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Abstract

The purpose of this paper is to present and evaluate a heuristic algorithm for learning Bayesian networks for

clustering. Our approach is based upon improving the Naive-Bayes model by means of constructive induction. A key

idea in this approach is to treat expected data as real data. This allows us to complete the database and to take ad-

vantage of factorable closed forms for the marginal likelihood. In order to get such an advantage, we search for pa-

rameter values using the EM algorithm or another alternative approach that we have developed: a hybridization of the

Bound and Collapse method and the EM algorithm, which results in a method that exhibits a faster convergence rate

and a more e�ective behaviour than the EM algorithm. Also, we consider the possibility of interleaving runnings of

these two methods after each structural change. We evaluate our approach on synthetic and real-world data-

bases. Ó 1999 Elsevier Science B.V. All rights reserved.

Keywords: Clustering; Bayesian networks; Learning from incomplete data; Constructive induction; EM algorithm; Bound and
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1. Introduction

From the point of view adopted in this paper,
data clustering (Duda and Hart, 1973; Hartigan,
1975; Kaufman and Rousseeuw, 1990) may be
de®ned as the inference of a probability distribu-
tion for a database. We assume that, in addition to
the observed variables, there is a hidden variable.
This last unobserved variable would re¯ect the
cluster membership for every case in the database.
Thus, the clustering problem is also referred to as
an example of learning from incomplete data due

to the existence of such a hidden variable. In this
paper, we focus on learning Bayesian networks for
clustering.

In the last few years, several methods for
learning Bayesian networks have arisen (Cooper
and Herskovits, 1992; Heckerman et al., 1995;
Pazzani, 1996b), some of them even for learning
from incomplete data (Cheeseman and Stutz,
1995; Friedman, 1998; Meil�a and Heckerman,
1998; Thiesson et al., 1998). A key step in the
Bayesian approach to learning graphical models in
general and Bayesian networks in particular is the
computation of the marginal likelihood of a data-
base given a model structure. This quantity is the
ordinary likelihood of the database averaged over
the parameters with respect to their prior distri-
bution. When dealing with incomplete data, the
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exact calculation of the marginal likelihood is
typically intractable (Cooper and Herskovits,
1992), thus, we have to approximate such a com-
putation (Chickering and Heckerman, 1997). The
existing methods are rather ine�cient for our
purpose of eliciting a Bayesian network from an
incomplete database as they do not factor into
separate marginal likelihoods for each family (a
node and its parents).

To avoid this problem, we develop an algorithm
for learning Bayesian networks for clustering
based upon an adaptation of the work done in
(Thiesson et al., 1998). We search for parameter
values for the initial structure by means of the EM
algorithm (Dempster et al., 1977; McLachlan and
Krishnan, 1997). This fact allows us to treat ex-
pected data as real data which results in the pos-
sibility of completing the database. Therefore, a
score criterion that is both in closed and factorable
form can be used. In addition, we propose an al-
ternative approach to ful®ll the task of the EM
algorithm which reveals a faster and more e�ective
method: an alternation of the Bound and Collapse
method (Ramoni and Sebastiani, 1997, 1998) and
the EM algorithm. We also consider the possibility
of interleaving one of these two methods (the EM
algorithm or the alternative approach) after each
structural change to improve the set of parameter
values for the new structure.

The remaining part of this paper is structured as
follows. In Section 2, we describe Bayesian net-
works. Section 3 is dedicated to explaining our
heuristic algorithm in detail. In Section 4, we
present some experimental results. Finally, in
Section 5 we draw conclusions.

2. Bayesian networks

We follow the usual convention of denoting
variables with upper-case letters and their states by
the same letters in lower-case. We use a letter or
letters in bold-face upper-case to designate a set of
variables and the same bold-face lower-case letter
or letters to denote an assignment of state to each
variable in a given set. We use p�x j y� to denote
the probability that X � x given Y � y. We also
use p�x j y� to denote the probability distribution

(mass function as we restrict our discussion to the
case where all the variables are discrete) for X
given Y � y. Whether p�x j y� refers to a proba-
bility or a probability distribution should be clear
from the context.

Given an n-dimensional variable X � �X1; . . . ;
Xn�, a Bayesian network (BN) for X is a graphical
factorization of the joint probability distribution
of X . A BN is de®ned by a directed acyclic graph b
(model structure) determining the conditional in-
dependencies among the variables of X and a set
of local probability distributions. When there is in
b a directed arc from a variable Xj to another
variable, Xi, Xj is referred to as a parent of Xi. We
denote the set of all the parents that the variable Xi

has in b as Pa�b�i. The model structure yields to a
factorization of the joint probability distribution
for X ,

p�x� �
Yn

i�1

p�xi j pa�b�i�; �1�

where pa�b�i denotes the con®guration of the
parents of Xi, Pa�b�i, consistent with x. The local
probability distributions of the BN are those in
Eq. (1). We assume that the local probability
distributions depend on a ®nite set of parameters
hb 2 Hb. Therefore, Eq. (1) can be rewritten as
follows:

p�x j hb� �
Yn

i�1

p�xi j pa�b�i; hb�: �2�

If bh denotes the hypothesis that the conditional
independence assertions implied by b hold in the
true joint distribution of X, then we obtain from
Eq. (2):

p�x j hb; b
h� �

Yn

i�1

p�xi j pa�b�i; hi; b
h�: �3�

In this paper, we limit our discussion to the case in
which the BN is de®ned by multinomial distribu-
tions. That is, all the variables are ®nite discrete
variables and the local distributions of each vari-
able in the BN consist of a set of multinomial
distributions, one for each con®guration of the
parents.
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3. Learning BNs for clustering through constructive

induction

3.1. The BN structure that we aim to learn

Due to the di�culty involved in learning
densely connected BNs and the painfully slow
probabilistic inference when working with them,
there has been a great interest in developing
methods for learning the simplest models of BNs,
e.g., Naive-Bayes (NB) models (Duda and Hart,
1973; Peot, 1996) and Tree Augmented Naive
Bayes models (Friedman et al., 1997; Keogh and
Pazzani, 1999). Despite the fact that these models
are a weaker representation of some domains than
more general BNs, the expressive power of these
models is still recognized. Thus, these models are
examples of a balance between e�ciency and ef-
fectiveness, i.e., a balance between the cost of the
learning process and the quality of the learnt
model.

Keeping this idea in mind, we describe in this
paper, a heuristic algorithm for learning BNs with
a structure that can be considered as having an
intermediate place in-between the NB model and
the model with all the predictive variables fully
correlated. By doing that we aim to keep the main
features of both extremes: simplicity of the NB
model and a better performance of the fully cor-
related model.

This class of models that we aim to learn was
proposed by Pazzani (1996a,b) as a Bayesian
classi®er (supervised learning). In this paper, we
extend these works by applying this class of
models to perform data clustering. These models
are very similar to the NB models, as all the at-
tributes are independent given the class. In our
approach, the only di�erence with the NB models
is that the number of nodes in the structures of
these models can be smaller than the original
number of attributes in the database, as some
attributes can be grouped together under the
same node as fully correlated attributes (we refer
to such nodes as supernodes). Therefore, this class
of models ensures a better performance than the
NB models while it keeps their simplicity. Hence,
for the class of models that we learn, it follows
that the probability of a case belonging to class

ci, given the values of the attributes as x �
2�x1; . . . ; xn�, is

p�ci j x; hb; b
h�

/ p�ci j hc; b
h�
Yr

j�1

p�xj j ci; hj; b
h�; �4�

where fx1; . . . ; xrg is a partition of x, r being the
number of nodes (including the special nodes re-
ferred to as supernodes). Each xj is, if the node j is
a supernode, the set of values in x for the original
attributes grouped together under the supernode j,
else it is the value in x for the attribute j.

3.2. A heuristic algorithm for learning BNs for
clustering

In the remaining part of this paper we adopt the
common Bayesian approach to learning BNs. We
introduce the log relative posterior probability of
model structure as the score criterion to evaluate
each model structure with respect to the data.
Then, we search for the best model structure from
among all possible models, according to this score
criterion (model selection),

log p�bh j d� / log p�d; bh�
� log p�bh� � log p�d j bh�: �5�

Assuming uniform model structure priors, this
criterion is reduced to the log marginal likelihood,
log p�d j bh� (Eq. (5)).

Under the assumptions that (i) the variables in
the database are discrete, (ii) cases occur inde-
pendently, (iii) the database is complete and (iv)
the prior distribution of the parameters given a
structure is uniform, the marginal likelihood has a
closed form for BNs, which allows us to compute
it e�ciently. In particular, assuming uniform
model structure priors, we have

p�d j bh� /
Yn

i�1

Yqi

j�1

�ri ÿ 1�!
�Nij � ri ÿ 1�!

Yri

k�1

Nijk!; �6�

where n is the number of variables, ri the number
of states that the variable Xi can have, qi the
number of states that the parent set of Xi can have,
Nijk the number of cases in the database where Xi
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has its kth value and the parent set of Xi has its jth
value and Nij �

Pri
k�1 Nijk (see (Cooper and Hers-

kovits, 1992) for a derivation).
An important feature of the log marginal like-

lihood is that it factors into scores for families
(under the assumptions described above). When a
criterion is factorable, search is more e�cient be-
cause we need not reevaluate the criterion for the
whole structure from anew when only the factors
of some families have changed.

When the variable that we want to classify is
hidden, the assumption that the data is complete
does not hold. When data is incomplete, the exact
calculation of the log marginal likelihood is typi-
cally intractable (Cooper and Herskovits, 1992),
thus, we have to approximate such a computation
(Chickering and Heckerman, 1997). However, the
existing methods for doing that are rather ine�-
cient for our purpose of eliciting the BN structure
from an incomplete database as they do not factor
into scores for families.

To avoid this problem, we introduce our heu-
ristic algorithm. A schematic of this algorithm for
learning BNs for clustering is shown in Fig. 1.
First, the algorithm chooses initial structure and
parameter values. Then, it performs a parameter
search step to improve the set of parameters for
the current structure. These parameter values are
used to complete the database. Doing so, we treat
expected data as real data. Hence, the log marginal
likelihood can be calculated using Eq. (6) in closed
form. Furthermore, the factorability of Eq. (6)
allows to perform an e�cient structure search step.

After this step, the algorithm reestimates the pa-
rameters for the new structure that it ®nds to be
the maximum likelihood parameters given the
complete database. Finally, the probabilistic in-
ference process to complete the database and the
structure search step are iterated until no change in
the structure occurs. We consider the possibility of
interleaving the parameter search step after each
structural change.

Notice should be taken of the importance of the
built-in penalty term for complexity that the log
marginal likelihood has. This term makes our al-
gorithm able to avoid very complex models such as
the fully correlated model. In (Meil�a and Hecker-
man, 1998), we ®nd a similar use of this built-in
penalty term.

3.2.1. Parameter search
To ful®ll the parameter search step, we consider

two procedures: the EM algorithm and a new
method that we present below.

The well-known EM algorithm (Dempster et al.,
1977; McLachlan and Krishnan, 1997) is an iter-
ative method to compute maximum a posteriori
and maximum likelihood parameters from in-
complete data. The EM algorithm ®nds a local
maximum for the parameters. As the convergence
rate of the EM algorithm is painfully slow, we
present an alternative approach to carry out the
task of the EM algorithm. In the remaining part of
this paper we refer to this method as BC + EM as
it alternates between the Bound and Collapse (BC)
method and the EM algorithm.

Fig. 1. A schematic of the algorithm for learning BNs for clustering.
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The BC method (Ramoni and Sebastiani, 1997,
1998) is a deterministic method to estimate con-
ditional probabilities from incomplete databases.
It bounds the set of possible estimates consistent
with the available information by computing the
minimum and the maximum estimate that would
be obtained from all possible completions of the
database. These bounds that determine a proba-
bility interval are then collapsed into a unique
value via a convex combination of the extreme
points with weights depending on the assumed
pattern of missing data (see (Ramoni and Sebast-
iani, 1998) for further details). This method pre-
sents all the advantages of a deterministic method
and a dramatic gain in e�ciency when compared
with the EM algorithm.

The BC is described to be used in the presence
of missing data, but it is not useful when there is a
hidden variable, as in the clustering problem. The
reason for this limitation is that the probability
intervals returned by the BC method would be too
wide and poorly informative, as all the missing
entries are concentrated in a single variable. The
BC + EM method overcomes this problem by
performing a partial completion of the database at
each step (see Fig. 2).

For every case x in the database, the BC + EM
uses the current parameter values to evaluate the
posterior distribution of the class variable given x.
Then, it assigns the case x to the class with the
highest posterior probability only if this posterior
probability is greater than a threshold (which is

called ®xing probability threshold) that the user
must determine. The case remains incomplete if
there is no class with posterior probability larger
than the threshold. As some of the entries of the
hidden variable have been completed during this
process, we hope to have more informative prob-
ability intervals when running the BC. Then, the
EM algorithm is executed to improve the param-
eter values that the BC have returned. The process
is repeated until convergence.

3.2.2. Structure search
The heuristic that we have presented in Fig. 1 is

based upon the work done by Pazzani (1996a,b).
Our heuristic algorithm learns BNs for clustering
as a result of improving the NB model by
searching for dependencies among attributes. In
order to ®nd the dependencies, the algorithm
performs constructive induction (Arciszewski et al.,
1995), which is the process of changing the repre-
sentation of the cases in the database by creating
new attributes (supernodes) from existing attri-
butes. As a result, some violation of conditional
independence assumptions made by the NB model
are detected and dependencies among attributes
are included in the model. Therefore, we reach a
better performance while the model that we obtain
after the constructive induction process keeps the
simplicity of the NB model. We use the term
joining to refer to the process of creating a new
attribute whose values are the Cartesian product
of two other attributes.

Fig. 2. The BC + EM method.
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The algorithm for learning BNs for clustering of
Fig. 1 starts from one of two possible initial struc-
tures: from the NB model or from the model with
all the variables fully correlated. When considering
the NB model as the initial structure, the heuristic
algorithm performs a forward structure search step
(see Fig. 3). When starting from the fully correlated
model, the heuristic algorithm performs a backward
structure search step (see Fig. 4).

In addition to the hill-climbing search proposed
by Pazzani, we also introduce a global search al-
gorithm as Simulated Annealing (SA) (Kirkpatrick
et al., 1983) in our evaluation due to the obvious
limitations of a local search algorithm as hill-
climbing.

In our case, a solution of SA is a model struc-
ture and the neighbourhood of solutions for the
current one consists of all the solutions that can be
obtained from the current one either by joining
any pair of attributes or by splitting any attribute
at any possible point. We use a slow cooling
schedule with initial temperature (T0) equal to 25.
For each temperature Tk, we assume that the
equilibrium is achieved after visiting 50 solutions,
then we apply the temperature reduction function
Tk�1 � 0:95 � Tk. The stopping criterion is satis®ed
when 100 consecutive iterations without changing
the current solution are performed. Obviously, the
score that we use to guide the search is the log
marginal likelihood of the model structure. We do

not consider the interleaving of parameter search
steps after each structural change in order not to
enlarge the long runtime of SA. So, it is senseless
to compare the results obtained by SA when the
EM algorithm is used and when the BC + EM
method is used as they are only used to improve
the parameter values of the initial solution and SA
does not depend on the initial solution (assuming a
proper cooling schedule).

4. Experimental results

Table 1 summarizes the criteria that we use
to compare the learnt models. As we have
discussed, the log marginal likelihood criterion is
used to select a good model structure. We use this
score in our comparisons as well. In addition to this,
we consider the runtime as valuable information.
For the synthetic databases (where the original
models are available), we give special importance to
the fraction of the nodes in the ®nal BN which were
correctly guessed, as it re¯ects the reliability of our
algorithm for learning BNs for clustering.

For both the EM algorithm and the BC + EM
method, the convergence criterion is satis®ed when
either the relative di�erence between successive
values for the log marginal likelihood for the
model structure is less than 10ÿ6 or 150 iterations
are reached.

Fig. 3. A template for the forward structure search step.

Fig. 4. A template for the backward structure search step.
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All the experiments are run on a Pentium 233
MHz computer.

Notice should be taken that in all experiments,
we assume that the number of classes is known,
thus, we do not perform a search to identify the
number of classes in the database.

4.1. Synthetic data

In this section, we describe our experimental
results on synthetic data. We constructed 4
synthetic databases as follows. There were 20
predictive binary attributes involved and one 4-
valued hidden class variable. In order to get the 4
databases, we simulated 4 BNs that had the same
structure as the output models of the algorithm
that we introduced in Section 3.2 (we refer to them
as the original models). We constructed the
structure of these 4 BNs as follows. First, we began
with the NB model structure where all the 20
predictive variables were independent given the
class. Then, we ®xed the number of predictive
attributes that we wanted to have in each of the 4
output models to be 20, 14, 10 and 5, respectively.
Therefore, in the last 3 models, some of the 20
original predictive variables had to be grouped
together under supernodes (constructive induction)
as the Cartesian product of the original variables.
We joined attributes at random until the ®nal
number of nodes that we wanted to have was
reached. The local probability distributions for

the 4 original models were randomly generat-
ed. From each of these 4 networks, we sampled
8000 cases by means of the h_domain_simulate
function provided by the software HUGIN API. 1

Obviously, we discarded all the entries corre-
sponding to the class variable. Finally, every entry
corresponding to a supernode was replaced with as
many entries as there were original attributes under
this supernode. That is, we ``decoded'' the
Cartesian product of original attributes for every
entry in the database corresponding to a
supernode.

The purpose of evaluating our heuristic
algorithms on synthetic databases is to show (i) the
reliability of the presented heuristic for learning
BNs for clustering, (ii) the improvement in the log
marginal likelihood when we learn BNs by means
of our algorithm and (iii) the improvement in the
performance when using the BC + EM method
instead of the EM algorithm.

As Table 2 shows, our algorithm, when
performing forward structure search steps, most of
the times, is able to reconstruct the original
structure with high ®delity and reliability. Also, we
can clearly see the improvement of the initial log
marginal likelihood. Moreover, Table 2 compares

Table 1

Performance criteria

Expression Comment

Nodes Number of predictive nodes in the original model (including supernodes)

Method EM algorithm or BC + EM method. The subscript int re¯ects that the method has been interleaved after each

structural change and the superscript indicates the ®xing probability threshold

scinitial Initial score, log marginal likelihood of the initial BN

scfinal � Sn Mean � standard deviation (over 5 runs) of the ®nal score (log marginal likelihood of the ®nal BN)

Final � Sn Mean � standard deviation (over 5 runs) of the number of nodes in the ®nal BN (including supernodes)

Right � Sn Mean � standard deviation (over 5 runs) of the number of right guessed nodes in the ®nal BN (including

supernodes)

%� Sn Mean � standard deviation (over 5 runs) of the fraction of the nodes in the ®nal BN which were correctly

guessed

Time � Sn Mean � standard deviation (over 5 runs) of the runtime (in seconds)

1 We used HUGIN API in the implementation of our

algorithm. The HUGIN API (Application Program Interface)

is a library that allows a program to create and manipulate

BNs.
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the performance of the algorithm for learning BNs
for clustering when using the EM algorithm as
parameter search step and when using the
BC + EM method. As we can see in the 4 data-
bases, the use of the BC + EM method outper-
forms the use of the EM algorithm in terms of ®nal
log marginal likelihood, percentage of right gues-
sed nodes and runtime when no interleaving is
done.

It seems obvious to assume that better
results will be reached by interleaving parameter
search steps after each structural change than
without. However, most of the times, the EM
algorithm needs to be interleaved to approach
the performance level that our algorithm
exhibits when the BC + EM method without
interleaving after each structural change is used.
Thus, the saving of runtime (between 50% and
78%) and the gain in e�ectiveness that we reach
when the BC + EM method is used is clearly
apparent.

Moreover, in Table 3 we present the results
achieved by our heuristic algorithm when SA is
used to perform the search. Comparing the results
summarized in Table 2 with those presented in
Table 3, we conclude that our approach performs
surprisingly well. Despite being a global search
algorithm, SA reveals a poor level of performance
and appears to be unable to ®nd better solutions
than those achieved by the algorithm with forward
structure search steps.

For the sake of brevity and due to the poor
reliability and long runtime of our algorithm when
using backward structure search steps, we do not
present results. Thus, in the remaining part of this

paper only forward structure search steps are
considered when using the hill-climbing search.

4.2. Real data

Another source of data for our evaluation
consists of two well-known real-world databases
from the Machine Learning Repository (Merz
et al., 1997): the tic-tac-toe database 2 and the
nursery database. 3 The past usage of both data-
bases classi®es them as paradigmatic domains for
testing constructive induction methods. Obviously,
for both databases we delete all the class entries.

Table 4 reveals the e�ectiveness of our algo-
rithm when forward structure search steps are
done, as can be derived from the improvement of
the initial log marginal likelihood. These results
also show the superiority of using the BC + EM
method over using the EM algorithm. For the tic-
tac-toe database, better results are achieved with
the BC + EM method than with the EM algorithm
and in a shorter runtime. For large databases as
the nursery database, when the BC + EM method
shows all its advantages over the EM algorithm,
making our algorithm able to reach better results
with up to 11 times less runtime than when using
the EM algorithm.

Table 3

Performance of the algorithm for learning BNs for clustering on the 4 synthetic databases (averaged over 5 runs) when SA is used

Nodes Method scinitial scfinal � Sn Right � Sn Final � Sn % � Sn Time � Sn

20 EM ÿ45 066 ÿ40 048 � 248 16.2 � 4:7 17.2 � 3:5 0.92 � 0:09 15 035 � 6031

BC + EM0:51 ÿ45 545 ÿ40 128 � 350 16.4 � 4:5 19.8 � 3:5 0.94 � 0:08 12 247 � 3797

14 EM ÿ47 099 ÿ42 755 � 76 8.2 � 0:8 11.6 � 1:2 0.71 � 0:02 5066 � 701

BC + EM0:51 ÿ46 777 ÿ42 744 � 120 8.8 � 3:0 11 � 1:7 0.78 � 0:15 5071 � 1223

10 EM ÿ49 789 ÿ47 530 � 632 5.2 � 1:9 8.8 � 1:7 0.57 � 0:15 7775 � 4332

BC + EM0:51 ÿ49 661 ÿ47 397 � 255 5 � 2:0 7.6 � 1:0 0.64 � 0:20 7727 � 1433

5 EM ÿ50 205 ÿ47 971 � 446 1.8 � 1:3 7.2 � 1:9 0.28 � 0:23 6167 � 724

BC + EM0:51 ÿ49 999 ÿ47 650 � 158 2.4 � 1:0 6.2 � 0:4 0.39 � 0:18 5116 � 2328

2 This database contains 958 cases, each of them has 9 3-

valued predictive attributes. There are 2 classes.
3 This database consists of 12 960 cases, each of them has 8

predictive attributes which have between 2 and 5 possible

values. There are 5 classes.
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The results that we present in Table 5 reinforce
the good behaviour of our algorithm. Once again,
SA is outperformed by the greedy algorithm with
forward structure search steps which, moreover,
requires less computational expense.

5. Conclusions

We proposed a new approach to perform data
clustering. Our heuristic algorithm relied on
treating expected data as real data and on
constructive induction to improve the NB struc-
ture searching for dependencies among the
attributes. In order to do that the EM algorithm
played a very important role. Primarily, due to the
slow convergence rate of the EM algorithm, we
developed the BC + EM method to ful®ll the task
of the EM algorithm.

Our experimental results suggested that the
greedy algorithm for learning BNs for clustering
with forward structure search steps performed
really well, it even reached a better performance
than when SA was used. Furthermore, these ex-
perimental results showed the substantial gain in

e�ectiveness and in e�ciency that our algorithm
reached when the BC + EM method was used in-
stead of the EM algorithm.

Discussion

Hancock: How does your work compare with
the structural EM algorithm that Friedman de-
veloped a few years ago? (Note of the editors: see
(Friedman, 1998) in this paper.)

Pe~na: In some way this work can be seen as a
structural EM algorithm, but there are a few
di�erences. Our algorithm is limited to learn this
class of models because it seems to be a balance
between e�ciency and e�ectiveness. Also, I think
the structural EM takes account of all the
possible ways in which the databases can be
completed. We just complete them with the most
probable values; we do not take account of all
possible completions. And we give the choice of
interleaving or not interleaving the parameter
search step. I think, in the structural EM you do
not have such a choice: interleaving is always

Table 4

Performance of the algorithm for learning BNs for clustering on the 2 real-world databases (averaged over 5 runs) when forward

structure search steps are performed

Database Method scinitial scfinal � Sn Time � Sn

Tic-tac-toe EM ÿ4146 ÿ3943 � 15 49 � 7

EMint ÿ4150 ÿ3945 � 20 61 � 12

BC + EM0:51 ÿ4155 ÿ3939 � 20 22 � 11

BC + EM0:51
int ÿ4148 ÿ3944 � 26 36 � 10

Nursery EM ÿ57 006 ÿ53 679 � 178 1238 � 409

EMint ÿ57 133 ÿ53 567 � 110 1746 � 325

BC + EM0:21 ÿ57 042 ÿ53 349 � 0 152 � 13

BC + EM0:21
int ÿ56 913 ÿ53 415 � 44 155 � 17

Table 5

Performance of the algorithm for learning BNs for clustering on the 2 real-world databases (averaged over 5 runs) when SA is used

Database Method scinitial scfinal � Sn Time � Sn

Tic-tac-toe EM ÿ4220 ÿ3949 � 25 806 � 296

BC + EM0:51 ÿ4144 ÿ3954 � 25 875 � 46

Nursery EM ÿ57 200 ÿ54 193 � 625 2647 � 803

BC + EM0:21 ÿ57 049 ÿ53 730 � 597 5207 � 3814
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done. Moreover, we found that if we use the
BC + EM method, we can reach a very good
performance without interleaving the parameter
search step. In almost all the cases for which we
evaluated our algorithm, we reached the best
performance with the BC + EM algorithm with-
out interleaving, whereas in the EM algorithm
interleaving must be performed to reach as good
results as our algorithm without interleaving.

Hancock: My second question is about the ex-
perimental results. Can you give me some idea of
how much structure you can reconstruct and for
what fraction of the database you can do this?

Pe~na: We tested our algorithm on four syn-
thetic databases generated with 20, 14, 10 and 5
nodes. If there are fewer than 20 nodes, this means
that there are some supernodes, because all the
domains have 20 original attributes. In the case of
20 nodes, almost all the methods are able to re-
cover the original structure. In the most di�cult
case we reach a performance of 75%.

Hancock: Have you looked at what happens
when you have extraneous structure or noise in the
data?

Pe~na: Yes. That is why we tested the algorithm
on the real world databases. The only problem is
that we have to ®x the probability threshold. We
are now investigating if we can characterise in
some way the behaviour of our algorithm.
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