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Abstract

Most of the Bayesian network-based classifiers are usually only able to handle discrete variables.
However, most real-world domains involve continuous variables. A common practice to deal with
continuous variables is to discretize them, with a subsequent loss of information. This work shows
how discrete classifier induction algorithms can be adapted to the conditional Gaussian network par-
adigm to deal with continuous variables without discretizing them. In addition, three novel classifier
induction algorithms and two new propositions about mutual information are introduced. The clas-
sifier induction algorithms presented are ordered and grouped according to their structural complex-
ity: naive Bayes, tree augmented naive Bayes, k-dependence Bayesian classifiers and semi naive
Bayes. All the classifier induction algorithms are empirically evaluated using predictive accuracy,
and they are compared to linear discriminant analysis, as a continuous classic statistical benchmark
classifier. Besides, the accuracies for a set of state-of-the-art classifiers are included in order to justify
the use of linear discriminant analysis as the benchmark algorithm. In order to understand the
behavior of the conditional Gaussian network-based classifiers better, the results include bias-vari-
ance decomposition of the expected misclassification rate. The study suggests that semi naive Bayes
structure based classifiers and, especially, the novel wrapper condensed semi naive Bayes backward,
outperform the behavior of the rest of the presented classifiers. They also obtain quite competitive
results compared to the state-of-the-art algorithms included.
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1. Introduction

Supervised classification is a basic task in data analysis and pattern recognition. It
requires the construction of a classifier, that is, a function that assigns a class label to
instances described by a set of variables. There are numerous classifier paradigms, among
which Bayesian networks (BN) [48,50], based on probabilistic graphical models (PGMs)
[3,42], are very effective and well-known in domains with uncertainty. A Bayesian network
is a directed acyclic graph of nodes representing variables and arcs representing condi-
tional (in)dependence relations between the variables. This kind of PGM assumes that
each random variable follows a conditional probability function given a specific value
of its parents.

Usually the conditional probability function is assumed to be multinomial [3,48,50].
This kind of BN is known as a Bayesian multinomial network (BMN) [3]. It handles dis-
crete variables only and, thus, if a continuous variable is present, it must be discretized,
with a subsequent loss of information [63]. A battery of BMN-based classifier induction
algorithms has been proposed in the literature: naive Bayes [11,39,46], tree augmented
Bayesian network [17], k-dependence Bayesian classifier [57] and semi naive Bayes [37,49].

In the presence of continuous variables, another alternative is to assume that continu-
ous variables are sampled from a Gaussian distribution. This kind of Bayesian network is
known as a conditional Gaussian network (CGN) [2,19,42–44]. It can deal with discrete and
continuous variables and, therefore, it is an alternative to work with mixed variables with-
out the need to discretize the continuous ones. A structural constraint of the CGN is that a
discrete variable cannot have continuous parents. Although the Gaussian assumption for
continuous variables is very strong, it usually provides a reasonable approximation to
many real-world distributions [30]. The classifiers, inducted by the algorithms presented
in this paper, are restricted to CGN models with continuous predictor variables and
discrete class variable, which is the parent of all predictors included in the model. The
structures of these classifiers range the simplest naive Bayes structure to the complete
graphs.

A classifier based on BNs can be constructed from a Bayesian approach [2,19,22,27]. It
takes into account all possible models and all possible parameters, restricted to a special
kind of structure and a family of probability functions. However, the classifiers included in
this paper are induced from a non-Bayesian point of view, which fixes a unique structure
and its parameters. The structure is learned guided by a score function (likelihood [24],
accuracy [33,40,49] or mutual information [17,57]). There are a lot of works in which
the non-Bayesian approach for discrete variables is performed with different structure
complexities [11,17,33,37,39,40,46,49,57]. The non-Bayesian approach, to learn classifiers
based on conditional Gaussian networks, is performed for mixed variables in the work of
Friedman et al. [18].

BN-based classifiers can be inducted in two ways depending on the distribution to be
learned: generative or discriminative learning [29,52]. Generative classifiers learn a model
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of the joint probability function of the predictor variables and the class. They classify a
new instance by using the Bayes rule to compute the posterior probability of the class var-
iable given the values for the predictors. On the other hand, discriminative classifiers
[24,58] directly model the posterior probability of the class conditioned to the predictor
variables. The learning can also be done in a mixed way, as shown in [55]. The present
work is performed from the point of view of generative learning.

This paper presents the CGN paradigm and a battery of classifier induction algorithms
supported by it, much of them adapted from the previous enumerated algorithms sup-
ported by the Bayesian multinomial network paradigm. Besides, two new propositions
about mutual information, necessary to design filter approaches, are introduced. The clas-
sifier induction algorithms presented are experimentally compared by means of estimated
predictive accuracy. The bias-variance decomposition [36] of the expected misclassification
cost is performed in order to analyze the behavior of the CGN-based classifiers presented
in more detail.

The paper is organized as follows. In Section 2, four kinds of well-known classifier
structures are introduced: naive Bayes, tree augmented naive Bayes, k-dependence Bayes-
ian classifier, and semi naive Bayes. Based on each kind of structure, different classifier
induction algorithms to handle continuous variables are presented. Three of the presented
algorithms are novel algorithms: the filter selective ranking naive Bayes, the wrapper k-

dependence Bayesian classifier, and the wrapper condensed semi naive Bayes. Moreover,
seven algorithms are adapted from the Bayesian network paradigm to the CGN one. In
the same section, a classifier induction algorithm taxonomy is proposed, based on wrapper
and filter concepts. In Section 3, experimental results in classification tasks and their bias-
variance decompositions in each data set are shown for CGN-based and benchmark clas-
sifiers. Finally, in Section 4, our conclusions and future work are presented.
2. Adapting Bayesian multinomial network-based classifier induction algorithms to

continuous domains

PGMs are used to encode the joint distribution among the domain variables, based on
the conditional independencies represented by the graph structure. This fact, combined
with the Bayes rule, can be used for classification. In order to induce a classifier from data,
we consider two types of variables: the class variable or class C, and the rest of variables or
predictors, X = (X1, . . . , Xn). This paper only considers PGMs whose class variable C is
the root of the graph. In other words, {C} � Pai (i = 1, . . . , n) where Pai is the set of vari-
ables that are parents of Xi in the graph. The process of classifying an instance
x = (x1, . . . , xn) consists of selecting the class with the highest a posteriori probability,
P(cjx). This entails the use of the winner-takes-all rule [11]. This rule is used when the loss
function value, which gives a measure of the cost of misclassification, is symmetric. The
classification process can be done in the following way with CGN:

P ðcjxÞ / pðc; xÞ ¼ P ðcÞpðxjcÞ ¼ P ðcÞ
Yn

i¼1

pðxijpaiÞ ð1Þ

where pai denotes a value of Pai. Moreover, [3,8,19]

pðxijpaiÞ �Nðmijc; vijcÞ ð2Þ
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where mijc and vijc are defined as follows [19]:

mijc ¼ lijc þ
Xni

j¼1

bijjcðxj � ljjcÞ ð3Þ

vijc ¼
j RX i ;PX ijc j
j RPX i j c j

ð4Þ

PXi is the set of continuous predictors that are parents of Xi, so PXi = Pain{C}, and ni is
its cardinality. RSjc is the covariance matrix of the set of variables S conditioned to the
class value C = c. rijjc is the covariance between the variables Xi and Xj conditioned to
c, and r2

ijc is the variance of Xi conditioned to c. bijjc is the regression coefficient of Xi

on Xj conditioned to the class value C = c, and is defined as [8]

bijjc ¼
rijjc

r2
jjc

ð5Þ

The process of induction for a classifier supported by the PGMs can be divided into
three main parts: preprocessing, structural learning and parametric learning.

An important issue of the preprocessing task consists in transforming the variable space
or selecting the relevant variables which will take part in the classifier induction process.
Variable selection and transformation (reducing the number of features) gives some
advantages in a classifier induction process: reduction of the search space, easy explana-
tion capacity, improvement of the classification accuracy, and enhancement of the reliabil-
ity of its estimation. The transformation of the space of variables tries to construct a set of
new artificial variables which usually are mutually independent and capture much of the
information of the original space. Standard transformation of the space of variables
includes principal component analysis [32].

The variable selection techniques (see [25]) can be divided into two groups depending on
the nature of the search score used by the selection process: filter [45] and wrapper
approaches [35]. The scores used in the filter approaches are based on intrinsic character-
istics of the data [45]. The advantages of filter approaches are related to the time complex-
ity needed to make the selection. For example, a score based on information theory [6]
used to select variables in a filter manner (entropy and mutual information measures),
is correlation based feature selection (CFS) [26,64]. More examples based on information
theory are the approaches based on relevance concepts [60,61]. On the other hand, wrap-
per approaches use an estimated classification goodness measure as a score [35]. Thus, they
depend on the specific classifier used to estimate the classification goodness.

Variable selection is usually considered a preprocessing step, but it can also be consid-
ered a part of the structural learning process because the use of different feature subsets
inevitably imposes different models [13]. Besides, sometimes the selection could be per-
formed parallelly to the structural learning process (especially in the wrapper approaches).
The search process depends on the score and search strategy used. For a review of different
search strategies, see [38]. Although some of the methods proposed in this work perform
an implicit selection of variables, it is not our purpose to treat this process of selection
explicitly.

Structural learning usually involves a search process led by a score value in the space of
possible graph structures. The search process tries to optimize the score. It generally fin-
ishes when a local optimum is found. We consider that, structural learning can be carried
out in a filter or a wrapper way, depending on the score which guides the search process.
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These filter and wrapper concepts are adapted from the feature subset selection literature.
In our work, the filter approaches use the mutual information as a score and the wrapper
approaches use the estimated predictive accuracy.

The structural learning is constrained by a search space usually defined by means of the
kind of (in)dependency and dependencies allowed among the variables or structure com-
plexities. Depending on the search space, the algorithms explore, for example, naive Bayes
like structures [11,39,46], tree augmented networks [17,33], k-dependence networks [57],
semi naive Bayes [37,49], unrestricted networks [4,51], or Bayesian multinets [20].

Parametric learning consists in estimating parameters from the data. These parameters
model the dependence relations between variables, represented by the classifier structure.
One of the main advantages of CGNs with respect to BMNs is related to the number of
parameters needed to model a continuous domain. In contrast to the exponential number
of parameters necessary to learn a complete graph in BMNs (Oðr

Qn
i¼1riÞ,1 where ri and r

are the cardinality of the variables Xi and C respectively), the number of parameters nec-
essary to model a complete graph based on CGNs with continuous variables has a low
polynomial rate [19], Oðn2rÞ. Due to the fewer number of parameters, the CGN-based clas-
sifiers tend to has less sensitivity to the changes in the training set. They also adjust the
training data sets less than BMN-based classifiers. Therefore, in general, they should have
a lower variance and higher bias components in their associated decomposition of the
expected misclassification rate [16,36]. Besides, a lower number of parameters allows a
more reliable and robust computation of the necessary statistics.

Moreover, the parameters can be computed a priori, without taking into account the
structure to be considered. More specifically, the necessary parameters are an array of
class conditional covariance matrices, R = (R1, . . . , Rr), and another array of class condi-
tional mean vectors l = (l1, . . . , lr). The possibility of computing the parameters a priori
allows a more efficient backward structure search compared to BMN-based algorithms.

BMNs only handle discrete variables. The continuous variables must be discretized in
order to handle them. There is a loss of information in this discretization process [63]. The
same classifier induction algorithm obtains different classifiers and different classification
scores depending on the criteria used to discretize the data. It can be concluded that the
lost information depends on the discretization criteria used. On the other hand, CGNs
are only able to handle continuous variables assuming that they follow a Gaussian distri-
bution. Therefore, information is used erroneously if the real distribution of the variables
defers much from the Gaussian distribution and, thus, the estimation of p(c, x) tends to
have higher bias term in the estimated error decomposition. However, if the real distribu-
tion does not defer much from the Gaussian distribution, the estimated scores of classifiers
based on BMNs and CGNs obtain comparable results (see Section 3). In addition, the
assumption of normally distributed data can avoid the overfit problem when the structure
of the graph is too complex, and also tends to obtain an estimation of the joint distribution
with less variance due to the low polynomial rate of parameter.

The following subsections present classifier induction algorithms supported by different
CGN paradigms ordered by their structural complexity. The structural complexity is
related to the type and number of dependencies allowed between variables. Four types
1 In this work, Oð�Þ expressions denote complexity orders, sometimes in terms of time (or operations) and
sometimes in terms of number of parameters.
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of structures are presented: naive Bayes, tree augmented Bayesian network, k-dependence

Bayesian classifier and semi naive Bayes.
The least complex structure is the naive Bayes structure (NB structure), which assumes

that predictor variables are conditionally independent given the class. It is not mandatory
to include the entire set of predictor variables. The space of possible NB structure is Oð2nÞ.

The tree augmented Bayesian network structures (TAN structures) break with the strong
independence assumption made by NB structures, allowing probabilistic dependencies
among predictors. The TAN structures consist of graphs with arcs from the class variable
only to a subset of selected predictors, and with arcs between predictors taking into
account that the maximum number of parents of a variable is one plus class.

The k-dependence Bayesian classifier structure (kDB structure) extends TAN structures
allowing a maximum of k predictor parents plus the class for each predictor variable
(TAN structures are equivalent to kDB structures with k = 1).

Finally, the semi naive Bayes structure (Semi structure) introduces joint nodes, which are
the Cartesian product of a subset of original variables. Therefore, every component vari-
able of the joint nodes are mutually statistically dependent.

We say that a structure is complete when all variables are included and no more depen-
dencies can be allowed. If not, the structure is incomplete. A complete kDB structure and
an incomplete one with k = 2 are shown in Fig. 2.

The structures themselves represent domain knowledge and can be interpreted in terms
of conditional (in)dependencies, constructing the associated independence graph. In addi-
tion, they can be understood, from the point of view of the classification task, as simpli-
fications of the real joint distribution p(c, x). These simplifications are again based on the
relations of conditional dependency that are inferred from the structure, and they can be
represented by means of factorization. This factorization requires fewer parameters than
the joint distribution over all the variables.

In the next subsections, for each kind of structure previously introduced, a set of wrap-
per and filter classifier induction algorithms are presented.

2.1. Naive Bayes

The naive Bayes classifier (NB) [11,39,46] is characterized by the conditional indepen-
dence assumption between variables given the class. Moreover, all variables are included
in the model, so the classifier structure is given a priori: complete NB structure. The accu-
racy obtained with this classifier in its discrete version is surprisingly high in some
domains, even in data sets that do not obey the strong conditional independence assump-
tion [10].
C

X1 X3X2 X4

(a)

C

X1 X3X2 X4

(b)

C

X1 X3X2 X4

(c)

C

X1 X4(X2,X3)

(d)

Fig. 1. Examples of different complexity classifier structures: (a) NB, (b) TAN, (c) kDB, k = 2, (d) Semi.
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Fig. 2. Complete and incomplete kDB structures with k = 2: (a) complete structure, (b) incomplete structure.
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Thanks to the conditional independence assumption, the factorization of the joint prob-
ability is greatly simplified. A NB classifier structure example is shown in Fig. 1(a), where
each variable is a class-conditioned independent variable. After adapting Eq. (1) to NB
structure particularities, the following factorization is obtained:

P ðcjxÞ / P ðcÞ
Yn

i¼1

pðxi j cÞ ð6Þ

with pðxijcÞ �Nðlc
i ; r

c
i Þ to model continuous variables conditioned to the class. For

example, the factorization of Fig. 1(a) results in P(cjx) / P(c)p(x1jc)p(x2jc)p(x3jc)p(x4jc).
This algorithm, which we call wrapper selective naive Bayes (wSelectiveNB) [40], is a

modification of NB, which maintains its strong conditional independence assumption.
The structure of the classifier obtained with a wSelectiveNB can be an incomplete NB
structure. The wSelectiveNB algorithm performs a variable selection process in a wrapper

way, searching in the space of possible structures guided by estimated accuracy. wSelecti-
veNB is notably more accurate than NB, especially in domains with redundant variables.
It is well known that the redundancy among the predictive variables included in the model
could hurt the accuracy of the NB model [40].

As the search space has 2n structures, an exhaustive search of the space is not practical.
Hence, an alternative is to perform the search in a forward greedy way. In other words, the
algorithm starts from a structure with only the class variable. At each point in the search
process, the algorithm considers the addition of each variable not included in the current
naive Bayes model, selecting the best choice by estimated accuracy. The search continues
adding non-included variables until no option improves the accuracy of the last classifier
induced. In the worst case, the algorithm constructs and evaluates Oðn2Þ classifiers.

The filter version that we propose can obtain incomplete NB structures based on the
mutual information [6] between the predictor variables and the class. For this purpose, a
novel result about mutual information between Gaussian and multinomial variables is
presented.

Proposition 1. Let C be a multinomial random variable with r possible values and a

probability distribution given by P(C = c) = P(c). Let X be a random variable with a normal
density function of parameters l and r2. We assume that random variable X conditioned to

C = c follows a normal density with parameters lc and r2
c . The mutual information between

the variables X and C is given by

IðX ; CÞ ¼ 1

2
logðr2Þ �

Xr

c¼1

P ðcÞ logððrcÞÞ2Þ
" #
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Proof. The definition of mutual information verifies that

IðX ; CÞ ¼
Xr

c¼1

Z
x

pðc; xÞ log
pðc; xÞ

P ðcÞpðxÞ dx ¼
Xr

c¼1

Z
x

PðcÞpðxjcÞ log
pðxjcÞ
pðxÞ dx

¼
Xr

c¼1

PðcÞ
Z

x
pðxjcÞ log pðxjcÞdx�

Xr

c¼1

Z
x

P ðcÞpðxjcÞ log pðxÞdx

where the integral of the first term agrees with the entropy of a normal distributed vari-
able2 with mean lc and variance r2

c . The second term can be expressed as follows:Xr

c¼1

Z
x

PðcÞpðxjcÞ log pðxÞdx ¼
Z

x

Xr

c¼1

pðx; cÞ log pðxÞdx

¼
Z

x
pðxÞ log pðxÞdx ¼ � 1

2
logð2per2Þ

and then

IðX ; CÞ ¼
Xr

c¼1

PðcÞ � 1

2
logð2per2

cÞ
� �

þ 1

2
logð2per2Þ

¼ � 1

2
logð2peÞ � 1

2

Xr

c¼1

P ðcÞ logðr2
cÞ þ

1

2
logð2peÞ þ 1

2
logðr2Þ

¼ 1

2
logðr2Þ �

Xr

c¼1

P ðcÞ logðr2
cÞ

" #
�

We have made use of this proposition to design an algorithm which is a hybrid between
the filter and wrapper approaches. In order to construct a pure filter algorithm, we must
know the distribution of I(Xi; C) to fix a threshold value, s, and select the variables that
verify that I(Xi; C) P s. As far as we know, this distribution is unknown when Xi follows
a Gaussian distribution and C, a multinomial one.

Based on the results of Proposition 1, we propose an algorithm called the filter selective

ranking naive Bayes (fRankingNB), shown in Algorithm 1. fRankingNB ranks the predic-
tor variables in order of I(Xi; C). Afterwards, n naive Bayes classifiers are induced with the
m first variables in the ranking, from m = 1 to n. Finally, among the n classifiers, the best
naive Bayes constructed model is selected as the final model. fRankingNB, compared with
the wrapper version, has less time complexity: in the worst case, only OðnÞ classifiers are
constructed compared with Oðn2Þ of the wrapper approach.

fRankingNB has problems with redundant variables. It ranks variables in terms of
I(Xi; C), with I(Xi; C) P I(Xi+1; C), without considering the redundant information that
Xi shares with the variables Xj (j = 1, . . . , i � 1). Therefore, any variable Xi with redundant
information (with the variables already included in the model) and a great I(Xi; C) value,
could be added in the first steps of the forward greedy structural search process. This fact
could hurt the accuracy of the NB model [40].
2 The entropy of a normal distributed variable with mean l and variance r2 is given by [6]: � 1
2 logð2per2Þ.
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Due to the independence assumption, the factorization represented by the structure is
as simple as the NB factorization shown in Eq. (6), but only with the factors of the selected
variables.

Algorithm 1. fRankingNB algorithm

1 Compute the mutual information I(Xi; C) for i = 1, . . . , n, and use I(Xi; C) to sort the
variables from the one with the highest mutual information, X1:n, to the one with the
lowest mutual information, Xn:n.

2 Initialize predictor set @ to empty. Classify all cases as the most frequent class.
3 for i = 1 to n

4 Add the Xi:n variable to @. Construct the naive Bayes classifier with @ as predictor
variables and obtain its estimated accuracy.

5 Return the classifier associated with the variable set {X1:n, . . . , Xm:n}, where m = j@j,
which has achieved the best estimated accuracy in the search process.
2.2. Tree augmented naive Bayes

This subsection introduces the adaptations of two well-known BMN supported algo-
rithms, to the CGN paradigm. First, we introduce the filter tree augmented naive Bayes

(fTAN), which is our adaptation of Friedman et al.’s algorithm, proposed in [17], to the
conditional Gaussian distribution. Then, we present the wrapper tree augmented naive

Bayes (wTAN), which is our adaptation of Keogh and Pazzani’s algorithm, proposed in
[33]. Both algorithms induce classifiers with a TAN structure.

As in the original algorithm [17], fTAN finds the tree structure that maximizes the like-
lihood given the data. Hence, fTAN is considered a pure filter algorithm. Friedman et al.s
algorithm [17] follows the general outline of Chow and Liu’s procedure [5], but instead of
using the mutual information between two variables, it uses class conditional mutual infor-
mation between predictors given the class variable to construct the maximal weighted span-
ning tree. In order to adapt this algorithm to continuous variables, we need to calculate the
mutual information between every pair of continuous predictor variables conditioned by
the class variable. The following proposition shows how this computation can be done.

Proposition 2. Let C be a multinomial random variable. If the joint density function of

variables Xi and Xj conditioned to C = c follows a bivariate normal distribution with a vector

of means lijjc and a covariance matrix Rijjc, then the mutual information between variables Xi

and Xj conditioned to C verifies:

IðX i; X jjCÞ ¼ �
1

2

Xr

c¼1

P ðcÞ logð1� q2
cðX i;X jÞÞ

where qcðX i;X jÞ ¼
rijjcffiffiffiffiffiffiffiffiffi
r2

ijcr
2
jjc

p is the correlation coefficient between Xi and Xj conditioned to the

class value C = c.
Proof. From [6] we know that

IðX i; X jÞ ¼ �
1

2
logð1� q2ðX i;X jÞÞ
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Using this result in conjunction with the definition of mutual information between Xi

and Xj conditioned to C, we obtain

IðX i; X j j CÞ ¼
Xr

c¼1

P ðcÞIðX i; X jjC ¼ cÞ ¼ � 1

2

Xr

c¼1

P ðcÞ logð1� q2
cðX i;X jÞÞ �

The classifiers constructed by the fTAN algorithm have a complete TAN structure. The
fTAN starts from a complete NB structure and continues adding allowed arcs between
predictors until the complete TAN structure is formed. The arcs are included in order
of their conditional mutual information. The fTAN preserves the Chow–Liu algorithm
computational cost, requiring a polinomial time in the number of variables [5], and thus
maintaining NB’s computational simplicity. Two aspects must be taken into account.
First, the structural likelihood maximization does not necessarily imply a predictive error
minimization. Second, the fTAN constructs a complete TAN structure. Thus, some redun-
dant variables and irrelevant arcs could be added.

Keogh and Pazzani’s algorithm [33] implies a different approach to construct incom-
plete or complete TAN structures (incomplete or complete). More than a direct attempt
to approximate the underlying probability distribution, they solely concentrate on using
the same representation to improve the estimated classification accuracy. As the space
of possible structures is exponential with the number of variables, authors use a forward
greedy search algorithm in the space of allowed structures guided by the estimated accu-
racy. For each arc added to the network, Oðn2Þ classifier structures are considered and
evaluated, where n is the number of predicted variables. In each considered structure,
OðnÞ arcs may be added. Hence, the time complexity of Keogh and Pazzani’s algorithm
is Oðn3Þ. Thus, the adaptation of this algorithm to continuous domains, which we call
wTAN, has the same complexity. The wTAN algorithm should avoid the disadvantages
of fTAN, mentioned at the end of the previous paragraph.

The factorization of the implied TAN structures inducted by the presented wrapper and
filter algorithms is more complex than in the case of NB structures. This is due to the class
conditional independence property of groups of variables. The factorization is obtained
from Eqs. (1) and (2) taking into account the particularity that Pai = {Xj, C} or
Pai = {C}. For example, the factorization of Fig. 1(b) is P(cjx) / P(c)p(x1jx2,c)p(x2jx3,
c)p(x3jc)p(x4jx3,c).
2.3. k-Dependence Bayesian classifier

The kDB structures can be regarded as a spectrum of allowable dependence in a given
probabilistic graphical model with the NB structure at the most restrictive extreme and the
full BMN at the most general one.

This subsection introduces the adaptation of a well-known BMN supported algorithm,
as well as a novel algorithm. First, we present the proposed adaptation to the Gaussian
distribution of Sahami’s algorithm called the k-dependence Bayesian classifier [57]. We call
this adaptation the filter k-dependence Bayesian classifier (fkDB), because it leads the
structural learning by mutual information, and it obtains a complete kDB structure at dif-
ferent k values, as the original BMN-based algorithm. Second, we present a novel wrapper
algorithm called the wrapper k-dependence Bayesian classifier (wkDB), which can induce
incomplete or complete kDB structures.
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The kDB structure allows each predictor Xi to have not more than k predictor variables
as parents. There are two reasons to restrict the number of parents of a variable with
algorithms based on BMNs. Firstly, the reduction of the search space. Secondly, the prob-
ability estimated for a multinomial variable becomes more unreliable as additional multi-
nomial parents are added, because the size of the conditional probability tables increases
exponentially with the number of parents [57], and fewer cases are used to compute the
necessary statistics. The use of a CGN instead of a BMN avoids the problem of modelling
a structure without the restriction in the number of parents as the number of required
parameters grows quadratically. In addition, to estimate the parameters, the entire data
set is used instead of learning from a data set partition. CGNs allow the construction
of classifiers with a high number of dependencies between variables.

The algorithm proposed by Sahami [57] is a filter greedy algorithm which uses the class
conditional mutual information between variables I(Xi; XjjC) and the mutual information
I(Xi; C) between class and variables to lead the structure search process. The results
obtained, shown in Propositions 1 and 2, are used again in the adapted fkDB. First,
I(Xi; C) (i = 1, . . . , n) and I(Xi; XjjC) (i = 1, . . . , n) (j = i, . . . , n) are computed. The fkDB

algorithm starts from a structure with only the class variable. At each step, from the subset
of non-included predictor variables, the variable Xmax with the highest I(Xi; C) is added.
Next, arcs from the variables included in the structure to variable Xmax are added while
it is possible, as long as the maximum number of parents k is not surpassed. The arcs
are added following the order of I(Xmax; XjjC) from the greatest value to the smallest
one. The algorithm continues until a complete kDB structure is obtained. Thus, the redun-
dant variables and several irrelevant relations between variables are also inevitably added
and, therefore, the fkDB could perform worse in data sets with redundant variables.

We present the wkDB, a novel forward greedy wrapper classifier induction algorithm.
The wkDB algorithm has the same motivation as wTAN with respect to fTAN and it fol-
lows a similar procedure. The algorithm starts from a structure with only the class variable.
At each step, the arc which most improves the estimated accuracy of the current classifier is
added. The greedy search continues until no option makes any improvement. Our novel
wkDB algorithm is shown in Algorithm 2. For each arc added to the network, Oðn2Þ clas-
sifier structures are considered and evaluated, where n is the number of predicted variables.
In each considered structure, OðknÞ arcs may be added. Hence, the time complexity in the
worst case for wkDB is Oðkn3Þ, and when k ’ n the time complexity is Oðn4Þ. It is clear that
the computational complexity of the wkDB is the worst taking into account the algorithms
included, especially in the data sets with the highest number of variables.

Algorithm 2. wkDB algorithm

1 Initialize predictor set to empty. Classify all the cases as the most frequent class.
2 do{
3 Select the best option, evaluating each possible option through the correct classified

percentage:
4 (a) Each variable not included in the model is considered a new predictor. This new

predictor must be conditionally independent of the others given the class.
5 (b) Include an arc between predictors already included in the model, as long as its

inclusion fulfills the k-dependent Bayesian classifier structure.
6 }until No option improves the inducted classifier.



The classification process with kDB structures and TAN structures is done in a similar

way. For example, the factorization of Fig. 1(c) is P(cjx) / P(c)p(x1jx2,x3,c)p(x2jx3,
c)p(x3jc)p(x4jx2,x3,c).
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2.4. Semi naive Bayes

The semi structure [37,49] also breaks with the strong independence assumption of NB
structures. With this purpose, a new kind of variable, joint variable Yk, is considered. This
kind of variable consists of the joint of a subset of the original variables, where each of the
original variables can be in no more than one joint variable. Joint nodes represent a new
kind of dependency between the predictor variables. The fact that two variables, Xi and Xj,
compose a joint variable, Yk, implies that these two variables are correlated, assuming that
they are statistically dependents.

If a joint variable consist of multinomial random variables, the states of the joint var-
iable consist of the Cartesian product of the states of the multinomial random variables
[49]. The main problem of joint variables consisting of multinomial variables Xi is the esti-
mation of their class conditional probability tables. They have a number of exponential
states in mk, where mk is the number of original variables which constitute the joint var-
iable Yk. This fact could tend to compute unreliable or unstable parameters, which lead to
decrease the predictive accuracy.

On the other hand, if a joint variable Yk consist of a set of Gaussian variables, we pro-
pose that it follows a multidimensional normal distribution [1] conditioned to the class var-
iable. The joint density is given by

pðykjcÞ ¼ ð2pÞ�
1
2mk j Rc

kj
�1

2e�
1
2ðyk�lc

kÞ
tðRc

kÞ
�1ðyk�lc

kÞ ð7Þ

where Rc
k is the covariance matrix conditioned to a class value, and lc

k is the mean vector of
Yk conditioned to a class value. In order to model this density function, Oðm2

kÞ parameters
are needed. This fact avoids the problem of the probability table size needed to model the
joint variable relation with the class variable when the component variables are multino-
mial. Therefore, it is not mandatory to establish any limitation to the maximum number of
predictor variables at each joint node.

Depending on the direction of the greedy search process (forward and backward), Paz-
zani [49] presents two wrapper ways to detect dependencies among variables called forward

sequential selection and joining and backward sequential elimination and joining [49]. As
these algorithms are meant in order to handle discrete variables, we have adapted them
to the CGN paradigm, calling them wrapper semi naive Bayes forward (wSemiF) and wrap-

per semi naive Bayes backward (wSemiB). Our adaptation is based on Eq. (7), which is used
to model the class dependence relation of joint variables.

The wSemiF algorithm initializes the set of variables to be used to the empty set. It con-
siders two operators to carry out the search in the space of possible structures:

(1) Add a variable not used by the current classifier as a new variable. The added var-
iable is class conditioned and conditionally independent given the class with respect
to the other variables used in the current classifier.

(2) Join a variable not used by the current classifier to a variable currently used by it.
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At each step in the structural learning process, a set of candidate structures is consid-
ered. The set consist of all structures that can be inferred from the actual one, applying one
of the operators previously introduced once. Each structure contemplated is evaluated by
means of estimated accuracy. Afterwards, the best candidate is chosen. If the best option
does not improve the accuracy, the current classifier structure is returned.

The wSemiB is similar to wSemiF except in that wSemiB starts from a complete NB

structure, and, at each step, it considers two different operators:

(1) Remove a variable used by the current classifier.
(2) Join a variable used by the current classifier to another variable currently used by it.

This algorithm also considers the best option. According to Pazzani [49], the backward
search performs better than the forward search with multinomial variables.

In both algorithms, for each change in the network using the mentioned operators,
Oðn2Þ classifier structures are considered and evaluated. Besides, in the worst case, OðnÞ
changes could be done. Thus, in the worst case, the time complexity for both algorithms
is Oðn3Þ.

As a semi structure considers independent joint variables, the factorization of a semi
structure is very similar to NB structure factorization. It is obtained from Eq. (6) using
Eq. (7) to factorize terms like p(ykjc). For example, the factorization of the structure
shown in Fig. 1(d), assuming that Y1 = (X1), Y2 = (X2, X3) and Y3 = (X4), results in
P(cjx) / P(c)p(x1jc)p(x2,x3jc)p(x4jc).

2.4.1. Condensed semi naive Bayes

As we say above, the structures of the CGN-based classifiers presented can be seen as
simplifications of the factorization P(c, x) = P(c)p(xjc). Therefore, a complete graph can
be seen as the exact factorization of P(c, x). Wrapper condensed semi naive Bayes backward
(wCSemiB) structure is shown in Fig. 3. Quadratic discriminant analysis [31] taking into
account the class distribution P(C), and a CSemi structure represent an equivalent dis-
crimination rule, given the set of predictor variables included. The number of parameters
necessary to model a joint variable relation with the class is only quadratic to the number
of its components. Thus, in a joint variable Y, an arbitrarily large number of variables can
be included.

When designing the wCSemiB algorithm, we have taken into account that the use of a
backward structure search process costs the same as a forward process because the param-
eters needed can be computed a priori.
C

X

C

Y

Fig. 3. Condensed semi naive Bayes (CSemi structures) initial and final structures with Y � X.
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The novel wCSemiB is a wrapper greedy backward algorithm which, at each step, uses a
selection of the predictor variables as a multidimensional joint variable. It starts with all
variables but, at each step of the algorithm, one of the selected variables is excluded.
The algorithm is shown in Algorithm 3. In the worst case, the time complexity of the algo-
rithm is the same as in wSelectiveNB (Oðn2Þ).
Algorithm 3. wCSemiB algorithm

1 Initialize structure S to a semi naive Bayes structure with a unique joint node which
contains all the original predictor variables.

2 do {
3 Evaluate each possible classifier through the estimated classified percentage, consid-

ering all the structures with a unique joint node equal to the joint node of S without
a unique included variable.

4 Select as S the best option between S and the evaluated classifiers.
5 }until No option improves the inducted classifier.
3. Experimental results

In this section, we present the estimated predictive accuracies obtained with the CGN-
based classifier induction algorithms proposed. We compare the presented algorithms by
means of the estimated accuracies obtained. In addition, in order to study the nature of the
error of the CGN-based classifiers, Kohavi and Wolpert’s bias-variance decomposition
[36] is performed.

The results have been obtained in eleven UCI repository data sets [47], which only con-
tain continuous predictor variables. In order to interpret the results, we must take into
account that most parts of the UCI repository data sets are already preprocessed [34]:
in the data sets included, there are few irrelevant or redundant variables, and little noise
[59]. Thus, it is more difficult to obtain statistically significant differences between the
results of the algorithms in this type of data sets [59]. The main characteristics of the data
sets included are summarized in Table 1. It must be noted that none of the included data
sets, except WAVEFORM and a subset of variables of WINE, clearly obey the assumption
that class-conditioned variables follow a conditional Gaussian distribution.

Linear discriminant analysis (LDA) [15] is included in the study as a classic statistical
benchmark to compare it with the CGN-based classifiers presented. LDA also assumes
that the continuous data is sampled from a multivariate Gaussian density function. Table
2 shows that LDA obtains competitive results compared with the following set of well
known state-of-the-art-algorithms: k-NN [7] with different k, discrete versions of NB
[11] and TAN [17], ID3 [53] and C4.5 [54], and Multilayer Perceptron (MP) [56] (all of
them implemented in Weka 3.4.3 statistical package [62]). The estimated predictive accu-
racies summarized in Table 2 have been obtained, for each classifier at each data set, by a
10-fold cross-validation process. In order to learn the discrete classifiers presented in Table
2 (NB, TAN and ID3), data sets have been discretized with the Fayyad and Irani method
[14].

The parameters for the fkDB, wkDB, wSemiF and wSemiB algorithms are the
following:



Table 2
The estimated predictive accuracy averages obtained with a set of well known state-of-the-art algorithms

Data
set

k-NN Bayesian Trees MP LDA

1-NN 3-NN NB TAN ID3 C4.5

1 84.8 ± 3.5 84.8 ± 3.5 70.7 ± 4.1 71.4 ± 3.7 69.6 ± 3.8 76.6 ± 3.8 90.7 ± 3.8 87.7 ± 6.1
2 96.0 ± 0.6 95.9 ± 0.6 93.6 ± 0.6 96.1 ± 0.9 95.5 ± 0.7 96.9 ± 0.4 96.1 ± 1.5 90.0 ± 0.6
3 62.9 ± 6.3 61.7 ± 5.9 63.2 ± 10.5 63.2 ± 10.5 63.2 ± 10.5 68.7 ± 8.7 71.6 ± 7.4 69.3 ± 7.2
4 67.6 ± 7.0 70.3 ± 4.9 72.9 ± 3.2 72.9 ± 3.2 72.9 ± 3.2 71.9 ± 4.1 72.9 ± 6.1 73.5 ± 6.3

5 71.3 ± 8.2 46.9 ± 10.3 60.0 ± 3.2 60.0 ± 3.2 60.0 ± 3.2 81.9 ± 11.2 73.8 ± 12.4 53.8 ± 8.5
6 95.3 ± 5.5 95.3 ± 5.5 94.0 ± 5.8 94.7 ± 5.3 94.0 ± 6.6 96.0 ± 5.6 97.3 ± 3.4 98.7 ± 2.7

7 62.9 ± 6.3 61.7 ± 5.9 63.2 ± 10.5 63.2 ± 10.5 63.2 ± 10.5 68.7 ± 8.7 71.6 ± 7.4 69.3 ± 6.1
8 70.2 ± 4.7 72.7 ± 5.1 77.9 ± 3.5 78.9 ± 3.8 74.9 ± 3.8 73.8 ± 5.7 75.1 ± 5.5 76.9 ± 4.2
9 69.9 ± 4.5 71.5 ± 5.3 62.6 ± 4.2 74.2 ± 4.8 70.4 ± 4.4 72.6 ± 6.0 82.5 ± 3.1 79.8 ± 4.2

10 76.9 ± 2.0 80.3 ± 1.9 81.8 ± 1.5 83.2 ± 1.5 67.5 ± 1.2 76.0 ± 1.4 84.5 ± 0.9 86.3 ± 1.3

11 94.9 ± 4.1 94.9 ± 4.1 98.9 ± 2.3 98.3 ± 2.7 96.6 ± 2.9 93.8 ± 5.5 97.2 ± 4.0 100.0 ± 0.0

Average 79.1 77.6 76.1 78.5 75.6 80.4 83.0 80.5

The best results, in each data set, are marked in bold.

Table 1
Basic characteristics of the data sets: the number of different values of the class variable, the number of predictor
variables, and the number of instances

] Data set Num. class values Num. variables Num. instances

1 BALANCE 3 4 625
2 BLOCK 5 10 5474
3 BUPA 2 6 246
4 HABERMAN 2 3 307
5 HAYES 3 4 160
6 IRIS 3 4 150
7 LIVER 2 6 345
8 PIMA 2 8 768
9 VEHICLE 4 19 846

10 WAVEFORM 3 21 5000
11 WINE 3 13 179
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(1) fkDB with k = 1. We have checked that fkDB obtains the best scores at k = 1.
(2) wkDB with k = n � 1. Bear in mind that the number of parameters to model a com-

plete graph is only (Oðn2Þ). With k = n � 1, there are no limitations for the wkDB

algorithm. It is not mandatory to limit the structural complexity with the wkDB

algorithm. With k = n � 1, there are no limitations for the wkDB algorithm: We
allow each predictor variable to have the maximum number of parents, n � 1.

(3) wSemiF and wSemiB with r = n, where r is the maximum number of predictor vari-
ables allowed at each joint node. With r = n, there are no limitations for the wSemiF
and wSemiB algorithms: We allow joint nodes with n predictor variables (the max-
imum) to be constructed.

The experimental results are divided into four subsections. In Section 3.1, the estimated
predictive accuracies of the algorithms are presented in a summary table. Section 3.2
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summarizes a comparison of the experimental results in a comparative table. In order to
compare and evaluate the algorithms, Section 3.3 synthesizes the results of the previously
performed analysis. Finally, following the experimental setup of Kohavi and Wolpert [36],
the bias-variance decomposition of the obtained estimated errors is performed in Section
3.4 in order to study the nature of the error of the presented CGN-based classifiers.

3.1. Summary table of the predictive accuracy

The results, for each classifier in each data set, have been obtained by a 10-fold cross-
validation process in order to estimate the predictive accuracies. The estimated predictive
accuracy, for each classifier in each data set, is summarized in Table 3.

Table 3 also summarizes three different analyses of the estimated accuracies obtained.
The first analysis calculates for each classifier, the average estimated predictive accuracy
across all data sets. The Average row contains the results of the analysis. For example,
LDA has obtained an average predictive accuracy of 80.5 across all domains (see Table 3).

The second analysis is a hypothesis test in order to study whether the best classifier
induction algorithm, at each data set, has obtained statistically significant better score val-
ues with respect to the rest of the algorithms. For each data set, the algorithm with the best
average score is marked as the best: In case of a tie, the algorithm with the smallest stan-
dard deviation is marked. Then, based on the estimated predictive accuracies (obtained
with each fold of the 10-fold cross-validation process), we establish whether the previously
selected algorithm has obtained statistically significantly better results with respect to the
rest of algorithms using a non-paired Mann–Whitney test [12]. The study has been per-
formed at a = 10% and a = 5% significance levels, represented in Table 3 by ‘‘�’’ and
‘‘•’’ symbols, respectively. For example, in the HAYES data set, fTAN has obtained a pre-
dictive accuracy significantly worse at a = 10% than wSemiF, which has obtained the best
score.

The third analysis summarized in Table 3 ranks all the classifiers at each data set by
means of their mean scores. The Rank row shows, for each classifier, the rank average
across all the data sets. For example, the average rank of wSemiF is 2.73 across all
domains.

3.2. Comparative tables

The comparative tables compare each of classifier induction algorithms. The same sta-
tistical tests included in the summary tables at a = 10% are used to compare the results of
the inducted classifiers at each data set. Table 4 contains the summary of the analysis.

We say that an algorithm has won if it obtains better results in a data set than another
algorithm at a = 5% significance level in the non-paired Mann–Whitney test. On the other
hand, an algorithm has lost when it obtains a worse result under the same conditions.
Table 4 shows the number of times that each algorithm has won and lost against each
other algorithm. The lost row and the won column show the total number of times that each
algorithm has lost or won against the others. The won/lost rows show, for each algorithm,
the ratio between the total of times it won and the total of times it lost. For example,
wkDB has won twice and has lost once against fkDB. The total number of times that fTAN
has won and lost are seven and sixteen respectively, and the won/lost ratio is 0.44 (see
Table 4).



Table 3

Summary of the estimated accuracy

# Data set LDA Structures

Naive Bayes TAN kDB Semi

NB fRankingNB wSelectiveNB fTAN wTAN fkDB wkDB wSemiF wSemiB wCSemiB

1 BALANCE 87.7 ± 6.1 90.9 ± 4.2 90.9 ± 2.9 90.9 ± 3.0 89.1 ± 4.5 90.9 ± 2.2 • 88.2 ± 3.7 90.9 ± 2.6 91.7 ± 4.6 90.9 ± 3.1 91.7 ± 3.1

2 BLOCK • 90.0 ± 0.6 • 90.4 ± 0.8 • 92.7 ± 0.7 • 94.3 ± 1.0 • 92.5 ± 1.4 • 94.8 ± 0.4 • 92.7 ± 0.7 95.6 ± 0.7 95.4 ± 1.0 95.0 ± 1.0 94.2 ± 0.6

3 BUPA 69.3 ± 7.2 55.9 ± 13.3 • 59.2 ± 5.9 � 62.6 ± 6.1 • 61.1 ± 5.9 • 57.9 ± 6.0 • 61.7 ± 6.2 63.7 ± 7.1 65.5 ± 6.8 66.7 ± 6.7 64.6 ± 6.4

4 HABERMAN 73.5 ± 6.3 74.6 ± 8.1 74.8 ± 8.6 74.7 ± 12.4 75.8 ± 6.0 75.4 ± 7.0 75.8 ± 9.7 75.5 ± 8.5 75.8 ± 7.2 75.8 ± 3.1 76.2 ± 9.9

5 HAYES • 53.8 ± 8.5 80.6 ± 12.0 80.0 ± 10.4 80.0 ± 11.8 � 74.4 ± 10.3 80.0 ± 10.4 � 74.4 ± 10.6 80.0 ± 7.8 82.5 ± 8.3 76.9 ± 6.3 76.3 ± 6.7

6 IRIS 98.7 ± 2.7 96.0 ± 5.3 � 96.0 ± 3.3 � 96.0 ± 3.3 97.3 ± 3.3 98.0 ± 3.1 97.3 ± 4.4 98.0 ± 3.1 98.0 ± 3.1 98.0 ± 4.3 98.0 ± 3.1

7 LIVER 69.3 ± 6.1 • 55.9 ± 5.6 • 56.8 ± 8.4 • 58.0 ± 6.0 • 61.2 ± 7.3 • 57.9 ± 9.1 • 61.7 ± 6.4 • 58.6 ± 6.0 • 58.0 ± 5.7 61.7 ± 5.7 67.8 ± 7.4

8 PIMA 76.9 ± 4.2 76.2 ± 4.6 76.7 ± 4.3 76.6 ± 7.3 76.6 ± 4.6 76.7 ± 6.4 75.8 ± 6.4 77.6 ± 3.6 76.7 ± 4.4 77.3 ± 4.4 76.2 ± 4.4

9 VEHICLE 79.8 ± 4.2 • 47.3 ± 6.7 • 49.1 ± 5.0 • 56.7 ± 3.8 • 78.4 ± 3.4 • 75.1 ± 4.7 • 78.6 ± 2.2 • 74.1 ± 2.8 89.0 ± 4.0 90.7 ± 2.6 90.7 ± 2.6

10 WAVEFORM 86.3 ± 1.3 • 80.9 ± 2.4 • 81.2 ± 2.6 • 82.5 ± 1.4 • 82.8 ± 1.8 • 84.9 ± 0.9 • 82.7 ± 1.5 • 84.4 ± 1.0 87.3 ± 1.4 87.5 ± 1.8 87.5 ± 1.8

11 WINE 100.0 ± 0.0 98.9 ± 2.3 � 97.8 ± 3.7 99.4 ± 1.7 100.0 ± 0.0 98.9 ± 2.3 99.4 ± 1.7 99.4 ± 1.7 99.4 ± 1.7 98.9 ± 2.3 99.4 ± 4.4

Average 80.5 77.0 77.7 79.3 80.8 81.0 80.8 81.6 83.6 83.6 84.0

Rank 5.36 8.64 7.64 6.27 6.45 5.64 6.36 3.91 2.73 3.09 3.27

Best estimated accuracy in each data set (in bold) x� s.
a = 5% significance level in a non-paired Mann–Whitney test •.
a = 10% significance level in a non-paired Mann–Whitney test �.
The first row of the table contains the type of structures, and the second row, the classifier induction algorithms associated with each structure.
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érez

et
a

l.
/

In
tern

a
t.

J
.

A
p

p
ro

x
.

R
ea

so
n

.
4

3
(

2
0

0
6

)
1

–
2

5
17



Table 4
Comparative table of the estimated predictive accuracies: summary of the times that each algorithm has won and lost with respect to another one

Structures Losers

Naive Bayes TAN kDB Semi

WinnersnLosers LDA NB fRankingNB wSelectiveNB fTAN wTAN fkDB wkDB wSemiF wSemiB wCSemiB Won

LDA 0 4 4 2 3 4 3 3 1 1 0 25

NB 1 0 0 0 0 0 0 0 0 0 0 1
fRankingNB 2 1 0 0 0 0 0 0 0 0 0 3
wSelectiveNB 2 2 2 0 1 0 1 0 0 0 0 8

fTAN 2 2 1 1 0 0 0 1 0 0 0 7
wTAN 2 3 3 2 1 0 2 0 0 0 0 13

fkDB 2 3 2 1 0 0 0 1 0 0 0 9
wkDB 2 3 3 3 1 1 2 0 0 0 0 15

wSemiF 3 3 3 3 3 3 4 2 0 0 0 24
wSemiB 3 3 4 2 3 3 3 2 0 0 0 23
wCSemiB 3 4 5 3 4 4 4 3 1 1 0 32

Lost 22 28 27 17 16 15 19 12 2 2 0

Won/lost 1.14 0.04 0.11 0.47 0.44 0.87 0.47 1.25 12.0 11.50 1
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3.3. Synthesis of the analysis

The synthesis of the analysis of the results is performed bearing in mind the Tables 2–4.
Although most of the data sets do not obey the Gaussian assumption, and taking into
account the results of the state-of-the-art algorithms set presented in Table 2, the compet-
itive results of the CGN-based algorithms presented (see Table 3) must be highlighted.

NB structure-based classifiers (NB, fRankingNB and wSelectiveNB) seem to perform
worse than the rest of the structures. They obtain (see Table 3) the worst predictive
accuracy average. Besides, NB and fRankingNB obtains the worst ranking averages
and won/lost ratios (see Tables 3 and 4), across all data sets.

The comparison between the NB structure-based classifier induction algorithms clearly
shows that wSelectiveNB performs better than NB and fRankingNB. wSelectiveNB
obtains statistically significantly better results than NB and fRankingNB in two data sets.
Besides, wSelectiveNB never obtains significantly worse results than NB and fRankingNB.
wSelectiveNB also has the best won/lost ratio. It also obtains the best ranking average
across all the data sets. On the other hand, NB classifier seems to induce the worst classi-
fiers taking into account all the presented classifiers. It shows the worse predictive accu-
racy average and ranking average. Besides, NB has lost more often and won less often
than the rest of the CGN-based classifiers and LDA.

TAN structure-based algorithms induce classifiers which seem to perform better than
NB structure-based algorithms, specially wTAN (fTAN obtains slightly worst rank aver-
age and won/lost ratio than wSelectiveNB). They also perform similarly to kDB structure-
based ones. wTAN seems to behave a little better than fTAN. They obtain similar predic-
tive accuracy averages, but wTAN obtains better ranking average and won/lost ratio, and
it never lost against fTAN.

wkDB shows competitive results in the data sets presented, especially with predictive
accuracy. It obtains the best results without taking into account the semi structure-based
algorithms. wkDB also shows a competitive won/lost ratio. fkDB (with k = 1) performs
similar to fTAN algorithm. In overall, kDB structure-based algorithms seem to perform
slightly better than TAN structure-based algorithms. As in the TAN structure-based algo-
rithms, in the kDB structure-based algorithms, wkDB seems to perform better than fkDB.

Semi structure-based algorithms obtain the best average predictive accuracy across all
data sets taking into account all classifiers presented and the LDA. They show quite sim-
ilar behavior among all the data sets. Moreover, they have the best ranking average. Semi
structure-based algorithms also have won more times and lost fewer times than the other
structure-based algorithms.

wCSemiB is the algorithm that seems to induce better classifiers. It obtains the best
average values across all data sets. It also obtains the third best ranking average (see Table
3). The wCSemiB algorithm shows the highest number of significantly best results and the
lowest number of worse results with both scores (see Table 4). wCSemiB has never lost

against any other algorithm. Moreover, wCSemiB obtains a better estimated predictive
accuracy average than the classifiers included in Table 2.

3.4. Bias-variance decomposition of CGN-based classifiers

In this section, we perform the bias-variance decomposition in order to study, in each
data set, the behavior of the expected misclassification error rate E of the CGN-based



Table 5
Bias-variance decomposition of the expected misclassification error rate

# Data set Structures

Naive Bayes TAN kDB Semi

NB fRankingNB wSelectiveNB fTAN wTAN fkDB wkDB wSemiF wSemiB wCSemiB

1 BALANCE 6.8 + 3.7 6.0 + 3.3 7.5 + 4.5 7.0 + 4.0 8.2 + 4.1 7.9 + 3.9 7.8 + 3.5 8.5 + 4.9 9.7 + 0.6 8.0 + 3.2
2 BLOCK 6.5 + 2.3 6.1 + 1.9 4.1 + 1.1 5.8 + 1.9 3.1 + 1.4 5.1 + 1.9 3.7 + 2.0 4.2 + 2.6 3.5 + 1.7 3.9 + 2.1
3 BUPA 28.2 + 16.7 47.0 + 0.0 31.3 + 11.6 42.8 + 7.7 25.1 + 18.4 28.5 + 11.5 30.4 + 12.6 35.1 + 11.0 23.6 + 16.7 22.1 + 18.8
4 HABERMAN 28.4 + 1.0 22.5 + 0.0 21.1 + 1.2 29.7 + 3.0 22.3 + 2.2 22.6 + 2.0 18.8 + 3.7 24.1 + 2.3 21.8 + 2.5 21.7 + 2.9
5 HAYES 17.3 + 15.7 19.8 + 19.7 22.2 + 20.4 24.4 + 19.7 35.1 + 15.6 17.6 + 19.6 33.7 + 16.5 24.8 + 20.5 29.9 + 20.0 22.6 + 17.2
6 IRIS 3.5 + 0.9 2.6 + 3.3 3.6 + 2.7 0.4 + 1.7 2.1 + 3.2 2.4 + 1.6 6.2 + 1.3 2.5 + 2.7 2.8 + 1.1 4.1 + 2.1
8 LIVER 27.8 + 17.8 41.7 + 0.0 37.5 + 10.9 24.4 + 14.8 29.8 + 12.5 40.4 + 10.1 25.8 + 17.8 33.0 + 14.3 22.7 + 15.7 25.9 + 14.6
9 PIMA 21.9 + 3.6 31.0 + 1.6 18.9 + 4.5 21.7 + 5.5 19.0 + 5.6 21.5 + 5.1 22.6 + 5.3 20.4 + 5.5 19.6 + 6.1 18.9 + 7.5
10 VEHICLE 43.1 + 11.4 49.7 + 13.6 28.4 + 19.9 17.4 + 7.3 23.7 + 17.7 18.2 + 6.7 19.8 + 18.5 12.9 + 11.0 11.7 + 7.0 10.0 + 8.1
11 WAVEFORM 18.1 + 0.7 13.9 + 3.6 13.9 + 4.7 14.6 + 3.4 10.6 + 7.1 13.1 + 4.4 10.9 + 6.8 11.6 + 6.4 10.9 + 4.9 11.8 + 4.7
12 WINE 0.1 + 1.3 6.0 + 3.4 2.4 + 2.9 0.4 + 2.3 0.7 + 2.7 0.4 + 2.0 1.2 + 2.9 1.0 + 4.5 2.2 + 7.3 2.7 + 6.3

Average 18.3 + 6.8 22.4 + 4.6 17.4 + 7.7 17.1 + 6.5 16.3 + 8.2 16.2 + 6.3 16.4 + 8.3 16.2 + 7.8 14.4 + 7.6 13.8 + 8.0
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Fig. 4. Bias-variance decomposition examples. (a) VEHICLE data set. (b) WINE data set. (c) Average across all
data sets.

A. Pérez et al. / Internat. J. Approx. Reason. 43 (2006) 1–25 21
classifiers presented. The bias-variance decomposition can be useful to explain the behav-
iors of the different algorithms [59]. The concept of bias-variance decomposition was intro-
duced to machine learning for mean squared error by German et al. [21]. Later versions for
zero-one-loss functions were given by Friedman [16], Kohavi and Wolpert [36], Domingos
[9] and James [28].

The decompositions have been performed following Kohavi and Wolpert’s proposal
[36] with parameters N = 20 and m = 1/3jBDj, where N is the number of training sets,
m is its size and jBDj is the size of the data set. We have set N = 20 because the bias esti-
mation is precise enough for this value (see Fig. 1 of [36]), and m = 1/3jBDj to ensure a
minimum training set size which could avoid overfitting problems. Kohavi and Wolpert
choose a set of databases with at least 500 instances in order to ensure accurate estimates
of the error. In order to interpret the results, we must take into account that only the BAL-
ANCE, BLOCK, PIMA, VEHICLE and WAVEFORM data sets fulfill this condition (see
Table 1). Thus, the conclusions obtained with the data sets mentioned are the most impor-
tant ones.

The bias-variance decomposition proposed in [36] is as follows:

E ¼
X

x

PðxÞðr2
x þ bias2

x þ varxÞ ð8Þ

where x is an instance of the test set, r2
x is the ‘‘intrinsic’’ target noise, bias2

x is the square
bias and varx is the variance associated with instance x. bias2 ¼

P
xP ðxÞbias2

x and
var ¼

P
xPðxÞvarx are the averaged squared bias and variance (or bias and variance terms

of the decomposition). The target noise is the expected cost of the Bayes-optimal classifier.
Therefore, it is independent of the learning algorithm. In practice, if there are two in-
stances in the test set with the same configuration for the predictors and a different value
for the class, the estimated ‘‘intrinsic’’ noise is positive, otherwise is zero [36]. Thus, it is
considered zero given the data sets selected. The bias component can be seen as the error
due to the incorrect fitness of the hypothesis density function (modeled by the classifier) to
the target density function (the real density of the data). On the other hand, the variance
component measures the variability of the hypothesis function, which is independent of
the target density function. It can be seen as a measure of the learning algorithm’s sensi-
tivity to changes in the training set. From these concepts, we can hypothesize that bias and
variance terms become lower and higher, respectively, as the number of parameters needed
to model the classifier grows (as classifier complexity increases).
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Table 5 shows the results of the decomposition obtained for each classifier in each data
set. It also includes an additional row which contains the averages for each classifier across
all data sets. For example fTAN obtains a bias2 = 7.0 and var = 4.0 decomposition for
BALANCE, and an average decomposition across all the data sets of bias2 = 17.1 and
var = 6.5.

From Table 5, one can conclude, in general, that the bias terms of the CGN-based clas-
sifiers presented are higher than the variance term. This can be due to the low number of
parameters needed to model even the most complex classifiers, which can be interpreted as
low sensitivity. Besides, it can be seen that, on average (see row Average of Table 5 and
Fig. 4(c)), the bias term decreases with an increase of model complexity, whereas the var-
iance remains almost constant.

In order to illustrate the behavior of the classifiers taking into account the different
complexities, two different behaviors must be underlined. They are illustrated in Figs.
4(a) and (b) respectively (which correspond to the rows labeled with VEHICLE and
WINE of Table 5). Fig. 4(a) shows that the bias term decreases if the complexity increases.
This could be due to the great adjustment of the more complex models, which can approx-
imate the target densities better. The variance term is always lower than the bias. Finally,
the variance of the filter algorithms seems to be slightly lower compared to the wrapper
algorithms.

Fig. 4(b) shows the opposite behavior for the bias term: it grows if complexity grows.
On the other hand, the variance shows an erratic behavior. This could be due to the overfit
of the train set (WINE has only 179 cases and, besides, it can be considered an easy data
set). It must also be highlighted that only in WINE is the variance of most of the algo-
rithms higher than the bias term. As we explained before, the behavior of the average
across all the data sets at each algorithm, shown in Fig. 4(c), is consistent with the behav-
ior in Fig. 4(a): the bias term decreases with the complexity whereas the variance remains
almost constant.

4. Conclusions and future work

In this work, a battery of filter and wrapper classifiers, based on CGNs, is proposed to
deal with continuous variables. We have adapted, from the BMN to the CGN paradigm,
the following algorithms: naive Bayes, selective naive Bayes, filter tree augmented net-
work, wrapper tree augmented network, filter k-dependencies Bayesian classifier, wrapper
semi naive Bayes forward, and wrapper semi naive Bayes backward. Three novel algo-
rithms have also been proposed: filter ranking naive Bayes, wrapper k-dependence Bayesian

classifier and wrapper condensed semi naive Bayes backward. Besides, in order to make the
filter algorithms possible, two new results for mutual information are introduced for
Gaussian distributed variables.

The classifiers have been compared in twelve data sets by means of the estimated pre-
dictive accuracy. In short, taking into account the data sets included, the family of semi

structure-based algorithms obtains the best results with both scores. They also obtain quite
competitive results compared to the state-of-the-art classifiers included. The novel con-

densed semi naive Bayes backward seems to be the best algorithm for classification, taking
into account the analysis of Section 3. wSemiF and wSemiB behave like wCSemiB. The
competitive results of the novel wrapper k-dependence Bayesian classifier should also be
highlighted.
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The behavior of the bias and variance terms in the expected error rate decomposition
[36] shows that, if the model complexity increases, the bias term decreases and the variance
remains constant.

A future work line, related to the wrapper approach, consists in adapting more classi-
fiers supported by BMN to directly operate with continuous variables. Randomized heu-
ristics (such as genetic algorithms [23] or estimation distribution algorithms [41]) could be
used as the search engine in the space of classifier structures.
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