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In this paper we consider the optimal decomposition of Bayesian networks. More concretely, we

examine empirically the applicability of genetic algorithms to the problem of the triangulation of

moral graphs. This problem constitutes the only di�cult step in the evidence propagation algo-

rithm of Lauritzen and Spiegelhalter (1988) and is known to be NP-hard (Wen, 1991). We carry

out experiments with distinct crossover and mutation operators and with di�erent population

sizes, mutation rates and selection biasses. The results are analysed statistically. They turn out

to improve the results obtained with most other known triangulation methods (Kjñrul�, 1990)

and are comparable to results obtained with simulated annealing (Kjñrul�, 1990; Kjñrul�, 1992).
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1. Introduction

Bayesian networks constitute a reasoning method based on

probability theory. A Bayesian network consists of a set of

nodes and a set of arcs which together constitute a directed

acyclic graph (DAG). The nodes represent random vari-

ables, all of which, in general, have a ®nite set of states.

The arcs indicate the existence of direct causal connections

between the linked variables, and the strengths of these con-

nections are expressed in terms of conditional probabilities.

For determining the joint probability distribution

P�x
1
; . . . ;xn� in a Bayesian network, it is su�cient to

know the conditional probabilities P�xi j�Xi
�, where �Xi

is

the parent set of variable Xi, i.e. the set of variables by

which Xi is a�ected:

P�x
1
; . . . ;xn� �

Yn

i�1

P�xi j �Xi
�:

Excellent introductions on Bayesian networks can be found

in Pearl (1988), Neapolitan (1990) and Jensen (1996).

One of the best-known problems, in the context of

Bayesian networks, is related to the propagationof evidence.

It consists of the assignment of probabilities to the values of

the rest of the variables, once the value of some variables are

known. Cooper (1990) demonstrated that this problem is

NP-hard. Dagum and Luby (1993) proved that even the

problem of ®nding approximate solutions belongs to the

class of NP-hard problems. Fundamentally, the problem

of the propagation of evidence has been tackled in two

di�erent ways:

� With exact (or deterministic) algorithms. Most note-

worthy are the methods of Pearl (1986), Shachter (1988)

and Lauritzen and Spiegelhalter (1988). Jensen (1994)

improved aspects of the algorithm which was proposed in

Lauritzen and Spiegelhalter (1988).

� With approximate algorithms, based on a simulation

of the corresponding Bayesian network. We mention the

algorithms introduced by Chavez and Cooper (1990),

Dagum and Horvitz (1993), Fung and Chang (1990),

Henrion (1988), Hryceij (1990), Jensen et al. (1993), Pearl

(1987), Shachter and Peot (1990), and Shwe and Cooper

(1991).
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We take as point of departure the evidence propagation

algorithm proposed by Lauritzen and Spiegelhalter

(1988). The ®rst step of this algorithm consists of the

moralization of the network structure. This means that all

variables with a common child are linked, after which all

directions on the arcs are deleted. The resulting graph is

called a moral graph. The second step of the algorithm of

Lauritzen and Spiegelhalter is the so-called triangulation

of the moral graph. A graph is triangulated if any cycle of

length greater than 3 has a chord. The remaining steps of

the algorithm are of no importance for our paper.

We consider the problem of the triangulation, since in the

algorithm of Lauritzen and Spiegelhalter, as can be read in

Jensen (1996), the

. . . only problematic step . . . is the triangulation. Since

any elimination sequence will produce a triangulation it

may not seem as a problem, but for the propagation algo-

rithm it is. In probability propagation the cliques in the

junction graph shall have joint probability tables

attached to them. The size of the table is the product of

the number of states of the variables. So, the size

increases exponentially with the size of the clique. A

good triangulation, therefore, is a triangulation yielding

small cliques; or to be more precise, yielding small prob-

ability tables.

Wen (1991) demonstrated that the search for an optimal

triangulation is NP-hard.

The basic technique for triangulating a moral graph is

described in Fig. 1. Notation and terminology are de®ned

in Section 2. There we see that the quality of a triangulation

is completely determined by the order in which the nodes

are eliminated, where the elimination of a nodev (see also

Fig. 2) consists of adding edges to the graph in such a

way that all nodes adjacent to v become pairwise adjacent,

and subsequently deleting v and its adjacent edges. Hence,

the search for an optimal triangulation is equivalent to the

search for an optimal node elimination sequence. The

cliques obtained during the triangulation de®ne a decom-

position of the Bayesian network. Depending on the pro-

blem to be solved by the graph triangulation, optimality

can be de®ned in di�erent ways. The most frequently

used optimality criteria are:

� the minimum ®ll criterion, i.e. minimize jT j.

� the minimum size criterion, i.e. minimize s�G
t

#

�.

� the minimum weight criterion, i.e. minimize w�G
t

#

�.

Since our interest in graph triangulations originates from the

evidence propagation algorithm of Lauritzen and Spiegel-

halter (1988), we want to obtain Bayesian network decom-

positions with small probability tables. Therefore our

objective is to obtain triangulations of minimum weight.

Kjñrul� (1990) performed an empirical comparison of

triangulation methods which were proposed by various

authors: simple random elimination; maximum cardinality

search (Tarjan and Yannakakis, 1984) which continuously

selects a vertex to be ordered next, with the highest number

of ordered neighbours; lexicographic search (Rose et al.,

1976) which does something similar to the maximum cardin-

ality search, but in addition it is guaranteed to produce mini-

mal triangulations; extended random elimination (Fujisawa

and Orino, 1974) which does not necessarily add ®ll edges

between all non-adjacent vertices in the adjacency set of a

vertex being eliminated; the FMINT algorithm applied to

the triangulations obtained by simple random elimination

and maximum cardinality search (Kjñrul�, 1990); the three

heuristical algorithms minimum size, minimum ®ll and

minimum weight (Kjñrul�, 1990) each of them successively

chooses the next vertex to be eliminated as the one that

produces the smallest clique, the fewest ®ll edges as

possible, or the clique with least weight, respectively; and

simulated annealing (Kjñrul�, 1990; Kjñrul�, 1992). So

far, the best results have been obtained with simulated

annealing (Kjñrul�, 1990; Kjñrul�, 1992; Wen, 1990).

We choose to tackle the graph triangulation problemwith

genetic algorithms. These algorithms are, like simulated

BEGIN Triangulation

{ Given:

moral graph G � �V;E�, V � fv
1
; v

2
; . . . ; vkg; jEj <1,

nj, the number of states of vj� j � 1; . . . ; k�, with nj <1.

node elimination sequence: xi is the ith node to eliminate

(i � 1; . . . ; k).

}

i � 1;

WHILE there is a node to eliminate

{ Let Adj�xi� be the set of nodes adjacent to xi;

REPEAT

{ Select two nodes in Adj�xi� that are not connected

and add the edge between them;

}

UNTIL Adj�xi� is a complete subgraph;

Clique Ci �

; if 9j<i xi [Adj�xi� � Cj;

xi [Adj�xi� otherwise;

�

Delete node xi and all its incident edges;

i :� i � 1;

}

{ Output:

G
triangulated

� �v;E [ E
0

� where E
0

is the set of added edges:

triangulated graph.

Weight of G
triangulated

: log
2

P
C

Q
vi2C

ni.

}

END Triangulation.

Fig. 1. Pseudo-code of the basic triangulation method
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annealing,basedonnaturaloptimizationprocesses. Inrecent

years, they have been applied to a large variety of combina-

torial optimizationproblems.LarranÄ aga et al. (1993) studied

the relation between the genetic algorithms and simulated

annealing. For other applications of genetic algorithms to

combinatorial optimization problems related to Bayesian

networks, see LarranÄ aga et al. (1996a; 1996b; 1996c).

The structure of the paper is as follows. We start by

explaining our notation and terminology in Section 2. A

brief introduction on genetic algorithms is given in Section

3. In Section 4, we show that the problem of the search for

an optimal graph triangulation has many similarities to the

travelling salesman problem (TSP) and that therefore we

can make use of some results of the research already carried

out on the TSP. The experiments performed are described

in Section 5. In Section 6, the results of the experiments

are presented and a statistical analysis of them is carried

out. Conclusions and suggestions for further research are

given in Section 7. Finally, in the appendix the genetic opera-

tors that are used for the experiments are described.Many of

these operators were originally developed for the TSP.

2. Notation and terminology

A graph G consisting of a ®nite set of vertices

V � fv
1
; v

2
; . . . ; vng and a ®nite set of edges E is denoted

by G � �V;E�. G is a belief graph if a ®nite set of elements,

called states, is attached to each vertex. For all vertices

vk 2 V we denote its number of states by nk �k � 1; . . . ; n�.

Following Kjñrul� (1990), we de®ne a (connected) graph

G � �V;E� to be sparse if nÿ 1 � jEj � 1=10 �n
2

ÿ n�=2,

and to be dense in case jEj � 1=4�n
2

ÿ n�=2.

An ordering of V is a bijection# : V $ f1; 2; . . . ; ng. G
#

is an ordered graph. The base-2 logarithm of the number of

states of a vertex vk is denoted by w�vk� and is called the

weight of vertex vk.

Two vertices vk; vl 2 V are adjacent (or neighbours) if

fvk; vlg 2 E.

The set

adj�vk;G� � fvl 2 V j fvk; vlg 2 Eg

is the set of vertices adjacent to vk in G.

The set of vertices monotonely adjacent to vk in G
#

is

de®ned by

madj�vk;G#

� � adj�vk;G� \ fvl 2 V j #�vk� < #�vl�g

A complete subgraphof G is a set of vertices of G of which

all are pairwise adjacent.

A clique is a maximal complete subgraph of G.

A vertex vk 2 V is said to be eliminated if edges are added

to G until the adjacency set ofvk is a complete subgraph of

G after which vk and its incident edges are removed fromG.

Let Gi;# � �Vi;Ei� denote the ordered graph obtained by

eliminating the vertices of G
#

� �V;E� in order

#

ÿ1

�1�; :::;#
ÿ1

�i�, where

G
0;# � G;

Vi � fv 2 V j #�v� > ig; V
0
� V; Vn � ;

Ei �ffvk; vlg 2 Eiÿ1 j vk; vl 2 Vig

[ ffvk; vlg j vk; vl 2 madj�v;Giÿ1;#�;#�v� � ig;

and E
0
� E:

Fig. 2. Example of a graph moralization and of a triangulation of the resulting moral graph.(a)DAG; (b)moral graph. Suppose that the nodes

are eliminated in order: v
1
, v

5
, v

3
, v

4
, v

2
, v

6
. Let n

i
� i� 1�i � 1; 2; . . . ; 6�; (c) elimination v

1
: C

1
� fv

1
; v

2
; v

3
; v

4
g, added edges:

fv
2
; v

3
g; fv

3
; v

4
g; (d) elimination v

5
: C

2
� fv

4
; v

5
g; (e) elimination v

3
: C

3
� ;; (f) elimination v

4
: C

4
� fv

2
; v

4
; v

6
g, added edge: fv

2
; v

6
g;

(g) elimination v
2
: C

5
� ;; (h) elimination v

6
: C

6
� ;. Total weight of the triangulated graph: log

2
�2
:
3
:
4
:
5� 5

:
6� 3

:
5
:
7� � log

2
255
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By Ci�G#

� we denote the clique, if any, produced in the

elimination process of the vertex#
ÿ1

�i� from Giÿ1;#:

Ci�G#

� �

ci�G#

� if 8j�1;2;...;iÿ1 ci�G#

� 6� Cj�G#

�;

; otherwise;

�

where ci�G#

� � f#

ÿ1

�i�g [ fadj�#
ÿ1

�i�;Giÿ1;#�g:

A path in G � �V;E� is a sequence of distinct vertices

hv
1
; . . . ; vmi such that fvk; vk�1g 2 E, for k � 1; . . . ;mÿ 1.

A cycle is a path hv
1
; . . . ; vmi with v

1
� vm and m > 3. A

chord in a cycle is an edge fvk; vlg between two non-

consecutive vertices in the cycle. A graphG is triangulated

if any cycle of length greater than 3 has a chord.

Let G
#

� �V;E� be an ordered graph. ThenG
t

#

denotes

the triangulated graph obtained by eliminating the vertices

of G in the order de®ned by#.G
t

#

has vertex setV and edge

set E [ T , where the set of ®lled edgesT is a triangulation.

Let C � fv
1
; . . . ; vkg be a clique of triangulated graphG

t

#

.

Then, the size of clique C is s�C� � k and we de®ne the

weight w�C� of C as follows: w�C� �
P

k

i�1 w�vi�.

The size of triangulated graph G
t

#

is denoted by s�G
t

#

�

and it is de®ned as the sum of the sizes of all of its cliques:

s�G
t

#

� �

P
C s�C�. The weight w�G

t

#

� of triangulated graph

G
t

#

is de®ned as

w�G
t

#

� � log
2

X

C

Y

vi2C

ni � log
2

X

C

2
w�C�

:

3. Genetic algorithms

Holland (1975) introduced genetic algorithms. In these

algorithms the search space of a problem is represented as

a collection of individuals. These individuals are represented

by character strings, which are often referred to aschromo-

somes. The purpose of the use of a genetic algorithm is to

®nd the individual from the search space with the best

`genetic material'. The quality of an individual is measured

with an evaluation function. The part of the search space to

be examined is called the population.

Roughly, a genetic algorithm works as follows (see

Fig. 3). Firstly, the initial population is chosen, and the

quality of this population is determined. Next, at every

iteration parents are selected from the population. These

parents produce children, which are added to the popula-

tion. For all newly created individuals of the resulting

population a probability near to zero exists that they

`mutate', i.e. that they change their hereditary distinctions.

After that, some individuals are removed from the popula-

tion according to a selection criterion in order to reduce the

population to its initial size. One iteration of the algorithm

is referred to as a generation.

The operators which de®ne the child production process

and the mutation process are called the crossover operator

and the mutation operator, respectively. Mutation and

crossover play di�erent roles in the genetic algorithm.

Mutation is needed to explore new states and helps the

algorithm to avoid local optima. Crossover should increase

the average quality of the population. By choosing ade-

quate crossover and mutation operators, the probability

that the genetic algorithm provides a near-optimal solution

in a reasonable number of iterations is enlarged. Under cer-

tain circumstances, the genetic algorithms evolve to the

optimum with probability 1 (Chakraborty and Dastidar,

1993; Eiben et al., 1990 and Rudolph, 1994).

Further descriptions of genetic algorithms can be found

in Davis (1991) and Goldberg (1989).

4. Resemblance to the travelling salesman problem

As already stated in Section 1, the problem of obtaining an

optimal graph triangulation is equivalent to the problem of

®nding a node elimination sequence with minimum weight.

The problem of the search for an optimal node elimination

sequence, however, resembles the intensively studied travel-

ling salesman problem (TSP): given a collection of cities,

Algorithm GA

start with an initial time

t:� 0;

initialize a (usually random) population of individuals

initpopulation P(t);

evaluate ®tness of all initial individuals of population

evaluate P(t);

test for termination criterion (time, ®tness, etc.)

while not done do

increase time counter

t:� t� 1;

select subpopulation of parents for o�spring production

P
0

:� selectparents P(t);

recombine the `genes' of selected parents

crossover P
0

�t�;

perturb the mated population stochastically

mutate P
0

�t�;

evaluate its new ®tness

evaluate P
0

�t�;

select the survivors from actual ®tness

P:� survive P;P
0

�t�;

od

end GA.

Fig. 3. Pseudo-code of a genetic algorithm
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determine the shortest tour which visits each city precisely

once and then returns to its starting point. In both problems

an optimal ordering is searched for.

Several representations and operators have been used in

tackling the TSP with genetic algorithms, like the binary

representation (Holland, 1975; Lidd, 1991; Whitley et al.,

1989, 1991), the adjacency representation (Grefenstette et

al., 1985; Jog et al., 1989; Suh and Van Gucht, 1987), the

ordinal representation (Grefenstette et al., 1985), thematri-

cial representations (Fox and McMahon, 1991; Homaifar

and Guan, 1991; Seniw, 1991) and thepath representation.

See LarranÄ aga et al. (1996d) for a review on representations

and genetic operators used in relation with the TSP.

For our problem, we choose to use the path representa-

tion. Therefore, we represent a node elimination sequence

by a list of numbers, where the ith element of the list is a

j if node j is the ith node to be eliminated. For example,

in caseV � fv
1
; v

2
; v

3
g the string �1 2 3� represents the elim-

ination sequence in which ®rst node v
1
is eliminated, after

that node v
2
and ®nally node v

3
.

For the creation of legal o�spring when the path repre-

sentation is used, many genetic operators have been devel-

oped (LarranÄ aga et al., 1996d). Many of these operators

were especially developed for the TSP.

Although the TSP and also our problem of ®nding an

optimal node elimination sequence are ordering problems,

one important di�erence between the problems exists: in

the TSP, in general, only the relative order is important

while in the node elimination problem also the absolute

order matters. For example, in the six-cities TSP the string

�1 2 3 4 5 6� represents the same tour as the string

�4 5 6 1 2 3�. In the six-nodes elimination problem both

strings represent di�erent elimination sequences. Therefore,

we expect that crossover operators that only transmit rela-

tive order information from parents to o�spring will give

bad results for our problem. Note also that the node elim-

ination problem is an asymmetrical problem; the string

�1 2 3 4 5 6� does not represent the same elimination

sequence as the string �6 5 4 3 2 1�. The TSP is often

assumed to be symmetrical.

5. Description of the experiments

With a view to uncovering the pros and cons of the applica-

tion of the genetic algorithms to the graph triangulation

problem, we have carried out a large number of experi-

ments. For these experiments we used two arti®cial graphs

which were introduced by Kjñrul� (1990): the dense graph

Dense and the sparse graphSparse. Both these graphs were

obtained by simulation and contain 50 nodes, all of which

have a number of states chosen at random between 2 and

5. Since the number of edges of the graphDense (359) is

much larger than the number of edges of the graphSparse

(100), the elimination of a vertex fromDensewill in general

be much more complex and concern quite larger cliques

than the elimination of a node from Sparse. Therefore, a

decomposition ofDense will in general have a higher value

of the evaluation function than a decomposition ofSparse.

See the appendix for more details about the graphs.

In Table 1 Kjñrul�'s results are presented. For the ®rst

nine algorithms the results are related to 100 executions

of the algorithm. With respect to the triangulation by simu-

lated annealing, 10 executions of the algorithm were carried

out for all combinations of control parameters considered.

For our experiments we use the crossover and mutation

operators described in the appendix. All operators but

one (the AP operator) have already been used in tackling

the TSP with genetic operators.

For evaluating the genetic operators, we consider three

di�erent mutation rates pm ( pm � 1=10, pm � 1=100 and

pm � 1=1000), three di�erent population sizes � (� � 10,

� � 50 and � � 250) and three di�erent selection biasses

b (b � 0:75, b � 1:25 and b � 2:00) for all the 48 (8 � 6)

possible combinations of genetic operators. Here, the selec-

tion bias is a number used in the selection of parents for

crossover. This number speci®es the amount of preference

to be given to the superior individuals in the population.

For example, a bias of 2.0 indicates that the best individual

has twice the chance of being chosen as the median indivi-

dual. See Whitley (1989) for more explanation on selection

bias. For all the 1296 (8 crossover operators� 6 mutation

operators� 3 mutation rates� 3 population sizes� 3 selec-

tion biasses) possible combinations of the above parameters

we carry out 10 executions of the algorithm.

We use an algorithm based on the principles of the

GENITOR algorithm (Whitley, 1989; Whitley and Han-

son, 1987), in which the generation reproduction rate, i.e.

the proportion of the created individuals in every iteration

of the algorithm, corresponds to the inverse of the popula-

tion size. Moreover, the reduction criterion iselitist. There-

fore, in every iteration of the genetic algorithm, only one

new individual is created, which replaces the worst existing

individual in case its adaptation to the problem is larger.

Table 1. Results obtained by Kjúrul� (1990; 1992)

Sparse Dense

Algorithm w(G) w(G)

Random elimination 32.86 62.84

Max. cardinality search 27.24 59.14

Lexicographic search 26.41 54.39

Ext. random elimination 24.72 53.72

FMINT (random) 25.01 52.88

FMINT (max. card.) 24.62 56.42

Min. size heuristic 23.05 55.01

Min. ®ll heuristic 24.82 54.40

Min. weight heuristic 24.82 53.48

Simulated annealing 22.61 50.88

23Decomposing Bayesian networks: triangulation of the moral graph with genetic algorithms



Thismeans that during the crossover process the parent solu-

tions do not necessarily die, they can survive and be part of

the next population if their evaluation are good enough.

The stop criterion is based on the de®nition of conver-

gence of a population formulated by De Jong (1975). We

say that a gene has converged at level �, if this gene has

the same value in at least�% of the individuals in the popu-

lation. A population converges at level�, if at least �% of

the genes has converged. We choose � and � to be equal

to 95 and 100, respectively.

Unfortunately, the convergence criterion above does not

always guarantee the termination of the algorithm. This is

because in general several node elimination sequences exist

with practically the same weight. Therefore, it may occur

that during the execution of the algorithm the population

converges to a set of individuals instead of to one unique

individual.

We decide that the population has also converged if in

2000 subsequent iterations the average weight of the popu-

lation has not decreased.

In all experiments we carry out, we keep the weight of the

best individual found, the percentage of converged bits and

the number of iterations performed.

In our implementation of the VR operator (see the

appendix) we choose p and the threshold equal to 3 and

to 2, respectively. We decide that the substrings that are

selected by the mutation operators contain at most three

nodes.

6. Results

In this section we describe the results and analyse them

statistically.

Table 2.Results obtained with graphSparse (I), respectively: the best, average and worst evaluation found, the average number of iterations of

the algorithm before convergence, and the average percentage of converged bits

PMX CX OX1 OX2

� 10 50 250 10 50 250 10 50 250 10 50 250

25.88 22.68 22.66 22.62 22.61 22.61 26.65 22.98 22.64 24.10 22.64 22.61

32.36 24.95 23.03 23.41 22.82 22.69 31.80 26.08 23.55 28.55 23.29 22.75

DM 37.89 30.06 24.62 26.04 23.42 22.95 38.71 30.73 26.95 35.54 24.73 23.09

132 4,043 20,954 7,327 40,056 126,750 185 4,565 39,015 322 6,190 22,252

100 97 53 99 58 31 100 99 72 100 67 3

26.43 22.80 22.61 22.63 22.61 22.61 27.38 22.92 22.66 23.52 22.63 22.61

32.50 25.61 23.14 23.43 22.80 22.71 31.75 26.28 23.59 28.65 23.22 22.75

EM 36.27 29.00 25.18 25.47 23.30 23.28 37.32 31.05 25.86 34.01 25.09 23.28

102 2,223 19,949 7,104 39,131 128,388 186 4,309 38,480 285 6,116 23,178

100 100 73 99 63 35 100 100 77 100 70 3

25.30 22.72 22.61 22.63 22.61 22.61 26.26 22.69 22.63 24.69 22.64 22.61

31.99 24.99 23.08 23.56 22.82 22.70 31.72 26.05 23.63 28.74 23.36 22.76

ISM 36.30 29.00 24.12 25.98 24.19 22.85 37.32 31.05 25.95 34.01 25.84 23.26

127 4,377 20,876 6,831 40,580 127,751 182 4,994 38,537 281 6,342 22,669

100 92 53 99 56 29 100 99 73 100 68 3

27.19 23.28 22.66 22.61 22.61 22.61 26.57 23.47 22.78 24.17 22.66 22.61

32.49 25.78 23.17 23.39 22.82 22.71 32.05 26.75 23.97 28.92 23.45 22.75

SIM 37.38 30.11 25.51 26.64 24.08 23.55 37.14 31.05 25.86 34.53 24.94 22.96

114 3,460 18,539 8,233 40,233 133,450 195 4,919 30,958 260 4,973 22,149

100 91 60 97 60 32 100 93 69 100 66 4

27.00 22.72 22.61 22.66 22.61 22.61 26.46 22.66 22.61 22.85 22.61 22.61

32.14 25.04 23.02 23.54 22.81 22.71 31.85 26.29 23.52 28.43 23.23 22.75

IVM 37.89 30.06 24.75 25.33 24.29 23.28 37.74 30.73 26.52 35.34 25.58 23.28

125 4,752 20,014 6,656 39,311 124,763 180 4,696 38,934 324 6,222 22,437

100 93 56 100 61 30 100 99 76 100 68 3

27.57 23.06 22.67 22.64 22.61 22.61 26.86 24.83 22.72 23.95 22.72 22.61

32.31 25.58 23.30 23.62 22.81 22.69 31.88 27.04 23.97 29.12 23.54 22.74

SM 36.28 28.84 26.94 28.11 24.08 22.88 36.98 31.65 26.31 36.47 26.84 23.09

126 3,509 17,881 7,028 40,509 126,973 194 3,956 29,553 249 5,014 22,041

100 90 58 98 60 30 100 95 72 100 69 3
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Tables 2 and 3 contain for the graphSparse, for all pos-

sible combinations of genetic operators and population

sizes, respectively: the best, the average and the worst result

obtained, the average number of iterations of the algorithm

before convergence and the average percentage of con-

verged bits. Note that every value shown is calculated

from 90 (3 mutation rates� 3 selection biases� 10) execu-

tions of the algorithm. In Tables 4 and 5 the same results are

given for the graphDense.

6.1. Objective function

By comparingTables 1, 2 and3 (1, 4 and 5)we see that for the

graph Sparse (Dense) all crossover operators except the AP

and the VR (the OX1 and the VR) operator found the best

value obtained by simulated annealing. This value was also

obtained with all mutation operators. All combinations of

crossover and mutation operators, except the combinations

AP� SIM and AP� SIM for the graph Sparse, were able

to give better results than 9 of the 10 triangulation methods

of Table 1. Remarkable are the results obtained with the

CX operator. For the graph Sparse, using the population

sizes 50 and 250, this operator always managed to ®nd

the best results obtained by simulated annealing, indepen-

dent of the chosen mutation operator. For the graphDense,

the CX operator even managed to ®nd the best result of

simulated annealing for all combinations of mutation

operators and population sizes, except for the combination

DM���10.

For the graph Sparse, we found for 334 of the 1296 pos-

sible parameter combinations an average weight smaller

than 23.05, which is the best value obtained by the second

best algorithm of Table 1. In 3814 of the 12 960 executions

carried out, this value of 23.05 was improved. From these

Table 3.Results obtained with graphSparse (II ), respectively: the best, average and worst evaluation found, the average number of iterations

of the algorithm before convergence, and the average percentage of converged bits

POS ER VR AP

� 10 50 250 10 50 250 10 50 250 10 50 250

23.54 22.61 22.61 24.56 22.75 22.63 23.65 22.76 22.73 23.94 22.86 22.66

28.44 23.36 22.77 28.41 24.26 22.86 26.48 24.25 26.06 32.24 26.55 24.38

DM 34.61 25.35 23.35 31.91 26.74 23.92 30.57 27.71 27.74 38.09 30.45 27.21

447 6,443 22,032 2,832 41,376 471,217 1,928 16,928 141,746 697 8,609 21,784

100 62 1 95 75 35 94 97 20 90 88 41

23.92 22.63 22.61 24.98 22.80 22.61 23.45 22.83 22.79 25.34 22.76 22.65

28.59 23.35 22.78 28.22 24.41 22.85 26.92 24.47 26.25 32.02 26.55 24.39

EM 34.50 25.68 23.28 31.96 27.14 23.63 30.72 28.36 28.23 37.22 31.84 26.88

372 6,561 21,655 3,247 40,877 478,239 2,925 16,753 126,261 799 7,945 21,419

100 65 1 97 74 34 92 96 14 91 78 37

23.57 22.61 22.61 24.79 22.74 22.64 23.62 22.87 22.72 24.36 22.66 22.66

28.20 23.34 22.75 28.43 24.34 22.84 26.71 24.17 26.18 32.19 26.56 24.29

ISM 34.50 26.38 23.45 31.61 27.33 23.55 32.80 26.90 27.95 37.78 30.78 27.20

381 6,322 22,035 3,237 40,668 460,730 1,619 16,213 135,243 719 7,253 23,580

100 59 1 89 72 31 93 97 17 92 82 40

23.92 22.64 22.61 25.03 22.81 22.61 24.19 23.02 22.72 28.75 24.81 23.20

28.96 23.54 22.76 28.49 24.32 22.83 27.23 24.44 26.09 33.30 27.96 25.14

SIM 35.53 25.84 22.97 32.29 27.21 23.62 30.57 27.86 27.79 37.96 32.36 27.65

361 5,287 21,789 3,092 39,374 455,318 2,141 16,422 135,060 868 3,472 11,486

100 57 1 94 77 32 93 95 21 84 84 41

23.49 22.61 22.61 25.12 22.85 22.63 23.40 22.73 22.77 27.08 22.63 22.63

28.45 23.28 22.77 28.34 24.25 22.81 26.79 24.13 26.15 32.62 26.47 24.45

IVM 34.50 25.26 23.28 33.76 27.00 23.39 30.57 27.57 27.90 38.09 30.91 27.21

374 6,067 21,826 2,935 43,889 473,370 1,772 18,218 139,172 586 7,852 23,016

100 60 1 93 75 35 94 96 18 89 85 40

23.92 22.64 22.61 25.06 23.10 22.61 25.01 22.92 22.97 28.55 24.09 23.23

29.30 23.49 22.78 28.66 24.42 22.85 27.38 24.47 26.27 33.33 27.94 24.98

SM 34.50 26.26 23.31 32.90 27.76 23.85 31.52 28.08 28.09 38.09 31.07 27.00

290 4,930 21,246 2,705 38,325 443,222 1,855 16,167 127,463 1,180 2,822 12,696

100 60 2 97 75 30 94 95 19 71 90 51
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3814 executions, 175 were obtained with� � 10, 1081 with

� � 50 and 2558 with � � 250.

For the graphDense, we obtained for 418 possible para-

meter combinations an average weight lower than 52.88,

which is the second best value of Table 1. In 4409 execu-

tions this value of 52.88 was improved: in 313 executions

with � � 10, in 1303 executions with � � 50 and 2753

executions with � � 250.

We studied the di�erences between the di�erent para-

meter combinations with the help of the Kruskal±Wallis

test. We found that statistically signi®cant di�erences exist

between the di�erent crossover operators, for both graphs

the CX, the POS and the OX2 being the best operators,

while the worst results were obtained by the PMX, the

OX1 and the AP operator.

Statistically signi®cant di�erences were found also

between the mutation operators. For both graphs, the

best results were obtained with the ISM and the DM opera-

tors, the worst with the SIM and the SM operators.

As the population size grows, the results improve, the dif-

ferences becoming statistically signi®cant. For the graph

Sparse (Dense), we found an average weight of 29.12

(59.86) for � � 10, of 24.61 (54.70) for � � 50 and of

23.58 (52.77) for � � 250.

With respect to the mutation rate, we found that the

results improved as the mutation rate grew, the di�erences

becoming statistically signi®cant. For the graph Sparse

(Dense), we found an average weight of 26.05 (56.13) for

pm � 1=1000, of 25.93 (56.02) for pm � 1=100 and of

25.33 (55.18) for pm � 1=10.

As the selection bias increases, the results get worse, the

di�erences becoming statistically signi®cant. Forb � 0:75,

we found an average weight of 25.31 (for the graphSparse,

55.25 for the graph Dense), while for b � 1:25 and b � 2:0

Table 4.Results obtained with graphDense (I ), respectively: the best, average and worst evaluation found, the average number of iterations of

the algorithm before convergence, and the average percentage of converged bits

PMX CX OX1 OX2

� 10 50 250 10 50 250 10 50 250 10 50 250

57.39 50.95 50.88 50.91 50.88 50.88 57.33 52.00 50.92 54.11 50.95 50.88

62.84 55.52 52.56 52.69 51.88 51.09 63.51 57.03 53.78 59.25 53.02 51.30

DM 67.67 61.29 55.59 56.64 54.44 52.70 68.12 61.15 57.02 63.83 59.18 52.61

148 5,624 16,765 10,318 24,038 82,688 186 4,316 39,537 406 5,256 13,318

100 77 35 74 29 14 100 98 72 100 48 3

59.35 51.27 50.88 50.88 50.88 50.88 59.11 51.81 50.90 53.34 50.88 50.88

63.07 56.12 52.42 52.54 51.77 51.14 63.12 57.73 54.03 59.32 52.96 51.31

EM 67.24 61.73 55.89 55.72 54.49 53.01 68.12 62.54 58.65 66.28 57.13 53.18

112 3,509 17,276 10,287 25,499 89,069 180 3,909 39,162 404 4,761 13,218

100 97 45 73 32 16 100 99 77 100 49 2

56.15 50.99 50.88 50.88 50.88 50.88 57.33 52.01 50.89 54.15 50.88 50.88

62.79 55.57 52.51 52.57 51.66 51.09 63.10 57.45 53.60 59.36 52.83 51.22

ISM 68.27 61.76 55.62 56.38 54.54 52.70 68.12 62.80 57.66 63.83 56.04 52.71

137 5,002 17,396 10,068 25,597 86,897 196 4,794 40,770 340 4,883 13,187

100 78 34 70 28 16 100 98 70 100 45 2

59.35 52.06 50.88 50.88 50.88 50.88 57.86 53.41 51.05 52.11 50.99 50.88

63.26 56.72 52.81 52.59 51.73 51.06 63.41 58.13 54.68 60.00 53.38 51.27

SIM 66.65 61.51 56.63 56.01 55.36 51.91 68.12 62.54 58.11 66.33 56.85 52.70

133 4,122 15,768 10,751 25,788 82,104 187 4,922 29,181 308 4,336 12,882

100 87 39 66 30 14 100 92 71 100 47 3

55.47 50.88 50.88 50.88 50.88 50.88 58.24 51.59 51.01 51.59 50.88 50.88

62.90 55.60 52.60 52.67 51.93 51.08 63.14 57.08 53.83 59.02 52.96 51.21

IVM 67.67 61.75 55.64 56.66 55.07 52.39 68.12 61.52 58.13 64.00 56.30 53.06

141 5,394 16,689 10,193 24,771 81,019 184 4,790 40,215 543 4,664 13,180

100 79 36 69 30 13 100 98 74 100 45 2

57.04 51.45 50.91 50.88 50.88 50.88 58.38 54.09 52.01 54.79 50.88 50.88

63.30 57.07 52.79 52.60 51.73 51.07 63.43 57.72 54.65 60.44 53.28 51.24

SM 68.40 61.91 56.92 57.51 54.63 52.70 68.12 62.15 58.19 64.75 56.53 52.70

139 3,969 15,804 11,011 24,873 84,865 173 4,394 29,012 270 4,257 12,918

100 87 39 68 31 16 100 93 71 100 50 2
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we found an average of 25.70 (55.76) and 26.30 (56.32),

respectively.

6.2. Convergence

Number of iterations

Statistically signi®cant di�erences exist with respect to the

crossover operators. For the graph Sparse (Dense), the

operators PMX, AP and POS (AP, POS and OX2) lead

to the fastest convergence, while ER, VR and CX (CX,

VR and ER) give the slowest algorithms.

The di�erences in the number of iterations with respect

to the di�erent mutation operators were not statistically

signi®cant.

With respect to the population size, statistically signi®-

cant di�erences exist. The average number of iterations

until convergence is reached increases as the population

size grows.

As the selection bias is lowered, the number of iterations

needed to reach convergence increases, the di�erences

becoming statistically signi®cant.

The higher the mutation rate, the larger the number of

iterations of the algorithm, the di�erences becoming statis-

tically signi®cant.

Percentage of converged bits

Statistically signi®cant di�erences exist with respect to the

crossover operator, the population size, the mutation rate

and the selection bias.

For the graph Sparse (Dense) the lowest percentages of

converged bits are obtained with the POS, the OX2 and

the CX (the CX, the ER and the POS) operator and the

highest percentages with the AP, the PMX and the OX1

(the AP, the PMX and the OX1) operator.

Table 5.Results obtained with graphDense (II ), respectively: the best, average and worst evaluation found, the average number of iterations of

the algorithm before convergence, and the average percentage of converged bits

POS ER VR AP

� 10 50 250 10 50 250 10 50 250 10 50 250

52.14 50.88 50.88 55.73 51.38 50.88 52.00 51.36 51.50 58.23 51.17 50.88

59.20 52.83 51.26 59.20 54.08 51.61 58.04 54.26 56.08 63.38 56.97 53.98

DM 65.37 56.23 52.76 62.99 57.31 54.04 64.09 57.98 59.30 68.87 62.10 56.79

622 5,343 13,242 3,272 38,139 202,581 1,774 18,800 129,408 523 6,172 12,300

100 43 2 92 38 13 91 84 18 93 78 22

53.79 50.97 50.88 55.76 51.14 50.88 51.99 50.99 51.07 57.37 51.12 51.00

59.05 53.16 51.41 59.30 54.02 51.67 57.90 54.57 56.48 63.12 57.01 53.71

EM 65.04 56.96 53.54 63.03 58.12 54.38 62.66 58.44 58.74 68.87 62.73 56.89

490 4,856 12,542 3,618 36,376 203,178 2,361 16,584 125,778 398 5,490 12,336

100 43 1 88 41 13 92 88 14 94 76 23

51.36 50.99 50.88 55.30 51.51 50.88 54.26 51.04 51.19 56.99 50.99 50.95

59.08 52.91 51.24 59.32 53.91 51.79 58.01 54.40 56.42 63.23 57.31 53.57

ISM 65.04 55.39 52.71 64.09 57.65 54.63 61.92 58.10 59.17 68.87 62.45 56.27

537 4,924 13,084 3,309 37,191 199,827 1,567 16,791 135,590 501 6,025 14,091

100 41 1 92 44 11 95 83 13 92 81 27

55.62 50.99 50.88 55.73 51.22 50.88 53.80 51.32 51.47 58.23 53.87 51.31

60.22 53.15 51.23 59.52 54.29 51.54 58.15 54.73 56.22 63.95 58.43 54.22

SIM 66.11 57.38 52.93 64.20 59.00 53.49 61.58 58.17 58.64 68.87 62.23 57.07

321 4,381 12,741 3,527 35,833 195,678 1,990 16,767 132,972 718 3,647 10,599

100 45 2 89 40 14 89 84 20 85 83 31

51.87 50.88 50.88 55.15 51.02 50.88 52.81 51.07 51.13 57.36 50.96 50.91

59.13 53.20 51.22 59.51 54.10 51.87 57.85 54.43 56.10 63.26 57.05 53.89

IVM 65.04 57.95 52.50 63.73 57.35 53.11 64.09 58.58 58.67 68.87 62.10 57.51

614 4,848 12,548 2,909 35,556 198,027 1,765 17,539 135,004 624 5,400 13,545

100 43 2 90 42 13 91 82 16 90 79 25

54.44 50.88 50.88 56.69 51.09 50.88 54.96 51.57 51.04 58.23 54.01 51.63

59.95 53.10 51.26 59.70 54.12 51.82 58.73 54.54 56.09 63.65 58.53 54.21

SM 66.31 57.71 53.54 64.45 57.54 54.05 63.25 58.12 58.45 68.87 62.28 57.01

304 4,214 12,495 3,267 36,777 193,324 1,482 16,139 125,667 577 2,914 10,818

100 44 2 94 42 11 93 81 20 88 83 30
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The percentage of converged bits decreases, as the popu-

lation size grows, as the mutation rate increases and as the

selection bias is lowered.

With respect to the di�erent mutation operators, no

statistically signi®cant di�erences exist.

6.3. Crossover operators

We see that the ER operator gives algorithms which con-

verge extremely slowly. This is not surprising, because the

ER operator tries to pass on relative order information

from parents to o�spring, and moreover, it was developed

for the symmetrical TSP.

Since the graph triangulation problem is asymmetrical,

we expected that the best results could be found with opera-

tors that conserve absolute order information, as the AP,

the PMX, the VR and the POS operator. However, it

turned out that these operators easily led to algorithms

with a premature convergence.

The best results were obtained with the CX operator,

which passes on both position and order information

from parents to o�spring without converging too fast.

For more results and for a more extended analysis, see

LarranÄ aga et al. (1994).

7. Conclusions and further research

7.1. Conclusions

We tackled the problem of the search for an optimal graph

triangulation with genetic algorithms. We tried several

combinations of crossover and mutation operators in com-

bination with di�erent population sizes, mutation rates and

selection biases.

The results that we obtained improved, for most com-

binations of parameters, the results of the other known tri-

angulation methods. Only the results obtained with

simulated annealing are comparable to our results.

We observed that in general the best results were attached

to the relatively slower algorithms. Fast algorithms often

went hand in hand with premature convergence.

The crossover operators that passed on mainly absolute

position information from parents to o�spring were better

than the ones that passed on mainly relative order infor-

mation, although they often led to premature convergence±

this means that the algorithm converges before the popu-

lation contains interesting individuals .

The results obtained with the distinct mutation operators

were not very di�erent, although statistically signi®cant dif-

ferences existed. With respect to the other parameters of the

genetic algorithm, we observed that too small a population

size, too small a mutation rate and too large a selection bias

led to premature convergence, while a very large population

size, a very large mutation rate and a very small selection

bias gave a very slow algorithm (LarranÄ aga et al., 1994).

Of course, we would like to answer the question of what

is the best triangulation method. Unfortunately, this is not

easy to say. It depends on the situation. If enough time is

available, a well-designed genetic or simulated annealing

algorithm should give the best results. However, for devel-

oping such an algorithm a thorough parameter study like

the one described in this paper is initially necessary. If there

is enough time to carry out such a study probably a stable

algorithm could be developed that would lead to acceptable

results in an acceptable length of time. However, if a run-

time triangulation method is required, a genetic or simu-

lated annealing algorithm would probably be too slow. In

general we can say that the time/space complexity of the tri-

angulation method has to be traded o� with the expected

quality of the resulting triangulation.

7.2. Further research

There are several ®elds in which further research may be

done.

We observed that, with respect to the crossover operator

to use, we have to weigh up good results with a fast algo-

rithm. In general, choosing for a fast algorithm is at the

expense of the goodness of the results.

For example, the results obtained with the CX operator

are quite good, but the accompanying algorithms are rela-

tively slow. Therefore, it is interesting to ®nd out if a genetic

algorithm with CX crossover can be speeded up without

losing its good results. We expect that one way to do this

is by carrying out a local search after every certain number

of iterations of the algorithm.

Another possibility is to solve the premature convergence

related with the use of some speci®c crossover operators

(e.g. the AP and the PMX operator).

We carried out some experiments with the AP operator,

adding in every iteration, as well as the new o�spring, also

an individual created at random. We observed that the

average results improved considerably. Obviously, the algo-

rithm also became somewhat slower.

Another interesting possibility is to experiment on other

genetic operators or on combinations of several operators.

Dynamic operators could also be tried.

It would be interesting to carry out some research to ®nd

the di�erences between the genetic algorithms and simulated

annealing for the graph triangulation problem. We would

welcome more insight into which of the two methods has

the greater chance if coming up with a good decomposition.
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Appendix

A. Genetic operators

A.1. Crossover operators

The partially-mapped crossover operator (PMX) (Goldberg

and Lingle, 1985) transmits ordering and value information

from the parents strings to the o�spring. A portion of one

parent string is mapped onto a portion of the other parent

string and the remaining information is exchanged. Con-

sider, for example, the two parents �1 2 3 4 5 6 7 8� and

�3 7 5 1 6 8 2 4�. The PMX operator creates an o�spring in

the following way. It begins by selecting uniformly at ran-

dom two cut points along the strings, which represent the

parents. Suppose, for example, that the ®rst cut point is

selected between the third and the fourth string element,

and the second one between the sixth and the seventh string

element. Hence, �1 2 3 j 4 5 6 j 7 8� and �3 7 5 j 1 6 8 j 2 4�. The

substrings between the cut points are called the mapping

sections. In our example they de®ne the mappings 4$ 1,

5$ 6 and 6$ 8. Now the mapping section of the ®rst par-

ent is copied into the second o�spring, and the mapping

section of the second parent is copied into the ®rst o�-

spring. O�spring 1: �xx x j 1 6 8 jx x� and o�spring 2:

�xx x j 4 5 6 jx x�. Then o�spring i �i � 1; 2� is ®lled up by

copying the elements of the ith parent. If a number is

already present in the o�spring it is replaced according to

the mappings. For example, the ®rst element of o�spring

1 would be a 1, like the ®rst element of the ®rst parent.

However, there is already a 1 present in o�spring 1. Hence,

because of the mapping 1$ 4 we choose the ®rst element of
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o�spring 1 to be a 4. The second, third and seventh ele-

ments of o�spring 1 can be taken from the ®rst parent.

However, the last element of o�spring 1 would be an 8,

which is already present. Because of the mappings 8$ 6,

and 6 $ 5, it is chosen to be a 5. Hence, o�spring 1:

�4 2 3 j 1 6 8 j 7 5�. Analogously, we ®nd o�spring 2:

�3 7 8 j 4 5 6 j 2 1�. The absolute positions of some elements

of both parents are preserved.

The cycle crossover operator (CX ) (Oliver et al., 1987)

attempts to create an o�spring from the parents where

every position is occupied by a corresponding element

from one of the parents. For example, consider again the

parents �1 2 3 4 5 6 7 8� and �2 4 6 8 7 5 3 1�. Now we choose

the ®rst element of the o�spring equal to either the ®rst ele-

ment of the ®rst parent string or the ®rst element of the sec-

ond parent string. Hence, the ®rst element of the o�spring

has to be a 1 or a 2. Suppose we choose it to be 1,

�1 � � � � � � ��. Now consider the last element of the o�-

spring. Since this element has to be chosen from one of the

parents, it can only be an 8 or a 1. However, if a 1 were

selected, the o�spring would not represent a legal indivi-

dual. Therefore, an 8 is chosen, �1 � � � � � �8�. Analo-

gously, we ®nd that the fourth and the second element of

the o�spring also have to be selected from the ®rst parent,

which results in �1 2 � 4 � � � 8�. The positions of the ele-

ments chosen up to now are said to be a cycle. Now con-

sider the third element of the o�spring. This element we

may choose from any of the parents. Suppose that we select

it to be from parent 2. This implies that the ®fth, sixth and

seventh elements of the o�spring also have to be chosen

from the second parent, as they form another cycle. Thus,

we ®nd the following o�spring: �1 2 6 4 7 5 3 8�. The abso-

lute positions of on average half the elements of both

parents are preserved.

The order crossover operator (OX1) (Davis, 1985) con-

structs an o�spring by choosing a substring of one parent

and preserving the relative order of the elements of the

other parent. For example, consider the two parent strings

�1 2 3 4 5 6 7 8� and �2 4 6 8 7 5 3 1�, and suppose that we

select a ®rst cut point between the second and the third

bit and a second one between the ®fth and the sixth bit.

Hence, �1 2 j 3 4 5 j 6 7 8� and �2 4 j 6 8 7 j 5 3 1�. The o�spring

are created in the following way. Firstly, the string segments

between the cut point are copied into the o�spring,

which gives �� � j3 4 5 j � � �� and �� � j6 8 7 j � � ��.

Next, starting from the second cut point of one parent,

the rest of the elements are copied in the order in which

they appear in the other parent, also starting from the sec-

ond cut point and omitting the elements that are

already present. When the end of the parent string is

reached, we continue from its ®rst position. In our example

this gives the following children: �8 7 j 3 4 5 j 1 2 6� and

�4 5 j 6 8 7 j 1 2 3�.

The order-based crossover operator (OX2) (Syswerda,

1991), which was suggested in connection with schedule

problems, is a modi®cation of the OX1 operator. The

OX2 operator selects at random several positions in a par-

ent string, and the order of the elements in the selected posi-

tions of this parent is imposed on the other parent. For

example, consider again the parents �1 2 3 4 5 6 7 8� and

�2 4 6 8 7 5 3 1�, and suppose that in the second parent the

second, third, and sixth positions are selected. The elements

in these positions are 4, 6 and 5 respectively. In the ®rst par-

ent these elements are present at the fourth, ®fth and sixth

positions. Now the o�spring is equal to parent 1 except in

the fourth, ®fth and sixth positions: �1 2 3 � � � 7 8�. We

add the missing elements to the o�spring in the same order

in which they appear in the second parent. This results in

�1 2 3 4 6 5 7 8�. Exchanging the role of the ®rst parent and

the second parent gives, using the same selected positions,

�2 4 3 8 7 5 6 1�.

The position-based crossover operator (POS) (Syswerda,

1991), a second modi®cation of the OX1 operator, was

also suggested in connection with schedule problems. It

also starts with selecting a random set of positions in the

parent strings. However, this operator imposes the position

of the selected elements on the corresponding elements of

the other parent. For example, consider the parents

�1 2 3 4 5 6 7 8� and �2 4 6 8 7 5 3 1�, and suppose that the sec-

ond, third and the sixth positions are selected. This leads to

the following o�spring: �1 4 6 2 3 5 7 8� and �4 2 3 8 7 6 5 1�.

The genetic edge recombination crossover operator (ER)

(Whitley et al., 1989, 1991) uses a so-called `edge map',

which gives for each node the edges of the parents that start

or ®nish in it. Consider for example these parent strings:

�1 2 3 4 5 6� and �2 4 3 1 5 6�: The edge map for these strings

is as follows:

Node 1 is connected with the nodes : 2 6 3 5

Node 2 is connected with the nodes : 1 3 4 6

Node 3 is connected with the nodes : 2 4 1

Node 4 is connected with the nodes : 3 5 2

Node 5 is connected with the nodes : 4 6 1

Node 6 is connected with the nodes : 1 5 2

The genetic edge recombination operator works according

to the following algorithm:

1. Choose the initial node from one of the two parent

strings. (It can be chosen at random or according to criteria

outlined in step 4). This is the `current node'.

2. Remove all occurrences of the `current node' from the

left-hand side of the edge map. (These can be found by

referring to the edge list for the current node.)

3. If the current node has entries in its edge list, go to step

4; otherwise, go to step 5.

4. Determine which of the nodes in the edge list of the

current node has the fewest entries in its own edge list.

The node with the fewest entries becomes the `current

node'. Ties are broken at random. Go to step 2.
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5. If there are no remaining `unused' nodes, then STOP.

Otherwise, choose at random an ``unused'' node and go to

step 2.

For our example strings we get:

1. The new child string is initialized with one of the two

initial nodes from its parents. Initial nodes 1 and 2 both

have four edges; randomly choose node 2.

2. The edge list for node 2 indicates the candidates for the

next node are the nodes 1, 3, 4 and 6. The nodes 3, 4 and 6 all

have two edges: the initial three minus the connection with

node 2. Node 1 now has three edges and therefore it is not

considered. Assume that node 3 is randomly chosen.

3. Node 3 now has edges to node 1 and node 4. Node 4 is

chosen next, since it has fewer edges.

4. Node 4 only has an edge to node 5, so node 5 is chosen

next.

5. Node 5 has edges to the nodes 1 and 6, both of which

have only one edge left. Randomly choose node 1.

6. Node 1 must now go to node 6.

The resulting string is �2 3 4 5 1 6�; and is composed entirely

of edges taken from the two parents.

The voting recombination crossover operator (VR)

(M�uhlenbein, 1989) can be seen as a p-sexual crossover

operator, wherep is a natural number greater than, or equal

to, 2. It starts by de®ning a threshold, which is a natural

number smaller than, or equal to, p. Next, for every

i 2 f1; 2; . . . ; ng the set of ith elements of all the parents is

considered. If in this set an element occurs at least the

threshold number of times, it is copied into the o�spring.

For example, if we consider the parents (p=4)

�1 4 3 5 2 6 �; �1 2 4 3 5 6 �; �3 2 1 5 4 6 �; �1 2 3 4 5 6 � and we

de®ne the threshold to be equal to 3 we ®nd �1 2x xx 6�.

The remaining positions of the o�spring are ®lled with

mutations. Hence, our example might result in�1 2 4 5 3 6�.

The alternating-position crossover operator (AP)

(LarranÄ aga et al., 1994) which simply creates an o�spring

by selecting alternately the next element of the ®rst parent

and the next element of the second parent, omitting the

elements already present in the o�spring. For example, if

parent 1 is �1 2 3 4 5 6 7 8� and parent 2 is �3 7 5 1 6 8 2 4�,

the AP operator gives the following o�spring

�1 3 2 7 5 4 6 8�. Exchanging the parents results in

�3 1 7 2 5 4 6 8�.

A.2. Mutation operators

Thedisplacementmutation operator(DM) (e.g.Michalewicz,

1992) ®rst selects a substring at random. This substring is

removed from the string and inserted in a random place.

For example, consider the string �1 2 3 4 5 6 7 8�, and sup-

pose that the substring �3 4 5� is selected. Hence, after the

removal of the substring we have �1 2 6 7 8�. Suppose that

we randomly select element 7 to be the element after which

the substring is inserted. This gives �1 2 6 7 3 4 5 8�.

The exchange mutation operator (EM) (e.g. Banzhaf,

1990) randomly selects two elements in the string that

represents the individual and exchanges them. For example,

consider the string �1 2 3 4 5 6 7 8�, and suppose that the

third and the ®fth element are randomly selected. This

results in �1 2 5 4 3 6 7 8�.

The insertion mutation operator (ISM) (e.g. Michalewicz,

1992) randomly chooses an element in the string that repre-

sents the individual, removes it from this string, and inserts

it in a randomly selected place. For example, consider again

the string �1 2 3 4 5 6 7 8�, and suppose that the insertion

mutation operator selects element 4, removes it, and ran-

domly inserts it after element 7. The resulting o�spring is

�1 2 3 5 6 7 4 8�.

The simple-inversion mutation operator (SIM) (e.g.

Holland, 1975) selects randomly two cut points in the string

that represents the individual, and reverses the substring

between these two cut points. For example, consider the

string �1 2 3 4 5 6 7 8�, and suppose that the ®rst cut point

is chosen between element 2 and element 3, and the second

cut point between the ®fth and the sixth element. This

results in �1 2 5 4 3 6 7 8�.

The inversion mutation operator (IVM) (e.g. Fogel, 1990)

randomly selects a substring, removes it from the string and

inserts it, in reversed order, in a randomly selected position.

Consider again �1 2 3 4 5 6 7 8�, and suppose that the sub-

string �3 4 5� is chosen, and that this substring is inserted

immediately after element 7. This gives �1 2 6 7 5 4 3 8�.

The scramble mutation operator (SM) (e.g. Syswerda,

1991) selects a random substring and scrambles the elements

in it. For example, consider the string �1 2 3 4 5 6 7 8�, and

suppose that the substring �4 5 6 7� is chosen. This might

result in �1 2 3 5 6 7 4 8�.

B. Sparse and Dense graphs

The syntax of the speci®cation of the Sparse and Dense

graphs is as follows:

hnodeifhneighbourig � hnewlinei

The syntax of a cardinality speci®cation is:

fhnodeihnumber-of-statesig�

Sparse

V1 V14 V13 V2

V2 V44 V1 V3

V3 V41 V24 V2 V4

V4 V19 V32 V8 V3 V5

V5 V9 V4 V6

V6 V40 V27 V23 V5 V7

V7 V49 V21 V16 V44 V6 V8

V8 V24 V20 V4 V7 V9

V9 V23 V25 V5 V8 V10

V10 V9 V11
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V11 V32 V10 V12

V12 V30 V11 V13

V13 V32 V41 V37 V1 V12 V14

V14 V39 V1 V13 V15

V15 V14 V16

V16 V32 V37 V7 V15 V17

V17 V45 V25 V16 V18

V18 V42 V21 V27 V17 V19

V19 V23 V4 V18 V20

V20 V40 V8 V19 V21

V21 V24 V7 V18 V20 V22

V22 V44 V46 V21 V23

V23 V26 V19 V9 V6 V22 V24

V24 V21 V47 V8 V3 V23 V25

V25 V47 V17 V9 V24 V26

V26 V23 V25 V27

V27 V41 V39 V34 V6 V18 V26 V28

V28 V43 V27 V29

V29 V28 V30

V30 V12 V29 V31

V31 V30 V32

V32 V44 V13 V16 V11 V4 V31 V33

V33 V44 V32 V34

V34 V27 V33 V35

V35 V46 V34 V36

V36 V35 V37

V37 V16 V13 V36 V38

V38 V48 V37 V39

V39 V41 V27 V14 V38 V40

V40 V6 V20 V39 V41

V41 V39 V27 V13 V3 V40 V42

V42 V18 V48 V41 V43

V43 V28 V42 V44

V44 V33 V32 V22 V7 V2 V43 V45

V45 V17 V44 V46

V46 V35 V22 V45 V47

V47 V25 V24 V46 V48

V48 V38 V42 V47 V49

V49 V7 V48 V50

V50 V49

Dense

V1 V47 V37 V31 V30 V27 V17 V8 V12 V25 V2

V2 V46 V39 V38 V24 V23 V4 V30 V1 V3

V3 V43 V42 V41 V26 V24 V8 V32 V6 V16 V25 V10 V2 V4

V4 V40 V30 V19 V8 V26 V2 V37 V11 V3 V5

V5 V47 V42 V41 V37 V33 V32 V22 V20 V11 V7 V30 V45 V4 V6

V6 V37 V33 V16 V9 V15 V34 V3 V5 V7

V7 V43 V39 V32 V30 V11 V46 V18 V40 V9 V28 V35 V22 V5 V34 V49 V26

V17 V33 V6 V8

V8V46V39V37V34V28V27V25V23V17V48V1V4V50V3V13V47V7V9

V9 V47 V45 V43 V39 V38 V34 V33 V31 V23 V6 V20 V36 V11 V44 V12

V48 V16 V22 V14 V7 V8 V10

V10 V49 V45 V41 V39 V35 V33 V31 V26 V23 V22 V12 V40 V3 V9 V11

V11 V33 V31 V30 V24 V23 V16 V7 V5 V25 V9 V4 V10 V12

V12 V46 V45 V30 V24 V20 V26 V35 V23 V31 V17 V18 V47 V10 V37 V21

V29 V9 V1 V11 V13

V13 V49 V37 V27 V26 V17 V47 V44 V18 V33 V31 V8 V12 V14

V14 V43 V33 V30 V32 V9 V13 V15

V15 V45 V37 V20 V29 V47 V28 V44 V30 V6 V14 V16

V16V49V37V34V28V26V25V22V20V11V6V32V42V47V9V3V15V17

V17 V45 V41 V39 V38 V24 V19 V1 V8 V42 V13 V12 V7 V16 V18

V18 V49 V46 V38 V37 V32 V25 V13 V12 V7 V17 V19

V19 V21 V4 V17 V30 V35 V37 V25 V18 V20

V20 V39 V25 V24 V23 V34 V36 V5 V15 V16 V29 V12 V9 V19 V21

V21 V49 V42 V40 V38 V19 V48 V35 V12 V20 V22

V22 V45 V44 V39 V25 V5 V27 V10 V46 V49 V47 V16 V9 V7 V21 V23

V23 V47 V37 V30 V46 V39 V20 V9 V25 V2 V10 V8 V11 V48 V12 V22 V24

V24 V47 V46 V45 V39 V33 V17 V2 V11 V20 V36 V3 V44 V12 V23 V25

V25 V49 V45 V43 V40 V33 V28 V41 V36 V18 V37 V32 V8 V22 V16 V46

V20 V31 V23 V19 V11 V3 V1 V24 V26

V26 V42 V36 V37 V3 V30 V16 V13 V10 V48 V33 V12 V7 V4 V25 V27

V27 V46 V41 V38 V8 V13 V1 V22 V26 V28

V28 V50 V35 V31 V8 V16 V32 V37 V25 V33 V30 V38 V15 V7 V27 V29

V29 V49 V40 V32 V20 V15 V12 V28 V30

V30 V46 V38 V37 V32 V1 V12 V39 V7 V43 V49 V23 V4 V11 V42 V14 V35

V28 V26 V19 V15 V5 V2 V29 V31

V31 V45 V39 V38 V28 V9 V11 V10 V1 V25 V13 V12 V30 V32

V32 V39 V18 V45 V29 V5 V30 V7 V50 V41 V28 V25 V16 V14 V3 V31 V33

V33 V46 V42 V41 V38 V37 V10 V9 V14 V11 V24 V6 V5 V25 V44 V28 V26

V13 V7 V32 V34

V34 V43 V40 V16 V8 V9 V20 V7 V6 V33 V35

V35 V28 V10 V30 V21 V19 V12 V7 V34 V36

V36 V47 V38 V45 V41 V26 V25 V24 V20 V9 V35 V37

V37 V47 V45 V41 V39 V33 V43 V5 V8 V23 V1 V18 V13 V15 V42 V30 V6

V16 V28 V26 V25 V19 V12 V4 V36 V38

V38 V47 V45 V44 V27 V33 V30 V31 V17 V18 V2 V50 V21 V41 V9 V36

V28 V37 V39

V39 V50 V45 V8 V20 V10 V37 V2 V31 V49 V24 V48 V17 V9 V22 V7 V32

V30 V23 V38 V40

V40 V34 V29 V25 V4 V47 V42 V21 V10 V7 V39 V41

V41 V49 V48 V43 V37 V27 V46 V33 V17 V3 V10 V5 V38 V36 V32 V25

V40 V42

V42V48V46V44V49V5V21V26V33V3V40V37V30V17V16V41V43

V43 V14 V7 V25 V9 V34 V46 V3 V48 V41 V37 V30 V42 V44

V44 V47 V42 V22 V38 V33 V24 V15 V13 V9 V43 V45

V45 V49 V31 V37 V38 V12 V24 V10 V17 V39 V15 V25 V22 V9 V36 V32

V5 V44 V46

V46 V49 V33 V24 V8 V12 V2 V42 V18 V27 V30 V43 V41 V25 V23 V22 V7

V45 V47

V47 V37 V1 V38 V24 V5 V9 V44 V36 V23 V40 V22 V16 V15 V13 V12 V8

V46 V48

V48 V41 V42 V43 V39 V26 V23 V21 V9 V8 V47 V49

V49 V46 V21 V25 V13 V41 V18 V45 V10 V29 V16 V42 V39 V30 V22 V7

V48 V50

V50 V39 V28 V38 V32 V8 V49
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Number of states for both graphs

V15V22V34V4 4V5 4V6 4V75V84V93V104V11 3V12 3V133V143

V15 3 V16 3 V17 2 V18 5 V19 4 V20 4 V21 3 V22 3 V23 3 V24 5 V25 5

V26 4 V27 5 V28 5 V29 5 V30 5 V31 2 V32 3 V33 2 V34 3 V35 4 V36 5

V37 3 V38 5 V39 4 V40 3 V41 3 V42 3 V43 3 V44 3 V45 2 V46 3 V47 3

V48 2 V49 2 V50 3
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