree structure.
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set up in the set of pairs (order, tree-structure). It
does not damage the search capabilities of the GA
(Gerrits and Hogeweg, 1990).

The result given by Chandon et al. (1980), and
mentioned above, is the second idea we have based
our approach on. This result suggests using the
following heuristic to save computational time. In
our algorithm, instead of solving a quadratic
programming problem at every step, which is
computationally expensive, we have approximated
each variable by the mean of the corresponding
values of the dissimilarities of the dataset. In the
example, the values are

d1 � �4� 3� 5� 1�
4

� 3:25; d2 � 2;

d3 � �8� 3� 6� 2�
4

� 4:75; d4 � 9:

In case the resulting distance is not an ultra-
metric distance, as it is in the example, the values
of some of the variables would be changed in order
to obtain ultrametricity. We ®x the value of the
variable that must have the highest value, in our
case d1. The values of rest of the variables change
(if necessary) to satisfy the constraints (1) and
consequently the ultrametric conditions. In the
example, the following values are ®nally obtained:

d1 � 3:25; d2 � 2;

d3 � 3:25; d4 � 3:25:

As we can see only the variables d3 and d4 have
changed their value.

The advantage of evaluating an individual in
this way consists of spending less time than if we
have to solve a quadratic programming problem in
each evaluation of an individual. At the same time,
following the Chandon et al. (1980) result, previ-
ously mentioned, if the order and n-tree structure
are the optimum, then we will get the optimal ul-
trametric distance.

4. Experiments

We have carried out some experiments with
four datasets. The ®rst was taken from Shepard
et al. (1975). It is a set representing the dissimi-

larities among the ®rst 10 single-digit integers
f0; 1; . . . ; 9g considered as abstract concepts. In
the second, taken from Rao (1952), the dissimi-
larities between 12 Indian casts and tribes are
represented. The third taken from Kaufman and
Rousseeuw (1990, p. 57) is a set of size 18 with
dissimilarities among garden ¯owers. Finally, the
well-known Ruspini dataset, a set of size 75, was
taken as the fourth.

We used a steady-state GA (Whitley and
Kauth, 1988). Four crossover operators: PMX,
CX, OX1 and AP, in combination with six muta-
tion operators: SM, SIM, ISM, IVM, EM and
DM (Larra~naga et al., 1999) were used. The mu-
tation probability and the size of the population
were set in relation with the length of the indi-
vidual. If we call l the length of the individual, the
probability of mutation was set to 1=l and the size
of the population was set to 3� l. We used two
di�erent stop rules. If the best individual of the
population did not change its value in 50000
generations we stopped the algorithm, and if the
number of generations was bigger than a ®xed
value it was also stopped. These values depending
on the size of the sets were 80 000, 110 000, 150 000
and 300 000, respectively.

We carried out 10 experiments for each dataset,
and each combination of crossover and mutation
probabilities, i.e., for each dataset we carried out
240 experiments, 60 for each crossover operator
and 40 for each mutation operator.

To compare our order-based GA we applied
three more algorithms to these sets. The branch-
and-bound algorithm (B&B) by Chandon et al.
(1980), the mathematical programming algorithm
(MPA) by De Soete (1984), and ®nally the iterative
projection method (IPM) by Hubert and Arabie
(1995).

The B&B algorithm could only be applied to
the ®rst two datasets. In the following two datasets
a large amount of computing time was needed
which made its application impossible (in the
Kaufman and Rousseeuw set, it took seven days to
explore the ®rst branch). On the other hand, MPA
and IPM could not be applied to the Ruspini da-
taset, owing to the limited computer memory re-
sources (it exceeds the maximum memory limits of
our compiler stack) in the ®rst algorithm, and
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because of the version that we have, it could only
work with datasets with less than 51 observations
in the second algorithm. In each of the ®rst three
datasets MPA and IPM were applied 60 times.

All the experiments were carried out with a
Pentium 200 MHz with 64 MB of RAM.

The goodness-of-®t index used is the percentage
of the variance of dissimilarities that is accounted
for by the ultrametric distance, denoted by VAF
(which equals the cophenetic correlation coe�-
cient):

VAF � 1ÿ
P

i<j�di;j ÿ di;j�2P
i<j�di;j ÿ d�2 ;

where di;j and di;j are the initial dissimilarity and
the distance between data i and j, and d is the mean
dissimilarity value of the dataset.

Table 1 summarises the max, mean and min
VAF values and the mean execution time in sec-
onds obtained in the ®rst three datasets with the

algorithms MPA and IPM. In the case of the B&B
algorithm the values belong obviously to just one
execution.

In Table 2 the mean VAF values and mean
execution time of the di�erent crossover and mu-
tation operators of the order-based GA in the
application to the three ®rst datasets can be seen.

We can assume from the results that the IPM
algorithm and our order-based GA with the CX
crossover operator have the best behaviour. Our
order-based GA with CX outperforms the results
obtained by the IPM in the three datasets whereas
IPM has a better mean execution time than the
order-based GA. Not only does the order-based
GA algorithm obtain the optimum more times but
it also has a better mean. On the other hand the
IPM algorithm obtains lower variance than the
order-based GA.

In relation to Shepard dataset the order-based
GA with CX obtained the optimum VAF in 34
executions out of the 60 whereas the IPM

Table 1

Results of the experiments with the B&B, MPA and IPM algorithms

Shepard (10) Rao (12) Kaufman (18)

VAF VAF VAF

Max Mean Min Time Max Mean Min Time Max Mean Min Time

B & B 0.494 ± ± 248.2 0.572 ± ± 23633 ± ± ± ±

MPA 0.406 0.403 0.395 16.40 0.530 0.525 0.505 49.51 0.450 0.436 0.414 689

IPM 0.494 0.481 0.457 5.71 0.561 0.538 0.495 8.29 0.511 0.492 0.447 15.4

Table 2

Results of the order-based GA in the three ®rst datasets

Shepard (10) Rao (12) Kaufman (18)

VAF VAF VAF

Max Mean Min Time Max Mean Min Time Max Mean Min Time

CX 0.494 0.491 0.347 7.967 0.561 0.552 0.411 15.122 0.511 0.502 0.278 33.65

OX1 0.494 0.460 0.349 8.414 0.561 0.499 0.335 13.541 0.510 0.462 0.299 31.66

AP 0.494 0.450 0.347 8.403 0.561 0.508 0.411 14.372 0.504 0.395 0.278 33.17

PMX 0.494 0.460 0.399 8.494 0.561 0.510 0.411 13.815 0.510 0.429 0.319 47.04

SM 0.494 0.452 0.366 8.290 0.561 0.498 0.335 13.569 0.511 0.437 0.278 28.53

SIM 0.494 0.463 0.404 8.028 0.561 0.522 0.411 12.426 0.510 0.438 0.302 31.31

ISM 0.494 0.452 0.347 7.672 0.561 0.501 0.414 14.186 0.510 0.428 0.294 26.08

IVM 0.494 0.471 0.349 9.007 0.561 0.526 0.430 15.456 0.511 0.458 0.288 27.37

EM 0.494 0.481 0.403 8.714 0.561 0.528 0.463 14.463 0.511 0.467 0.348 44.95

DM 0.494 0.473 0.397 8.206 0.561 0.528 0.468 15.175 0.510 0.454 0.321 40.04
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algorithm only took the optimum in 14 out of the
60 executions.

In relation to Rao dataset the best value
achieved for both algorithms was 0.561 that was
taken by the IPM algorithm 25 out of 60 times and
for the order-based GA with CX 26 out of 60
times.

Finally in Kaufman dataset both algorithms got
the same best result 0.5114, this result was taken
by IPM 6 times and 7 times by the order-based GA
with CX.

In relation to the Ruspini dataset, we could
only apply the order-based GA approximation.
The results on this dataset can be seen in Table 3.

As observed from Table 3, the CX operator is
not the best in this case. This is because we stopped
the algorithms when they had not even converged.
In almost all the cases the algorithms used the
maximum number of iterations, in the Ruspini
dataset 300 000.

5. Conclusions

A new genetic-based algorithm is presented to
search for the closest ultrametric distance, in a
least squares sense, to the dissimilarity of a data-
set. The algorithm can be applied to larger num-
bers of observations than have been reported on in
the relevant literature to date. The results obtained

in the experiments with the order-based GA are
particularly favourable with the CX crossover
operator (except in the Ruspini dataset) outper-
forming those obtained by other methods.
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