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Efficient Anomaly Detection in a Laser-Surface
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Abstract—This article proposes a novel algorithm to de-
tect anomalies during a laser-surface heat-treatment pro-
cess recorded using a high-speed thermal camera. Our
approach detects anomalies by tracking the movement of
the laser spot along the surface of a production artifact.
No previous knowledge of the anomalies is assumed. The
model attempts to learn the behavior of a normal process
so that anomalous video frames can be detected when the
test data differ significantly from the learned model. The
model is trained using real process data provided by a com-
pany operating in the automotive sector. First, laser-spot
movements are obtained by computing a sequence of their
positions. Second, the expected movement of the laser spot
is accurately determined from the nonanomalous data by
using a model based on training multiple kernel density
estimation models. Finally, an anomaly score is introduced
to classify a workpiece as normal or anomalous using the
trained model. Furthermore, our methodology is computa-
tionally efficient when compared to other techniques. Ad-
ditionally, our objective is to perform in-process classifi-
cation, that is, to perform the classification within a short
period after the laser-surface heat-treatment process ends.

Index Terms—Anomaly detection, in-process classifica-
tion, kernel density estimation (KDE), laser reliability,
machine learning, tracking.

I. INTRODUCTION

R ECENTLY, a full range of industries has made efforts
to produce better products more reliably using modern

technologies. In the near future, they are expected to undergo
major transformations in this regard to improve productivity.
This transformation has been termed “Industry 4.0” [1] and
is closely associated with the industrial Internet of things,
both of which encourage the fusion of advanced sensors using
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machine-learning techniques. One of the most useful tasks
performed by machine learning in industry is anomaly detec-
tion [2]–[10]. Anomaly detection [11] is the task of identifying
anomalous patterns in data. Usually, anomalous patterns are
related to a fault in the system under study. In various industries,
anomalies should ideally be detected instantaneously to allow
for immediate corrective actions.

In this article, we detect anomalies with a novel laser-surface
heat-treatment process recorded using a high-speed thermal
camera at 1000 frames per second (fps). The laser heat-treatment
process improves the mechanical surface properties of cylindri-
cal steel workpieces (see Section II for further details). In the
premise of this article, we have limited knowledge about the
possible anomalies that may occur. In fact, only a single anomaly
has been recorded out of thousands of completed processes.
Thus, our model describes the normal behavior of a system.
Then, it computes an anomaly score for each workpiece. To take
advantage of the detected anomalies, the classification should
be completed in-process. That is, a workpiece must be classified
within a short period (5 s) after the end of the process. For this
reason, we need a model that provides a fast classification. This
is a challenging objective because of the numerous video frames
required to view a rapidly changing dynamic process.

We approach this problem using a novel methodology that
employs multiple kernel density estimation (KDE) [12] mod-
els, to characterize the movement of the system’s laser along
the workpiece surface. Our methodology (see Section IV) is
intended to consume data of well-defined sequential behaviors
with few spatial variations. Furthermore, we propose a prepro-
cessing step to obtain a sequence of positions from a video (see
Section IV-A). We then review some of the studies most related
to this research (see Section III).

We train our model using real data provided by a company
in the automotive sector. The application of anomaly detection
procedures has a significant impact on the quality and cost-
effectiveness of production in this industry. If a fault is not
detected, it can lead to a loss of reputation of a company, high
repair costs, and sometimes, human losses. Methods of anomaly
detection based on the destruction of a sample of the entire
production have two problems: the cost of the pieces destroyed
and the nonexhaustiveness of the analysis. Our approach (see
Section V) offers a promising capability to detect subtle differ-
ences in system behavior to enable the analysis of each working
piece. Moreover, our system is compared with other algorithms
to validate its effectiveness.
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Fig. 1. Laser-surface heat-treatment process.

Fig. 2. Laser spot pattern. (a) Expected. (b) Computed laser spot
positions.

II. LASER-SURFACE HEAT-TREATMENT PROCESS

In this section, we describe the laser-surface heat-treatment
(laser-heating) process, which is often applied to cylindrical
workpieces made of steel to improve their surface mechanical
properties. The laser-heating process uses a laser beam that heats
the surface of a cylindrical workpiece as it rotates around its axis
(see Fig. 1). The laser power source is 8 kW. Thus, it is only
safe to operate in a controlled environment. While applying the
laser-heating process, the laser beam heats a region (i.e., the
laser spot), which is always much smaller than the workpiece
surface. Furthermore, high-power (> 6 kW) laser sources have
laser spots with Gaussian or top-hat energy distributions. For
these reasons, a static laser spot would not provide the energy
distribution required to treat the entire surface of the workpiece.
Thus, to provide the correct energy deposition and distribution
over the surface, the process moves the laser spot following a
known trajectory, as represented in Fig. 2(a). The trajectory pat-
tern is executed at a frequency of 100 Hz to guarantee the desired
energy magnitudes. However, the expected pattern is modified
whenever the laser beam is required, to avoid an obstacle (see
Fig. 3). To control the pattern, the laser process uses a scanner
system with galvanometric mirrors to accurately position the
laser spot over the surface. The scanner is a closed-loop control
system that sends a specific pattern to the galvanometric mirrors
and receives feedback from the encoders where the laser-spot
positioning is adjusted. The need to use a moving laser spot is
justified because the average workpiece weight is around 12 kg.
Thus, it would not be possible to move any mechanical/physical
part with the necessary frequency. The laser spot has no such

restrictions. All details of the laser heating process can be found
in [13].

Anomalies in the laser-heating process can originate from
different components: the scanner system, the workpiece po-
sitioning system, and the laser source. This article focuses on
anomalies generated by the scanner system because it is the
most critical element of the machine. If it fails, it can create
problems at the product and process level, and can stop the
entire machine and production line. To define the scanner as
the most critical element, the machine manufacturer carried out
a failure model and effects analysis that returned the highest risk
level. However, we emphasize that because it is a real production
system, failures are rare, as will be shown in Section V-A when
the real data are described. The scanner control system can
produce anomalies in which positioning data are lost because of
communication failures between the electronics and the mirrors,
as well as incorrect movement/pattern creation. Additionally,
anomalies can be generated through mechanical degradation in
the scanner (e.g., changes in the rigidity of the physical linkages
between galvanometers and mirrors or galvanometers seizures).
All these disturbances strongly affect the scanner behavior and
its positioning precision.

Given the novelty of the laser-heating process, prior to this
article, there were no automatic procedures for detecting anoma-
lies in this particular laser-treatment process. However, after
reviewing the anomaly detection procedures for other laser-
treatment processes (see Section III-B), we found that the most
common technique is temperature reading using pyrometers and
thermal cameras. Thus, the laser-heating process is recorded
with a high-speed thermal camera (Tachyon μCore) at a res-
olution of 32× 32 pixels and a frame rate of 1000 fps. Each
pixel can take a value ranging from 0 to 1023, proportional
to the surface temperature of the workpiece. Fig. 4 shows a
sample frame from one of these videos. A schematic indicating
the physical arrangement of the laser beam (red line) and the
thermal camera is shown in Fig. 5.

III. RELATED WORK

Before introducing the proposed algorithm, we review KDE
and other related work of anomaly detection in the laser-
treatment processes.

A. Kernel Density Estimation

KDE is a nonparametric method used to estimate a probability
distribution from data. Unlike parametric models, KDE makes
no assumptions about the underlying distribution.

The kernel density estimator, p̂, of a variable X is usually
expressed as

p(X = x) =
1
Nh

N∑
i=1

K

(
x− xi

h

)
=

1
N

N∑
i=1

Kh (x− xi)

(1)
where N is the number of instances in the data and xi is the
ith data point. K is a kernel function whose integral over the
entire space is equal to 1. The smoothness of the estimation is
controlled by parameter h, which is called the bandwidth. Small
values of h produce wiggly density estimations, whereas large
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Fig. 3. Modified patterns when the laser beam avoids an obstacle at different positions. (a) Top. (b) Middle. (c) Bottom.

Fig. 4. Video frame recorded during the laser-surface heat-treatment
process.

values produce smoother ones. The selection of the bandwidth
parameter is an important topic of research in KDE [14]. We
note that KDE is equivalent to place a distribution with the form
of Kh on each data instance, xi, and then obtaining the mean
density. Kh(x) =

1
hK(xh ) is a useful notation for showing that

KDE is the mean of the contribution of each data instance.
KDE can be extended to the multivariate case if we use a

multivariate kernel. However, in the multivariate case, the pa-
rameter h is replaced by a positive definite symmetric matrix H,
called the bandwidth matrix. In this article, we use a multivariate
Gaussian kernel that is defined as

KH(x) =
1

(2π)d/2|H|−1/2
exp

(
−1

2
xTH−1x

)
(2)

where |H| is the determinant of the matrixH. We refer the reader
to several studies describing KDE for further details [15]–[17].

B. Laser-Treatment Anomaly Detection

Our proposal is based on the tracking of the laser movement.
The most closely related studies apply to anomaly detection
during a laser-welding process using a laser-tracking technique.
A model based on the Sage–Husa adaptive Kalman filters using
an embedded Elman neural network was proposed in [18] to
minimize the tracking error of the weld-seam position. The laser
movement traced a straight line, and therefore, the tracking was

Fig. 5. Diagram of the physical arrangement of the laser-heating
process components.

1-D, as opposed to the complex pattern addressed in this article.
Another study [19] aimed to find anomalies by analyzing the
trajectories of the sputters produced during the laser-welding
process. These sputters were visualized in a video as hot objects
moving across the field of view. A Kalman filter was used for
leveraging a state transition matrix that assumed a constant
accelerated motion.

Moreover, there are other approaches unrelated to tracking
for video analysis, such as hidden Markov models [20], where
the likelihood ratio of a model trained with nonanomalous
sequences to a model extended with anomalous sequences is
used as the classification criterion. Because the number of pixels
can be quite large, dimensionality reduction techniques, such as
principal component analysis, have been proposed [21], [22] as
a prior step to classification. In [22], the same camera as that
used in this research was employed, but at a higher frame rate,
10 000 fps, for the classification of defects in a laser-welding
process.

Our proposal combines the tracking of laser movements while
training a statistical model that computes the likelihood of
the test data to detect anomalies. As opposed to our research,
none of the previous related studies had any classification time
requirement.
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Fig. 6. KDE–AMD preprocessing, training, and classification
flowchart.

IV. KDE-ANOMALY MOVEMENT DETECTION (AMD)

We detect the anomalies in the laser heating process by
identifying unusual laser-spot movements. For this reason and
because the algorithm relies on a combination of KDE models,
we call our approach “KDE–AMD.” If the laser-spot movement
deviates significantly from the expected pattern shape or the ex-
pected laser speed, the workpiece can be considered anomalous.
Fig. 6 presents the flowchart of the proposed methodology.

A model of the process evolution is learned using the training
data, which capture the normal behavior of the process. In our
case, the model considers the spatio-temporal characteristics of
the laser-heating process by learning the expected movements
of the laser in different spatial regions and temporal moments.
Thus, KDE–AMD can be considered an ensemble of KDE
models taking advantage of the temporal/spatial locality of the
laser movements to train a faster and more accurate model.
This is because only the most similar (in terms of time and
position) training laser movements are considered to classify
each movement. The divergence between the outcomes of the
model learned using the training and test data is used as the
discriminant to detect an anomaly. The details of each procedure
are presented in the remainder of this section.

A. Extraction of the Laser-Spot Positions

Our preprocessing step entails the extraction of the laser-spot
positions from the recorded videos. In Section II, we mentioned
that the laser spot follows a known pattern. The closer the surface

region is to the laser beam, the larger is the expected tempera-
ture increase. Thus, we can detect the laser-spot positions by
computing the regions having higher temperatures.

Let O = (O1, . . . ,ON ) denote an original video from the
laser-heating process, where Oi represents the ith frame.

First, we create a video showing the positive temperature
variation between each pair of two consecutive frames. This
video is called the difference video

Z = (Z1, . . . ,ZN−1)

such that zij,k =

{
oi+1
j,k − oij,k, for oi+1

j,k − oij,k > 0
0, for oi+1

j,k − oij,k ≤ 0
(3)

oij,k is the pixel intensity value in the jth row and kth column
of Oi, and zij,k denotes the difference in pixel intensity value
in the jth row and kth column between frames Oi+1 and Oi.
Thus, the frames Zi produce the difference videos. Note that the
pixels having negative variation are set as zero in the difference
video, which contains one less frame than does the original
video. Using Zi, the laser-spot position for that frame can be
computed as a weighted mean, as follows:

srow
i =

1∑
zi
j,k∈Zi

zij,k

∑
zi
j,k∈Zi

jzij,k

scol
i =

1∑
zi
j,k∈Zi

zij,k

∑
zi
j,k∈Zi

kzij,k. (4)

srow
i and scol

i denote the row and column, respectively, of the
laser-spot position in frame i. With this computation, the cal-
culated laser-spot position will be near the pixels having higher
temperature values. A similar approach was used in [18]. Be-
cause srow

i and scol
i are computed with a weighted mean, they are

continuous values. This implies that the center of the laser spot
does not necessarily lie in a pixel coordinate; it can be found
between pixels.

B. Training

KDE–AMD must be trained using data representing the nor-
mal processes. For numerous anomaly detection applications,
only a few instances of anomalous data are often available.
Therefore, our methodology builds a model of the normal system
behavior instead of an anomalously driven classifier. The anoma-
lous processes are expected to show a different behavior than the
trained model. In our use case, the laser-spot positions described
in Section IV-A are used to train the KDE–AMD model.

Let S = (s1, . . . , sN−1) denote the calculated laser-spot posi-
tions, where si ∈ [0, 31]× [0, 31]. si is the laser-spot position for
frame i, whose value comprises the computed row and column,
(srow

i , scol
i ), in accordance with (4).

We define a movement M = (sO, sD) as the transition be-
tween two consecutive frames. Thus, sO is the original position
of the movement and sD is the destination position, such that
D = O + 1. A video has a set of N − 2 movements, because
there are N − 1 laser-spot positions, and each of the two con-
secutive laser spot positions are grouped in a single movement.
The KDE–AMD model can be trained using the movements of
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multiple videos. Therefore, from the training data, we have a set

E = {M1, . . . ,ML} (5)

containing L different movements that are obtained from dif-
ferent videos. Because all videos may have different lengths, L
may not be equal to (N − 2)#videos (where #videos denotes
the number of videos). Note that, in the set E, the destination
position of the movement,Mi, can differ from the origin position
of the movement, Mi+1, because Mi andMi+1 can be obtained
from different videos.

The KDE–AMD algorithm assumes that the destination posi-
tions of two movements should be close if their origin positions
are close. We model the expected destination position of a
movement using bivariate KDE models to model the two axes
of the laser-spot position. Multiple KDE models are generated
to consider the spatio-temporal characteristics of each move-
ment. The KDE models are generated at the time of training
to expedite the classification phase. First, we distribute the
set of movements, E, into W nonoverlapping temporal win-
dows. The number of windows, W , is determined from the
number of obstacles that we need to avoid (see Fig. 3), i.e.,
W = 1 + 2#obstacles. For example, if there is a single obstacle,
then there would be three different temporal frames: preobstacle,
obstacle, and postobstacle. The start/end frame for each temporal
moment is known in advance, because the laser-heating pro-
cess is controlled by a computer-aided design/computer-aided
manufacturing (CAD/CAM) system that ascertains the position
of the obstacles. The aim of the temporal division is to learn
different KDE models when the expected pattern is different
(see Fig. 3), because both the recorded thermal footprint and
computed laser positions will be quite different. The number of
obstacles can be different for each type of workpiece. Details
about the number of obstacles for our use case are given in
Section V. This type of temporal division can be avoided if the
laser-heating process were to not exhibit different patterns at
different temporal moments.

We then divide each temporal window into R rows and C
columns to consider the spatial information. The result of these
divisions is a 3-D matrix of W ×R× C regions. R and C
are parameters of the algorithm that determine the number of
regions, r, in the 3-D matrix. Uniform partitioning is used to
attach the same importance to all spatial regions. As mentioned,
the laser-spot positions are continuous values, and can be found
between pixels. Therefore, any integer value can be used for
R and C, because we can create subpixel size partitions. For
example, if we select R = C = 64, the spatial regions would be
of size 0.5× 0.5 pixels.

For each region, r = (t, j, k) in the tth temporal window, and
the jth row and kth column of the 3-D matrix, we find a set of
movements whose origin position is inside region r

Er = {Mi = (siO, s
i
D)|siO ∈ r}, i = 1, . . . , L (6)

where siO denotes the origin position of the ith movement,
Mi. Note that in the set Er, not all movements are necessarily
contiguous. That is, the destination position of Mi is not the
original position of Mi+1. This is because the set Er only con-
tains movements having an origin position in region r. Usually,
the laser-spot position changes its region between consecutive

Fig. 7. Example application of the methodology. (a) Origin positions in
region r. (b) Their corresponding destinations. (c) PDF p̂ in (8) assigned
to region r.

frames. Thus, contiguity is lost. Additionally, the movements
can originate from different videos. Thus, there is no contiguity
for movements from different videos. A bivariate KDE model is
assigned to region r, trained with the set of destination positions
of the movements in Er as

Dr = {siD|Mi = (siO, s
i
D) ∈ Er}, i = 1, . . . , L. (7)

When Dr = ∅, r will not have an assigned KDE model, because
there is no information on the possible destination positions of
the laser spot. In fact, we can try to generate more informative
KDE models by ignoring the KDE models trained with fewer
than λ movements. If we use a larger λ, we expect more regions
without an assigned KDE model.

As an example of the application of the methodology, we
show the training process for a given region r, in Fig. 7. All
origin positions inside region r are represented by blue squares
in Fig. 7(a), and their respective movement destination positions
are depicted as red triangles in Fig. 7(b). The red triangles are
the training set for the KDE model assigned to region r. As
illustrated in Fig. 7(c), the probability density function (PDF) of
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Algorithm 1: KDE–AMD Training Procedure.
Input: Set of movements E (see (5)), number of windows
W , number of rows R, number of columns C, minimum
number of positions λ.

Output: Trained KDE–AMD model.
1: KDE–AMD← Create a 3D matrix of W ×R× C

regions.
// Computes Dr (see (7)), for all regions

2: for each movement (sO, sD) in E do
3: Compute region r = (t, j, k) using sO where:
4: t← Temporal index of the frame O in the video.
5: j ← Row index computed using srow

O .
6: k ← Column index computed using scol

O .
7: Dr ← Dr ∪ sD.
8: endfor

// Train the bivariate KDE models
9: for each region r = (t, j, k) in KDE–AMD do

10: if |Dr| ≥ λthen
11: Train a KDE model with the positions included

in Dr and save it in KDE–AMD[t, j, k].
12: else
13: Discard the positions saved in Dr.
14: end if
15: end for
16: return KDE–AMD

the KDE model shows higher densities in a small region where
the destination positions are located. Therefore, the KDE model
for region r can be considered an estimation of the destination
position PDF for the movements with an origin position inside
region r. For a test movement, Mt = (stO, s

t
D), where stO ∈ r,

the PDF for the destination position, stD, is

p(stD) =
1

|Dr|2π|H|1/2

∑
t∈Dr

exp

(
−1

2
(stD − t)TH−1(stD − t)

)
(8)

where t denotes the training positions in set Dr, H is the band-
width matrix obtained using Scott’s rule [16], and |Dr| is the
cardinality of the set Dr. The training procedure of KDE–AMD
is summarized in Algorithm 1. In lines 3–6, the needed temporal
and spatial indices are computed to detect the region r for each
movement. To compute them, we need to know the limits of
the temporal moments and spatial regions. As indicated, the
temporal window limits are known in advance, and the spatial
limits are known when R and C are fixed. When the loop in
lines 2–8 is completed, each Dr is known. In lines 9–15, we
check whether there are enough positions in each region to train
sufficiently accurate KDE models. If there are enough positions,
a KDE model is trained and assigned to the 3-D matrix (line 11).
Otherwise, the Dr positions are discarded (line 13).

C. Movement Likelihood

To classify a test video, the likelihood of each test movement
is first computed at the time of classification. The likelihood of

TABLE I
PARAMETERS OF OUR METHODOLOGY

each movement can be obtained by evaluating the destination
position in the correct KDE model of the trained 3-D matrix.

First, we must extract the laser-spot positions of the test video,
as described in Section IV-A. For each movement, Mi, the
appropriate KDE model in the 3-D matrix is selected using
position siO. Two types of information are needed to access the
correct KDE model: temporal (to select the correct temporal
window) and spatial (row and column). Then, the likelihood of
the movement is obtained by evaluating siD in the KDE model
with (8), as (8) defines the PDF of the destination position. A
Laplace smoothing is applied to the evaluated result to deal with
the 0 likelihood values. Thus, the smoothed likelihood value is
p̂(siD)+ε

1+ε , with εbeing a small value (10−6 in our experiments). As
noted in Section IV-B, some regions will not have any assigned
KDE model. In that case, the likelihood of the movement is equal
to ε

1+ε .
Fig. 7 also shows an example of the computation of the

likelihood of a test movement. Because siO [in Fig. 7(a)] is
inside region r, we use the KDE model depicted in Fig. 7(c),
trained with the positions in Fig. 7(b). In the example, the result
of evaluating position siD [in Fig. 7(b)] in the KDE model is a
likelihood, p̂, of 1.2 for the movement.

We note that each test movement is evaluated using only the
destination positions in Dr. Therefore, KDE–AMD can be fast,
because it does not use all training movements. Additionally, the
classification procedure can be easily parallelized, because the
evaluation of different KDE models can be computed in parallel
without further dependencies on each movement. Additionally,
we do not need the complete video to begin evaluating the
KDE models. For instance, the evaluation of the first movement
only requires the first two frames. The next movement can be
classified with one more frame. Thus, some movements can be
classified before the laser-heating process is completed. These
characteristics can reduce the classification time even more, so
that the algorithm can achieve in-process classification.

Table I summarizes all parameters defined in the methodology
and their values when applied to real data in the experiments (see
Section V).

D. Anomaly Score

We compute an anomaly score using all of the obtained
movement probabilities, as discussed in the previous section, to
classify a given test workpiece. An anomaly score provides an
assessment of an abnormality for a given workpiece. When the
anomaly score is above a predefined threshold, the workpiece
is classified as anomalous. Usually, the threshold is found by
studying the receiver operating characteristic (ROC) curves [23],
selecting the threshold that provides a convenient tradeoff
between the true- and false-positive rate. This decision
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can be motivated by the cost of a misclassified anoma-
lous/nonanomalous workpiece. The likelihood of movement
Mi is denoted as pi. For each likelihood value, its negative
log-likelihood, li = − log pi, is calculated.

The set of li values characterizes a laser-heating video and
is used to compute an anomaly score, which is based on the
dissimilarity between the training and test log-likelihood values.
A convenient method for comparing the training and test videos
is to estimate the PDF of the log-likelihood values for the training
and test data. Analyzing the PDFs allows a comparison of the
log-likelihood information, even when there are more available
training log-likelihood values than test ones. The PDFs of the
log-likelihood values can be estimated using a univariate KDE
model, p̂(l), over a set of log-likelihood values.

After the PDFs are computed, the anomaly score is calculated
using the Kullback–Leibler divergence [24] between the training
and test PDFs. This divergence is lower-bounded by zero. Thus,
a nonanomalous workpiece is expected to have a near-zero value.
The Kullback–Leibler divergence is neither upper-bounded nor
normalized. Thus, the anomalous workpieces can have arbitrar-
ily large anomaly scores.

The methodology is described in terms of our use case (i.e., a
laser-heating process) for easiness. However, the methodology
can be adapted to other problems by creating multiple regions
over each variable of interest. In our use case, the variables
of interest are the axes of the laser-spot position. For other
use cases, the dimensionality of the generated matrix can be
customized, depending on the number of variables and if the
data exhibit different behavior at several temporal moments.

V. EXPERIMENTS

The KDE–AMD algorithm is compared with other meth-
ods, including deep neural networks [25], Kalman filters [26],
D-Markov machines [3], [27], and a global KDE algorithm,
to demonstrate its effectiveness. Real (see Section V-A) and
simulated (see Section V-B) data are used to test the algorithms.

The global KDE algorithm trains a single bivariate KDE
model with a complete set of positions of the set of normal
videos. Therefore, there is no spatial division in the complete
set of positions as in KDE–AMD. Another single bivariate KDE
model is generated for the test positions. Then, the Kullback–
Leibler divergence was computed between both KDE models.
Similar to the presented approach, temporal windows can be
created for the global KDE model. In this case, we computed
W different Kullback–Leibler divergences. The classification
criterion was based on the weighted (by the length of each
temporal window) average of the Kullback–Leibler divergences.

The D-Markov machine builds a Markov chain of order D,
where the possible states are represented by different symbols.
First, a symbolization (partition) process is applied to the data,
where a symbol is assigned to each partition of the input space.
Next, a transition matrix is computed such that the probability
of the next symbol depends only on the previous D symbols.
The classification criterion is based on a state probability vector
calculated from the transition matrix. In [3], further details are
provided on the use of D-Markov machines.

The Kalman-filter algorithm is based on the research reported
in [19] and is described in Section III. In this article, we cannot
obtain good estimates of acceleration because the process has
no jerk (i.e., da/dt) control, allowing high magnitudes of ac-
celeration change only limited by the physics of the mechanical
design. As a result, the sampling rate of only 10 frames per
cycle is too low to reliably reconstruct a signal with high jerk.
Thus, the state vector of our Kalman filter comprises only the
laser-spot position and speed.

The deep neural network is trained to predict the next laser-
spot position from the current one. The network comprises
seven hidden layers with 8, 128, 256, 512, 256, 128, and 8
neurons, with rectified linear-unit activation functions. Thus, the
network has 331 058 parameters. This is the best structure found
after trying different numbers of hidden layers and neurons per
layer. The deep neural network is trained using Keras [28]. The
anomaly score is computed as the sum of the Euclidian distance
between the predicted and actual laser-spot positions. For this
reason, smaller anomaly scores are expected for nonanomalous
videos.

For each algorithm, the tests are conducted multiple times
to select the best values for their parameters. In the KDE–AMD
andD-Markov algorithms, different numbers of spatial divisions
(R rows× C columns) are tested: 16× 16, 20× 20, 25× 25,
30× 30, 35× 35, and 40× 40. The best results (reported here)
are obtained using 35× 35 divisions for KDE–AMD. For theD-
Markov machines, various symbolization techniques are used:
equal width, equal frequency, and a variant of equal frequency
in which the areas within the limits of the space without any
position are not considered for the purpose of symbolization.
Slightly better results are obtained for a 40× 40 equal-width
division, where D is set to 1 because a higher D is highly
computationally expensive.

The D-Markov machine and KDE–AMD algorithms are
tested using leave-one-out cross-validation. The Kalman filter
does not need training data to build a model. The global KDE
cannot be evaluated using the leave-one-out cross-validation
method because of the associated computational burden. There-
fore, we train the global KDE model with four videos and test it
with the remaining 4219. The deep neural network is validated
using two-fold cross validation to reduce the high computational
cost of the training phase.

The code for all algorithms can be found in the reposi-
tory https://github.com/davenza/KDE–AMD. Also, the data are
available in [29] to reproduce all results in the experiments.

A. Real Data

To test the presented methodology, 4223 videos of real
laser-surface heat-treatment processes are available, which are
recorded on four different workstations and contain nine differ-
ent workpiece types. Each workpiece type has a different size be-
tween 12 000 and 14 500 frames and several obstacles between 0
and 2. Altogether, there are 36 batches of videos, because there is
a batch type for each workstation and workpiece type. In Table II,
we describe the mean length in frames, its standard deviation,
and the number of obstacles (denoted as Obs.) for each batch
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TABLE II
BATCH-TYPE LENGTH (NUMBER OF FRAMES) AND NUMBER OF OBSTACLES

type. For this reason, each video is classified using only videos
of the same type, applying leave-one-out cross-validation. Out
of the 4223 videos, only a single video is classified as anomalous
by human experts. Each final workpiece on this production line
was inspected by nondestructive testing procedures. In addition,
a sample of them (1 in 1000) was inspected by destructive
testing procedures. These testing procedures confirmed that only
a single video was anomalous. In the anomalous video, the laser
moves with a slightly different speed than in the remaining
videos, changing the heat distribution and final result of the
workpiece. However, the pattern shape in the anomalous video is
the same as that in Fig. 2(a). Table III lists the minimum, mean,
maximum, and standard deviation values for the nonanomalous
anomaly scores. For the anomalous video, only one anomaly
score is reported. The anomaly scores are computed differently
for each algorithm, and therefore, not comparable with each
other. However, we analyze the behavior of the anomaly score for
each algorithm when classifying anomalous and nonanomalous
workpieces. Anomaly scores should be higher for anomalous
workpieces than those for nonanomalous workpieces. Note
that the D-Markov does not detect the anomaly, because the
anomaly score for the anomalous video is lower than the max-
imum anomaly score for the nonanomalous videos. However,
the KDE–AMD, global KDE, Kalman filter, and deep neural
network detect the real anomaly with an anomaly score ap-
proximately 6.24, 11.63, 10.71, and 1.54 times higher than the
maximum anomaly score value in the nonanomalous videos,
respectively. Moreover, the standard deviations are quite small,
showing that the anomaly scores are quite stable and are very
close to zero in the nonanomalous videos. Note that the judgment
of human experts is used only for evaluation purposes. Using
human experts to inspect each workpiece would be infeasible,
given the numerous videos generated. In fact, the human ex-
perts found an anomaly video driven by the anomaly scores

TABLE III
ANOMALY SCORE VALUES IN THE ANOMALOUS AND NONANOMALOUS

VIDEOS IN THE REAL DATA

provided by the KDE–AMD algorithm. In a real-world sce-
nario, the system can work completely autonomously, because
a threshold value between 2.845× 10−2 and 1.775× 10−1 will
correctly classify all videos. Thus, we consider the KDE–AMD
performance on par with the global KDE and Kalman-filter
algorithms, even when the anomaly score ratio of the anomalous
to nonanomalous videos (6.24) is slightly smaller than that of the
other algorithms. Furthermore, the KDE–AMD anomaly score
ratio is higher than the deep neural network anomaly score
ratio. Further experimentation (computing the anomaly score
values of more anomalous videos) is necessary to fine-tune the
threshold value and provide a more accurate comparison of the
classifiers.

B. Simulated Data

Owing to the high reliability of the laser-heating process,
there is only a single anomalous video. Consequently, the eval-
uation can be strengthened using simulated anomalous data by
modifying the normal datasets to generate them. The real-data
scenario in Section V-A showed that KDE–AMD can detect
unusual movement patterns. However, more subtle deviations
from the baseline can occur with a gradual degradation of
the laser positioning system. We must recall that the working
principle of a galvanometer is the oscillation at high frequency
around its required position with a Gaussian shape. Therefore,
Gaussian noise is introduced at each laser-spot position in both
dimensions independently to model Gaussian-shaped abnormal
oscillations. Such anomaly is simulated because a gradual degra-
dation of the laser positioning system is expected to modify the
laser-spot positions very slightly. This is important because the
laser positioning system requires constant maintenance, and ap-
propriate corrective actions can be taken only when the anomaly
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Fig. 8. Comparison results of the algorithms with σ2 = 0.02.

score deviation from the baseline is sufficiently large (predictive
maintenance).

A total of 4222 datasets are available for testing, because
an anomalous dataset can be created for each normal dataset.
In this analysis, we omit the known real anomaly to generate
subtle variations relative to the normal data. A Gaussian noise
of mean 0 and variance 0.02 is added to each laser position
dimension in the normal datasets to produce anomalous datasets.
The methods are validated using ROC curves and the area under
the curve (AUC) [30]. Fig. 8 shows the results obtained from the
four algorithms. The AUC is rounded to three decimals in the
results reported here. The ROC curves show the true- and false-
positive rates of the algorithm for different threshold values for
the anomaly score. The best threshold should be selected while
accounting for the importance of reducing the false-positive
rate or increasing the true-positive rate. This decision can
be made by measuring the cost of errors (false positive versus
false negative). The D-Markov and Kalman filter have an AUC
close to 0.5. Their performance is almost equivalent to that of
a random classifier (a classifier that selects a class randomly).
The deep neural network algorithm performs worse than the
KDE–AMD algorithm but clearly better than a random classifier.
However, the global KDE and KDE–AMD algorithms have a
reasonably good performance with an AUC greater than 0.9. In
particular, KDE–AMD is extremely close to the perfect classifi-
cation (achieved when AUC = 1). This simulation demonstrates
the good classification capabilities of the KDE–AMD algorithm
for the different anomaly types.

C. Classification Times

As noted, we require an in-process classification. Given the
different characteristics of each batch type (see Table II), the
classification times can be different for each. Nevertheless, the
analysis of the classification times for the same batch type can
give us some insights about those for each algorithm. Table IV
lists the average classification time taken for a single workpiece
for batch type 1. The deep neural network and D-Markov

TABLE IV
CLASSIFICATION TIMES FOR DIFFERENT ALGORITHMS

machine are the fastest models and perform in-process classifica-
tion. Note that for the D-Markov machine having different sym-
bolization techniques and number of divisions, the classification
times are rather different. For example, with a symbolization of
equal frequency and 35× 35 divisions, the average classification
time is equal to 3.014 s. The Kalman filter can also conduct the
in-process classification.

As mentioned, the global KDE model is only trained with a
complete set of positions of the four videos. The classification
times would have been impractical if we had used the leave-one-
out cross-validation. Therefore, it cannot be implemented in a
real system trained with 4222 normal videos.

The KDE–AMD algorithm is slightly slower than the Kalman
filter andD-Markov machines. However, the classification times
are sufficiently good to achieve in-process classification. The
classification time for the KDE–AMD algorithm is measured
without implementing the work parallelization, so that the
system can be made faster without changing the algorithm.
Furthermore, approximately 0.5 s are required to compute the
Kullback–Leibler divergence, regardless of the selected param-
eter values for the KDE–AMD algorithm. A faster evaluation of
the Kullback–Leibler divergence can be obtained by computing
it with less precision.

VI. PARAMETER SENSITIVITY ANALYSIS

The proposed KDE–AMD algorithm requires three parame-
ters to train the model, as outlined in Table I. In this section,
we show how the selection of these parameters affects the clas-
sification performance and classification times of the proposed
algorithm.

We always set parameters R and C as equal, because the size
of both axes is the same in the input data. This is a simplification
of the parameter search space because it is clearly possible for
nonequalR andC values to have better results. As noted, we test
parameters R and C using the configurations 16× 16, 20× 20,
25× 25, 30× 30, 35× 35, and 40× 40, fixing the parameter λ

to 5. We choose λ = 5 because with a lower value, the algorithm
would estimate densities with less than five instances, which
is very less data. The AUC scores for all configurations are
shown in Table V, where the differences in the classification
performance are marginal. This result demonstrates that the
KDE–AMD algorithm is quite robust to the parameter values
selected for R and C. The classification times are also affected
by the selection of parameters R and C. It is remarkable that
classification times are reduced when the number of regions
increases. This is explained by the fact that when there are
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TABLE V
RESULTS FOR DIFFERENT R AND C WITH λ = 5

TABLE VI
RESULTS FOR DIFFERENT λ WITH R = C = 35

more regions, the KDE model of each region contains fewer
laser-spot positions. Therefore, KDE takes less time to evaluate
each region. Additionally, because there are fewer laser-spot
positions per region, it is more likely that a KDE model would
not be assigned to some regions, because the number of laser-
spot positions is below λ. This also reduces the classification
time because the nonassigned regions are easily evaluated by
assigning the constant value ε

1+ε .
For the λ parameter, values 5, 10, 15, 20, 30, 40, 50, and

200 are tested by fixing R and C to 35, because this is the best
configuration in Table V. The results are shown in Table VI.
Again, the differences in the classification performance are
marginal. Thus, the KDE–AMD algorithm is also quite robust
with respect to the λ parameter. Note that increasing the λ pa-
rameter can improve the classification performance, because the
KDE models of these regions having few instances are probably
produced by noise in the data. An increase in the λ parameter
implies that noise-generated KDE models are not included in
the KDE–AMD model. Thus, the classification performance
increases. We recommend testing different values of λ if there is
noise in the data to find the best compromise between reduction
of noise and discarding a lot of data. Also, increasing the λ value
should decrease the classification time because there are fewer
regions with KDE models assigned.

VII. CONCLUSION

Anomaly detection is a key step for ensuring the production
of high-quality products in industry. This article presents a
novel methodology (i.e., KDE–AMD) for an efficient detection
of anomalies in a laser surface-heating process. This process
applies energy to the surface of a workpiece in a controlled
manner following a known pattern containing numerous changes
in direction (eight changes per cycle). It is applied at a high fre-
quency (100 Hz and 10 fps). Pattern analysis using a high-speed
thermal camera with a frame rate of 1000 fps is complex, because
the classification times must be short, even when processing nu-
merous frames per video. The first step of the anomaly detection
methodology is to detect the laser-spot positions in each frame.
Then, a matrix of KDE models is built to accurately represent
the changes in the position between two consecutive frames.
This matrix is an ensemble of KDE models taking advantage

of the temporal/spatial locality of each laser-spot movement.
Using this matrix of KDE models, we compute the likelihood
for each movement. An anomaly score can then be computed
using the Kullback–Leibler divergence between the distribution
of the training and test movement probabilities. KDE–AMD is
fast enough to achieve in-process classification, and the classi-
fication results are at least as good as the other state-of-the-art
algorithms.

In the future, we will improve the performance and classifi-
cation times of the methodology. An alternative variant of the
algorithm can entail using nearest neighbors. To this end, for
a given movement M = (sO, sD), we would search for other
movements whose origin positions are the nearest neighbors of
sO, instead of distributing all movements in different regions
during training. This variant can be computationally expensive.
Thus, a fast approximation to the nearest neighbors, such as k-d
trees [31], is required. The parallelization and streaming-like
optimizations can improve the speed of our approach. If we
obtain more anomalous videos in the future, a fine-grained
threshold can be computed to detect an anomaly. For example,
the application of the extreme value theory [32], [33] would be
an interesting future research direction, because it would use a
small sample of real anomalies to obtain another sound anomaly
score.
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