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Bayesian networks are a type of probabilistic graphical models lie at the intersection
between statistics and machine learning. They have been shown to be powerful tools
to encode dependence relationships among the variables of a domain under uncertainty.
Thanks to their generality, Bayesian networks can accommodate continuous and discrete
variables, as well as temporal processes. In this paper we review Bayesian networks
and how they can be learned automatically from data by means of structure learning
algorithms. Also, we examine how a user can take advantage of these networks for
reasoning by exact or approximate inference algorithms that propagate the given evidence
through the graphical structure. Despite their applicability in many fields, they have
been little used in neuroscience, where they have focused on specific problems, like
functional connectivity analysis from neuroimaging data. Here we survey key research
in neuroscience where Bayesian networks have been used with different aims: discover
associations between variables, perform probabilistic reasoning over the model, and
classify new observations with and without supervision. The networks are learned from
data of any kind –morphological, electrophysiological, -omics and neuroimaging–, thereby
broadening the scope –molecular, cellular, structural, functional, cognitive and medical– of
the brain aspects to be studied.
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1. INTRODUCTION
A Bayesian network (BN) (Pearl, 1988; Koller and Friedman,
2009) is a compact representation of a probability distribution
over a set of discrete variables. Variables represent the uncertain
knowledge of a given domain and are depicted as the nodes of
the network. The structure of a BN is a directed acyclic graph
(DAG), where the arcs have a formal interpretation in terms of
probabilistic conditional independence. The quantitative part of a
BN is a collection of conditional probability tables, each attached
to a node, expressing the probability of the variable at the node
conditioned on its parents in the network. The joint probability
distribution (JPD) over all variables is computed as the product
of all these conditional probabilities dictated by the arcs. This dis-
tribution entails enough information to attribute a probability to
any event expressed with the variables of the network. Moreover,
there are efficient algorithms for computing any such probabil-
ity without having to generate the underlying JPD (this would
be unfeasible in many cases). BNs have enormously progressed
over the last few decades leading to applications spanning all
fields.

Computational neuroscience is currently an interdisciplinary
science, also allied with statistics and computer science (more
specifically with machine learning). Since BNs are probabilistic
models, the realm of statistics offers inference tools to perform
probabilistic reasoning under uncertainty. Machine learning algo-
rithms are distinguished by the target outcome or the type
of available input data. Thus, they have several aims: associa-
tion discovery, supervised classification and clustering. BNs can

support all these facilities. In association discovery (reviewed in
Daly et al., 2011), we look for relationships among the vari-
ables of interest when we have access to data on those vari-
ables. Examples of this modeling task in neuroscience include
functional connectivity analysis with fMRI or the discovery of
relationships among morphological variables in dendritic trees.
In supervised classification (reviewed in Bielza and Larrañaga,
2014) there is a discrete class (or outcome) variable that guides
the learning process and which has to be predicted for new
data. Sometimes there may be a vector of class variables (multi-
dimensional classification). Examples in neuroscience are the
classification of cortical GABAergic interneurons from their
morphological or their electrophysiological characteristics or
the prediction of Alzheimer’s disease (AD) from the genomic-
wide information. In clustering (reviewed in Pham and Ruz,
2009), the goal is to group the data in homogeneous groups
and with a probabilistic membership assignment to each of
the clusters. In neuroscience grouping dendritic spines is an
example.

In this paper we try to pinpoint neuroscience problems that
have been addressed using BNs. Section 2 reviews BNs and
Section 3 explains how to perform inference over a BN. Section 4
describes learning algorithms used to construct the structure and
estimate the probabilities that define a BN. Section 5 surveys
neuroscience research using BNs, distinguishing between differ-
ent input data types: morphological, electrophysiological, -omics
data and neuroimaging. Section 6 rounds the paper off with a
discussion.
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2. BAYESIAN NETWORKS
2.1. DEFINITION
BNs (Pearl, 1988; Koller and Friedman, 2009) are widely used
models of uncertain knowledge. They provide a compact rep-
resentation of the JPD p(X1, . . . , Xn) across many variables
X = (X1, . . . , Xn) with values xi ∈ �Xi = {1, 2, . . . , ri}. It is the
JPD over all the variables of a domain that is of great interest,
since it contains all the information and can be used to ask any
probabilistic question. By using the chain rule, the JPD can be
expressed as

p(X1, . . . , Xn) = p(X1)p(X2|X1)p(X3|X1, X2) · · · p(Xn|X1, . . . , Xn−1).(1)

Note that this expression can be written in as many different
ways as there are orderings of the set {X1, . . . , Xn}. Despite fac-
torization, the JPD still requires a number of values that grows
exponentially with the number n of variables (e.g., we need 2n − 1
values if all variables are binary). By exploiting the conditional
independence between variables, we can avoid intractability by
using fewer parameters and a compact expression. Two ran-
dom variables X and Y are conditionally independent (c.i.) given
another random variable Z if

p(x|y, z) = p(x|z) ∀x, y, z values of X, Y, Z,

that is, whenever Z = z, the information Y = y does not influ-
ence the probability of x. X, Y, Z can even be disjoint random
vectors. The definition can be equivalently written as

p(x, y|z) = p(x|z)p(y|z) ∀x, y, z values of X, Y, Z.

Conditional independence is halfway between the intractable
complete dependence of Equation (1) and the infre-
quent and unrealistic case of mutual independence, where
p(X1, . . . , Xn) = p(X1)p(X2)p(X3) · · · p(Xn). Conditional inde-
pendence is central to BNs. Suppose that we find for each Xi a
subset Pa(Xi) ⊆ {X1, . . . , Xi−1} such that given Pa(Xi), Xi is c.i.
of all variables in {X1, . . . , Xi−1} \ Pa(Xi), i.e.,

p(Xi|X1, . . . , Xi− 1) = p (Xi|Pa(Xi)) . (2)

Then using Equation (2), the JPD in Equation (1) turns into

p(X1, . . . , Xn) = p (X1|Pa(X1)) · · · p (Xn|Pa(Xn)) (3)

with a (hopefully) substantially reduced number of parameters.
A BN represents this factorization of the JPD with a DAG.

A graph G is given as a pair (V, E), where V is the set of
nodes and E is the set of edges between the nodes in V . Nodes
of a BN represent the domain random variables X1, . . . , Xn.
A directed graph has directed edges (arcs) from one node to
another. Arcs of a BN represent probabilistic dependences among
variables. They are quantified by conditional probability distri-
butions shaping the interaction between the linked variables.
The parents of a node Xi, Pa(Xi), are all the nodes pointing
at Xi. Similarly, Xi is their child. Thus, a BN has two com-
ponents: a DAG and a set of conditional probability distri-
butions of each node Xi given its parents, p(Xi|Pa(Xi)), that

determine a unique JPD given by Equation (3). The first qual-
itative component is called the BN structure and the second
quantitative component is called the BN parameters. When all
the nodes are discrete variables these parameters are tabu-
lated in what is usually referred to as conditional probability
table (CPT).

Hypothetical example on risk of dementia. Figure 1 shows a
hypothetical example of a BN, inspired in Burge et al. (2009),
modeling the risk of dementia. All variables are binary, with x
denoting “presence” and x̄ denoting “absence,” for Dementia D,
Neuronal Atrophy N, Stroke S and confined to a Wheelchair W .
For Age A, a means “aged 65+” and otherwise the state is ā.
Both Stroke and Neuronal Atrophy are influenced by Age (their
parent). These two conditions influence Dementia (their child).
Wheelchair is directly associated with having a stroke. Attached
to each node, CPTs indicate the specific conditional probabil-
ities. For instance, if someone has neuronal atrophy and has
had a stroke, there is a 0.95 probability he will be demented:
p(d|n, s) = 0.95.

The JPD is factorized as:

p(A, N, S, D, W) = p(A)p(N|A)p(S|A)p(D|N, S)p(W |S).

Thus, the JPD p(A, N, S, D, W) requires 25 − 1 = 31 param-
eters to be fully specified. With the BN that allows the JPD
factorization, only 11 input probabilities are needed.

The term acyclic means that the graph contains no cycles, that
is, there is no sequence of nodes starting and ending at the same
node by following the direction of the arcs. The descendants of
a node Xi are all the nodes reachable from Xi by repeatedly fol-
lowing the arcs. Let ND(Xi) denote the non-descendants of Xi.
The conditional independences encoded by a BN that allow to
factorize the JPD as in Equation (3) are

Xi is c.i. of ND(Xi) given Pa(Xi), i = 1, . . . , n,

FIGURE 1 | Hypothetical example of a BN modeling the risk of

dementia.
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that is, each node is c.i. of its non-descendants, given its parents.
Then it is said that G satisfies the Markov condition with a prob-
ability distribution p and that (G, p) is a BN. Note that in the
Dementia example, there are no cycles. The descendants of node
S are D and W , whereas all nodes are descendants of A. Applying
the Markov condition to node S, we have that S and N are c.i.
given A.

Indeed, the Markov condition implies the factorization in
Equation (3): if we simply use the chain rule Equation (1) with
an ancestral (also called topological) node ordering (i.e., parents
come before their children in the sequence), the non-descendants
and parents will be in the conditioning sets {X1, . . . , Xi−1} of
the chain rule and the application of the Markov condition will
give Equation (2) and hence expression (3). Conversely, given a
DAG G and the product in Equation (3), then the Markov condi-
tion holds. In the Dementia example, ancestral orderings are e.g.,
A-N-S-D-W or A-S-W-N-D.

Other conditional independences may be derived apart from
those given in the Markov condition. Some may be obtained from
the properties of the conditional independence relationship. But
it is easier to check a property called d-separation over the graph
which is always a sufficient condition for conditional indepen-
dences in p. Two sets of nodes X and Y are d-separated by a third
set Z (X, Y, Z are disjoint) if and only if every undirected path
between X and Y is “blocked,” i.e., there is an intermediate vari-
able V (not belonging to X or Y) such that: (a) V is a converging
connection in the path, and V and its descendants do not belong
to Z, or (b) V is not converging (serial or diverging connection)
and it belongs to Z. A converging connection is A→ V ← B;
a serial connection is A→ V → B or A← V ← B; a diverging
connection is A← V → B. Thus, given the Markov condition, if
node X is d-separated from node Y given node Z, then X and Y
are c.i. given Z. BNs are said to be an independence map of p. If
the reverse also holds, i.e., conditional independence implies d-
separation (which is not always true for every distribution), then
it is said that p is faithful to G or G is a perfect map of p. In this
case, all the independences in the distribution are read directly
from the DAG.

The Markov condition is also referred to as local Markov prop-
erty. The global Markov property states that each node Xi is c.i. of
all other nodes in the network given its so-called Markov blanket,
MB(Xi), i.e.,

p(Xi|X \ {Xi}) = p (Xi|MB(Xi)) .

If p is faithful to G, the Markov blanket of a node is composed of
its parents, its children and the parents of its children (spouses).
Therefore, the only knowledge required to predict the behavior
of Xi is MB(Xi). This will be relevant in supervised classification
problems (Section 4.3.1).

In the Dementia example, MB(N) = {A, D, S}. A is the parent
of N, D is its child and S is its spouse.

The 3-node BNs X→ Y → Z, X← Y → Z, and X←
Y ← Z are (Markov) equivalent because exactly the same con-
ditional independences are imposed. The concept of equivalence
between DAGs partitions the space of DAGs into a set of equiva-
lence classes. This will be useful for learning BNs (see Section 4).

The completed partially DAG (CPDAG) or essential graph repre-
sents all members of an equivalence class. It has an arc X→ Y if it
appears in every DAG belonging to the same equivalence class and
otherwise has a link X − Y (either direction X→ Y or X← Y is
possible in the DAGs within the equivalence class).

Arcs in a BN represent probabilistic dependences, and vari-
ables at the tails of the arcs will not necessarily be causally
dependent on variables at the head. Arc reversals in causal rela-
tionships would change their meaning (not true in the previous
equivalent BNs). In general, causality cannot be inferred from
observational data alone. Data subjected to interventions are
required. Differentiating between arcs needs some prior knowl-
edge (prohibiting certain directions) or the application of external
interventions that probe some arc direction using a hypothesis
test. For a BN to be a causal network (Pearl, 2000), there has to
be an explicit requirement for the relationships be causal. In these
networks, the impact of external interventions can be predicted
from data collected prior to intervention.

To sum up, a BN is a DAG and a collection of DAG-
dependent conditional probability distributions whose multi-
plication defines the JPD (equivalently, the Markov condition
holds), and, also, d-separations in the DAG imply their respective
conditional independences. This modularity through the local
conditional distributions makes the BN easier to maintain as there
are less parameters to be estimated/elicited and stored and assures
a more efficient posterior reasoning (inference).

2.2. GAUSSIAN BAYESIAN NETWORKS
A common approach is to discretize variables X1, . . . , Xn if they
are continuous, i.e., to partition them into nominal intervals. For
instance, the continuous blood-oxygen-level-dependent (BOLD)
responses measured by an fMRI scanner can be discretized into
four categories: very low, low, high, and very high. Standard
discretization methods use a fixed number K of equal width par-
titions or partitions of K% of the total data. Other methods in
supervised classification use variable relationships to the class
variable to define the bins (Fayyad and Irani, 1993). However, dis-
cretization involves some loss of information and the assignment
of many parameters. Models with continuous variables are a wise
choice in this case.

Unlike the categorical distributions represented by a
BN, Gaussian BNs (Shachter and Kenley, 1989; Geiger and
Heckerman, 1994) assume that the JPD for X = (X1, . . . , Xn)
is a multivariate (non-singular) normal distribution N (μ,�),
given by

f (x) = 1

(2π)n/2|�|1/2
exp

(
−1

2
(x− μ)T�−1(x− μ)

)
, (4)

where μ = (μ1, . . . , μn)T is the vector of means, � is the n× n
covariance matrix and |�| is its determinant. A Gaussian BN can
be equivalently defined (as in (3)) as the product of n univariate
normal densities defined as

fi(xi|xi1 , . . . , xili
) ∼ N

⎛
⎝μi +

li∑
j= 1

βij (xij − μij ), vi

⎞
⎠ , (5)
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where {Xi1 , . . . , Xili
} = Pa(Xi), μi is the unconditional mean of

Xi (i.e., the ith component of μ), vi is the conditional vari-
ance of Xi given values for xi1 , . . . , xili

and βij is the linear
regression coefficient of Xij in the regression of Xi on Pa(Xi).
It reflects the strength of the relationship between Xi and Xij :
there is no arc from Xij to Xi whenever βij = 0. Note that vi does
not depend on the conditioning values xi1 , . . . , xili

. Root nodes
(without parents) follow unconditional Gaussians. The parame-
ters that determine a Gaussian BN are then μ = (μ1, . . . , μn)T ,
{v1, . . . , vn} and {βij , i = 1, . . . , n, j = 1, . . . , li}.

Example. In a 4-node structure with arcs X1 → X3, X2 → X3

and X2 → X4, distributions are

f1(x1) ∼ N (μ1, v1)

f2(x2) ∼ N (μ2, v2)

f3(x3|x1, x2) ∼ N (μ3 + β31(x1 − μ1)+ β32(x2 − μ2), v3)

f4(x4|x2) ∼ N (μ4 + β42(x2 − μ2), v4)

For a multivariate Gaussian density given by Equation (4), there
exist formulas to generate a Gaussian BN, i.e., the product of
normal densities given in Equation (5), and vice versa (Shachter
and Kenley, 1989; Geiger and Heckerman, 1994). The factorized
expression is better suited for model elicitation since it has to be
guaranteed that the covariance matrix � is positive-definite in the
multivariate expression.

Gaussian BNs assume that the interaction between variables
are modeled by linear relationships with Gaussian noise. Discrete
BNs are more general, able to model non-linear relationships.
Strict assumptions of Gaussianity over the continuous condi-
tional distributions in BNs can be relaxed with non-parametric
density estimation techniques: kernel-based densities, mixtures of
truncated exponentials (Moral et al., 2001), mixtures of polyno-
mials (Shenoy and West, 2011) and mixtures of truncated basis
functions (Langseth et al., 2012). Nevertheless, the use of these
kinds of models for learning and simulation is still in its infancy,
and many problems have yet to be solved.

2.3. DYNAMIC BAYESIAN NETWORKS
The BN models discussed so far are static. In domains that evolve
over time (e.g., the sequential activation of brain areas during
cognitive decision making), we need dynamic BNs (Dean and
Kanazawa, 1989; Murphy, 2002). A discrete time-stamp is intro-
duced and the same local model is repeated for each unit of
time. That local model is a section of the network called a time
slice and represents a snapshot of the underlying evolving tem-
poral process. The nodes within time slice t can be connected
to other nodes within the same slice. Also, time slices are inter-
connected through temporal or transition arcs that specify how
variables change from one time point to another. Temporal arcs
only flow forward in time, since the state of a variable at one time
point is determined by the states of a set of variables at previ-
ous time points. A prior BN specifies the initial conditions. In
dynamic BNs, the structures of the time slices are identical and the
conditional probabilities are also identical over time. Therefore,
dynamic BNs are time-invariant models, and dynamic only means
that they can model dynamic systems. For inference purposes, the

structure of a dynamic BN is obtained by unrolling the transition
network over all consecutive times.

Mathematically, a dynamic BN represents a discrete-
time stochastic process where there is a vector of interest
Xt = (

Xt
1, . . . , Xt

n

)
at each time t = 1, . . . , T. For instance, the

BOLD response of n regions of interest (ROIs) at time t. It is
common to assume stationarity, that is, the probability does
not depend on t. When the stochastic dynamic process is also
assumed to be a first-order Markovian transition model, i.e.,
p
(

Xt |Xt−1, . . . , X1
) = p(Xt |Xt− 1), then

p
(

X1, . . . , XT
)
= p

(
X1) T∏

t= 2

p
(

Xt |Xt− 1) .

p
(

X1
)

are the initial conditions, factorized according to the prior
BN. p

(
Xt |Xt− 1

)
will be also factorized over individual Xt

i as∏n
i= 1 p

(
Xt

i |Pat(Xi)
)
, where Pat(Xi) may be in the same or pre-

vious time-slice. In continuous settings, a Gaussian is mostly
assumed for p

(
Xt

i |Pat(Xi)
)

(auto-regressive model). Higher-
order and non-stationary Markov models allow more complex
temporal processes. However, such complex models pose obvious
challenges to structure and parameter estimation.

Example. Figure 2 shows an example of dynamic BN struc-
ture. The prior and transition networks are given, respectively,
in Figures 2A,B. There are three variables, X1, X2, and X3 in the
problem. The two slices of nodes in Figure 2B express with tem-
poral arcs a plate to travel from a generic time t to t + 1, in
this case a first-order Markovian transition model. The order
would be two if there were also arcs from Xt

i to Xt+ 2
i . For rea-

soning about the dynamic BN, the transition network can be
unfolded in time to have a single network, see Figure 2C for
T = 3. Note that setting arc directions across time guarantees
the acyclicity of the graph, required for a BN. Dynamic BNs are
able to model recurrent networks, important in neural systems
as there exist cyclic functional networks in the brain, such as
cortico-subcortical loops.

Dynamic BNs may assume full or partial observability of states
at the nodes. For instance, neuroimaging techniques provide only
indirect observations of the neural activity of a ROI, whose real
state is unknown. A hidden or latent variable can model this situa-
tion. Another example is the target characters in brain- computer

FIGURE 2 | Example of dynamic BN structure with three variables

X1, X2, and X3 and three time slices. (A) The prior network. (B) The
transition network, with first-order Markov assumption. (C) The dynamic
BN unfolded in time for three time slices.
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interfaces. Hidden Markov models (HMMs) are simple dynamic
BNs used to model Markov processes that cannot be directly
observed but can be indirectly estimated by state-dependent out-
put, that is, the state is not directly visible, but the state-dependent
output is. The goal is to determine the optimal sequence of states
that could have produced an observed output sequence. The
popular Kalman filter is a continuous-state version of HMMs.

Example. Figure 3 shows an example of HMM. The model rep-
resents a simple functional connectivity analysis, where 3 ROIs
have been identified. Gray nodes are hidden variables and repre-
sent the unknown real neural activity of a ROI, e.g., whether the
region is activated or not. White nodes are the observed measures
Oi of each region i, e.g., the BOLD response in fMRI experiments.
This simple model (parallel HMM) factorizes the state space into
multiple independent temporal processes without connections
in-between. Other versions of HMMs are more complex.

3. INFERENCE WITH BAYESIAN NETWORKS
3.1. WHAT IS INFERENCE?
Besides visualizing the relationships between variables and deriv-
ing their conditional independences, BNs are useful for making
predictions, diagnoses and explanations. To do this, the condi-
tional probability distribution of a variable (or a set of variables)
of interest is computed given the values of some other variables.
The observed variables are called the evidence E = e. We have in X
three kinds of variables: a query variable Xi, the evidence variables
E and the other, unobserved variables U.

Thus, inference refers to finding the probability of any variable
Xi conditioned on e, i.e., p(xi|e). If there is no evidence, proba-
bilities of interest are prior probabilities p(xi). Inference in BNs
can combine evidence from all parts of the network and perform
any kind of query. Under causality, we can predict the effect given
the causes (predictive reasoning), diagnose the causes given the
effects (diagnostic reasoning), explain away a cause as responsible
for an effect (intercausal reasoning) or any other mixed reason-
ing. Intercausal reasoning is unique to BNs: for the v-structure
C1 → X← C2, C1 and C2 are independent, but once their shared
child variable X is observed they become dependent. That is,

FIGURE 3 | Example of HMM. The real state of three ROIs is unknown
(gray nodes) and we indirectly observe them with BOLD responses in an
fMRI experiment (white nodes).

when the effect X is known, the presence of one explanatory cause
renders the alternative cause less likely (it is explained away).

Inference also refers to finding values of a set of variables that
best explain the observed evidence. This is called abductive infer-
ence. In total abduction we solve arg maxu p(u|e), i.e., the aim is to
find the most probable explanation (MPE), whereas the problem
in partial abduction is the same but for a subset of variables in u
(the explanation set), referred to as partial maximum a posteriori
(MAP). These problems involve not only computing probabilities
but also solving an optimization problem.

Computing these probabilities is conceptually simple, since by
definition

p(xi|e) = p(xi, e)

p(e)
∝

∑
u

p(xi, e, u).

The term p(xi, e, u) is the JPD. It can be obtained with factor-
ization Equation (3) which uses the information given in the
BN, the conditional probabilities of each node given its parents.
Using the JPD we can respond to all possible inference queries
by marginalization (summing out over irrelevant variables u).
However, summing over the JPD takes exponential time due to
its exponential size, and more efficient methods have been devel-
oped. The key issue is how to exploit the factorization to avoid the
exponential complexity.

Example of Dementia (continued). Let us take the Dementia
example in Figure 1 to see how a BN is actually used. The first
interesting probabilities to look at are the prior probabilities
p(xi), i.e., without any evidence observed. Figure 4A shows those
probabilities as bar charts. Note that the probability of being
demented is 0.23. Now assume we have a patient who has had
a stroke. Then the updated probabilities given this evidence, i.e.,
p(xi|s) for any state xi of nodes A, N, D, or W , are shown in
Figure 4B. The probability of being demented has now increased
to p(d|s) = 0.55. However, for a patient who has not had a stroke,
p(d|s̄) = 0.19 (not shown).

3.2. INFERENCE METHODS
Exact BN inference is NP-hard (Cooper, 1990) in general BNs.
Therefore, an exact general algorithm to perform probabilistic
inference efficiently over all classes of BNs is a long way off. On
this many good special-case algorithms have been designed in
order to cut down the possibly exponential time taken.

A first idea is to use the factored representation of the JPD
for efficient marginalization. When summing (marginalizing) out
irrelevant terms, the distributive law can be used to try to “push
sums in” as far as possible.

Example. Suppose that we are interested in the probability of a
patient having a stroke if he is not demented, p(s|d̄). We have

p(s|d̄) ∝
∑

A,W,N

p(A, N, W, s, d̄)

=
∑

N

p(d̄|N, s)
∑

A

p(N|A)p(s|A)p(A)
∑
W

p(W |s).

Note the use of the distributive law.
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FIGURE 4 | Inference on the Dementia example. (A) Prior probabilities p(xi ) are shown as bar charts, for each node Xi . (B) After observing someone who has
had a stroke (S = s), the probabilities are updated as p(xi |S = s).

The query values (small letter) are always fixed and the unob-
served nodes (capitals) are varied. All the functions that contain
an unobserved variable are multiplied before marginalizing out
the variable. The innermost sums create new terms which then
need to be summed over. The summation order could have been
different. This algorithm is called variable elimination.

Other algorithms operate over restricted BN structures, like
polytrees. Polytrees are DAGs with no loops, irrespective of
arc direction. They are also called singly-connected BNs, since
any two nodes are linked with only one path. There are exact
algorithms that can perform efficient and local inference on
polytrees in polynomial time, the most important being the
message-passing algorithm (Pearl, 1988). Each node acts here as
an autonomous processor that collects messages (information)
from its family (parents and children), performs processing and
sends back messages to its family. Unlike the variable elimina-
tion algorithm that has to be run for every target node possi-
bly repeating many computations, the posterior probabilities of
all variables, i.e., p(xi|e) for all Xi not in the evidence set E,
are computed with the message-passing algorithm in twice the
time it takes to compute the posterior probability of a single
variable.

Multiply-connected BNs contain at least one pair of nodes con-
nected by more than one path. The Dementia network is an
example. The message-passing algorithm is not directly applica-
ble because the messages can loop forever. A popular solution is
called the clustering approach (Lauritzen and Spiegelhalter, 1988).
It consists of transforming the BN structure into an alternative
graph with a polytree structure, called junction tree, by appropri-
ately merging or clustering some variables to remove the multiple
paths between two nodes. Thus, the nodes in the junction tree can
include several variables. A message-passing algorithm is then run
over the junction tree.

In Gaussian BNs, inference is easy since any conditional dis-
tribution is still Gaussian and the updated parameters, mean
and variance, have closed formulas (Lauritzen and Jensen, 2001;
Cowell, 2005). In general BNs with non-parametric density
estimation techniques, inference has been performed only on
networks with a small number of nodes (Cobb and Shenoy, 2006;
Rumí and Salmerón, 2007; Shenoy and West, 2011).

For general networks, non-standard distributions and many
nodes, we need to resort to approximate inference. Approximate
inference in general BNs is also NP-hard (Dagum and Luby, 1993).
Many stochastic simulation techniques are based on Monte Carlo
methods, where we use the network to generate a large number
of cases (full instantiations) from the JPD, and then the probabil-
ity is estimated by counting observed frequencies in the samples.
A well-known method is probabilistic logic sampling (Henrion,
1988). Given an ancestral ordering of the nodes, we generate from
a node once we have generated from its parents (forward sam-
pling scheme). Other techniques are Gibbs sampling and more
general Markov chain Monte Carlo (MCMC) methods. In Gibbs
sampling we generate samples from the distribution of Xi con-
ditioned on all current values of the other nodes at each step.
This distribution only involves the CPTs of the Markov blan-
ket of Xi (thanks to the global Markov property) (Pearl, 1988).
After judging the convergence of the underlying Markov chain,
whose stationary distribution is the JPD, the values simulated
for each node are a sample generated from the target distribu-
tion. Evidence variables are fixed rather than sampled during the
simulation.

4. LEARNING BAYESIAN NETWORKS FROM DATA
The structure and conditional probabilities necessary for charac-
terizing the BN can be provided either externally by experts –time
consuming and error prone– or by automatic learning from data.
This is the approach taken in this section. The learning task can be
separated into two subtasks (Section 2.1): structure learning and
parametric learning.

4.1. LEARNING BAYESIAN NETWORK PARAMETERS
There are two main approaches: (a) maximum likelihood estima-
tion, where the estimation of the parameters maximize the likeli-
hood of the data, resulting in relative frequencies for multinomial
data and in sample mean and sample variance for Gaussian
BNs; and (b) Bayesian estimation, where the prior distributions
are usually chosen to be conjugate with respect to multinomial
(Dirichlet distribution) or Gaussian (Wishart density) distribu-
tions (Spiegelhalter and Lauritzen, 1990; Geiger and Heckerman,
1997). The maximum likelihood approach has problems with
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sparse data because some conditional probabilities can be unde-
fined if the data set does not contain all possible combinations of
the involved variables. To avoid this, some form of prior distribu-
tion is usually placed on the variables, which is then updated from
the data.

One important problem in learning BNs is to deal with missing
data, a problem that occurs in most real-life data sets. In the con-
text of missing at random, where the missing mechanism depends
on the observed data, the most widely used method of parame-
ter estimation is the expectation maximization (EM) algorithm
(Dempster et al., 1977), first applied in BNs by Lauritzen (1995).

4.2. LEARNING BAYESIAN NETWORK STRUCTURES. ASSOCIATIONS
Although almost all methods are designed for multiply-connected
BNs, there are some proposals where the topology of the result-
ing network is reduced to trees or polytrees. One algorithm that
recovers a tree structured BN, that is, a structure where each node
has one parent (except the root node), is based on work by Chow
and Liu (1968). Their algorithm constructs the optimal second-
order approximation to a JPD by finding the maximum weighted
spanning tree, where each branch is weighted according to the
mutual information between the corresponding two variables.
The first approach for learning polytrees from data was proposed
by Rebane and Pearl (1987).

Two approaches are discussed next, see Figure 5.

4.2.1. Constrained-based methods
Learning BNs by means of constrained-based methods means
that conditional independences among triplets of variables are
statistically tested from data and a DAG that represents a large
percentage (and whenever possible all) of these conditional inde-
pendence relations is then drawn.

The PC algorithm (Spirtes and Glymour, 1991), where PC
stands for “Peter and Clark,” the first names of the two inven-
tors of the method, starts by assuming that all nodes in the
undirected graph are connected and uses hypothesis tests to delete

FIGURE 5 | Schematic of methods for BN structure learning when the

aim is the discovery of associations among variables.

connections. At each iteration, for each node X and each node
Y adjacent to X, sets of nodes adjacent to X (excluding Y) are
searched in order to find a conditioning set that renders X and Y
c.i. The edge between X and Y is removed if and only if this set
is found. At each iteration of the PC algorithm, the number in
the conditioning set increases. Note that if the cardinality of the
conditioning sets increases, the statistical test for checking condi-
tional independences reduces its reliability. The undirected graph
is then transformed into a CPDAG by means of some orientation
rules. Some variants and extensions of the PC algorithm include
a limitation on the number of conditional independence tests
(Margaritis and Thrun, 2000), the control of the false positive
rate (Li and Wang, 2009), and the extension of the PC algo-
rithm in the Gaussian BN context with conditional independence
tests based on sample partial correlations (Kalisch and Bühlmann,
2007).

4.2.2. Score and search methods
In these methods a score measuring the goodness of each candi-
date BN is computed. Candidate BNs are proposed using a search
method responsible for intelligent movements in the space of pos-
sible structures. Three different spaces can be considered: (a) the
space of DAGs; (b) the space of Markov equivalent classes; and (c)
the space of orderings, see Figure 5.

The space of DAGs has a cardinality that is super-exponential
in the number of nodes (Robinson, 1977). The problem of find-
ing the best BN structure according to some score from the set
of all networks in which each node has no more than K parents
(K > 1) is NP-complete (Chickering, 1996). This offers a chance
to use different heuristic search algorithms. Almost all types of
heuristics have been applied for structure learning, including
greedy search (Buntine, 1991; Cooper and Herskovits, 1992), sim-
ulated annealing (Heckerman et al., 1995), genetic algorithms
(Larrañaga et al., 1996b), MCMC methods (Friedman and Koller,
2003) and estimation of distribution algorithms (Blanco et al.,
2003).

The space of Markov equivalent classes is a reduced version of
the space of DAGs where all Markov equivalent DAGs are rep-
resented by a unique structure (Section 2.1). Working in this
new space avoids the movements between DAGs within the same
equivalence class thereby reducing the cardinality of the search
space. Gillispie and Perlman (2002) found that the ratio of DAGs
to numbers of classes is seemingly close to an asymptote of about
3.7. A drawback of working in this space is that it is time con-
suming to check whether or not a structure belongs to the same
equivalence class. A seminal paper on using equivalence classes
is Chickering (2002), whereas extensions include its randomized
version (Nielsen et al., 2003) and an adaptation to Gaussian BNs
(Vidaurre et al., 2010).

The space of orderings is justified by the fact that some learning
algorithms only work with a fixed order of variables, assum-
ing that only the variables that precede a given variable, can
be its parents. This assumption dramatically reduces the car-
dinality of the search to n!. Seminal works include Singh and
Valtorta (1993) using conditional independence tests, Bouckaert
(1992) who manipulates the ordering of the variables with oper-
ations similar to arc reversals, Larrañaga et al. (1996a) with a
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genetic algorithm-based search, and Romero et al. (2004) using
estimation of distribution algorithms.

Scores measure the goodness of fit of a BN structure to the data
set (the better the fit, the higher the score). One simple criterion
able to measure this fit is the log-likelihood of the data given the
BN. This can be expressed as

log p(D|S, θ) =
n∑

i= 1

qi∑
j= 1

ri∑
k= 1

Nijk log (θijk), (6)

where D denotes the data set containing N cases, S represents
the structure of the BN, θ is the vector of parameters θijk, and
Nijk stands for the number of cases in D where variable Xi is
equal to k and Pai is in its j-th value, j = 1, . . . , qi. The maxi-
mum likelihood estimator of θijk is given by its relative frequency,

that is, θ̂ijk = Nijk

Nij
, where Nij =∑ri

k= 1 Nijk. A drawback of using

likelihood as the score is that it increases monotonically with the
complexity of the model, and, as consequence of this property, the
structure that maximizes the likelihood coincides with the com-
plete graph. A family of penalized log-likelihood scores has been
proposed as an alternative that aims to find a trade-off between
fit and complexity. Their general expression is

n∑
i= 1

qi∑
j= 1

ri∑
k= 1

Nijk log
Nijk

Nij
− dim(S)pen(N), (7)

where dim(S) =∑n
i= 1 qi(ri − 1) denotes the model dimension

(number of parameters necessary to specify the structure), and
pen(N) is a non-negative penalization function. The scores are
different depending on pen(N): if pen(N) = 1, the score is called
Akaike’s information criterion (Akaike, 1974) and when pen(N) =
1
2 log N, it is the Bayesian information criterion (BIC) (Schwarz,
1978).

A Bayesian approach attempts to find the structure with
maximum a posteriori probability given the data, that is,
arg maxSp(S|D). Using Bayes’ formula, p(S|D) ∝ p(D|S)p(S),
where p(D|S) is the marginal likelihood of the data, defined as

p(D|S) =
∫

p(D|S, θ)p(θ |S)dθ,

and p(S) denotes the prior distribution over structures. Assuming
that all structures are equally likely, that is, p(S) is uniform, the
maximization of p(S|D) is equivalent to the maximization of the
marginal likelihood.

With the additional assumption of a uniform distribution for
p(θ |S), Cooper and Herskovits (1992) were able to find a closed
formula for the marginal likelihood

p(D|S) =
n∏

i= 1

qi∏
j= 1

(ri − 1)!
(Nij + ri − 1)!

ri∏
k= 1

Nijk!. (8)

This is called the K2 score.
Similarly, assuming a uniform distribution for p(S) and a

Dirichlet distribution with parameters αijk for p(θ |S), Heckerman

et al. (1995) obtained the following expression for the marginal
likelihood

p(D|S) =
n∏

i= 1

qi∏
j= 1

�(αij)

�(αij + Nij)

ri∏
k= 1

�(αijk + Nijk)

�(αijk)
, (9)

where � denotes the Gamma function, and αij =∑ri
k= 1 αijk. This

score is called the Bayesian Dirichlet equivalence with uniform
prior (BDeu) metric because it verifies the score equivalence
property (two Markov equivalent graphs score equally) and is
generally applicable when the search is carried out in the space
of equivalence classes. Geiger and Heckerman (1994) adapted the
BDeu score to Gaussian BNs.

Learning from data the first-order Markovian dynamic BNs
presented in Section 2.3 can be approached by adapting either of
both types of methods (constrained-based or score and search).
The prior network structure can be learned from a data set con-
taining samples at time t = 1, whereas the transition network can
be recovered from a data set composed by samples from times
t − 1 and t, with t = 1, 2, . . . , T. This last data set includes 2n
variables.

4.3. LEARNING BAYESIAN NETWORK STRUCTURES. SUPERVISED
CLASSIFICATION

Given a data set of labeled instances,
D = {(x1, c1), . . . , (xN , cN )}, the supervised classification
model (or simply the classifier) denoted by φ transforms points
from the instance space �X into points in the label space �C ,
that is,

�X
φ−→ �C

x = (x1, . . . , xn)→ φ(x)

The i-th component of x, xi, contains the value of the i-th predic-
tor variable, Xi, for one specific instance. BN classifiers perform
classification selecting the class value c∗ such that

c∗ = arg max
c

p(c|x) = arg max
c

p(x, c). (10)

With a zero-one loss this rule coincides with the Bayes
decision rule.

Although there is a large set of supervised classification mod-
els (Hastie et al., 2008), some of which are probabilistic classifiers
(Murphy, 2012), the use of Bayesian classifiers has many advan-
tages over other classification techniques. From a representation
point of view, they are BNs thereby having the same advantages
(Section 1). From the algorithm perspective: (a) algorithms that
learn Bayesian classifiers from data are computationally efficient,
with a learning time complexity that is linear on the number of
cases N, and linear, quadratic or cubic (depending on model com-
plexity) on the number of variables n; and (b) classification time
is linear on the number of variables n.

Neuroscience is a field where the volume of available data is
starting to grow exponentially, especially data produced by neu-
roimaging, sensor-based applications and innovative neurotech-
nologies, like extracellular electrical recording, optimal imaging,
ultrasound and molecular recording devices. In such situations,
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feature subset selection methods should be used to delete irrel-
evant and redundant variables from the set of predictors, and
have definite benefits (Saeys et al., 2007), such as: (a) reduc-
tion of the computation time in both learning and classification
processes; and (b) simpler models providing insight into the
problem. We will see below that only a small percentage of
the revised papers incorporated this dimensionality reduction
possibility.

Once the Bayesian classifier has been learned from data, the
model will be used to predict the class value of new instances,
which are each characterized by their predictor variables only.
One interesting issue is to measure the goodness of the model.
Several performance measures are in use (Japkowicz and Mohak,
2011), including accuracy, error rate, sensitivity, specificity, pos-
itive predictive value, negative predictive value, F measure,
Cohen’s kappa statistics, Brier score, total cost error, and the
area under the receiver operating characteristic curve (AUC).
In neuroscience, the systematic use of accuracy and AUC is
noteworthy, with very few references to the other performance
measures. Another aspect to be considered is how to properly
estimate the selected performance measures. Estimates cannot be
calculated on the same data set used for learning the classifier,
because the aim is to estimate the goodness of the model on new
instances. An honest method estimates the value of the perfor-
mance measure based on samples that have not previously been
seen in the learning phase by the classifier. Hold-out and k-fold
cross-validation are representative of single resampling methods,
while repeated hold-out, repeated k-fold cross-validation, boot-
strap and randomization are examples of multiple resampling.
Interestingly, not all revised papers related to supervised classi-
fication consider honest estimation. For the papers where this
circumstance was taken into account, k-fold cross-validation was
the preferred method.

4.3.1. Discrete Bayesian network classifiers
Discrete BN classifiers, reviewed in Bielza and Larrañaga (2014),
contain discrete variables as predictors. p(c|x) is computed con-
sidering that p(c|x) ∝ p(x, c) and factorizing p(x, c) according
to a BN structure. The different families of discrete Bayesian
network classifiers are in fact the result of the different manners

of factorizing p(x, c), as shown in Figure 6. We will consider three
families: (a) augmented naive Bayes, (b) classifiers where C has
parents, and (c) Bayesian multinets. In this review we have only
found neuroscience applications of naive Bayes, selective naive
Bayes, tree-augmented naive Bayes, k-dependence Bayesian clas-
sifiers, unrestricted Bayesian classifier and Bayesian multinet. The
discussion below will focus on these models.

(a) Augmented naive Bayes models cover some discrete
Bayesian classifiers characterized by: (i) C being the parent of all
predictor variables and having no parents; and (ii) the level of
dependence among predictor variables increasing gradually.

Naive Bayes (Maron and Kuhns, 1960) is the simplest BN clas-
sifier. It assumes that predictive variables are c.i. given the class,
resulting in

p(c|x) ∝ p(c)
n∏

i= 1

p(xi|c). (11)

An example of a naive Bayes structure is given in the
first row of Table 1. In this case, the conditional prob-
ability of the class variables is computed as p(c|x) ∝
p(c)p(x1|c)p(x2|c)p(x3|c)p(x4|c)p(x5|c). Although naive Bayes
assumptions of conditional independences do not hold in
real-world applications, its model classification performance may
still be good from a practical point of view, especially when n is
high and/or N is small. Both situations apply in neuroscience
applications, and this partly justifies the widespread use of naive
Bayes in the reviewed papers, as confirmed in Tables 2–6.

Selective naive Bayes (Langley and Sage, 1994) aims at consid-
ering relevant and non-redundant predictor variables. The selec-
tion process reduces the cost of the acquisition of the data and,
at the same time, improves the performance of the model. The
conditional probability of the class variables is now computed as

p(c|x) ∝ p(c|xF) = p(c)
∏
i∈ F

p(xi|c), (12)

where XF denotes the set of selected predictors. The second row of
Table 1 shows a selective naive Bayes structure where shaded vari-
ables have not been selected, and the conditional probability of C

FIGURE 6 | Categorization of discrete BN classifiers according to the factorization of p(x, c).
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is calculated as p(c|x) ∝ p(c)p(x1|c)p(x2|c)p(x4|c). An extension
of naive Bayes that considers all possible naive Bayes structures
which are then averaged in a single model was defined in Dash
and Cooper (2004) as model-averaged naive Bayes and applied in
neuroscience as shown in Table 4.

The semi-naive Bayes (Pazzani, 1996) model modifies the
initial conditional independence assumption of naive Bayes by
introducing new variables obtained as the Cartesian product of
two or more original predictor variables.

One-dependence Bayesian classifiers (ODEs) are Bayesian
classifiers where each predictor variable is allowed to depend
on at most another predictor in addition to the class. We
will consider two ODEs: tree-augmented naive Bayes and
superparent-one-dependence estimators. Tree-augmented naive
Bayes (TAN) (Friedman et al., 1997) violates the conditional

Table 1 | Summary of discrete BN classifiers: names, structures and

their most relevant reference.

Name Structure Seminal

paper

Naive Bayes Maron and
Kuhns, 1960

Selective naive
Bayes

Langley and
Sage, 1994

Tree-augmented
naive Bayes

Friedman
et al., 1997

k-dependence
Bayesian
classifier

Sahami,
1996

Unrestricted
Bayesian
classifier

Provan and
Singh, 1995

Bayesian
multinet

Geiger and
Heckerman,
1996

independence condition allowing a tree shape graph as the sub-
graph representing the relationships among predictor variables.
The conditional distribution of C is now

p(c|x) ∝ p(c)p(xr|c)
n∏

i= 1,i 
= r

p(xi|c, xj(i)), (13)

where Xr denotes the root node and {Xj(i)} = Pa(Xi) \ {C}, for
any i 
= r. Kruskal’s algorithm (Kruskal, 1956) is used to find
a maximum weighted spanning tree among predictor variables,
where the weight of each edge is measured by the conditional
mutual information between each pair of variables given the class.
The undirected tree is then transformed into a directed tree by
selecting a variable at random as the root node and then convert-
ing the edges into arcs accordingly. Finally, a naive Bayes structure
is superimposed on the tree in order to obtain the TAN struc-
ture. The third row of Table 1 contains a TAN structure with
X3 as the root node. Classification is performed using p(c|x) ∝
p(c)p(x1|c, x2)p(x2|c, x3)p(x3|c)p(x4|c, x3)p(x5|c, x4). An exam-
ple of the use of a TAN classifier in the prediction of brain
metastasis is shown in Table 2. Superparent-one-dependence esti-
mators (SPODEs) (Keogh and Pazzani, 2002) are ODEs where in
addition to the class all predictor variables depend on the same
predictor variable, called the superparent.

k-dependence Bayesian classifiers (k-DB) (Sahami, 1996)
allows each predictor variable to have a maximum of k parent
variables apart from the class variable. Naive Bayes and TAN are
particular cases of k-DBs, with k = 0 and k = 1, respectively. The
conditional probability distribution of C is

p(c|x) ∝ p(c)
n∏

i= 1

p(xi|c, xi1 , . . . , xik ), (14)

where Xi1 , . . . , Xik are the k parents of Xi in the struc-
ture. An example of a 3-DB structure from which
p(c|x) ∝ p(c)p(x1 |c)p(x2 |c, x1)p(x3 |c, x1, x2)p(x4 |c, x1, x2, x3)
p(x5|c, x1, x3, x4) is shown in the fourth row of Table 1. The
robustness of the estimation of the probabilities of the last factor
in the above expression can be problematic with small sample
sizes. The parents of each predictor variable are determined by
computing the conditional mutual information between any pair
of predictor variables given the class (as in TAN) and also the
mutual information between this predictor variable and the class.

Table 2 | Main characteristics of the papers using BNs with morphological data.

BN model Aim Application

DeFelipe et al., 2013 BN and naive Bayes Assoc. and supervised class Classification and naming of GABAergic interneurons
Lopez-Cruz et al., 2014 BN and BN multinet Assoc. and inference and cluster Consensus model for interneuron classification
Mihaljevic et al.,
in press

Naive Bayes and TAN Supervised class Classification of cortical GABAergic interneurons

Mihaljevic et al., Under
review

MBC Multi-dimensional class Simultaneous classification of six axonal class variables

Guerra et al., 2011 Naive Bayes Supervised class Pyramidal neuron vs. interneuron
Lopez-Cruz et al., 2011 BN Inference, associations Model and simulation of dendritic trees
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Table 3 | Main characteristics of the papers using BNs with electrophysiological data.

BN model Aim Application

Smith et al., 2006 Dynamic BN Association Infer non-linear neural information flow networks

Eldawlatly et al., 2010 Dynamic BN Association Infer effective and time-varying connectivity between spiking cortical neurons

Jung et al., 2010 BN Association Neuronal synchrony from electrode signal recordings

Pecevski et al., 2011 BN Inference Emulate probabilistic inference through networks of spiking neurons

Table 4 | Main characteristics of the papers using BNs with genomics, proteomics, and transcriptomics data.

BN model Aim Application

Armañanzas et al., 2012 Ensemble of BN classifiers Association Transcripts in AD

Hullam et al., 2012 BN Association SNPs in depression

Zeng et al., 2013 BN Association Cytokines and mRNA in cerebral ischemia

Liang et al., 2007 BN Association SNPs in childhood absence epilepsy

Zhang et al., 2010 BN Association Regulation network of the neuron-specific factor Nova (mice)

Jiang et al., 2011 BN Association SNPs in late onset AD

Han et al., 2012 BN Association SNPs in early onset autism

Wei et al., 2011 Model-averaged naive Bayes, Sup. classification Prediction of AD from SNPs

selective naive Bayes

Gollapalli et al., 2012 Selective naive Bayes Sup. classification Mass spectrometry for predicting glioblastoma

Belgard et al., 2011 Naive Bayes Sup. classification Distinguish sequenced transcriptomes among layers I-VIb

Finally, Bayesian network-augmented naive Bayes (BAN)
(Ezawa and Norton, 1996) uses any BN structure as the predic-
tor subgraph, allowing any kind of relationship among predictor
variables.

(b) Classifiers where C has parents provide conditional proba-
bility distributions of C of the form

p(c|x) ∝ p(c|pa(c))
n∏

i= 1

p
(
xi|pa(xi)

)
. (15)

The two types of models in this family differ on whether or not C
is considered as a special variable. Markov blanket-based Bayesian
classifiers (Koller and Sahami, 1996) consider C as a special vari-
able and the Bayesian classifier is based on identifying the Markov
blanket of C. Unrestricted Bayesian classifiers do not consider C
as a special variable in the induction process, where any existing
BN structure learning algorithm can be used. The corresponding
Markov blanket of C can be used later for classification purposes.
The fifth row of Table 1 contains one example providing the same
conditional distribution as the previous example. This type of
classifiers have been used in Tables 5, 6.

(c) Bayesian multinets (Geiger and Heckerman, 1996) are
able to encode asymmetric conditional independences, that is,
conditional independence relationships that only hold for some,
but not all, the values of the variables involved. They consist of
several local BNs associated with a domain partition provided by
a distinguished variable. For supervised classification problems,
the class variable usually plays the role of distinguished vari-
able. Thus, conditioned on each c, the conditional independences
among predictor variables can be different.

Bayesian multinets compute the conditional probability of the
class variable as

p(c|x) ∝ p(c)
n∏

i= 1

p
(
xi|pac(xi)

)
, (16)

where Pac(Xi) is the parent set of Xi in the local BN associated
with C = c.

If the number N of observations is small, the decision about
the class label is usually made by averaging the results (or even
the models themselves) provided by several classification models.
This constitutes an ensemble of Bayesian classifiers. Examples can
be seen in Tables 4, 5.

More challenging classification problems consider the simul-
taneous prediction of several class variables that are related to
each other. This is called multi-dimensional classification. An
example of this situation is the classification of GABAergic
interneurons based on axonal arborization patterns (Table 2).
Multi-dimensional BN classifiers (MBC) (Bielza et al., 2011)
were designed to solve arg maxc1,...,cd p(c1, . . . , cd|x1, . . . , xn) for
d class variables.

4.3.2. Continuous Bayesian network classifiers
Predictor variables can be continuous as opposed to discrete. In
the first case, a common assumption is the Gaussianity of the pre-
dictors, although BN classifiers not based on this assumption have
also been proposed in the literature.

(a) Gaussian predictors. Gaussian naive Bayes classifier
(Friedman et al., 1998) assumes that the conditional density of
each predictor variable, Xi, given a value of the class variable, c,
follows a Gaussian distribution, that is, Xi|C = c ∼ N (μi,c, σi,c)
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Table 5 | Main characteristics of the reviewed papers that use BNs with neuroimaging data: fMRI and MRI.

Techniques BN model Aim Application

fMRI

Iyer et al., 2013 Gaussian BNs Association Resting-state (normal subjects)

Dawson et al., 2013 Gaussian BNs Association Resting-state (normal subjects)

Li et al., 2011 Gaussian BNs Association Resting-state (normal subjects)

Li et al., 2013 Gaussian BNs Association Resting-state (aMCI vs. controls)

Labatut et al., 2004 Gaussian dynamic BNs Association Phoneme task (normal vs. dyslexic)

Li et al., 2008 Gaussian dynamic BNs Association Bulb squeeze (healthy vs. Parkinsonian)

Kim et al., 2008 Discretized dynamic BNs Association Auditory task (schizophrenia vs. controls)

Zhang et al., 2005 Mixed dynamic BNs (HMMs) Association and Monetary reward task (drug addicted vs. healthy)

sup. classification

Rajapakse and Zhou, 2007 Discretized dynamic BNs Association Silent reading and counting Stroop (normal subjects)

Sun et al., 2012 Gaussian BNs Association Watching videos (normal subjects)

Neumann et al., 2010 CPDAGs Association Meta-analysis

Mitchell et al., 2004 Gaussian naive Bayes Sup. classification Prediction of cognitive states

Raizada and Lee, 2013 Gaussian naive Bayes Sup. classification Distinction of phoneme sounds

Ku et al., 2008 Gaussian naive Bayes Sup. classification Prediction of which category a monkey is viewing

Douglas et al., 2011 Naive Bayes Sup. classification Belief vs. disbelief states

Burge et al., 2009 Discretized dynamic BNs Association and Healthy vs. demented elderly subjects

Sup. classification

Chen and Herskovits, 2007 Inverse-tree classifier Sup. classification Young vs. non-demented vs. demented older

Naive Bayes (latent variable) clustering Inference of ROI state

MRI

Joshi et al., 2010 Gaussian BN Association Relationships between cortical surface areas

Wang et al., 2013 Gaussian BN Association Interaction graphs for AD patients and controls

Chen et al., 2012a Discretized dynamic BNs Association Temporal interactions in normal aging and MCI

Duering et al., 2013 Gaussian BN Association Processing speed deficits in VCI patients

Morales et al., 2013 Naive Bayes, selective naive Bayes Sup. classification Early diagnosis of Parkinson’s disease

Diciotti et al., 2012 Naive Bayes Sup. classification Early diagnosis of AD

Zhang et al., 2014 Naive Bayes Sup. classification MCI vs. AD

Chen et al., 2012b Ensemble of BNs Sup. classification Conversion from MCI to Alzheimer

for all i = 1, . . . , n, c ∈ �C . For each c, parameters μ and σ have
to be estimated. Maximum likelihood is usually the estimation
method. This model has been extensively applied in neuroscience
problems (see Tables 5, 6). Pérez et al. (2006) show adaptations of
other discrete BN classifiers to Gaussian predictors.

(b) Non-Gaussian predictors. Kernel-based BN classifiers esti-
mate the conditional densities of predictor variables by means
of kernels. The so-called flexible naive Bayes classifier (John and
Langley, 1995) was the first proposal, later extended to flexible
TAN and flexible k-DB classifiers by Pérez et al. (2009) (see an
example in Table 6).

4.4. LEARNING BAYESIAN NETWORKS STRUCTURES. CLUSTERING
The main goal of clustering (Jain et al., 1999) is to find the natu-
ral grouping of the data. Clustering methods can be organized as
non-probabilistic (mainly, hierarchical clustering Ward, 1963 and
k-means MacQueen, 1967) or probabilistic, only the latter being
related to BNs.

Probabilistic clustering assumes the existence of a hidden
(latent) variable containing the cluster assignment to each object.
The different methods are commonly based on Gaussian mixture
models (Day, 1969), where a mixture of several Gaussian distri-
butions is used to adjust the density of the sample data when the
fitting provided by a single density is not good enough. The prob-
ability density function in a Gaussian mixture model is defined as
a weighted sum of K Gaussian densities

g(x|θ) =
K∑

k= 1

πkf (x|θk),

where πk is the weight of component k, 0 < πk < 1 for all com-
ponents,

∑K
k= 1 πk = 1, and f (x|θk) denotes a N (μk,�k) den-

sity. The parameter θ = (π1,μ1,�1, . . . , πK ,μK , �K ) defines
a particular Gaussian mixture model and is usually estimated
with the expectation-maximization algorithm (EM) (Dempster
et al., 1977). When the multivariate Gaussian density is factorized
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Table 6 | Main characteristics of the reviewed papers that use BNs with neuroimaging data: EEG, other and multimodalities.

Techniques BN model Aim Application

EEG

Song et al., 2009 Time-varying dynamic BNs Association Motor imagination task

De la Fuente et al., 2011 BN Association Borderline personality disorder

Valenti et al., 2006 Kernel naive Bayes Sup. classification Detection of interictal spikes (epilepsy)

Acharya et al., 2011 Naive Bayes Sup. classification Normal/interictal/ictal (epileptic) signals

Rezaei et al., 2006 HMM Sup. classification Classification of mental states

Speier et al., 2012 Gaussian naive Bayes Sup. classification P300 Speller (virtual keyboard)

Speier et al., 2014 HMM Sup. classification P300 Speller (virtual keyboard)

Zhang et al., 2006 BN Sup. classification Hearing assessment

and inference

Hausfeld et al., 2012 Gaussian naive Bayes Sup. classification Speech sound identification (speakers and vowels)

De Vico Fallani et al., 2011 Gaussian naive Bayes Sup. classification Person identification (resting-state)

OTHERS

Wang et al., 2011 Gaussian naive Bayes Sup. classification Distinction of semantic categories (epilepsy)

Goker et al., 2012 Gaussian naive Bayes Sup. classification JME vs. healthy.

Lu et al., 2014 Gaussian selective naive Bayes Sup. classification Mental states (activation vs. rest)

Dyrba et al., 2013 Gaussian selective naive Bayes Sup. classification AD vs. controls

Ayhan et al., 2013 Gaussian selective naive Bayes Sup. classification Levels of dementia in AD

Huang et al., 2011 Sparse Gaussian BN Association Resting-state (AD vs. controls)

MULTIMODAL

Plis et al., 2010 Continuous dynamic BNs Association Integrated analysis of fMRI and MEG in one subject

Plis et al., 2011 Discretized dynamic BNs Association Non-repeated and repeated images with sounds

Svolos et al., 2013 Naive Bayes Sup. classification Atypical meningiomas vs. glioblastomas vs. metastases

Chen et al., 2013 General BN Sup. classification Glioblastomas vs. brain metastases

Tsolaki et al., 2013 Naive Bayes Sup. classification Glioblastomas vs. metastases

Turner et al., 2013 Naive Bayes Multi-label class Meta-analysis

according to a Gaussian BN structure, probabilistic clustering is
carried out with a probabilistic graphical model.

The simplest probabilistic graphical model for clustering is a
Gaussian mixture model where each component of the mixture
factorizes according to a naive Bayes model. This was proposed
by Cheeseman et al. (1988) and extended to a Bayesian model
averaging of naive Bayes for clustering in Santafé et al. (2006).
Seminaive Bayes and Bayesian multinets for clustering were intro-
duced by Peña et al. (1999) and Peña et al. (2002), respectively.
This application of the EM algorithm for the estimation of the
parameters in the mixture model with Gaussian BNs as com-
ponents assumes fixed structures in each of the components.
Friedman (1998) proposed a more flexible approach allowing the
structures to be updated at each iteration of the EM –the so-called
structural EM.

5. BAYESIAN NETWORKS IN NEUROSCIENCE
5.1. MORPHOLOGICAL DATA
Table 2 summarizes the content of this section.

The problem of classifying and naming GABAergic interneu-
rons has been a controversial topic since the days of Santiago
Ramón y Cajal. DeFelipe et al. (2013) proposed a pragmatic
alternative to this problem based on axonal arborization pat-
terns. They described six axonal variables: (1) distribution of

the interneuron axonal arborization relative to cortical layers;
(2) distribution of the axonal arborization relative to the size
of cortical columns; (3) relative location of the axonal and den-
dritic arbors; (4) distribution of the main part of the cortical
surface; (5) interneuron types: common type, horse-tail, chan-
delier, Martinotti, common basket, large basket, Cajal-Rezius,
neurogliaform and other; (6) whether or not the number of mor-
phological axonal characteristics visualized for a given interneu-
ron were sufficient. A web-based interactive system was used
to collect data about the terminological choices on the above
six variables for 320 cortical interneurons by 42 experts in the
field. A BN was learned from the data of each expert max-
imizing the K2 score with a greedy search strategy. A set of
morphological variables were extracted and used as predictor
variables to automatically build BN classifiers to discriminate
among the interneuron classes. To capture the opinions of all
experts, Lopez-Cruz et al. (2014) developed a consensus model
in the form of a Bayesian multinet. The idea was to cluster
all JPDs, each related to the BN built for each expert. The
Bayesian multinet encoded a finite mixture of BNs with the
cluster variable as the distinguished variable. Differences were
identified between the groups of experts by computing the
marginal (or prior) probabilities in the representative BN for each
cluster.
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Instead of assigning to each neuron the interneuron class most
commonly selected by the experts (majority vote), Mihaljevic
et al. (in press) set different label reliability thresholds (i.e., every
cell’s label is supported by at least a certain number of experts),
and classification models were built for each threshold. Mihaljevic
et al. (Under review) simultaneously classified the six axonal class
variables, with the morphological variables playing the role of
predictor variables. The six-dimensional JPD can be represented
by a BN that is learned from data given by the 42 experts. The
six-dimensional prediction for a new neuron, can be made by the
consensus BN of its k-nearest neurons (in the predictor variable
space).

Discriminating between pyramidal cells and interneurons
from mouse neocortex was proposed by Guerra et al. (2011).
Neurons were reconstructed using Neurolucida and morpho-
logical variables were measured. The label of each neuron was
assigned defining “ground truth” by the presence or absence of
an apical dendrite.

BNs have been used to model and simulate dendritic trees
from layer III pyramidal neurons from different regions (motor
M2, somatosensory S2 and lateral visual and association tempo-
ral V2L/TeA) of the mouse neocortex (Lopez-Cruz et al., 2011).
A set of variables were measured for each dendritic tree, pro-
viding information about the subtree and subdendrite, segment
length, orientation, and bifurcation. The BN learning algorithm
was based on the BIC score with a greedy search. A simula-
tion algorithm was also proposed to obtain virtual dendrites by
sampling from the BNs.

5.2. ELECTROPHYSIOLOGICAL DATA
Table 3 summarizes the content of this section.

Various methods (clustering and pairwise measures) have been
used to infer functional synchrony between neuronal channels
using electrode signal recordings. However, these approaches fail
to consider high-order and non-linear interactions, which can be
recovered using BNs.

Smith et al. (2006) used dynamic BNs for inferring non-linear
neural information flow networks from electrophysiological data
collected with microelectrode arrays. While neural connectiv-
ity networks describe the existence of anatomical connections
between different brain regions, they contain no information
about which paths are utilized during processing or learning tasks
undertaken by the brain. To understand these phenomena, we
need flow networks. The dynamic BN with appropriately cho-
sen sampling intervals successfully inferred neural information
flow networks that matched known anatomy from electrophysi-
ology data collected from the auditory pathway of awake, freely
moving songbirds. Each of the bird had fluorescently labeled
microelectrodes, each represented as a node in the dynamic BN
and contained the multi-unit activity recorded using discretized
values of the original voltages. A Bayesian scoring metric and a
greedy search procedure with random restarts were applied.

Eldawlatly et al. (2010) used dynamic BNs to infer the effective
and time-varying connectivity between spiking cortical neurons
from their observed spike trains. The model assigned a binary
variable to each neuron whose values depended on the neu-
ron’s firing states at a given Markov lag. This Markov lag can be

adjusted considering the expected maximum synaptic latency in
the pool of connections and can be seen as the model order, a
measure of its complexity.

Non-dynamic BNs based on the concept of degree of com-
binatorial synchrony were proposed by Jung et al. (2010). Each
neuronal channel was represented as a variable in the BN struc-
ture, and synchrony between neuronal channels was described
by arcs. Each variable in the network contained the number of
spikes per single time epoch. The time-delayed co-firing of differ-
ent neuronal channels could be included in large bins of the same
time epoch. The process of inferring synchrony between neuronal
channels was seen as identifying neuronal connections that are
highly likely to be connected in the BN structure. The BDeu score
was used to measure the goodness of each candidate structure.

Pecevski et al. (2011) presented theoretical analyses and
computer simulations demonstrating that networks of spiking
neurons can emulate probabilistic inference for general BNs
representing any JPD. The probabilistic inference was carried
out from an MCMC sampling of spiking neuron networks.
This result depicts probabilistic inference in BNs as a computa-
tional paradigm to understand the computational organization
of networks of neurons in the brain.

5.3. GENOMICS, PROTEOMICS, AND TRANSCRIPTOMICS
Table 4 summarizes the content of this section.

A. Association discovery. Armañanzas et al. (2012) analyzed
high-throughput AD transcript profiling with an ensemble of BN
classifiers. The data came from a few AD and control brain sam-
ples. The aim was to understand dysregulation in the hippocam-
pal entorhinal cortex, as well as its comparison with dentate gyrus.
A resampling method with a feature selection technique and a
Bayesian k-DB produced a gene interaction network formed by
arcs above a fixed confidence level.

Hullam et al. (2012) used BNs to approximate the effect of
a single nucleotide polymorphism (SNP) in the HTR1A gene
on depression. Other nodes of the BNs measured recent nega-
tive life events, childhood adversity score and gender. The BN
model was learned guided by a Bayesian score. Liang et al. (2007)
conducted SNP studies to investigate the relationship between
the CACNA1H gene and childhood absence epilepsy. Both single
locus and haplotype analyses were carried out with a BN learned
with a Bayesian metric guided by a greedy search.

The clinical features of cerebral ischemia and the plasma lev-
els of the cytokines and their mRNA levels in leucocytes formed
a BN in Zeng et al. (2013) to analyze causal relationships among
the pro-inflammatory cytokine proteins and their mRNA coun-
terparts. The BN was learned using L1-regularization and the
BIC score. Zhang et al. (2010) proposed using BNs to identify
a number of splicing events directly regulated by the neuron-
specific factor Nova in the mouse brain. The BN integrated RNA-
binding data, splicing microarray data, Nova-binding motifs, and
evolutionary signatures.

Jiang et al. (2011) identified gene-gene interactions in a
genome-wide association study using a late onset AD (LOAD)
data set. The data set contained information about more than
300,000 SNPs and one binary genetic variable representing the
apolipoprotein E gene carrier status. After filtering the most
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relevant SNPs, BNs with 1, 2, 3, and 4 parents were scored with
a Bayesian metric. Han et al. (2012) addressed the same prob-
lem of characterizing SNP-disease associations using BNs with
the LOAD and an autism data set. A new information-based
score, designed to cope with small samples, was introduced with
a branch-and-bound search method to recover the structure of
the BN.

B. Supervised classification. Wei et al. (2011) also analyzed the
LOAD data set with several types of BN classifiers. Gollapalli et al.
(2012) introduced a comparative analysis of serum proteome of
glioblastoma multiforme patients and healthy subjects to identify
potential protein markers. Sequenced transcriptomes of different
areas (primary and secondary) of the adult mouse somatosensory
cortex were used as predictor variables in a naive Bayes model for
distinguishing among layers I-VIb in Belgard et al. (2011).

5.4. NEUROIMAGING DATA
Neuroimaging is the predominant technique in cognitive neuro-
science, with an increasing number of publications. The differ-
ent imaging techniques vary in anatomical coverage, temporal
sampling and imaged hemodynamic properties. The physical
mechanisms of signal generation vary and lead to differences in
signal properties. Therefore, the studies must specify the modality
used. We split this section according to the following modalities:
fMRI, MRI, EEG, others and multimodal mechanisms. Tabular
summaries are Table 6 (fMRI and MRI) and Table 5 (other
techniques).

5.4.1. fMRI
An fMRI experiment will produce a sequence of 3D images,
where in each voxel (candidate features) we have a time series
of BOLD signals sampled according to the temporal resolution.
This data is extremely high dimensional (millions of data obser-
vations), sparse (a few training examples), temporal and noisy
posing machine learning challenges and demanding the design of
feature selection and classifier training methods.

A. Association discovery. fMRI data are mainly used for func-
tional connectivity analysis, which studies how different parts of
the brain are integrated during the execution of sensory or cog-
nitive tasks (with some stimuli), in a resting state (no stimuli)
and/or when suffering from some neurological disease.

Three well-known methods, structural equation modeling
(SEM) (McIntosh and Gonzalez-Lima, 1994), dynamic causal
modeling (Friston et al., 2003), and Granger causality mapping
(Goebel et al., 2003), require a prior connectivity model and are
traditionally used for graphs with few nodes. The prior model
is often subject to anatomical constraints and obtained in stud-
ies of monkeys, a problem for higher-order functions unique to
human like language and cognition. This prior knowledge is not
required for BNs, which have become an established approach
in brain connectivity analysis. The power of BNs is that they
can represent any multivariate probabilistic association (linear or
non-linear) among discrete variables. BNs can also handle more
nodes. The nodes represent the activated brain regions. A con-
nection (arrow) between two regions represents an interaction
between them, characterized by conditional probabilities. For
instance, the arc from X to Y means that the activation of region

Y statistically depends on the activation of region X. The brain
regions are expected to collectively and interactively perform the
particular cognitive task (if any) in the fMRI experiment. Thus,
BNs offer a complete statistical description of network behavior,
unlike SEM, for example, which provides only a second-order sta-
tistical model (covariances) of the underlying neural system. Both
direct and indirect connections can be distinguished. Indirect con-
nections represent how one node generates its connectivity with
other node through mediating variables. Note that conditional
independence between regions does not encode connectivity as
directed information flow via direct or indirect anatomical links.

There are different methods of selecting ROIs. They can be
selected in a data-driven way, where multiple time series are
grouped according to some criterion, such as independent com-
ponent analysis (ICA) (McKeown et al., 1998) based on the
spatiotemporal characteristics of the BOLD signal of every sin-
gle voxel. An alternative method is to select multiple ROIs from a
previous analysis of the fMRI data (activation map, with the parts
of brain that are active during a condition of interest) or from an
anatomical brain atlas. Both methods have been used with BNs,
although the atlas is more natural (a ROI is a node). The BOLD
signal of a ROI is commonly taken as the average BOLD signals
across all voxels inside the ROI.

The presence of multiple participating subjects in the fMRI
experiment calls for group studies, where not only is it important
to extract a representative brain for the group but also to consider
the variability within the group. We can assume that the whole
group has the same brain network and BOLD time series from
each individual are concatenated and treated as sampled from a
single subject. This is appropriate for small and homogeneous
samples. Unfortunately, it can result in statistical dependences
(arcs in the BN) that do not exist in any of the individuals (the
Yule-Simpson paradox). Alternatively, we can learn a different
network for each individual and then perform group analysis on
the individual networks. This is appropriate for large and hetero-
geneous samples. An intermediate approach considers the same
brain network for a group (same BN structure) but different pat-
terns of connectivity for each individual (different parameters).
These three approaches are, respectively, called virtual-typical-
subject, individual-structure and common-structure in Li et al.
(2008).

The directionality of connectivity should be interpreted with
caution (see Section 2.1). This is an important much debated
topic and warrants future research. The literature makes a dis-
tinction between the location of connections between brain
regions—functional connectivity—and the direction of these
connections—directional functional connectivity or effective
connectivity. The major works are Smith et al. (2011), criticizing
BNs for not performing well at identifying the directionality of
connections in simulated single-subject data (extended to group
analysis in Iyer et al., 2013), and Mumford and Ramsey (2014),
who provide a solution to overcome the above failures. Generally,
this primer on BNs for fMRI stresses, apart from some incorrect
preprocessing steps in Smith et al. (2011), that only approaches
specifically designed for fMRI data should be used. The specifici-
ties of fMRI data have triggered new BN structure learning algo-
rithms (reviewed in Mumford and Ramsey, 2014). For instance,
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an extension of Greedy Equivalence Search (GES) to groups of
samples is the Independent Multiple-sample GES (iMaGES) algo-
rithm (Ramsey et al., 2010), which follows a common-structure
approach. This algorithm does not concatenate the data of each
individual; it uses the BIC score of the graph for each individual
and combines all scores into a group score.

The BN models used in this context are Gaussian, discrete,
static and dynamic BNs. Learning algorithms that rely on data
Gaussianity (such as GES with the BIC score, iMaGES and
the most common PC) accurately identify connections but not
correct orientation. This contrasts with non-Gaussian meth-
ods, therefore recommended by Mumford and Ramsey (2014).
Non-Gaussianity is more realistic for modeling fMRI data distur-
bances. For dynamic BNs, the inter-scan interval of fMRI is used
as the time slice. Because of the computational burden of dynamic
BNs, activations of brain regions have to be assumed to be station-
ary and follow a Markovian condition. This is less realistic because
activations are constantly influenced by external/internal stimuli.

We distinguish between resting-state fMRI and task-based
fMRI. In Iyer et al. (2013) still normal subjects give rise to a
Gaussian BN (actually networks or constellations of regions; one
was the default mode network), learned using the PC algorithm.
The algorithm was applied to averaged-across-subjects connec-
tion matrices, i.e., c.i. tests were applied over averaged correlation
matrices. A similar idea was followed in Dawson et al. (2013) for
the visual cortex. Gaussian BNs were again used in Li et al. (2011)
for subjects with their eyes closed. ICA was first applied to iden-
tify the nodes used. Candidate BNs were scored with BIC. Only
significant connections given by a hypothesis test of the regres-
sion coefficients were kept in this work. Negative connections
were interpreted as competitive relations between sensory and
cognitive processing. Resting-state fMRI is also applied to med-
ical research. Patients with amnestic MCI (aMCI), the prodromal
stage of AD, and controls under the resting condition were studied
by Li et al. (2013). ROIs only covered the default mode network,
whose abnormal functioning is associated with AD.

Functional connectivity analysis is harder in fMRI experiments
where stimuli are present, because of design complexity and vari-
ability. Labatut et al. (2004) explored normal vs. dyslexic subjects
during phoneme categorization tasks. Li et al. (2008) modeled
fMRI data from healthy and Parkinson’s disease patients, all asked
to squeeze a rubber bulb. Dynamic BN structures were sampled
with MCMC and then averaged according to their appearance fre-
quencies. A different BIC score was defined for structure learning
depending on the group-analysis approach. Distinct connectivity
patterns were found in Kim et al. (2008) for paranoid schizophre-
nia patients and controls performing an auditory oddball task.

The two groups in Zhang et al. (2005) were drug-addicted and
healthy subjects. The aim was to study the loss of sensitivity to the
relative value of money in cocaine users. Hidden variables were
introduced in an HMM because the state of each region is con-
sidered unknown and the only observations are of activation. The
observed activation of each region was modeled as a mixture of
multivariate (a vector of voxels) Gaussians conditioned by their
discrete parent hidden node (activated or not activated region).
Dynamic BNs were learned using the BIC score and a modified
structural EM algorithm.

Rajapakse and Zhou (2007) conducted two experiments with
normal subjects: silent reading of words appearing on the screen,
and neutral and interference conditions in a counting Stroop task
(Bush et al., 2006). Differences in the networks of each condi-
tion were explored. The learning of dynamic BNs used a Bayesian
score and MCMC, where new network structures were generated
by elementary operations such as deleting, adding or revers-
ing an edge. Intra-scan connections were not allowed (since the
effect on a region has a time delay). The effective connectivity
of the regions was taken as the transition network connectivity.
Human subjects watching videos of the same semantic category
(sports, weather, advertisements) participated in Sun et al. (2012).
Gaussian BNs were tested with different learning algorithms (PC,
GES and IMaGES).

Neumann et al. (2010) took a different approach. Motivated
by the large sample size required to get reliable BNs from their
simulations, they performed a meta-analysis including several
thousand activation coordinates (Talairach space) from more
than 500 fMRI papers (on several experimental tasks). The BN
was learned with a Bayesian score and MCMC and was then
converted into a CPDAG as proposed by Chickering (2002).

B. Supervised classification. Within the study of cognitive
processes, the prediction of cognitive state (class) given voxel
activities (features) can be set out as a supervised classification
problem. Mitchell et al. (2004) used a Gaussian naive Bayes clas-
sifier with different filter feature selection methods to predict the
probability p(c|x) of cognitive state c, given fMRI observation
x. Three case studies were designed to distinguish whether the
subject is examining a sentence or a picture, an ambiguous or
an unambiguous sentence, and the semantic categories a word
belongs to. The same models were used in Raizada and Lee (2013)
to produce smooth single-subject images in multivoxel pattern-
based fMRI studies, i.e., the so-called searchlight analyses, where
a number is written into each voxel which measures the classifi-
cation in that voxel’s local neighborhood. The application was to
distinguish phoneme sounds. Monkeys were presented with gray-
scaled images of the same category in Ku et al. (2008). Gaussian
naive Bayes classifiers were also used to distinguish pairs of cate-
gories and infer which category the monkey was viewing. Feature
(i.e., voxel) selection was applied using a priori knowledge: only
voxels from the inferotemporal cortex and whose activation level
was above a certain significance level. Douglas et al. (2011) asked
subjects to evaluate the truth content of propositional statements
indicating whether or not they believed it to be true. A naive Bayes
was used. ICA was first performed on each subject’s data set (a
matrix of voxels by time points) to reduce dimensionality.

Discriminating groups of patients based on their fMRI activa-
tion patterns is again a supervised classification problem. Thus,
Burge et al. (2009) used discrete dynamic BNs to identify func-
tional correlations among ROIs in healthy and demented (AD
type) elderly subjects during a visual-motor response task. The
BDe score guided the structure search. Two dynamic BNs, one
for each class, were learned and their differences were analyzed.
The absence of a link does not necessarily mean that the link’s
parent and child are statistically independent. It means that there
are other links corresponding to stronger relationships, as mea-
sured by the BDe score. Both networks were also to distinguish
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between healthy aging and dementia: the class was predicted by
the model with the highest posterior likelihood. Gaussian naive
Bayes was used as a competitor in this classification problem.
Pairwise discrimination between young subjects, non-demented
older and demented older subjects based on fMRI data from a
visual-motor task was presented in Chen and Herskovits (2007).
They used a special BN classifier with an inverse-tree structure,
i.e., containing only arcs from each ROI node to the class node.
ROIs were selected via a greedy forward search. To infer the state
R of each ROI, they used a model with a naive Bayes structure
where R is a latent variable, parent of all nodes, these nodes being
the representative voxel for this ROI.

5.4.2. MRI
A. Association discovery. BN modeling has been applied to find
statistical brain connectivity relationships between brain areas of
controls and patients with neuropathological findings.

Joshi et al. (2010) studied the dependences on cortical surface
areas from gray matter measurements in normal people. Regions
(nodes) for both left and right hemispheres were considered in the
Gaussian BN model. The PC algorithm was applied to continuous
variables following a log-normal distribution. Wang et al. (2013)
performed a Gaussian BN analysis based on regional gray matter
volumes to identify differences between AD patients and nor-
mal controls (NC) in structural interactions among ROIs. A score
(BIC)+ search approach was used to recover the BN structures.

Chen et al. (2012a) proposed dynamic BNs to model a lon-
gitudinal study of normal aging controls and MCI patients. The
model assumed a discrete-time stochastic Markovian process of
order one. No intra-slice arcs were assumed. The subjects were
prospectively followed annually for up to 10 years. The study
focused on modeling temporal interactions among some brain
regions. For each region the regional gray matter was calculated
and associated with the value of the corresponding node in the
dynamic BN. A score + search approach was applied to learn
these two dynamic BNs.

Processing speed deficits for patients with vascular cogni-
tive impairment (VCI) was investigated with Gaussian BNs by
Duering et al. (2013). The model was identified using a tabu
search with the Bayesian Gaussian likelihood equivalent as the
score applied over a data set of subjects with a genetic small vessel
disease causing VCI. Associations and inter-relationships between
regional volumes of ischemic lesions in major white matter
tracts and processing speed were obtained using a bootstrapping
approach.

B. Supervised classification. BN classifiers have been applied in
several neurodegenerative diseases. Parkinson’s disease develop-
ment prediction through neuroanatomic biomarkers provided by
MRI with several BN classifiers were learned by Morales et al.
(2013) from subjects in three different stages of the illness: cog-
nitively intact patients, patients with MCI and patients with
dementia.

Diciotti et al. (2012) applied naive Bayes to discriminate
healthy controls from mild AD patients and patients with MCI
from mild AD patients. The predictor variables consisted of sub-
cortical volumes and cortical volumes, cortical thickness and
cortical mean curvature extracted from several ROIs. Prediction

of disease progress is of great importance to AD researchers,
clinicians and patients. Chen et al. (2012b) developed an ensem-
ble of BNs to determine whether or not a subject with MCI
will contract AD within a 5-year period based on structural
magnetic-resonance and magnetic-resonance spectroscopy data.
These variables were used along with age, sex, handedness, edu-
cation, and mini-mental state examination as potential predictor
variables. Zhang et al. (2014) compared the behavior of four clas-
sifiers (naive Bayes among them) to automatically distinguish
MCI patients from normal controls. The predictor variables cor-
responded to the cortical thickness of many non-cerebellar ROIs
were selected with t-tests.

5.4.3. EEG
Unlike other techniques as fMRI, EEG offers a high temporal but
low spatial resolution.

A. Association discovery. Interactions between brain regions
in response to visual stimuli were derived in Song et al. (2009)
using healthy subjects who imagined a body part movement
based on visual cues. For each subject, a novel model, time-
varying dynamic BN, was introduced. Thus, the transition model
is time dependent, i.e., it is pt

(
xt |xt− 1

)
. Edge directions come

from assuming auto-regressive dynamic BNs and their coeffi-
cients are also time dependent. Scalability and the problem of
sample scarcity was addressed using a specific score to learn these
graphs.

Scalp wake EEG and sleep EEG recordings were used in De
la Fuente et al. (2011) jointly with clinical neurologic soft signs
and two endocrine tests. The objective was to discover statistical
interconnections and interdependences between these variables in
borderline personality disorder (BPD) subjects. The contribution
of each arc to the global K2 score of the BN was used to measure
the degree of interaction between variables.

B. Supervised classification. EEG is most often used to diag-
nose epilepsy, which causes obvious abnormalities in its readings.
During a seizure the EEG is characterized by continuous rhyth-
mical activity that has a sudden onset (ictal EEG). During the
time between seizures the EEG displays isolated sharp tran-
sients or small spikes in some locations of the brain (interic-
tal EEG), which constitute complementary information. Visual
inspection of these EEG signals for the presence of seizures is
time consuming and often leads to the misdiagnosis of epilepsy.
A naive Bayes with continuous distributions approximated by
kernels was used in Valenti et al. (2006) to detect interictal
spikes isolating them from the baseline EEG activity. Acharya
et al. (2011) made a more thorough classification distinguish-
ing between normal (healthy patients), interictal and ictal EEG
signals (epileptics). Predictive features were extracted using a
non-linear data analysis method called Recurrence Quantification
Analysis (RQA). RQA measures are different during the pre-
ictal, interictal and ictal stages. A filter feature selection was
performed by means of an ANOVA test. A Gaussian naive
Bayes classifier and a Gaussian mixture model learned with the
EM algorithm were used. Although the latter is an unsuper-
vised technique, the fitted mixture density was presumably used
to compare the posterior probabilities of each class and select
the MAP.
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EEG signals can be used in a brain computer interface (BCI)
because they are correlated with mental activities. EEG signals
from a set of subjects performing different mental tasks were
analyzed in Rezaei et al. (2006). Predictive variables were the
(adaptive) autoregressive coefficients of the EEG windows. In
order to classify these mental activities from the EEG signals,
an HMM and a Gaussian mixture model (as in Acharya et al.,
2011) were trained using the EM algorithm. The observed states
in the HMMs were the extracted EEG features, also assumed
to be generated by a Gaussian mixture model. A common
BCI acting as a virtual keyboard is the P300 Speller. Typing
speed can be slow since several trials must be averaged to
correctly classify responses due to a low signal-to-noise ratio.
To speed up the process, Speier et al. (2012) gave the classi-
fier information about the natural language to create a prior
belief about the characters to be chosen. A better classifier
used prior probabilities for characters from frequency statis-
tics in an English language corpus. Only trigram models were
used, that is, p(xt |xt− 1, . . . , x0) = p(xt |xt− 1, xt− 2). Since typ-
ing is a sequential process, the same research group improved
this model in Speier et al. (2014) with an HMM of a second-
order Markov process. The hidden states were the target char-
acters and the EEG signals were the observed variables. The
goal was to determine the optimal sequence of target char-
acters given the observed EEG signal with automatic error
correction.

Other EEG applications follow. Zhang et al. (2006) designed a
system for testing hearing acuity with a general BN containig the
class node. Apart from using the BN for classification, this paper is
singular because it includes an example of inference. Specifically,
a prediction of the class is inferred given an evidence on its parent
nodes. There were two different goals in Hausfeld et al. (2012):
identify vowels and the speaker who uttered the vowel. Different
versions of a Gaussian naive Bayes, always with a binary class
(vowel i vs. j or speaker l vs. h), were used. Versions differed in
the features (EEG voltages) included in the model: in the tempo-
ral domain (predefined windows, shifting windows, whole trial
period) and in the spatial domain (single channel, multichan-
nel), allowing combined classification analyses. De Vico Fallani
et al. (2011) also tackled the problem of person identification with
a Gaussian naive Bayes. The EEG signals were recorded during
a 1-min resting state with either eyes open or eyes closed (two
different problems). The eyes closed resting state yielded better
recognition rates.

5.4.4. Others
Electrocorticography (ECoG) or intracranial EEG records cere-
bral cortex activity with intracranial electrodes placed directly on
the brain surface (invasive procedure). ECoG offers high signal-
to-noise ratio and high spatiotemporal resolution. Wang et al.
(2011) examined the feasibility of an ECoG-based BCI system
with four subjects undergoing epilepsy seizure ECoG monitoring
and presurgical brain mapping. Features were obtained from the
time domain signals.

Scanning electromyography (EMG) records the electrical
activity produced by skeletal muscles. Goker et al. (2012) took
scanning EMG data from the biceps muscles of healthy subjects

and juvenile myoclonic epilepsy (JME) patients to correctly
classify them.

Transcranial Doppler (TCD) is a non-invasive ultrasound
technology that detects the changes in cerebral blood flow veloc-
ity. Recently used for BCI development, TCD-BCI studies have
been offline. Lu et al. (2014) implemented an online TCD-BCI
system to control an onscreen keyboard. User- and session-
specific Gaussian selective naive Bayes classifiers were built to
discriminate between the activation and rest tasks. Features were
chosen using an F-score ranking followed by a wrapper feature
selection according to that ranking.

Diffusion tensor imaging (DTI) can reveal abnormalities in
white matter fiber structure; it is a standard for white matter
disorders. The use of DTI to detect AD dementia requires large
samples across multiple sites. Therefore, the effects of differ-
ent MRI scanners should be accounted for. Dyrba et al. (2013)
collected data from many subjects from nine different scan-
ners. A Gaussian selective naive Bayes was used to discriminate
between AD patients and controls. Feature (voxels) selection
using information gain was necessary because of the high num-
ber of voxels. Besides the usual cross-validation for estimating
the performance of the methods, an original scanner-specific
cross-validation was proposed, where data from each scanner was
used as a test set and data from the remaining scanners as a
training set.

Ayhan et al. (2013) selected PET scans from Alzheimer’s
Disease Neuroimaging Initiative (ADNI) project to discern three
levels of dementia. Different Gaussian selective naive Bayes were
employed, where features were selected with the correlation
feature selection filter. Huang et al. (2011) used PET images
again from the ADNI project, with AD patients and controls. A
Gaussian BN was built for each group in order to find connec-
tivity differences between them. The total number of arcs in both
networks was counted to confirm loss of connectivity in AD. Arcs
were also counted in each of the four lobes and between each
pair of lobes. An arc from region X to Y was interpreted as X
having a dominant role in the communication with Y , though
this is an overinterpretation (see the fMRI section above). But,
interestingly, BN learning included two penalties. One was an
L1-regularization (as in Schmidt et al., 2007; Vidaurre et al.,
2010) to output sparse graphs and another ensured the graph
was a DAG.

5.4.5. Multimodal neuroimaging
The next works use more than one technique to maximize neu-
ronal information.

A. Association discovery. Plis et al. (2010) presented an inte-
grated analysis of fMRI and MEG. The high temporal reso-
lution of MEG and the full brain coverage with high spatial
resolution of fMRI without a spatial inverse problem are com-
plementary and both are expected to jointly improve neural
activity estimation. MEG and fMRI data (observed variables
M and B) were tied together in a dynamic BN through a
state variable R that represents neural activity in a single ROI
(hidden variable). MEG and fMRI have different sampling fre-
quencies. Therefore, the time slices in the dynamic BN were
the (more detailed) MEG sampling time periods, also including
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nodes corresponding to unobserved BOLD time points. Arcs
from R to M and from R to B represented, respectively, for-
ward models used to estimate MEG measurements and BOLD
responses, conditioned to the neural activity of the ROI. Since
general continuous densities were assumed and the forward mod-
els were non-linear, a sequential Monte Carlo method called
particle filtering was used to estimate the posterior distribu-
tion of R. The same research group investigated the different
connectivity patterns produced with fMRI and MEG data in
Plis et al. (2011). Since the goal was to estimate connectivity,
this time the model was very different: a (static) BN with dis-
cretized random variables and a high number of ROIs. The
structural differences inferred from either modality were summa-
rized via standard aggregated metrics used in complex networks
(in- and out-degree, degree centrality, diameter, average path
length, etc.).

B. Supervised classification. Classifying glioblastomas vs. soli-
tary brain metastases is challenging because both show similar
characteristics on conventional MR examination. To improve
diagnostic accuracy Chen et al. (2013) used four imaging modal-
ities: DTI, dynamic susceptibility contrast (DSC) MRI, T1-
weighted MR, and fluid attenuation inversion recovery. Variables
were selected after applying a Wilcoxon rank-sum test. A gen-
eral BN was learned using a BDe score and MCMC. The Markov
blanket of C identified which lesion part and modality pro-
vided enough information to accurately predict glioblastomas.
It was noted that BNs were able to deal with missing data (due,
for example, to recording failures or patient disability). Some
meningiomas display an atypical radiological appearance and
may resemble metastatic lesions or high-grade gliomas. Svolos
et al. (2013) distinguished between the three, atypical menin-
giomas, glioblastomas multiforme and solitary metastases, using
a naive Bayes. Just three variables from DTI and DSC modali-
ties used in Chen et al. (2013) were used again here. Two tumor
regions (intratumoral and peritumoral) resulted in two models.
A similar study is Tsolaki et al. (2013).

Identifying the experimental methods used in human neu-
roimaging papers is relevant for grouping meaningfully similar
experiments for meta-analysis. An automatic system able to repli-
cate the expert’s annotation of multiple labels per abstract is use-
ful for the previous task (Turner et al., 2013). The labels included
the experimental stimuli, cognitive paradigms, response types,
and other relevant dimensions of the experiments. Predictor vari-
ables were extracted from the abstract papers by means of text
mining methods. That was a multi-label classification problem,
approached by a binary relevance method that used a naive Bayes
as base classifier.

6. DISCUSSION
Well-grounded on principled probability theory, BNs provide
clear semantics and a sound theoretical foundation. BNs are easy
to comprehend. They visually illustrate the way in which the dif-
ferent variables are related to each other. Their widespread use by
numerous research groups, companies, societies and conferences
is remarkable. Models can be built from data and or elicited from
experts. BNs can handle continuous, discrete, mixed, and tempo-
ral variables. BNs are still applicable when some data are missing.

A plethora of amenable both exact and approximate learning and
inference algorithms are available1.

The generality of this formalism makes BNs useful across a
wide variety of domains and circumstances. The aim of this
survey was to show the potential functionality of BNs in neu-
roscience, where they have been little used so far. We found
that BNs have been mostly used for supervised classification
in problems like categorizing interneurons, decoding cognitive
states or discriminating control subjects from neuropathological
patients (Parkinson’s disease, Alzheimer’s disease, schizophrenia,
depression, glioma, epilepsy, bipolar disorder, dementia, brain
metastasis, glioblastomas). The simplest structures were used, i.e.,
naive Bayes and Gaussian naive Bayes. Very few other models,
like TAN, multinets, ensembles, selective models or kernel-based
models, were found. Classifiers with high-order degree inter-
action between variables (k-dependence, BAN and unrestricted
Bayesian classifiers), not found in this survey, could capture
more complex relationships. Note also that few works performed
feature subset selection, necessary to eliminate irrelevant and
redundant variables. However, this is a salient issue in modern
neuroscience where data volume is growing exponentially.

For temporal inputs, like electrophysiological data or data
from fMRI and EEG experiments, dynamic BNs were frequently
used to discover associations between variables, as in connec-
tivity analyses, for both task-based and resting-state data and
in healthy and diseased patients. Typically, data were discretized
or assumed to be Gaussian distributed. Simple particular cases
of dynamic BNs, like HMMs, were relatively popular, whereas,
complex time-varying BNs were very seldom used.

This survey also found that neuroscience applications using
BNs for inference are rare. Our work on dendritic tree sim-
ulation models is one of the few applications. We think that
beyond the information rendered by the BN structure to relate the
domain variables, conditional probabilities unveil detailed and
complementary knowledge to be exploited. Moreover, these ini-
tial probabilities that the BN conveys are propagated throughout
the network in the light of new observations providing insights,
predictions and explanations. In that sense, we envisage that
inference facilities have a role to play in neuroscience.

Also, there is hardly any clustering with BNs in neuroscience.
This method has two characteristic issues: a probabilistic mem-
bership assignment to each of the clusters and a multivari-
ate (Gaussian) density that is factorized according to a DAG.
However, most of the probabilistic clusterings did not have any
factorization (a dense covariance matrix instead), which is far
from the BN spirit. We believe that probabilistic clustering is
more accurate than hard clustering, and can lead to competent
grouping models based on sparse BNs.

Finally, we should say that BNs and neuroscience have a two-
way inter-relationship. BNs may also benefit from the challenging
problems posed by neuroscience. For instance, the need to fit
densities for angular variables (Bielza et al., 2014) and promote

1An updated list of software on BNs is available at
http://www.cs.ubc.ca/∼murphyk/Software/bnsoft.html
and http://www.cs.iit.edu/∼mbilgic/classes/fall10/cs
595/tools.html
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the coexistence of variables of any kind –angular, linear continu-
ous Gaussian and non-Gaussian (Varando et al., 2014), discrete–
within the same model calls for new BN designs.
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