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We present a supervised wrapper approach to discretization. In contrast to many classical 
approaches, the discretiza-tion process is multivariate: all variables are discretized 
simultaneously, and the proposed discretization is evaluated with the Naive-Bayes classifier. 
The search for the optimal discretization is carried out as an optimization process with the 
learning model estimated accuracy guiding it. The global optimization algorithm is based on 
estimation of distribution algorithms, a set of novel algorithms which are special kinds of 
evolutionary algorithms. In order to evaluate the behaviour of the algorithm, an analysis of 
different parameters is performed by means of analysis of variance (ANOVA). The evaluation 
was carried out using artificial datasets, and with UCI datasets. The results suggest that the 
proposed method provides an effective and robust technique for discretizating variables.
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1. Introduction

Machine learning tasks involve the handling of continuous and discrete information. Some limitations
can exist with learning tasks with continuous variables. Some of these limitations are related to the
nature of the data assumed the induction algorithms. For example, some learning algorithms make use
of assumptions about normality that are frequently violated in real datasets. On the other hand, other
limitations are related to the use of algorithms that solely require discrete information.

A common method of dealing with this problem is to discretize the continuous variables, i.e. by
breaking variable values into ranges. This process has several advantages: a reduction in time to induce
a classifier [11,17,21], a higher interpretability of the models [25] and an improvement in accuracy [30].

As a result, different discretization methods have been developed [21,22,35,56,69]. Some of them,
known as supervised methods, make use of class information to perform the discretization process. The
use of this information improves the search of intervals that discriminates class distribution better, i.e.
intervals where the entropy is the lowest possible, as opposed to those in which the entropy is higher [21].



In addition, if it is possible to select intervals where the entropy is minimal, then ability of the classifier
to discriminate instances is improved. Thus, different discretizations can increase or decrease classifier
ability to discriminate instances, i.e. its accuracy. The increase or decrease in the accuracy of the
classifiers will reflect the quality of the discretization.

The majority of the actual proposed methods do not take advantage of the classifier accuracy to carry
out the discretization. Traditional approaches only take into account classifier accuracy to assess the
quality of the algorithm. To the best of our knowledge, the methods that make use of this information
are oriented to the induction of rules [1,26,39].

Our proposal makes use of classifier estimated accuracy to carry out a search of the best discretization.
The classifier accuracy will be used as a guiding measure to search for the best discretization. The meta-
heuristic process of search is carried out globally, i.e. it takes into account all variables simultaneously.
This search can be supported by any optimization method due to the fact that the search for an optimal
discretization is considered a NP-problem [13]. In our case estimation of distribution algorithms will be
used as a heuristic to perform the search. The classification model will be a Naive-Bayes [18,40,49].

In this search there are many other factors that can influence the accuracy of the classifier: the number
of intervals, the size of the database and, specifically in our algorithm, the population size. To analyze
the influence of these parameters, a set of experiments with artificial data was carried out. All gathered
results were analyzed by means of analysis of variance (ANOVA) [58]. This allows the testing of
significant differences between means. Finally, a set of experiments with real data is performed to assess
the effectiveness of the proposed approach.

The outline of the paper is as follows. In Section 2 the basis of the estimation of distribution algorithms
is introduced. Section 3 presents the proposed wrapper discretization approach with detail. Section 4
describes the methodology of the experiments presented as well as the analysis performed with the results.
Related works are presented in Section 5. Conclusions and future work are presented in Section 6.

2. Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs) [48] are a new evolutionary computation approach
as an alternative to genetic algorithms. Our proposed algorithm will be supported by these kinds of
evolutionary algorithms as an optimization tool in the search for the best discretization.

2.1. Overview

EDAs were introduced in the field of evolutionary computation in [48], although similar approaches
can be found in [73]. In EDAs there are neither crossover nor mutation operators. Instead, the new
population of individuals is sampled from a probability distribution, which is estimated from a database
that contains the selected individuals from the previous generation. Thus, the interrelations between the
different variables that represent the individuals are explicitly expressed through the joint probability
distribution associated with the individuals selected at each generation. In order to understand the
behavior of this heuristic better, a common outline for all EDAs follows:

1. Generate the first population of M individuals and evaluate each of them. Usually this generation
is made assuming a uniform distribution on each variable.

2. N individuals are selected from the set of M , following a given selection method.
3. A n (size of the individual) dimensional probability model that shows the interdependencies among

the variables is induced from the N selected individuals.



Fig. 1. EDA approach to optimization.

4. Finally, a new population of M individuals is generated based on the sampling of the probability
distribution learnt in the previous step.

Steps 2, 3 and 4 are repeated until some stop criterion is met (e.g., a maximum number of generations,
a homogeneous population or no improvement after a certain number of generations). A diagram of this
process (for n = 4) can be seen in Fig. 1, and the pseudocode in Fig. 2.

The probabilistic graphical model learnt at each step has a significant influence on the behavior of the
EDA (computing times and obtained results). Below we provide a classification of EDAs that uses as
criterion the complexity of this probability model and the dependencies it considers:

– Without dependencies: It is assumed that the n – dimensional joint probability distribution factorizes
as a product of n univariate and independent probability distributions. Algorithms that use this model
are, among others, UMDA [47].

– Bivariate dependencies: Only the dependencies between pairs of variables are taken into account.
In this way, estimation of the joint probability can be done quickly. This group includesMIMIC [4].

– Multiple dependencies: All possible dependencies among the variables are considered without
taking into account required complexity.
EBNABIC [19],BOA [51], Learning Factorized Distribution Algorithm (LFDA) [46] orEGNAEE [42]
are some algorithms that belong to this group.

For detailed information about the characteristics and different algorithms that constitute the family
of EDAs, see [43,54]. Theoretical results related to convergency and stability properties of EDAs can be
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Fig. 2. EDA pseudocode.
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Fig. 3. Structure, local probabilities and resulting factorization for a Bayesian network with four variables (X1, X3, and X4

with two possible values, and X2 with three possible values).

consulted in [27,71,72].
The algorithms of the last group (multiple dependencies) use different paradigms to codify the proba-

bilistic model. The handling of dependencies leads to the estimation of a higher number of parameters
and therefore a higher number of instances in order to correctly estimate all the parameters (see Figs 3
and 4). We will be interested in those probability models that do not consider dependencies between
variables. The absence of dependencies enables considering simpler models, fewer parameters and even
fewer instances to correctly estimate the parameters. Therefore, in some situations it will be not possible
to build a model which is able to handle dependencies due. Because there are not enough instances to
correctly estimate the parameters.

2.2. The Univariate Marginal Distribution Algorithm (UMDA)

Different approximations can be taken in order to perform the factorization of the model. We shall
focus on those without dependencies due to the previously cited advantages, specifically on the Univariate
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Fig. 4. Structure, local probabilities and resulting factorization for a Gaussian network with four variables.

Marginal Distribution Algorithm for continuous domains (UMDAc). This algorithm was introduced by
Larrañaga et al. [42,44] to learn the joint density function.

fl(x;θl) =
n∏

i=1

fl(xi; θl
i) (1)

It is usual to assume that the joint probability distribution follows a n-dimensional normal distribu-
tion, which can be factorized according to previous assumption by a product of n unidimensional and
independent normal densities. The parameters of the joint probability distribution will be n means (μ i)
and n standard deviations (σi).

f(x;θ) =
n∏

i=1

fN (xi;μi, σ
2
i ) =

n∏
i=1

1√
2πσi

e
− 1

2
(

xi−μi
σi

)2 (2)

This particular case where all univariate distributions are normal will be denoted asUMDAG
c (Univariate

Marginal Distribution Algorithm for Gaussian models). In UMDAG
c several steps are carried out. First

a selection step, secondly an estimation of joint density function. The two parameters to be estimated at
each generation and for each variable are the mean, μ l

i, and the standard deviation, σ l
i. It is well known

that their respective maximum likelihood estimates are:

μ̂l
i = X

l
i =

1
N

N∑
r=1

xl
i,r ; σ̂l

i =

√√√√ 1
N

N∑
r=1

(xl
i,r − X l

i)2 (3)

Finally, and in order to obtain a new population of individuals a sampling is performed based on the
new joint density function.
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Fig. 5. WEDA pseudocode.

3. Wrapper discretization by means of EDAs

3.1. Algorithm

Wrapper discretization by means of EDAs (WEDA) makes use ofUMDAG
c search tool for discretization

tasks in a wrapper way. The adaptation will consist of adding a new step in the UMDAG
c algorithm.

This new step will be previous to estimating the model. It will be comprised of two phases that will
be applied to every individual of the population. The first phase will consist of discretizing the input
database. In the second phase, previously discretized dataset plus class information associated to each
instance is used to build a classifier. The classifier estimated accuracy will be the score of the applied
discretization policy. We must point out that without class information it is not possible to build a
classifier and, therefore, to score a discretization policy. Complete WEDA pseudocode is described in
Fig. 5, and it will be described with detail hereinafter.

The main risk of the iterative process for WEDA is the possible overfitting that can occur leading to
a low bias but a high variance [36]. So, to assess in a fair way the estimated predictive accuracy of
WEDA, an external stratified 5-fold cross validation is performed (see Fig. 6). An external validation
leads to a partitioning of the database. This division generates 5 parts of approximately the same size.
Each part verifies that it has approximately the same proportion of class distribution of the original
database class distribution. These 5 disjoint parts are combined to generate 5 new databases. Each new
database is formed by two partial databases: one for learning a discretization policy including 80% of
the original databas and the other 20% for testing purposes (see Fig. 6). The testing database contains
unseen instances by WEDA.

Therefore, WEDA receives as input a partial training database. And the results are a discretized
database and the policy used to discretize it. The discretization policy induced by WEDA is used to
discretize the testing database. Finally, a Naive-Bayes is learnt with the partial training discretized
database and tested with the testing discretized database.
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Fig. 6. WEDA external validation.

The whole process is repeated 5 times, once for each generated database. So, five Naive-Bayes are
trained and tested, and the average accuracy is the individual accuracy.

3.2. Representation

In order to understand the way the discretization is represented, two key definitions will be provided.
This representation will not be based on the database directly.

Let’s suppose that we have a database with M examples and each of them is labeled with a class. This
database can be denoted as D = {(x(w), c(w)), w = 1, ...,M}.

Definition 1. A discretization sequence for variable Xi is denoted as λi =< ti1, . . . , t
i
ki

> and it is an
increasing sequence of real numbers (or cut-points). The sequence verifies t i

1 < ti2 < . . . < tiki
. Based

on this definition a function for each variable is defined fλi : ΩXi → {1, . . . , ki} as:

fλi(xi) =

⎧⎨
⎩

1 if x < ti1
j if tij � x < tij+1 j = 1, . . . , ki − 1
ki if x � tiki

(4)

Definition 2. A discretization policy Λ is defined as a set of n discretization sequences, each of them
related to each original continuous variable. When a policy Λ =< λ1, . . . , λn > is applied to a database
D, a new discretized database, Dd = Λ(D), is obtained with Dd = {(x(w)d, c(w));w = 1, ...,M}. Note
that class label remains invariable.

An individual of WEDA is defined as a discretization policy. Assuming that the original database has
n continuous variables, we state the following:

– An individual represents n different discretization sequences, each of them corresponding to a
univariate variable component. Each element of the discretization sequence t i

j is considered as
the value of a variable represented by WEDA as Tij . The first subindex i in Tij corresponds to
superindex i in ti

j , and the second subindex j corresponds to subindex j. It is important to note that
Tij variables are independent of each other given our factorization model.

– The number of variables used to represent an individual is
∑n

i=1 ki.
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Fig. 7. Discretization policy.

So, an individual will be a set of different variables representing different discretization sequences
that form a discretization policy. Each variable will be sampled in order to provide a cut-point. This
sampling is controlled by the population sampling step.

Let’s use an example to clarify previous ideas. In Fig. 7 there is an example where we have 3 variables,
X1,X2,X3, in the original continuous database. Let’s suppose that thefirst variable and the third variable
are discretized in two intervals and the second in three intervals. This means that an individual will be
composed of 3 different discretization sequences. The first discretization sequence will be composed of
one variable T11. This variable will be associated with variable X1. The second discretization sequence
will be composed of 2 variables T21, T22. These variables are associated with variable X2. Finally
the last discretization sequence will be composed of one variable T31, whose value is associated with
variable X3.

Whole discretization policy is composed of the variables: T11, T21, T22, T31. Now, these variables will
be sampled twice because in our example there are only two individuals that make up the population.
Each individual representing a different discretization policy will discretize the original database, and
subsequently a Naive-Bayes is learnt by means of 10-fold cross validation (cross validation process has
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been omitted due to space reasons).

3.3. Generating initial population

The mechanism to perform the generation of the initial population is carried out in several steps. The
first step is to determinethe range of values for each Xi, obtaining its minimum and maximum values.
The next step consists of building a uniform model for each Tij associated with Xi, where the parameters
are determined by the corresponding minimum and maximum values. In the last step each T ij is sampled
producing the initial population. This process is repeated for each X i variable of the database.

3.4. Scoring a discretization policy

In order to evaluate an individual, two steps are followed (see Fig. 8). First, the original database is
discretized by the proposed discretization policy. Secondly, the previously discretized database is used
to perform a Naive-Bayes 10-fold cross validation with the selected classifier. The result of the previous
10-fold cross validation will be the score of the discretization policy and ,therefore, of the individual.

3.5. Selecting population and estimating model

After scoring the whole population, the best individuals are selected to build the model. Typically,
50% of the population is considered to be selected. The information taken into account to build the
model is based on the different cut-points that integrate the different discretization sequences.



As every cut-point is a variable in WEDA, our model is represented by:

fl(t,θl) =
n∏

i=1

ki∏
j=1

fl(tij ,θl
ij) =

n∏
i=1

ki∏
j=1

1√
2πσl

ij

e
− 1

2

(
tij−μl

ij

σl
ij

)2

(5)

where θl is given by:

θl = (μl
11, . . . , μ

l
nkn

, σl
11, . . . , σ

l
nkn

) (6)

3.6. Population sampling

The model previously estimated is used for generating the new population. To acomplish this process
for each original variable Xi, it is necessary to simulate WEDA variables (Ti1, . . . , Tiki

) associated with
it. The simulation will start with Ti1 and will finish with the variable Tiki

. However, a special situation
can occur in this simulation: a variable Tij+1 can produce a cut-point with a value lower than the value
produced by the variable Tij , generating an unsorted and therefore invalid sequence.

When this occurs, the cut-point that invalidates the sequence is discarded. Then T ij+1 is resampled in
order to obtain a cut-point that preserves the sorted and, therefore valid sequence. However, if succesive
resamplings are not able to preserve the sequence valid, a different strategy is carried out. This strategy
consists of discarding the whole discretization sequence, i.e. all cut-points produced by T i1, . . . , Tij+1

are discarded. Then, the process restarts again simulating variables T i1,. . . , Tiki
. This strategy is carried

out only when the number of intervals is very high at the first iterations of the algorithm and the unsorted
sequences tend to disspear quickly.

Finally, when all discretization sequences have been generated, a global discretization policy is
obtained. This discretization policy is associated with an individual. Consequently, this process is
repeated for all the individuals of the population.

4. Experiments

In this section, we present an analysis of WEDA under different parameters, and subsequently a set of
results of applying WEDA in real datasets from UCI with the aim to assess its effectiveness.

4.1. Analysis

The analysis of WEDA behaviour was accomplished with a classical method for testing significant
differences between means: ANalysis Of VAriance. ANOVA is one of the most suitable tools to carry
out these kinds of tasks.

A 3-way ANOVA model was used to reflect our analysis. In our model we have three factors in
ANOVA terminology:

– α – Number of intervals: 2, 4, 8.
– β – Database size: 50, 100, 200.
– γ – Population size: 10, 25, 75.



Table 1
ANOVA Results

Source Type III Sum of Squares df Mean Square F Sig.
Corrected Model 17009,148a 26 654,198 1652,463 ,000

Intercept 1925586,675 1 1925586,7 4863912 ,000
α 8954,943 2 4477,471 11309,813 ,000
β 4814,908 2 2407,454 6081,079 ,000
γ 1824,063 2 912,032 2303,735 ,000

αβ 872,673 4 218,168 551,079 ,000
αγ 137,746 4 34,437 86,985 ,000
βγ 196,554 4 49,138 124,121 ,000
αβγ 208,261 8 26,033 65,757 ,000
Error 96,202 243 0,396
Total 1942692,025 270

Corrected Total 17105,350 269
aR Squared = 0.994 (Adjusted R Squared = 0.994).

The model with all parameters is:

Yijkl = μ + αi + βj + γk + (αβ)ij + (αγ)jk + (βγ)jk + (αβγ)ijk + Eijkl (7)

To acomplish this analysis it was necessary to generate databases with different sizes. Each generated
database was based on an artificial model: a Naive-Bayes with a fixed structure, and a fixed set of
parameters.

Once all databases were generated with suitable parameters, the experiments consisted of executing
WEDA for each parameter combination using an external 5-fold cross validation for each parameter
combination. Each combination was repeated 10 times due to the stochastic nature of WEDA. All
gathered results have been grouped by the population size (see Fig. 9).

After gathering all the results, we proceed with the formal analysis of relationships between the
different parameters. This task is acomplished performing all tests associated to our ANOVA model.
The result was that all null hypothesis were rejected (see Table 1). In order to proceed with the statistical
contrast, we should perform several tests, each of them related with the combination of the parameters.
But, if we take into account the lowest value (the worst case) with only one test with a significance
level of 5% at we can conclude if there are relationships between the parameters. Because observed
F values are much bigger than F (2,243) (the worst and lowest value), it can be concluded that there
are relationships between the different parameters and the different treatments of the parameters. As a
result a change of the population size, a change of the number of intervals, and finally a change of the
size of the dataset will have consequences on the classifier accuracy. In general, a change of whatever
combination of the parameters will have consequences on the classifier accuracy.

Now, we proceed to extract several conclusions of this analysis as well as making some comments
about the results.

Firstly, we can conclude that accuracy of WEDA results will depend on the database size, on the
number of intervals and finally on the population size. Therefore, taking advantage of these conclusions
an increase in the population size will have relevant importance. The performance improves as can be
seen in Fig. 9.

Secondly, a relationship exists between the dataset size and the number of intervals as a second relevant
conclusion.

And finally, we must point out that there is an increase of classifier accuracy when the dataset size
increases (see Fig. 9). This can be an expected result because when the number of instances increases
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Size

50 87.15– 0.79 81.56– 0.85 74.59– 0.52
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200 94.87– 0.36 92.15– 0.33 84.52– 0.43
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50 90.44– 0.72 85.17– 0.84 74.74– 0.38

100 96.13– 0.64 89.27– 0.55 74.49– 0.41

200 96.36– 0.23 93.21– 0.20 87.06– 0.32

Fig. 9. Summary of results of ANOVA. Graphical results for Population sizes: 10, 25 and 75. Numeric results summarized in
tables for population sizes: 10, 25 and 75. Each cell shows the average and the deviation of the estimated predictive accuracy
of 10 executions in a 5-fold cross validation.
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there is more information and the estimations can be closer to real data nature. There is also an increase
of classifier accuracy when the population size increases; this is perhaps the most valuable result when
WEDA is applied to real datasets.

On the other hand, we should note an unexpected effect detected. This effect is the decrease of
accuracy when the number of intervals increases, contrary to theorical expected results [30]. This effect
was also addressed by traditional algorithms such as Equal Frequency, Equal Width, and K-Means (see
Fig. 10). This effect is due to the election of the parameters of the artificial Naive-Bayes model. The
original parameters were modified in order to proceed with our study. The reason was that preliminary
experiments (with 50 and 1600 instances) produced very high accuracies with classical algorithms with
only two intervals. Furthermore, this accuracy reached 100% with more than two intervals with our
proposal (see Fig. 10).

4.2. Real datasets

At this point, we present estimated accuracies obtained with WEDA proposed algorithm. We compare
accuracies obtained with WEDA and the accuracies with respect to unsupervised approaches and super-
vised approaches. We have considered the following unsupervised approaches: Equal Frequency, Equal
Width, K-Means and Unsupervised Monothetic Contrast. Supervised approaches were: Fayyad and Irani
Entropy (available in WEKA [66]) and Class-Attribute Interdependence Maximization (CAIM) [38], a
more modern supervised approximation to discretization.

The results were obtained in 10 UCI datasets, which only contain continuous predictor variables. The
main characteristics of the datasets included are summarized in Table 2: dataset name, number of classes,
number of variables and the number of instances.

Each dataset was tested with each algorithm by an external 5-fold stratified cross validation process
using a classification paradigm in order to estimate the predictive accuracies. In the case of WEDA,
experiments were carried out with a population of 75 individuals and repeated 10 times due to its
stochastic nature. The whole process was repeated with three different classification paradigms: a
Naive-Bayes, a C4.5, and a k-NN.

The results are summarized in two tables: Tables 3 and 4, where each column represents each
discretization algorithm and each row represents each dataset. Therefore, each cell contains the average



Table 2
UCI Datasets

# Data Set Num. Class Values Num. Variables Num. Instances
1 Balance 3 4 625
2 Bupa 2 6 246
3 Hayes 3 4 160
4 Image 7 20 2310
5 Ionosphere 2 35 351
6 Iris 3 4 150
7 Liver 2 6 345
8 Pima 2 8 768
9 Vehicle 4 19 846

10 Wine 3 13 179

Table 3
Summary of the estimated predictive accuracy with 2 bins. Classical unsupervised approaches compared with WEDA

Equal Equal K Means Unsupervised WEDA WEDA WEDA +
Frequency Width Monothetic +C4.5 + k-NN Naive

Contrast Bayes
# 1 73.02 ± 2.99 73.02 ± 2.99 77.50 ± 3.37 77.82 ± 4.07 77.64 ± 2.58 77.75 ± 0.41 77.40 ± 1.07
# 2 66.38 ± 3.14 56.23 ± 3.75 57.68 ± 1.21 58.84 ± 2.63 57.10 ± 0.70 58.14 ± 1.33 58.44 ± 0.59
# 3 56.45 ± 8.06 37.73 ± 5.79 51.85 ± 6.05 31.73 ± 5.80 60.24 ± 2.39 46.94 ± 4.11 57.60 ± 1.24
# 4 67.75 ± 0.83 71.17 ± 2.29 72.77 ± 1.26 72.42 ± 1.66 92.15 ± 0.41 91.38 ± 0.57 88.08 ± 0.27
# 5 66.49 ± 22.81 68.23 ± 26.54 63.08 ± 22.83 65.64 ± 22.93 90.52 ± 0.85 87.35 ± 0.52 96.02 ± 0.61
# 6 76.00 ± 2.81 73.99 ± 5.96 78.67 ± 3.80 78.67 ± 5.05 95.47 ± 0.27 95.20 ± 0.42 94.80 ± 0.00
# 7 68.12 ± 8.39 55.36 ± 4.15 56.23 ± 6.59 57.10 ± 4.53 57.71 ± 1.13 58.32 ± 1.64 60.33 ± 4.13
# 8 72.26 ± 3.39 68.49 ± 4.74 72.53 ± 1.83 74.15 ± 1.57 74.53 ± 0.40 73.62 ± 0.41 73.22 ± 0.53
# 9 45.68 ± 3.94 39.78 ± 2.87 43.28 ± 3.87 42.51 ± 2.66 66.36 ± 1.37 66.38 ± 1.00 61.34 ± 1.02
# 10 96.11 ± 3.85 88.55 ± 4.43 93.75 ± 6.75 93.17 ± 6.84 94.05 ± 1.03 94.87 ± 0.98 96.38 ± 1.45

and the deviation of the estimated predictive accuracy of the corresponding discretization algorithm with
the dataset. The best values in the table are marked in bold.

As suggested by Demsar [15], a Wilcoxon paired signed-rank test has been used in order to compare
our proposed algorithm with unsupervised classical approaches on the group of experimented datasets.
To accomplish the comparison four tests have been carried out, all of them with a significance level of
5%. The first test compares Equal Frequency with WEDA using the results obtained by Equal Frequency
in the 10 UCI datasets and the results obtained by WEDA in the same datasets, i.e. the results contained
in the columns corresponding to Equal Frequency and to WEDA in Table 3. The second test compares
Equal Width with WEDA in the same way, i.e. using the results obtained by Equal Width in the 10 UCI
datasets and the results obtained by WEDA in the same datasets. The third test compares K Means and
WEDA in the same way, and the fourth test compares Unsupervised Monothetic Contrast and WEDA
also in the same way.

So, according to the Wilcoxon’s test, for a confidence of α = 5%. We therefore reject all null
hypothesis with the exception of Equal Frequency algorithm that in only two datasets (Bupa and Liver)
that is ahead of the rest of the algorithms. WEDA seems to induce better discretization policies than
classical approaches.

On the other hand, when we observe the results with supervised approximations (see Table 4),
these show that supervised approximations seem to be more competitive than classical unsupervised
approximations. But we have to point out that in many cases supervised approximations generate a very
high number of intervals. And in a few cases, some datasets were discretized in only two intervals. An
example is the image dataset where a variable is discretized in 14 intervals.



Table 4
Summary of the estimated predictive accuracy. Supervised approaches compared with WEDA

Fayyad Irani CAIM WEDA WEDA WEDA +
Entropy + C4.5 + k-NN Naive Bayes

# 1 73.02 ± 2.99 73.02 ± 2.99 77.64 ± 2.58 77.75 ± 0.41 77.40 ± 1.07
# 2 52.17 ± 8.20 62.90 ± 6.84 57.10 ± 0.70 58.14 ± 1.33 58.44 ± 0.59
# 3 60.14 ± 2.56 53.87 ± 4.50 60.24 ± 2.39 46.94 ± 4.11 57.60 ± 1.24
# 4 88.48 ± 0.18 80.35 ± 3.31 92.15 ± 0.41 91.38 ± 0.57 88.08 ± 0.27
# 5 88.91 ± 3.87 89.75 ± 4.74 90.52 ± 0.85 87.35 ± 0.52 96.02 ± 0.61
# 6 93.33 ± 2.36 69.53 ± 2.58 95.47 ± 0.27 95.20 ± 0.42 94.80 ± 0.00
# 7 58.28 ± 0.68 61.19 ± 4.30 57.71 ± 1.13 58.32 ± 1.64 60.33 ± 4.13
# 8 75.76 ± 3.58 72.91 ± 5.02 74.53 ± 0.40 73.62 ± 0.41 73.22 ± 0.53
# 9 61.26 ± 4.02 46.55 ± 1.61 66.36 ± 1.37 66.38 ± 1.00 61.34 ± 1.02

# 10 98.24 ± 2.63 98.24 ± 2.63 94.05 ± 1.03 94.87 ± 0.98 96.38 ± 1.45

We can conclude that WEDA seems to perform better than classical unsupervised algorithms but
can be less competitive than supervised approaches when the number of intervals is very high. This
performance improvement is related to the use of classifier accuracy information and the global way of
accomplishing discretization. But this global way of performing discretization leads to a cost in CPU
that will be detailed next.

The cost in CPU is the most critical aspect in our approach. In order to assess this, Figs 11 and 12
are presented. In these figures we can see the accuracy evolution over time in all datasets. The accuracy
evolution showed is the average accuracy obtained in all executions performed by WEDA.

Several conclusions can be extracted from these figures. The first one is that the accuracy evolution
shows that in most cases WEDA requires only one internal iteration to reach the same accuracy as
some classical approaches. And with 15 iterations WEDA reaches the same accuracy as all classical
approaches in all datasets, excluding those cases where WEDA is inferior. General behaviour of WEDA
indicates that the cost in CPU does not need to be necessarily high to outperform classical approaches as
few iterations are required to reach the same accuracies.

5. Related work

Since 1986, when the first algorithms were published, the discretization methods have proved to be
very useful in machine learning algorithms. Nowadays, many different kinds of approaches have been
applied to discretization. Dougherty et al. [17] shows a summary of these methods but Yang [68] has
perhaps the best taxonomy of the different discretization methods. We will describe them, and a new
category will be added:

– Supervised vs. unsupervised [17]. Methods that use class information to improve the quality of their
discretization or procedures which ignore this information.

– Univariate vs. multivariate [2]. Multivariate methods take the relationships between variables into
account and univariate methods discretizes each variable in isolation.

– Parametric vs. non-parametric. Parametric methods require some input from the user such as
the number of intervals, while non-parametric methods do not require any input, they only use
information from data.

– Hierarchical vs. non-hierarchical. Hierarchical methods begin with a pre-defined discretization that
use split or merge [33] operations. If methods that use “splitting” equation are used we start with
one interval and continue discretization making split operations. In merge methods we start with the
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WEDA: 77.75% − 200 Iterations (4298 Seconds)
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Fig. 11. The graphics show the evolution of accuracy in WEDA over time using the external cross validation with UCI databases
(Part I). Each graphic shows the accuracy obtained with classical approaches, the number of iterations required by WEDA to
reach the same accuracy and the time involved.
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WEDA: 65.61% − 200 Iterations ( 24047 Seconds)

Equal Frequency: 46.68% − 2 Iterations ( 244 Seconds)

K Means: 43.28% − 1 Iteration ( 122 Seconds)

UMC: 42.51% − 1 Iteration ( 122 Seconds)

Equal Width: 39.78% − 1 Iteration ( 122 Seconds)

0 500 1000 1500 2000 2500 3000
84

86

88

90

92

94

96

98

100
Wine 10x5CV Average Score over Time

Time in Seconds

%
 A

cc
ur

ac
y
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Fig. 12. The graphics show the evolution of accuracy over time in an external cross validation with UCI databases (Part II).

whole dataset as candidate intervals and, with some criterium, merge operations are made in adjacent
intervals. Non-Hierarchical methods do not start with a predefined set of intervals that do not form
any hierarchy. For example, these methods can scan the ordered values once and sequentially form
the intervals.

– Global vs. local [17]. Global methods perform the discretization process using the same number of
regions for the whole data, and discretization is performed once. Local methods allow different sets
of intervals.

– Eager vs. lazy [31]. Eager methods carry out discretization before begining the classification task.
Lazy methods perform discretization during the learning process, and both tasks are performed at
the same time.

– Disjoint vs. non-disjoint. Disjoint methods perform discretization creating disjoint intervals. Non-
disjoint methods can use non-disjoint intervals. Some learning models can impose conditions over
the intervals whereas other learning models such as Naive-Bayes do not impose any conditions as
regards the intervals [70].

– Filter vs. wrapper. This new axis is introduced in order to enhance the taxonomy. It takes into
account new recent methods (such as methods based on genetic algorithms [63]). Filter methods
do not use the clasification algorithm itself and the discretization process is independent of the
employed classification procedure. Wrapper methods take classification accuracy information into
account in the discretization process, this information will guide the search.

There has been an evolution in discretization methods, many of them make use of class information
to improve classification but with different approaches. The class information is used to find partitions
which discriminate the class distribution between groups in a better way. An optimal discrimination
of the class distribution has a direct impact in classifier accuracy. The classifier accuracy captures the
quality of the discrimination of the class distribution. WEDA makes use of classifier accuracy to guide
the search of the best discrimination. There are some approximations that performs discretization as
internal process and not as an aim. The induction of optimal rules is the aim and not a discretization
proposal [26].



6. Conclusions

In this work a novel discretization algorithm with a global wrapper approach based on EDAs was
presented. The algorithm makes use of classifier estimated accuracy to guide the search of the optimal
discretization in a global way. The behaviour of the proposed approach was studied using artificial
datasets and subsequently compared to classical approaches in ten UCI datasets by means of the estimated
predictive accuracy. The results of the experiments demonstrate that the use of classifier information
obtains very competitive discretization policies compared to the approaches of the traditional algorithms.
On the other hand, the ability to be used with other classification paradigms is essential to take advantage
of new upcoming discrete classifiers. The only drawback is a higher CPU cost than classical approaches.

A future work line consists of making use of the relationship of the discretization policy variables in
WEDA.
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[5] M. Boullé, Khiops: A Discretization Method of Continuous Attributes with Guaranteed Resistance to Noise, In Pro-
ceedings of the 3rd International Conference on Machine Learning and Data Mining, Volume 2734 of Lecture Notes in
Computer Science, Leipzig (Germany), 2003, Springer-Verlag, 50–64.
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