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Feature Saliencies in Asymmetric Hidden
Markov Models

Carlos Puerto-Santana , Pedro Larrañaga , Member, IEEE, and Concha Bielza , Member, IEEE

Abstract— Many real-life problems are stated as nonlabeled
high-dimensional data. Current strategies to select features are
mainly focused on labeled data, which reduces the options
to select relevant features for unsupervised problems, such as
clustering. Recently, feature saliency models have been intro-
duced and developed as clustering models to select and detect
relevant variables/features as the model is learned. Usually, these
models assume that all variables are independent, which narrows
their applicability. This article introduces asymmetric hidden
Markov models with feature saliencies, i.e., models capable of
simultaneously determining during their learning phase relevant
variables/features and probabilistic relationships between vari-
ables. The proposed models are compared with other state-of-
the-art approaches using synthetic data and real data related to
grammatical face videos and wear in ball bearings. We show
that the proposed models have better or equal fitness than other
state-of-the-art models and provide further data insights.

Index Terms— Asymmetric information, Bayesian networks,
embedded feature selection, feature saliencies, feature subset
selection (FSS), hidden Markov models (HMMs).

I. INTRODUCTION

FEATURE subset selection (FSS) [1] has become a relevant
tool for data scientists to recognize relevant information

within large datasets and reduce data dimensionality. However,
little effort has been put into the case where no class variable
is present. In this manner, many real unsupervised problems
are neglected, and many clustering models are forced to
work with undesirable or irrelevant features. Recently, feature
saliency (FS) models [2] have been proposed as an option
to overcome the FSS problem in unlabeled data. FS models
try to determine the level of relevancy of each variable or
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feature. In FS models, a feature is considered irrelevant if it
is independent of the clustering variable [2]. FS models can
be considered as embedded FSS methods: While they learn
their parameters, simultaneously, they compute the relevancy
of each feature. In this sense, FS models are preferred to
wrapper FSS strategies [3], where the model must be learned
for each considered subset of variables.

Hidden Markov models (HMMs) are a powerful tool to
understand and model dynamic stochastic unlabeled data.
They were traditionally used for speech recognition and gene
segmentation [4]. However, lately, their applicability to other
areas, such as tool wear monitoring, weather forecasting,
and so on, has been noted [5]. Traditional HMMs assume
full independence or full dependence between the observed
variables. In the first case, the resulting models are not
applicable to several real-life problems, and in the second case,
the model learns unnecessary parameters that can cause model
overfitting. In this sense, asymmetric HMMs (As-HMMs) [6]
can be used to find an intermediate point where the model
discovers and estimates the existing probabilistic dependencies
between variables in order to explain the data.

HMMs and FS models are found in previous works [7]–[9].
However, the models assume that all the variables are inde-
pendent, which depletes the explanatory power of the model.
Consequently, in this article, we introduce an FS model based
on As-HMMs to alleviate this issue, i.e., we propose an HMM
that is capable of simultaneously determining feature relevancy
and giving a probabilistic dependency graph (context-specific
Bayesian network [10]) containing only the relevant features.

In this article, we propose an FS model to select fea-
tures in unsupervised dynamic data. Our model relaxes
the independent variable assumption of traditional FS mod-
els, which depletes their applicability, by instead generating
context-specific Bayesian networks for the selected variables.
In addition, as expected, the proposed model is capable of
performing inference in testing data. However, the model
assumes some hypotheses, such as: 1) variables must follow
a linear Gaussian distribution; 2) the hidden states follow the
Markov property; and 3) the noise variables are Gaussian. Any
dynamic process that drifts abruptly from these conditions is
not suitable to be interpreted with the proposed model since the
data insights that the model would provide would be wrong.

The organization of this article is given as follows. Section II
will review some related work with FSS in HMM and asym-
metric models. Section III will briefly review the relevant
mathematical and probabilistic tools for the development of
the model. Section IV will develop the proposed FS model.
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TABLE I

TABLE OF REVIEWED ARTICLES BY TOPIC

Section V will validate the proposed model with synthetic
and real data. Finally, Section VI will present conclusions and
future work.

II. RELATED WORK

Regarding FSS, the state-of-the-art strategies are usually
grouped into three categories: filter, wrapper, and embedded.
There are also dimensionality reduction strategies as in [30]
or [31]. In these articles, the features are projected into lower
dimensionality spaces where the information is concentrated,
and these new features are used as predictors. Nevertheless,
these kinds of strategies are beyond the scope of this article
since we are concerned with the interpretation of the model.
In Table I, the reviewed articles are briefly summarized and
sorted by topic.

A. Filter Techniques

1) Supervised: Among the traditional filter FSS techniques,
we find the correlation-based feature selection (CFS) [11].
CFS was designed to search for a subset of features, which
maximizes the feature relevancy with respect to a class variable
and minimizes the redundancy between them. RELIEF [12]
provided a relevancy score for each feature based on dis-
tances between classes. Features whose relevancy overpassed
a threshold were selected.

As regards filter algorithms with supervised data related to
HMMs, the following articles were found: [13] proposed a
sequential data feature selection algorithm based on Markov
blankets. Their methodology gradually computed the Markov

blanket of a target or class variable using the HITON algo-
rithm [32]. The HITON algorithm was fed with an HMM
to learn the corresponding Markov blanket. The variables in
the Markov blanket of the class variable were applied as
features of a classification model. In [14], for each class
value and variable, an HMM, which was used as a classifier,
was learned. Next, an AdaBoost algorithm was employed to
select which HMMs improved the accuracy of the prediction.
Momenzadeh et al. [15] coupled discrete HMM with different
feature selection filtering scores. An HMM was created using
the ranking information obtained by the filters. The resultant
emission probabilities were used as a relevancy score.

2) Unsupervised: Only one filter strategy for variable selec-
tion was found in the case of unsupervised data. Dash and
Ong [16] used the RELIEF algorithm [12] to discriminate
features. The authors used the K-medoid algorithm to generate
artificial class labels and execute the RELIEF algorithm using
these. This process was iterated as many times as the user
determined.

B. Wrapper Techniques

In wrapper techniques, only a few works were found. All
of which look for the best set of variables to improve the
score of a clustering model. For instance, Yue et al. [17]
used a greedy-backward (GB) FSS algorithm to select the
features for an adaptive variable duration mixture of Gaussian
HMMs. Farag et al. [18] applied the particle swarm opti-
mization (PSO) algorithm [33] to maximize the HMM accu-
racy. In both cases, heuristic or metaheuristic methods were
employed to find the best set of features for an HMM classifier.

C. Embedded Techniques

1) Supervised: We reviewed some embedded techniques
for supervised problems. For example, the well-known work
of [19], where the lasso regression was introduced, or [20],
where a regularization term was added in the learning phase of
neural networks in order to determine relevant features. More
recently, Mnih et al. [21] introduced a convolutional neural
network capable of selecting image sections to be processed,
but it had to be learned using reinforcement learning.

2) Clustering: In [2], the concept of FS was introduced
(as will be explained in Section III) and applied to perform
model learning and feature selection simultaneously in clus-
tering models. The feature saliencies were utilized to indicate
the level of relevancy of each variable in a Gaussian mixture
model (GMM-FS). All the parameters were learned using
the EM algorithm. In [22], the GMM-FS was revisited, and
a variational Bayesian algorithm was used to estimate the
model parameters. Later, Li et al. [23] proposed a local-
ized FS model for a mixture of Gaussians (GMM-LFS),
where, depending on the mixture component, the set of
relevant features could change. The learning process was
carried out using the variational Bayesian methodology. Next,
Guerra et al. [24] proposed a semisupervised GMM-LFS. The
aim of the authors was to classify partially labeled data. The
authors added cluster-dependent feature saliencies to perform
the feature selection procedure. Nguyen et al. [25] developed
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a mixture model (VB-SMM-LFS) where, depending on the
cluster instance, feature saliencies indicated which variables
were relevant for the cluster. Also, the clusters were expressed
with piecewise-t-Student distributions, and the learning of
parameters was performed using Bayesian variational meth-
ods. Finally, Song et al. [26] coupled an infinite components
piecewise Gaussian mixture model with localized feature
saliencies (iGMM-LFS). The learning phase was performed
using a Bayesian method through a Markov chain Monte Carlo
algorithm.

3) HMMs: Concerning HMMs, inspired by the FS-GMMs,
Adams et al. [7] developed an HMM (FS-HMM) where a set
of feature saliencies were added to the emission probabilities
to determine which variables were relevant for the model.
The emission distribution assumed full independence between
variables, and a maximum a posteriori approach was used
to learn the parameter models. In addition, the model was
extended to hidden semi-Markov models, where the sojourn
times could be modeled in order not to strictly follow a geo-
metric distribution, as in any traditional HMM. Later, Adams
and Beling [9] proposed an FS-HMM for discrete features in
HMMs. It was assumed that the relevant features followed a
state-dependent Poisson distribution, whereas irrelevant fea-
tures followed a state-independent Poisson distribution. The
author provided an EM algorithm and the Bayes algorithm to
learn a discrete model. Zheng et al. [8] introduced an HMM
where the emission probabilities were modeled as mixtures
of t-Student distributions (SHMM-LFS). Feature saliencies
were added to the model at the component level such that
the model was capable of determining, depending on the
hidden state and mixture component, in which features were
noise or relevant. The learning procedure was performed with
variational Bayesian methods.

D. Asymmetric Models

Asymmetric models can be defined as probabilistic models
where, depending on the instance of a hidden context variable,
the probabilistic relationships between observable variables
may change. In the case of HMMs, the context is given
by the hidden state, and the emission probabilities change
their explanatory graphical model (context-specific Bayesian
networks). As will be seen, none of the reviewed articles
related to As-HMMs used feature saliencies, which is a gap
that this article tries to fill.

Bilmes [27] introduced an autoregressive (AR) HMM called
buried Markov models (BMMs), which selected the AR order
dependencies for each hidden state using mutual information.
Kirshner et al. [28] developed an HMM where, depending on
the hidden state, a different Chow-Liu tree was expressed
to encode the probabilistic relationship between variables.
Stadler and Mukherjee [29] proposed a learning algorithm
based on the EM to generate sparse precision matrices, i.e.,
each hidden state had its own sparse precision matrix, which
could be interpreted as a Markov random field (MRF).1

1An MRF is a probabilistic graphical model, which represents a set of
variables that follow the Markov property. The graph must be undirected and
may have cycles.

Later, Bueno et al. [6] introduced the As-HMMs, created for
discrete data. The model expressed the emission probabilities
as context-specific Bayesian networks that were learned using
a taboo search algorithm. Finally, Puerto-Santana et al. [5]
developed an As-HMM for continuous variables, which was
capable of determining the AR order for each variable depend-
ing on the hidden state (AR-AsLG-HMMs).

III. THEORETICAL FRAMEWORK

A. Hidden Markov Models

An HMM can be seen as a double chain stochastic model,
where a chain is observed, namely, X0:T = (X0, . . . , XT ),
where X t = (Xt

1, . . . , Xt
M ) ∈ RM continuous variables and the

other chain is hidden, namely, Q0:T = (Q0, . . . , QT ). Here,
T + 1 is the length of the data. Let N be the order of the
range of the hidden variables Qt or the number of hidden
states. An HMM can be summarized with the parameter λ =
(A,B,π) ∈ �, where � denotes the space of all possible
parameters [4], A = [ai j ]N

i, j=1 is a matrix representing the
transition probabilities between hidden states i, j ∈ R(Qt )
over time, i.e., ai j = P(Qt+1 = j |Qt = i,λ); B is a vector
representing the emission probability of the observations given
the hidden state, B = [bi(xt)]N

i=1, where bi(xt) = P(X t =
xt |Qt = i,λ) is a probability density function (pdf); and π

is the initial probability distribution of the hidden states, π =
[π j ]N

j=1, where π j = P(Q0 = j |λ).
An HMM can be used to solve the three following problems.

First, compute the likelihood of an observation x0:T given a
model λ, i.e., P(x0:T |λ), which can be performed using the
forward–backward algorithm. Second, compute the most likely
sequence of hidden states and observations, i.e., find the value
of δt (i) = maxq0:t−1{P(x0:t , q0:t−1, Qt = i |λ)}, t = 1, . . . , T ,
i = 1, . . . , N , which can be solved using the Viterbi algorithm.
Third, learn the parameter λ, which is usually estimated with
the EM algorithm [34]. A theoretical tutorial can be found
in [4].

B. EM and SEM Algorithms

The expectation–maximization (EM) algorithm is a
gradient-based learning strategy used for models where hidden
or unknown variables appear [34]. In the case of HMM, it can
be seen as a generalization of the Baum–Welch algorithm [4].
The algorithm consists of two parts: the expectation step or
E-step, where the a posteriori probabilities of the hidden
or unknown variables are estimated; the maximization step
or M-step, where an auxiliary Q function (which lower
bounds the log-likelihood (LL) of the model) is maximized.
Dempster et al. [34] showed that the iteration of these steps
converges to a local optimum of the LL function.

Some models not only require their parameters to be esti-
mated but also their topology, such as in the case of Bayesian
networks. In such cases, the structural EM (SEM) algo-
rithm [35] can be used to simultaneously estimate the model
parameters and topology. The algorithm uses an extension of
the Q function of the EM algorithm, where a penalization
(usually Bayesian information criterion (BIC) style [36]) in the
complexity structure is imposed in order to penalize topologies
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that require a large number of parameters. As in the case of
the EM, the SEM algorithm must be iterated until convergence
to a local optimum in BIC is reached.

C. Feature Saliency Models

The idea behind any FS model is to declare a set of
binary variables, say {Zm}M

m=1, which will indicate the feature
relevancy. Each Zm variable follows a Bernoulli distribution
with a parameter ρm , which is called the FS of the Xm variable.
If ρm = 1, it implies that the feature is relevant. If ρm = 0,
it indicates that the variable is irrelevant. If ρm ∈ (0, 1),
a threshold ρ can be imposed as a decision boundary to
determine whether or not a variable is relevant. For example,
in the case of FS-HMM, the FS parameters are added to the
emission probabilities [7]

bi(X t ) =
M∏

m=1

ρmN
(
Xt

m

∣∣μim, σ
2
im

) + (1 − ρm)N
(
Xt

m

∣∣εm, τ
2
m

)

(1)

where N (μ, σ 2) is the pdf of a normal distribution with mean
μ and variance σ 2. If ρm = 1, the pdf used for the variable
Xm depends on the hidden state i , and the variable is affected
by changes in the context. This pdf will be referred to as the
relevant component. Alternatively, if ρm = 0, the pdf does not
depend on the hidden state i , and the variable Xm is considered
as noise.

In the case of mixture models, in [25], assuming that the
discrete cluster variable is C , the saliency variables are added
to the mixture component densities as

P(X t |Ck) =
M∏

m=1

ρkm

Mk j∑
j=1

ηk jm S
(
Xt

m

∣∣μk jm, τk jm, νk jm
)

+ (1 − ρkm)S
(
Xt

m

∣∣εkm , γkm, ζkm
)
. (2)

Ck is C = k, and S is the pdf of a t-Student with mean
μ, precision τ , and degrees of freedom ν. In this case, the
set of binary variables is Z = {Zkm}K ,M

k,m=1. Therefore, it is
possible to assume that the FS ρkm not only depends on the
variable Xm but on the mixture component C = k. This means
that, depending on the mixture component k and variable
Xm , different features may be considered relevant (Zkm = 1)
or noise (Zkm = 0). From (2), it is clear that the relevant
features are assumed to follow a mixture of Mkj t-Student pdf
(a mixture inside a mixture), whereas irrelevant features only
change with the mixture component.

IV. PROPOSED MODEL: FEATURE SALIENCY

ASYMMETRIC HMM

In this contribution, we assume that the emission proba-
bilities are a mixture of Gaussian noise and AR asymmetric
linear Gaussian Bayesian networks. Thus, depending on the
hidden state, the Bayesian network that describes the relevant
distribution may change. This model will be referred to as FS
asymmetric HMM (FS-AsHMM). As notation, if Q0:T or Z0:T
is found as a summation index, it refers to q0:T ∈ R( Q0:T )

or z0:T ∈ R(Z0:T ), respectively, where R(F0:T ) denotes the
range of an arbitrary stochastic vector F0:T .

The embedded FSS process assumes that irrelevant fea-
tures are not affected by changes in hidden states; therefore,
a Bernoulli vector Zt = (Z t

1, . . . , Z t
M) is introduced in the

model, and the irrelevant behavior is modeled for each variable
with a Gaussian distribution with parameters εm and τ 2

m . The
dependency of X t given Zt and its at most p∗ past values is
modeled as

bi(xt |zt) := P
(
xt

∣∣xt−p∗:t−1, zt , Qt = i,λ
)

=
M∏

m=1

fim
(
x t

m

)zt
m gm

(
x t

m

)(1−zt
m) (3)

where fim(x t
m) = N (x t

m|β im · pat
im + ηim · d t

im, σ
2
im) is the rel-

evant component, gm(x t
m) = N (x t

m |εm, τ
2
m) is the noise term,

and pat
im = [1, ut

im1, . . . , ut
imkim

] and d t
im = [x t−1

m , . . . , x t−pim
m ]

are vectors with the values of the kim parents of Xt
m in the

Bayesian network graph and its pim ≤ p∗ past values, with
p∗ an AR order fixed upper bound. To be clear, the mean of
the relevant term is the linear combination of the parameters
βi m = [βim0, βim1, . . . , βimkim ] and ηi m = [ηim1, . . . , ηimpim ]
with pat

im and d t
im , respectively, and its variance is σ 2

im . The
noise term for each variable Xm is a Gaussian distribution
with mean εm and variance τ 2

m , which does not depend on the
hidden state.

Observe in Fig. 1 an example of the new model topology.
In this example, a network with two variables/features is
presented. When Qt = 1, no probabilistic relationships appear
between Xt

1 and Xt
2; also, Xt

2 depends on one AR value or
Xt−1

2 . When Qt = 2, there is a probabilistic dependency of
Xt

2 from Xt
1. In addition, Xt

1 depends on one AR value, that
is, Xt−1

1 and Xt
2 depend on two AR values or Xt−1

1 and Xt−2
1 .

Finally, X t on both contexts, Qt = 1 and Qt = 2, depends on
the binary vector Zt .

The probability of Zt can be expressed as

ζ(zt ) := P(zt |λ) =
M∏

m=1

ρ
zt

m
m (1 − ρm)

(1−zt
m). (4)

ρm := P(Z t
m = 1|λ) for m = 1, . . . ,M . Note that we

are assuming that the Z t
m Bernoulli variables are independent

between them and that the ρm parameters do not change with
time. From (3) and (4), the emission probabilities can be
derived

bi (xt ) := P
(
xt

∣∣xt−p∗:t−1, Qt = i,λ
)

=
∑

R(Zt)

P
(
xt , zt

∣∣xt−p∗:t−1, Qt = i,λ
)

=
∑
R(Zt )

bi(xt |zt )ζ
(
zt

)

=
M∏

m=1

ρm fim
(
x t

m

) + (1 − ρm)gm
(
x t

m

)
(5)
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Fig. 1. Example of a structure of a global FS-AsHMM.

and the full information probability can be written as follows:
P

(
q p∗:T , z p∗:T , x p∗:T ∣∣x0:p∗−1,λ

)

= πq p∗
T −1∏
t=p∗

aqt qt+1

T∏
t=p∗

ζ(zt )bqt (xt |zt ). (6)

A. E-Step

We define the auxiliary function

Q1(λ|λ′) :=
∑

Q p∗:T

∑

Z p∗:T
P

(
q p∗:T , z p∗:T ∣∣x0:T ,λ′)

× ln P
(
q p∗:T , z p∗:T , x p∗:T ∣∣x0:p∗−1,λ

)
. (7)

From (7), we can obtain the LL of the λ model

Q1(λ|λ′) = H1(λ|λ′)+ ln P
(
x p∗:T ∣∣x0:p∗−1,λ

)
= H1(λ|λ′)+ L L(λ) (8)

where

H1(λ|λ′) =
∑

Q p∗:T

∑

Z p∗:T
P

(
q p∗:T , z p∗:T ∣∣x0:T ,λ′)

× ln P
(
q p∗:T , z p∗:T ∣∣x0:T ,λ

)
. (9)

By (8) and (9), and [5], it is known that each iteration
of the EM algorithm with Q1(λ|λ′) implies improvements in
the likelihood function. Introducing (6) in (7), we obtain a
tractable expression of Q1(λ|λ′), which will be useful to find

the updating formulas of the model parameters

Q1(λ|λ′) =
N∑

i=1

γ p∗
(i) ln

(
π

p∗
i

)

+
T −1∑
t=p∗

N∑
i=1

N∑
j=1

ξ t (i, j) ln
(
ai j

)

+
T∑

t=p∗

N∑
i=1

M∑
m=1

ψ t
m(i) ln

(
ρm fim

(
x t

m

))

+
T∑

t=p∗

N∑
i=1

M∑
m=1

φt
m(i) ln

(
(1 − ρm)gm

(
x t

m

))
. (10)

In (10), we have the latent a posteriori probabilities

γ t(i) := P
(
Qt = i

∣∣x0:T ,λ′)

ξ t (i, j) := P
(
Qt+1 = j, Qt = i

∣∣x0:T ,λ′)

ψ t
m(i) := P

(
Qt = i, Z t

m = 1
∣∣x0:T ,λ′)

φt
m(i) := P

(
Qt = i, Z t

m = 0
∣∣x0:T ,λ′) (11)

for t = p∗, . . . , T , i = 1, . . . , N , and m = 1, . . . ,M . The
E-step consists of estimating these quantities. In the case of
ψ t

m(i), we have

ψ t
m(i) = P

(
Qt = i, Z t

m = 1
∣∣x0:T ,λ′)

= P
(
Z t

m = 1
∣∣Qt = i, xt−p∗:t

m ,λ′)γ t (i)

= ρm fim
(
x t

m

)
γ t (i)

ρm fim
(
x t

m

) + (1 − ρm)gm
(
x t

m

) . (12)

It is not hard to note that γ t (i) = φt
m(i)+ ψ t

m(i) for m =
1, . . . ,M and i = 1, . . . , N . Therefore, φt

m(i) = γ t (i)−ψ t
m(i)

and

φt
m(i) = (1 − ρm)gm

(
x t

m

)
γ t (i)

ρm fim
(
x t

m

) + (1 − ρm)gm
(
x t

m

) . (13)

Now, we indicate how to estimate γ t(i)

γ t (i) = αt
p∗(i)β t

p∗(i)

L L(λ′)
. (14)

In the previous equation, the forward variable is αt
p∗(i) :=

P(Qt = i, x p∗:t |x0:p∗−1,λ), and the backward variable is
β t

p∗(i) := P(xt+1:T |Qt = i, x0:t ,λ). The forward–backward
algorithm stated in [5] must be applied to estimate αt

p∗(i) and
β t

p∗(i). Finally, ξ t (i, j) can be computed as

ξ t (i, j) = αt
p∗(i)ai j b j(xt+1)β t+1

p∗ ( j)

L L(λ′)
. (15)

B. M-Step

The M-step corresponds to optimizing (10) with respect
to the model parameters. The following theorem gives the
updating formulas that result from the optimization.

Theorem 1: Assume that there is a current model λ(s) such
that the E-step has been computed with it. From optimiz-
ing (10), the resulting parameter λ(s+1) can be obtained with
the following updating formulas.
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The feature saliencies {ρ(s+1)
m }M

m=1 are updated as

ρ(s+1)
m =

∑N
i=1

∑T
t=p∗ ψ t

m(i)

T + 1 − p∗ . (16)

The initial distribution π (s+1) = {π(s+1)
i }N

i=0 is updated as

π
(s+1)
i = γ p∗

(i). (17)

The transition matrix A(s+1) = {a(s+1)
i j }N

i, j=1 is updated as

a(s+1)
i j =

∑T −1
t=p∗ ξ t (i, j)

∑T −1
t=p∗ γ t (i)

. (18)

The mean and variance, {ε(s+1)
m }M

m=1 and {(τ 2
m)
(s+1)}M

m=1,
from the noise component, are updated as

ε(s+1)
m =

∑T
t=p∗

∑N
i=1 φ

t
m(i)x

t
m∑T

t=p∗
∑N

i=1 φ
t
m(i)

(
τ 2

m

)(s+1) =
∑T

t=p∗
∑N

i=1 φ
t
m(i)(x

t
m − εm)

2

∑T
t=p∗

∑N
i=1 φ

t
m(i)

. (19)

Setting νt
im := β

(s)
im · pat

im + η
(s)
im · d t

im for m = 1, . . . ,M ,
t = p∗, . . . , T , and hidden state i = 1, . . . , N , the parameters
{η(s+1)

imr }pim
r=1 and {β(s+1)

imk }kim
k=0 can be updated jointly, solving the

following linear system:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T∑
t=p∗

ψ t
m(i)x

t
m =

T∑
t=p∗

ψ t
m(i)ν

t
im

T∑
t=p∗

ψ t
m(i)x

t
mut

im1 =
T∑

t=p∗
ψ t

m(i)u
t
im1ν

t
im

...
...

...
T∑

t=p∗
ψ t

m(i)x
t
mut

imkim
=

T∑
t=p∗

ψ t
m(i)u

t
imkim

νt
im

T∑
t=p∗

ψ t
m(i)x

t
m x t−1

m =
T∑

t=p∗
ψ t

m(i)x
t−1
m νt

im

...
...

...
T∑

t=p∗
ψ t

m(i)x
t
m x t−pim

m =
T∑

t=p∗
ψ t

m(i)x
t−pim
m νt

im .

(20)

Setting ν̂t
im := β

(s+1)
im · pat

im + η
(s+1)
im · d t

im , then

{(σ 2
im)

(s+1)}N,M
i,m=1 can be updated as

(
σ 2

im

)(s+1) =
∑T

t=p∗ ψ t
m(i)

(
x t

m − ν̂t
im

)2

∑T
t=p∗ ψ t

m(i)
. (21)

The proof of this theorem is provided in the Supplementary
Material. It is worth noting that, from (20), for each variable
m = 1, . . . ,M and hidden state i = 1, . . . , N , the size of the
linear system will depend on the number of parents and AR
values; the longer the list of dependencies, the larger the linear
system.

TABLE II

COMPUTATIONAL COMPLEXITY OF DIFFERENT ROUTINES
OF THE LEARNING AND INFERENCE ALGORITHMS

C. Structural EM

In this article, we use the greedy-forward algorithm pro-
posed in [5] to search the space of possible graphical models.
However, in this model, it is plausible to think that, if a vari-
able is a noise, it should not be considered in any explanatory
graphical model. Therefore, we impose a restriction during
the search of structures such that no noise variable is added to
any context-specific Bayesian network. The restriction consists
of omitting any possible arc coming to or from variables
Xm , which fulfills the following condition: ρm ≤ ρ, where
ρ ∈ [0, 1) is a threshold that determines which variables are
relevant. Observe that the opposite of this assumption is not
true, i.e., if a variable does not have any relationship with any
other variable in a context-specific Bayesian network, it does
not mean that it is irrelevant or noise under our relevance
definition.

D. Computational Complexity

In Table II, the computational complexity in big O notation
of the different routines of the proposed algorithm is shown.
We assume that the learned networks are dense or several
arcs appear in the context-specific Bayesian networks. We also
assume that p∗ � T or the maximum lag of the AR processes
is small compared to the length of the data.

Given a prior or current model λ, the means and proba-
bilities routines refer to computing and storing the temporal
means νt

im and probabilities {bi(xt )}N
i=1, { fim(x t

m)}N,M
i=1,m=1, and

{gm(x t
m)}M

m=1 for t = p∗, . . . , T , which are required to per-
form the forward–backward, Viterbi, and E-step routines. The
forward–backward routine refers to the computation of the for-
ward variable {αt

p∗(i)}N
i=1 and backward variable {β t

p∗(i)}N
i=1,

t = p∗, . . . , T in (14). These can be used to compute LLs or
perform the E-step in the EM algorithm. The E-step consists of
computing the latent probabilities in (11), and the M-step is to
update the parameters of λ using Theorem 1. Then, the means
and probabilities routines are again executed if another EM
iteration is needed. Finally, the graph-scoring routine refers
to the evaluation of a new set of graphs or context-specific
Bayesian networks during the SEM algorithm. It means using
the means, probabilities routines, (20), and (21).

V. EXPERIMENTS

In this section, we will compare our model with the models
proposed in [7] (FS-HMM) and [8] (SHMM-LFS). Since these
models have been previously compared in favor to clustering
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TABLE III

SYNTHETIC DATA GLOBAL DESCRIPTION. S DENOTES THE SCENARIO
CASE. # DEP STANDS FOR THE NUMBER OF DEPENDENCIES BETWEEN

VARIABLES. # AR REPRESENTS THE NUMBER OF AR
DEPENDENCIES. NOISE DENOTES THE NOISE

VARIABLES. P. NOISE STANDS FOR THE
PARTIAL NOISE VARIABLES

FS models, such as [22], [23], and [25], we omit these in the
experiments. In addition, the model in [5] (AR-AsLG-HMM)
will be compared to observe the advantages and disadvantages
of using FS models. We will use synthetic data and real
data from face grammatical videos and degradation datasets
of ball bearings. In the case of [8], the number of mixture
components is fixed to 1 for the synthetic data since the data
are structured to behave like that. In the case of real data,
two components were only used since additional components
drastically increased the number of parameters to be estimated,
as will be seen later. Finally, for all the experiments, ρ = 0.9.
Recall that this value determines which variables cannot be
in the context-specific Bayesian networks. Further details are
given in the following. For the sake of space, simply, AsHMM
will mean AR-AsLG-HMM.

A. Synthetic Data

1) Data Description: In this study, a synthetic dataset with
no physical interpretation is built. It contains noise variables,
partial noise variables, and relevant variables. The noise vari-
ables are those which follow a normal distribution with fixed
mean and variance. Partial noise variables are those whose
parameters do not change for every drift in the hidden state in
the full data. Relevant variables follow a normal distribution
whose mean and variance change with every drift in the hidden
state in the dataset. In addition, we assume that noise variables
have no probabilistic relationship with other variables. The
data is built with probabilistic relationships between variables
and different AR values, and is assumed to have four hidden
states and ten variables.

Three possible scenarios are analyzed, i.e., three sets of
parameters are used. The set of parameters is described in the
Supplementary Material. In all the scenarios, the variables with
indices 3 and 10 are considered as noise. In scenarios 1 and 2,
the variable with index 5 is also noise. In scenario 3, the
variables with indices 5 and 7 are considered as partial noise
variables. Now, with respect to the dependency maps of each
scenario, the first scenario assumes that all the variables are
independent. The second scenario assumes that probabilistic
relationships between relevant variables may appear. The third
scenario is the most complex due to the presence of probabilis-
tic relationships between variables and AR values, and some
variables are partial noise. This information is summarized in
Table III.

The training data are generated following the sequence of
hidden states exposed in Fig. 2(a). For the testing phase,

Fig. 2. Signals used for (a) training and (b) testing.

TABLE IV

RESULTS FOR THE TEST SEQUENCE FOR THE

DIFFERENT COMPARED MODELS

Fig. 3. Critical difference diagram with the Nemenyi hypothesis test for the
ranking of BICs.

a testing sequence of hidden states is used, which is pictured
in Fig. 2(b). The testing sequence is generated fifty times for
each scenario for population evaluation purposes. To evaluate
and compare the models, the mean LL (LL), BIC (BIC) [36],
and the standard deviation of LL (σLL) are used.

2) Synthetic Data Results: In Table IV, the obtained results
for the different models in terms of LL and BIC are shown.
In boldface, the best scores are marked and, in the case
of the number of parameters, the model with the lowest
amount of parameters. In addition, Fig. 3 shows the critical
difference diagrams [37] with confidence of 90% for the
obtained rankings in the testings datasets for LL and BIC
scores, respectively. In this case, we have used the Nemenyi
test, which evaluates for all pairs of models the hypothesis of
no difference in the ranking position. The CD value indicates
the minimum distance in the rank to give evidence of statistical
difference. In the graphs, models grouped by the same bold
line are not statistically different in their rank. In our critical
diagrams, 1 is the best rank, and 4 is the worst rank.

From Fig. 3, it can be observed that the model with the best
BIC in mean was AsHMM, followed in order by FS-AsHMM,
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TABLE V

ρ RESULTS IN SCENARIO 3 FOR THE DIFFERENT
MODELS IN THE SYNTHETIC DATA

FS-HMM, and SHMM-LFS. By the Nemenyi test, it can be
noted that all models were statistically different since no bold
line paired pairs of models. The same results were obtained
for the rankings with LL.

In terms of standard deviations of the prediction scores,
SHMM-LFS obtained the worst results in all the scenarios.
Next, FS-AsHMM obtained the best standard deviation in
scenarios 1 and 2, but it increased in scenario 3 where AsHMM
obtained the best result.

For the number of parameters (last column in Table IV),
AsHMM obtained the least amount in scenarios 1 and 2 in
spite of the fact that FS-HMM assumed full independence
between variables. However, in scenario 3, FS-HMM used the
least number of parameters since AsHMM increased drasti-
cally its number of parameters. It must be noted that, in all the
scenarios, the number of parameters of the asymmetric models
changed; this is due to the different context-specific Bayesian
networks that were found during the learning phase. It is also
noticeable that the SHMM-LFS model obtained the largest
amount of parameters in spite of the fact that this model also
assumed full independence between variables. This model,
in particular, in contradiction with the definition of irrelevant
features [2], assumes that the noise distribution also changes
its parameters with the hidden state and mixture component,
which increases its number of parameters drastically.

It has been shown that AsHMM obtained good fitness and
does not require a critical amount of parameters. Nonetheless,
the proposed models introduce feature saliencies that are
capable of estimating feature relevancy and provide more data
insights. Following this idea, in Table V, we can observe the
estimated relevancies of each model for scenario 3. Recall
from the synthetic data description that variables 3 and 10 are
represented as noise, i.e., their parameters do not change with
the hidden states; variables 5 and 7 are represented as partial
noise variables, i.e., their parameters do not change for all the
hidden states. Observe that FS-HMM and FS-AsHMM were
capable of detecting the noise or irrelevant variables since the
relevancies of ρ3 and ρ10 are close to zero, while relevancies
of partial noise variables, ρ5 and ρ7, obtained mixed results.
The remaining values have higher relevancy but with contrasts,
e.g., the relevancies ρ2, ρ6, and ρ8 are close to one (ρ > 0.9),

TABLE VI

SECONDS TO LEARN A MODEL BY SCENARIO IN THE SYNTHETIC DATA

but, for relevancies ρ4, it is not clear if they are totally relevant
or not (0.5 < ρ < 0.9).

In the case of SHMM-LFS, the relevancies change with
the hidden states. In Table V, the column Q refers to
each (numbered) hidden state. Regarding SHMM-LFS, the
feature saliencies are estimated at the component level in
a mixture of Gaussians; however, as previously mentioned,
for comparative purposes, mixture models with only one
component are considered in the synthetic data. In this case,
observe that, for SHMM-LFS, all the features are predicted as
relevant, for all the hidden states and features.

Concerning the execution times of the tested algorithms,
in Table VI, it is reported the learning times of all the
algorithms for each scenario. Note that FS-AsHMM was the
largest time consumer in two out of the three scenarios.
In scenario 1, FS-HMM was the slowest model to learn. In this
manner, it is observed that the additional information that was
provided by FS-AsHMM and FS-HMM (feature saliencies)
had the cost of longer training times. SHMM-LFS was the
quickest in all the scenarios. However, as seen before, the
data insights obtained by this algorithm were poor. In an
intermediate point, AsHMM can be found. The algorithm is
capable of giving context-specific Bayesian networks, but no
feature selection is performed.

B. Grammatical Facial Expression Data

1) Data Description: In this experiment, grammatical facial
expression data are used. Facial gestures are relevant in
any sign language: Given a hand signal sequence, facial
gestures can change their grammatical sense. The data by
Freitas et al. [38] were collected using a Kinect camera that
recorded fluent Brazilian sign language signalers. From the
videos, spacial facial points were collected, processed, and
used for classification and segmentation tasks. In each video,
there was a person repeating, with pauses, sentences with
grammar content. The aim of the problem is to determine
in which frames the grammatical content is being performed.
HMMs have been used before to tackle this kind of problem
(see [39] and [40]). The possible grammar contents are given
as follows.

1) Affirmative (Affir): Used to make positive sentences.
2) Conditional (Cond): Used to create subjunctive clauses.
3) Doubt Question (DQ): Used to indicate that new infor-

mation is being added.
4) Emphasis (Emp): Used to highlight information.
5) Negative (Neg): Used to make negative sentences.
6) Relative Sentence (Rela): Used to provide more infor-

mation.
7) Topic (Topic): Used to change subject.
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Fig. 4. Raw face point locations.

TABLE VII

RAW SELECTED POINTS

TABLE VIII

FEATURES CONSTRUCTION

8) WH-Questions (WH): Used to create who, what, where,
. . . questions.

9) Y/N-Questions (YN): Used to create yes/no questions.

Later, another expert in Brazilian sign language labeled the
video frames indicating when the signaler is performing
the sentence. Each video has a unique grammar content,
where five repetitions of five different sentences in which the
face is not overshadowed by the hand signals are recorded.
Each dataset has spatial (x, y, z) coordinate information from
100 facial points (300 raw features). However, by expert
knowledge, the dataset can be reduced down to 18 features
that contain information about distances and angles between
relevant face sections in the (x, y) plane [38]. More details
about the raw features can be found in Fig. 4 and Table VII.

The idea is to select relevant points from relevant face
parts. In Table VIII, the 18 extracted features are described,

TABLE IX

LIKELIHOOD, BIC SCORE, AND THE NUMBER OF PARAMETERS OBTAINED
BY THE MODELS FOR THE TESTING FACE GRAMMAR VIDEOS

namely, d1, . . . , d11, which are distances between face points,
and a1, . . . , a7, which are angles between face points, denoted
as ||a − b|| = ((a[x] − b[x])2 + (a[y] − b[y])2)1/2 and
� (a, b, c) = arccos((b − a) · (c − a))/(||b − a||||c − a||).
Two people perform the same sentences for each grammatical
context. We take three of the five repetitions of the two
signalers as input for a model for each grammar content. Later,
we evaluate models with the remaining two repetitions of both
signalers for each grammar content (18 sequence tests). The
mean LL and BIC scores are reported (standard deviation is
not reported since only two test sequences are available for
each grammar content). From the supervised binary problem
(grammar content or not), the accuracy, recall, and F-score
from the classification task are provided.

2) Grammatical Face Data Results: From the previous
information, the models BICs and LLs for each grammar case
are reported. As the aim of this problem is to obtain a binary
segmentation of the recorded videos, two hidden states will
be used. The accuracy, recall, and F-score obtained by each
model will also be reported. Next, the model corresponding
to the Topic grammar case is explored. From it, its feature
saliencies and learned Bayesian networks are presented and
analyzed. In this manner, the additional data insights that the
proposed models can provide are highlighted.

In Table IX, the LLs, BIC scores, and the number of para-
meters obtained by the different models for each grammatical
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Fig. 5. Critical difference diagram with the Nemenyi hypothesis test for the
ranking of BIC scores.

Fig. 6. Critical difference diagram with the Nemenyi hypothesis test for the
ranking of the number of variables.

scenario are shown. In addition, Fig. 5 shows the critical
difference diagrams for the BIC score. A confidence level of
90% was used. The critical difference diagram from the LL
score was omitted since it was the same as in the case of BIC.

Note that AsHMM obtained the best BIC score and LL,
followed in order by LFS-AsHMM, FS-HMM, and SHMM-
LFS. From the hypothesis test, it can be observed that
FS-AsHMM was statistically better than SHMM-LFS, but not
enough evidence is available to confirm that it performed better
than FS-HMM or worse than AsHMM.

In Fig. 6, we can observe the critical difference diagram
for the number of parameters. FS-AsHMM was better ranked
(fewer parameters) than SHMM-LFS but not significantly
different from FS-HMM and AsHMM. As a final comment,
it is remarkable that SHMM-LFS obtained the highest amount
of parameters again, as in the synthetic data.

The proposed problem is to learn a model capable of
predicting from a video whether or not a signaler is performing
a certain grammatical face expression. Therefore, we learn
a model for each training set, and then, we predict the
testing video. However, as disclaimed, all the models are
unsupervised, and they do not take into account the class
variable. It follows that the generated models may not be
segmenting or clustering the actions corresponding to the class
variable.

The prediction phase is performed using the Viterbi algo-
rithm. The Viterbi algorithm in this case, as only two hidden
states are considered, returns sequences of zeros and ones.
However, it is not clear what zero or a one implies in this
sequence; therefore, we compute the confusion matrix for the
two following possible assignments.

1) 1 is a grammar expression, and 0 is not.
2) 0 is a grammar expression, and 1 is not.

From the confusion matrix of each assignment, the accuracy
is computed, and the assignment with the greater accuracy
is chosen as the model segmentation. Nevertheless, a better

TABLE X

PREDICTION SCORES OBTAINED BY THE MODELS FOR THE
TESTING FACE GRAMMAR VIDEOS

decision rule could have been made if an expert in Brazilian
sign language had reviewed the learned parameters.

In Table X, the total accuracy, recall, and F-score obtained
from the testing videos from signalers A and B are shown.
In addition, in Figs. 7–9, the corresponding critical difference
diagrams are provided. For accuracy (see Fig. 7), it can be
observed that the best ranked models were FS-AsHMM and
FS-HMM, followed in order by SHMM-LFS and AsHMM.
Statistically, two equivalence groups were found: the first one
consisted of FS-HMM and FS-AsHMM, and the second one
contained AsHMM and SHMM-LFS.

In terms of recall or true positive rate, Fig. 8 shows that
the best ranked model was FS-HMM, followed in order by
FS-AsHMM, AsHMM, and SHMM-LFS. In Table X, it can
be observed that there are models with high recall scores and
low accuracy, and models with zero recall but with relevant
accuracy. The main reason for this issue is that the output of
the Viterbi algorithms for some models and grammar cases is
a constant line at 0 or 1. Thus, this measure is not helpful
to differentiate between the tested models. Therefore, the
F-score can be used to solve this issue and give another
perspective of the model performance for detecting grammar
facial expressions.

Then, for the F-score, Fig. 9 shows that the best rank was
obtained by FS-AsHMM, followed in order by FS-HMM,
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Fig. 7. Critical difference diagram with the Nemenyi hypothesis test for the
ranking of accuracy.

Fig. 8. Critical difference diagram with the Nemenyi hypothesis test for the
ranking of recall score.

Fig. 9. Critical difference diagram with the Nemenyi hypothesis test for the
ranking of F-scores.

AsHMM, and SHMM-LFS. FS-AsHMM is statistically better
than AsHMM and SHMM-LFS but statistically equivalent to
FS-HMM.

In conclusion, from the accuracy level and F-score, the most
accurate and reliable models were FS-AsHMM and FS-HMM
for the classification of this kind of data. AsHMM obtained
intermediate or poor accuracy and F-score results.

It has been shown from the previous results that
FS-AsHMM and FS-HMM can be good unsupervised models
to predict grammar facial expressions. However, it is also
relevant to check their feature saliencies and observe which
variables were relevant for the learning process. In Table XI,
the relevancies for each model in the grammar case of Topic
are presented. Note that FS-HMM and FS-AsHMM (models
1 and 2) selected the same variables under the rule ρi > ρ,
i.e., the variables d3, d4, d10, and d11. The remaining variables
are not relevant or lie at an intermediate level. In any case,
only the previously mentioned variables are considered in the
context-specific Bayesian network inside FS-AsHMM and are
able to have probabilistic relationships with other variables.
Regarding SHMM-LFS (model 3), all the variables are rele-
vant for both hidden states, which is undesirable since no FSS
procedure is performed.

Observe that from FS-AsHMM and FS-HMM, the set of
relevant features is small; only four of the eighteen variables
are relevant. In this sense, it can be argued that AsHMM
learned noise and predicted noise during the testing phase.
In comparison, FS-AsHMM and FS-HMM also learned noise
but are capable of detecting the level of noise in the vari-
ables and use it during the determination of context-specific
Bayesian networks and the prediction phase. This may explain

Fig. 10. Learned context-specific Bayesian networks from the FS-AsHMM
model for the facial grammar Topic.

TABLE XI

ρ RELEVANCIES FOR THE CASE OF THE GRAMMATICAL CASE OF Topic.
COLUMN M REFERS TO THE MODEL: 1 IS FS-HMM MODEL, 2 IS

FS-ASHMM AND 3 IS SHMM-LFS. COLUMN Q REFERS TO THE
HIDDEN STATES; IT IS ONLY USED WHEN A MODEL HAS

RELEVANCIES THAT DEPEND ON THE

HIDDEN STATE (MODEL 3)

why AsHMM obtained good scores in BIC and LL but
performed poorly when the class variable was considered.

Finally, we look at the learned context-specific Bayesian
networks. In Fig. 10, we can observe one of the networks
learned from the FS-AsHMM model in the Topic grammar
case when the grammar expression is being performed. In the
graph, the nodes of the context-specific Bayesian network are
labeled as variable_AR_#order, where AR_#order is the AR
order. If it is 0, then this suffix is ignored for the label since it is
the original variable. In this case, the four relevant distances
interact between them. In particular, d11 is the distance that
governs the network since the remaining distances depend on
this one. Also, it is remarkable that one AR value is relevant
for all the selected distances, which indicates that the previous
(in time) distances have an impact on the current ones. This
kind of information can be useful for domain experts to
determine or validate how the different face sections interact
between them for the different grammar contents. Finally,
we note that these networks are only available for asymmetric
models. Models such as FS-HMM and SHMM-LFS are not
capable of giving this kind of insight.

Regarding the computational cost of the tested algorithms
in the grammatical facial expression dataset, in Table XII,
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TABLE XII

MEAN AND STANDARD DEVIATION LEARNING TIMES PER UNIT DATA FOR
THE GRAMMATICAL FACIAL EXPRESSION DATASET

a brief summary of learning times is shown. As the dataset
for learning each model has a different length, we use the
time per unit of data to estimate the time performance of the
four algorithms. Observe that, in mean and variance, the most
expensive algorithm was FS-AsHMM, followed by AsHMM,
FS-HMM, and SHMM-LFS. In this dataset, the proposed
algorithm was 2.42 times slower compared to its version
without context-specific Bayesian networks (FS-HMM) and
1.06 times slower compared with its version without feature
saliencies (AsHMM). Finally, in spite of the fast learning
times of SHMM-LFS, the learned models were not capable
of extracting relevant information from data.

C. Ball-Bearings’ Degradation Data

1) Data Description: Ball bearings are fundamental com-
ponents inside large tool machines in industrial production
lines. Thanks to the newest technologies in embedded systems,
sensors, Internet, and cloud service, it is possible to monitor
these components continuously and apply artificial intelligence
algorithms to determine the ball-bearing health status [41].
However, the raw signals must be significant and useful to
represent the ball-bearing health. Since the measurements
come from real machines, it is normal that the raw signal
contains undesirable noise that must be filtered. Therefore, the
raw signal must be passed through different signal processing
algorithms, such as filtering, demodulation, and decimation.
In this manner, relevant features must be extracted to be used
in tool condition monitoring.

In this work, we filter the raw vibrational signals using
spectral Kurtosis algorithms as in [42] and extract relevant
bearing fundamental frequency amplitudes, such as ball pass
frequency outer (BPFO) related to the ball-bearing outer race,
ball pass frequency inner (BPFI) related to the ball-bearing
inner race, ball spin frequency (BSF) related to the ball-
bearing rollers, and the fundamental train frequency (FTF)
related to the ball-bearing cage. From these four fundamental
frequencies, three harmonics are taken into account (a total of
16 variables). It is known that harmonic frequency magnitudes
become more relevant when a failure is present [43]. However,
it is expected that some harmonic components can be more
relevant than others. The idea of this study is to determine the
level of relevancy of the different harmonics when a failure is
present.

To validate the proposed models in the case of real ball bear-
ings, the benchmark and data provided by Qiu et al. [44] are
used. The benchmark consists of four ball bearings mounted
on the same shaft under a known mechanical load, as pictured
in Fig. 11. In the presence of a failure in any part of the
system, vibrations will be generated that will be transmitted
across the whole system. Vibrational sensors are used to record

Fig. 11. Mechanical setup. Four ball bearings ZA-2115 with labels B1,
B2, B3, and B4 are mounted in a shaft at a rotational speed of 2000 rpm.
Bearings with labels B2 and B3 are under an external force of 2721.554 kg.
The sensors have a sample rate of 20 kHz.

TABLE XIII

LLS, BICS, AND THE NUMBER OF PARAMETERS OF THE MODELS IN THE

TESTING SIGNALS FOR ALL THE BEARINGS B1, B2, B3, AND B4

the mechanical setup. The training signal has 2156 records,
whereas the testing signal has 6324 records. Models with two
to five hidden states were tested, and with four hidden states,
all the models obtained overall acceptable results.

In the training dataset, Bearing 3 fails due to its inner race
and Bearing 4 due to its rollers. In the testing dataset, Bearing
3 fails due to its outer race. Bearing 3 is the most relevant
mechanical component for this case studio since it fails in
both the training and testing datasets.

2) Ball-Bearing Data Results: In Table XIII, the results
obtained in the test by each model are shown. Observe that,
for all the cases, the model with the best fitness was AsHMM
followed always in order by FS-AsHMM, FS-HMM, and
SHMM-LFS. For B1 and B2, it can be observed that, for
all the models, omitting SHMM-LFS, the maximum relative
difference with respect to the best BIC score was 1.85%.
Meanwhile, in B3, the differences are larger; in the case of FS-
AsHMM, the relative difference with respect to the best BIC
score model was 10.28%, whereas FS-HMM obtained a much
higher difference of 42.52%. This can be explained because
B3 is the failing bearing. Due to its exponential behavior in the
failing phase, AR parameters and probabilistic dependencies
between features can play an important role in explaining
this behavior [5]; since FS-HMM assumes full independence,
these dependencies were ignored. In the case of B4, only
FS-AsHMM was close to the best scoring model with a relative
difference of 3.93% and FS-HMM 16.47%.

In terms of parameters, FS-HMM obtained the least amount
of parameters in all cases. Since this model assumes full
independence variables, no further parameters are added as
opposed to the asymmetric model. On the other hand, for
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TABLE XIV

LEARNED FEATURE SALIENCIES FOR EACH MODEL IN THE CASE OF B3.
COLUMN M REFERS TO THE MODEL, 1 IS THE FS-HMM MODEL,

2 IS FS-ASHMM, AND 3 IS SHMM-LFS. COLUMN Q REFERS TO

HIDDEN STATE; IT IS ONLY USED WHEN A MODEL

HAS RELEVANCIES THAT DEPEND ON THE
HIDDEN STATE (MODEL 3)

all the ball bearings, SHMM-LFS uses the highest amount
of parameters. Observe that, for each ball bearing, the number
of parameters changes again for each asymmetric model in
spite of the fact that all of them are of the same kind.
In particular, notice that, in ball bearings B1 and B2, the
amount of parameters is much lower than in B3 and B4; this
is because, in the training phase, B3 and B4 fail.

Although the proposed FS models in this case study did
not obtain the best results in BIC or LL when compared to
AsHMM, we will see that the feature saliencies provided by
the proposed models can give further data insights about which
AsHMM is not able to provide. From the dataset description,
it is known that the training and testing ball bearing B3 fails.
Therefore, more attention to the feature saliencies from B3
is given. In Table XIV, the learned feature saliencies for
each model are shown. The 16 features are divided into four
groups. Features with indices 1, 5, 9, and 13 correspond to
the fundamental frequencies BPPFO, BPFI, BSF, and FTF,
respectively. The next three indices for each fundamental
frequency correspond to its first, second, and third harmonics,
e.g., indices 2, 3, and 4 are the first, second, and third BPFO
harmonics.

From Table XIV, we can observe that, for FS-HMM
(Model 1), the FTF fundamental frequency is the most relevant
feature with relevancy of 0.9. This result is unexpected since,
in the training phase, the whole degradation process is being
observed, and therefore, more harmonics and fundamental
frequencies should be relevant. Yet, it is remarkable that
the relevancy of some fundamental frequencies, say BPFI
and FTF, is higher than the relevancy of their harmonics.
Meanwhile, for BPFO, only the first harmonic has greater
relevancy than the fundamental frequency, and in the case of
BSF, the fundamental frequency has lower relevancy than its
harmonics, being the third harmonic frequency with the largest
relevancy among the BSF frequencies.

In the case of FS-AsHMM, all the frequencies (fundamental
and harmonics) are relevant since their relevancy fulfills the
condition ρi ≥ ρ; this can be explained because all the

Fig. 12. Learned context-specific Bayesian structures from the FS-AsHMM
model for the ball-bearing B3. Graph learned in (a) low degradation state and
(b) high degraded state.

degradation processes of the ball bearing are being considered
during the training phase. It is worth mentioning that, for the
BPFO and FTF frequencies, the larger the harmonic, the lower
the relevancy. Also, as in the case of FS-HMM, BSF harmonics
could obtain greater relevancies compared to the relevancy
of the fundamental frequency. If the relevancy threshold was
tighter, for example, ρ = 0.99, the relevant frequencies would
have changed. In this case, the third harmonic of the BPFO
and BPFI frequency, the fundamental and second harmonics of
the BSF frequency, and the first, second, and third harmonics
of the FTF frequency would be irrelevant. In addition, for the
FS-HMM model, no variable would be relevant.

As previously mentioned, the proposed models do
not assume full probabilistic dependency or independence
between variables as other models do. Fig. 12 shows a
pair of context-specific Bayesian networks learned by the
FS-AsHMM corresponding to low and high degradation levels.

In the case of the Bayesian network in Fig. 12(a), it repre-
sents a low degradation level. We can observe that different
probabilistic relationships appear. For instance, the FTF fun-
damental frequency has the most number of descendants: the
BSF first harmonic and the BPFI fundamental, second, and
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TABLE XV

TIMES TO LEARN A MODEL FOR EACH BALL BEARING IN SECONDS

third harmonics. In addition, the BSF fundamental depends
on the third FTF harmonic, and the BPFO fundamental relies
on the first BSF harmonic, which also depends on the FTF
fundamental. From this kind of information, it is plausible
to say that, in a low degradation state, for this bearing, the
cage of the ball bearing is leading the dynamical system.
Fig. 12(b) shows another learned context-specific Bayesian
network from a more degraded ball-bearing state. In this
case, more variables and dependencies appear in the graph; in
particular, AR variables are considered. For example, three and
four AR values of the BPFI and FTF fundamental frequencies,
respectively, appear and can be helpful to describe the late
degradation stages of the ball bearing.

Regarding the learning times for this application, they are
displayed in Table XV. In this case, we observe that the
slowest algorithm was AsHMM, followed by FS-AsHMM,
FS-HMM, and SHMM-LFS. As in the previous datasets,
SHMM-LFS was the fastest algorithm in most scenarios, but it
captured little relevant information from the data. On the other
hand, note that FS-AsMM had big differences in the learning
times compared to FS-HMM. We must recall that B3 and B4
broke, and therefore, their dynamic behavior is more complex
compared to B1 and B2. This is evidenced by looking at
Table XIII where B3 and B4 models for FS-AsHMM obtained
more parameters than B1 and B2 FS-AsHMM models.

VI. CONCLUSION AND FUTURE WORK

In this article, we have introduced a new model that extends
As-HMMs. This new model is capable of estimating the
relevant features and local-optimal context-specific Bayesian
networks for the selected relevant features, all during their
learning phase. The parameter learning procedure for each
model is detailed and proved. Also, a restriction to the space
of context-specific Bayesian networks is imposed in order to
consider only relevant features in the graph construction.

Experiments with synthetic data and real data from grammar
facial expressions and ball-bearing wearing data are consid-
ered. For the experiments, another two other state-of-the-art
models were considered for comparative purposes, namely,
FS-HMM [7] and SHMM-LFS [8]. For the latter model,
a theoretic argument was given to validate its little usefulness
to detect relevant features in the experiments. In addition, these
two models consider that all variables are independent, which,
in many real case scenarios, is not true.

From the experiments, we observed that the proposed model
can obtain fair results in fitness. In the case of synthetic
data, we observed that the proposed models are capable of
detecting irrelevant features. When evaluating grammar facial
expressions, FS-AsHMM and FS-HMM obtained good results
in accuracy and F-score, in spite of the fact that AsHMM
obtained better results in fitness. In addition, the proposed

model was capable of determining which variables were noise
and not useful for prediction.

From the algorithm complexity point of view, big O nota-
tion bounds were provided for the different routines that the
algorithm can perform. On the other hand, the learning times
for the proposed algorithm were among the highest for all
the datasets. However, it was observed that the times were
shorter when the data were simpler (see the ball bearing case).
This property caused high variance in the obtained times,
which indicates that the model is capable of giving further
data insights when needed at the cost of higher computational
times; otherwise, the times are closer to the ones obtained by
simpler models.

In conclusion, although models such as AsHMM can obtain
better results in BIC and LL than the FS models, when noise
variables are present, the learning and testing performance of
AsHMM can be senseless: it is learning and predicting noise.
When feature saliencies are added to the model, these were
capable of discriminating between noise and relevant features.
In addition, it was proven that the proposed model was capable
of generating context-specific Bayesian networks at the same
time as the feature saliencies were estimated. In this manner,
the restriction of total independence in FS models is overcome.

We are aware that the Gaussian hypotheses may not be
suitable for many dynamic data scenarios. Therefore, as future
work, we would like to explore the application of nonparamet-
ric distributions inside the context-specific Bayesian networks.
In this manner, the models can be more precise and avoid this
issue.
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