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Multi-dimensional classification aims at finding a function that assigns a vector of class

values to a given vector of features. In this paper, this problem is tackled by a general family

of models, called multi-dimensional Bayesian network classifiers (MBCs). This probabilistic

graphical model organizes class and feature variables as three different subgraphs: class

subgraph, feature subgraph, andbridge (fromclass to features) subgraph.Under the standard

0–1 loss function, the most probable explanation (MPE) must be computed, for which we

provide theoretical results in both general MBCs and in MBCs decomposable into maximal

connected components. Moreover, when computing the MPE, the vector of class values is

covered by following a special ordering (gray code). Under other loss functions defined in

accordancewith adecomposable structure,wederive theoretical results onhowtominimize

the expected loss. Besides these inference issues, the paper presents flexible algorithms for

learning MBC structures from data based on filter, wrapper and hybrid approaches. The

cardinality of the search space is also given. New performance evaluation metrics adapted

from the single-class setting are introduced. Experimental results with three benchmark

data sets are encouraging, and they outperform state-of-the-art algorithms for multi-label

classification.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we are interested in classification problems where there are multiple class variables C1, . . . , Cd. Therefore
the multi-dimensional classification problem consists of finding a function h that assigns to each instance given by a vector

of m features x = (x1, . . . , xm) a vector of d class values c = (c1, . . . , cd):

h : ΩX1 × · · · × ΩXm → ΩC1 × · · · × ΩCd

(x1, . . . , xm) �→ (c1, . . . , cd)

Weassume that Ci is a discrete variable, for all i = 1, . . . , d, withΩCi denoting its sample space and I = ΩC1 ×· · ·×ΩCd ,

the space of joint configurations of the class variables. Analogously, ΩXj is the sample space of the discrete feature variable

Xj , for all j = 1, . . . ,m.
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Many application domains include multi-dimensional classification problems: a text document or a semantic scene can

be assigned to multiple topics, a gene can have multiple biological functions, a patient may suffer from multiple diseases,

a patient may become resistant to multiple drugs for HIV treatment, a physical device can break down due to multiple

components failing, etc.

Multi-dimensional classification is a more difficult problem than the single-class case. The main problem is that there

is a large number of possible class label combinations, |I|, and a corresponding sparseness of available data. In a typical

scenario where an instance x is assigned to the most likely combination of classes (0–1 loss function), the aim is to compute

arg maxc1,...,cd p(C1 = c1, . . . , Cd = cd|x). It holds that p(C1 = c1, . . . , Cd = cd|x) ∝ p(C1 = c1, . . . , Cd = cd, x),
which requires |I| · |ΩX1 × · · · × ΩXm | parameters to be assigned. In the single-class case, |I| is just |ΩC | rather than

|ΩC1 × · · · × ΩCd |. Besides it having a high cardinality, it is also hard to estimate the required parameters from a (sparse)

data set in this d-dimensional space |I|. The factorization of this joint probability distributionwhenusing a Bayesian network

(BN) can somehow reduce the number of parameters required and will be our starting point.

Standard (one-class) BN classifiers cannot be straightforwardly applied to this multi-dimensional setting. On the one

hand, the problem could be transformed into a single-class problem if a compound class variable modeling all possible

combinations of classes is constructed. However, this class variable would have too many values, and even worse, the

model would not capture the structure of the classification problem (dependencies among class variables and also among

class variables and features). On the other hand, we could approach the multi-dimensional problem by constructing one

independent classifier for each class variable. However, thiswouldnot capture the interactions among class variables, and the

most likely class label for each independent classifier – marginal classifications – after being assembled as a d-dimensional

vector, might not coincide with the most likely vector of class labels of the observed data.

As we will show below, the few proposals found in the literature onmulti-dimensional BN classifiers (MBCs) are limited.

In this paper, we propose a comprehensive theory of MBCs, including their extended definition, learning from data algo-

rithms that cover all the possibilities (wrapper, filter and hybrid score + search strategies), and results on how to perform

total abduction for the exact inference of themost probable explanation (MPE). MPE computation is themain aim in 0–1 loss

function classification problems but involves a high computational cost in the multi-dimensional setting. Several contribu-

tions are designed here to reduce this computational load: the introduction of special decomposedMBCs, their extension to

non 0–1 loss function problems that respect this decomposition, and a particular and favorable way of enumerating all the

(c1, . . . , cd) configurations instead of using a brute-force approach.

The paper is organized as follows: Section 2 defines MBCs. Section 3 covers different contributions for the MPE com-

putation and introduces a restricted structure of decomposable MBCs where MPE is easier to compute. Section 4 extends

these ideas to compute the Bayes decision rule with certain loss functions that we call additive CB-decomposable loss func-

tions. Section 5 presents performance measures suitable for evaluating MBCs. Section 6 describes wrapper, filter and hybrid

algorithms to learn MBCs from data. It also provides the cardinality of the MBC structure space where these algorithms

search for. Section 7 shows experimental results onMPEwith simulatedMBCs. Section 8 contains experimental results with

three benchmark data sets. Section 9 reviews the work related to multi-dimensional classification, with special emphasis

on papers using (simpler) MBCs. Finally, Section 10 sums up the paper with some conclusions.

2. Multi-dimensional Bayesian network classifiers

A Bayesian network over a finite set V = {Z1, . . . , Zn}, n ≥ 1, of discrete random variables is a pair B = (G, Θ),
where G is an acyclic directed graph whose vertices correspond to the random variables and Θ is a set of parameters

θz|pa(z) = p(z|pa(z)), where pa(z) is a value of the set of variables Pa(Z), parents of the Z variable in the graphical structure

G [42,36]. B defines a joint probability distribution pB over V given by

pB(z1, . . . , zn) =
n∏

i=1

p(zi|pa(zi)). (1)

A multi-dimensional Bayesian network classifier is a Bayesian network specially designed to solve classification problems

includingmultiple class variables inwhich instances described by a number of features have to be assigned to a combination

of classes.

Definition 1 (Multi-dimensional Bayesian network classifier). In an MBC denoted by B = (G, Θ), the graph G = (V,A) has
the set V of vertices partitioned into two sets VC = {C1, . . . , Cd}, d ≥ 1, of class variables and VX = {X1, . . . , Xm}, m ≥ 1,

of feature variables (d + m = n). G also has the set A of arcs partitioned into three sets, AC , AX , ACX , such that:

• AC ⊆ VC × VC is composed of the arcs between the class variables having a subgraph GC = (VC,AC) –class subgraph– of

G induced by VC .• AX ⊆ VX × VX is composed of the arcs between the feature variables having a subgraph GX = (VX ,AX ) –feature

subgraph– of G induced by VX .
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Fig. 1. An example of an MBC structure with its three subgraphs.

Fig. 2. Examples of structures belonging to different families of MBCs. (a) Empty–emptyMBC; (b) Tree–treeMBC; (c) Polytree–DAGMBC.

• ACX ⊆ VC×VX is composedof thearcs fromtheclass variables to the featurevariableshavinga subgraphGCX = (V,ACX )
–bridge subgraph– of G connecting class and feature variables.

This definition extends that in van der Gaag and deWaal [70], which requires two additional conditions (see Section 6.4).

Fig. 1 shows an example of an MBC structure and its different subgraphs.

Note that different graphical structures for the class and feature subgraphs may give rise to different families of MBCs.

In general, class and feature subgraphs may be: empty, directed trees, forest of trees, polytrees, and general directed

acyclic graphs (DAG). Thedifferent families ofMBCswill bedenotedasclass subgraph structure-feature subgraph
structureMBC, where the possible structures are the above five. Thus, if both the class and feature subgraphs are directed

trees, then this subfamily is a tree–treeMBC. Other examples are shown in Fig. 2.

Note that the well-known Bayesian classifiers: naïve Bayes [40], selective naïve Bayes [37], tree-augmented naïve Bayes

[24], selective tree-augmented naïve Bayes [3] and k-dependence Bayesian classifiers [53] are special cases of MBCs where

d = 1. Several MBC structures have been used in the literature: tree–treeMBC [70], polytree–polytreeMBC [15] and

a special DAG–DAGMBC [51].

The following theorem extends the well-known result that states that given a 0–1 loss function in a (one-dimensional)

classification problem, the Bayes decision rule is to select the class label thatmaximizes the posterior probability of the class

variable given the features. This supports the use of the percentage of correctly classified instances (or classifier accuracy)

as a performance measure. In Section 5 we extend the definition of accuracy to our multi-dimensional setting.

Theorem 1. Let λ(c′, c) be a 0–1 loss function that assigns a unit loss to any error, i.e. whenever c′ �= c, where c′ is the

d-dimensional vector of class values output by a model and c contains the true class value and assigns no loss to a correct

classification, i.e. when c′ = c.

Let R(c′|x) = ∑|I|
j=1 λ(c′, cj)p(cj|x) be the expected loss or conditional risk, where x = (x1, . . . , xm) is a vector of feature

values and p(cj|x) is the joint posterior probability, provided by a model, of the vector of the class value cj given the observation x.

Then the Bayes decision rule that minimizes the expected loss R(c′|x) is equivalent to selecting the c′ that maximizes the

posterior probability p(c′|x), that is,
min
c′

R(c′|x) ⇔ max
c′

p(c′|x)

Proof. The proof is straightforward and analogous to the single-class variable case [22] using C = (C1, . . . , Cd) as the

(d-dimensional) class variable, i.e.

R(c′|x) =
|I|∑
j=1

λ(c′, cj)p(cj|x) = ∑
cj �=c′

p(cj|x) = 1 − p(c′|x). �
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Fig. 3. An example of MBC structure.

Therefore, the multi-dimensional classification problem with a 0–1 loss is equivalent to computing a type of maximum

a posteriori (MAP), known asmost probable explanation (MPE), also called total abduction [42]. This has been shown to be a

NP-hard problem for Bayesian networks [56]. Approximating the MPE problem is also NP-hard [1].

However, the special structure that defines the MBC will alleviate somewhat MPE computation under certain circum-

stances, as shown in the next section.

3. Theoretical results on MPE

The NP-hardness of MPE computation in general Bayesian networks has led to the design of both exact and approximate

algorithms. Exact algorithms include approaches using junction trees [13], variable elimination [38,17], and branch-and-

bound search [34,39]. Approximate algorithms cover the use of genetic algorithms [26,52], stochastic local search algorithms

[33,31], the so-calledmini-bucket approachbasedonvariable elimination [18], best-first search [57] and linear programming

[54].

MPE computation when having d class variables increases the number of possible configurations exponentially, i.e. given

evidence x we have to get

c∗ = (c∗1 , . . . , c∗d ) = arg max
c1,...,cd

p(C1 = c1, . . . , Cd = cd|x). (2)

De Waal and van der Gaag (2007) show that the classification problem can be solved in polynomial time if the feature

subgraph has bounded treewidth and the number of class variables is restricted (see their Theorem 1). This implies that the

connectivity of the class subgraph is irrelevant for the feasibility of classification.

This section reports two major contributions. On the one hand, thanks to the specific structure of MBCs and a special

way (gray code) of moving within the I space of joint configurations of the class variables, we will be able, despite this high

complexity, to reduce the computations performed to obtain the posterior probability p(C1 = c1, . . . , Cd = cd|x) and finally

get the MPE. This will be feasible for a small number d of classes, since gray codes are helpful for exhaustively enumerating

the I space. An upper bound for the savings achieved with respect to a brute-force approach is also provided. On the other

hand, when the graph union of class and bridge subgraphs of anMBC structure is decomposed into a number, r, of connected

subgraphs, we prove that the maximization problem for computing the MPE can be transformed into r maximization

problems operating in lower dimensional spaces. These simpler structures will be called class-bridge decomposable MBCs.

Analogous results with gray codes in this case are also presented.

The main motivation for trying to enumerate the I space lies in the similarity between the posterior probability of two

configurations that have the same class values in all components but one. This is shown in Example 1.

Example 1. Given the MBC structure of Fig. 3, where all variables are assumed to be binary (0/1) and x = (x1, x2, x3, x4),
the posterior probabilities of configurations (0, 0, 0) and (1, 0, 0) for (C1, C2, C3) satisfy:

p((0, 0, 0)|x)
p((1, 0, 0)|x) = p(0, 0, 0, x)

p(1, 0, 0, x)

= p(C1 = 0|C2 = 0)p(C2 = 0)p(C3 = 0|C2 = 0)p(X1 = x1|C1 = 0, C2 = 0)

p(C1 = 1|C2 = 0)p(C2 = 0)p(C3 = 0|C2 = 0)p(X1 = x1|C1 = 1, C2 = 0)

· p(X2 = x2|C1 = 0, C2 = 0, C3 = 0)p(X3 = x3|C3 = 0, X1 = x1)

p(X2 = x2|C1 = 1, C2 = 0, C3 = 0)p(X3 = x3|C3 = 0, X1 = x1)

· p(X4 = x4|C2 = 0, C3 = 0, X1 = x1)

p(X4 = x4|C2 = 0, C3 = 0, X1 = x1)

= p(C1 = 0|C2 = 0)p(X1 = x1|C1 = 0, C2 = 0)p(X2 = x2|C1 = 0, C2 = 0, C3 = 0)

p(C1 = 1|C2 = 0)p(X1 = x1|C1 = 1, C2 = 0)p(X2 = x2|C1 = 1, C2 = 0, C3 = 0)

This may be generalized in the following proposition.
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Fig. 4. (3, 3, 2; 3)-gray code.

Proposition 1. Given an MBC and an instantiation of all the feature variables x = (x1, . . . , xm), then the ratio of posterior

distributions of two d-dimensional class configurations c = (c1, . . . , cd) and c′ = (c′1, . . . , c′d) is given by

p(c|x)
p(c′|x) =

∏
Ci∈W p(Ci = ci|pa(ci))∏
Ci∈W p(Ci = c′i |pa(c′i))

·
∏

Xj∈Ch(W) p(Xj = xj|pa(xj))∏
Xj∈Ch(W) p(Xj = xj|pa′(xj))

,

where W = {Ci ∈ VC | ∃!l ∈ {1, . . . , d}, cl �= c′l }, pa′(xj) denotes the configuration of Pa(Xj) compatible with x and c′, and
Ch(W) denotes the feature variables that are children of variables in set W .

Proof. In the numerator,

p(c|x) = 1

p(x)

∏
Ci∈W

p(Ci = ci|pa(ci))
∏

Ci /∈W
p(Ci = ci|pa(ci))

∏
Xj∈Ch(W)

p(Xj = xj|pa(xj))
∏

Xj /∈Ch(W)

p(Xj = xj|pa(xj))

In the denominator, the factorization for p(c′|x) is analogous and its first, third, and fifth factors coincide with those in

p(c|x). This leads directly to the final result. �

Corollary 1. In the above situation, where c and c′ now differ by only one component l, i.e. ci = c′i ∀i �= l and cl �= c′l , then

p(c|x)
p(c′|x) = p(Cl = cl|pa(cl))

p(Cl = c′l |pa(c′l ))
·

∏
Xj∈Ch(Cl) p(Xj = xj|pa(xj))∏
Xj∈Ch(Cl) p(Xj = xj|pa′(xj))

.

These configurations c and c′ differing by one component (as in Example 1) provide more savings than in the general

case of Proposition 1. For simplicity’s sake, we can choose cl and cl
′ such that |cl − c′l | = 1. In this case, an adaptation of the

gray code introduced by Guan [28] is proposed for enumerating all the (c1, . . . , cd) configurations in a special order. Guan’s

(n; k)-gray code is a special sequence enumerating all elements in (Zn)
k , that is, vectors of k components each taking values

in the space {0, 1, . . . , n − 1}. Therefore, components are restricted to being in the same range. We, however, extend gray

codes to different ranges ri, i = 1, . . . , d, having (r1, . . . , rd; d)-gray codes.

Definition 2 ((r1, . . . , rd; d)-gray code). Given a vector (C1, . . . , Cd)with each component Ci taking values in {0, 1, . . . , ri−
1}, i = 1, . . . , d, an (r1, . . . , rd; d)-gray code is a sequence that enumerates all the configurations (c1, . . . , cd) such that

each pair of adjacent configurations differs by only one component and the difference is either 1 or −1.

Example 2. Fig. 4 shows the sequence of configurations for a (3, 3, 2; 3)-gray code, i.e. triplets where the first component

takes values in {0, 1, 2}, the second in {0, 1, 2} and the third in {0, 1}.
In this example, if Si denotes the number of changes in the ith component to cover thewhole gray code, then S3 = 1, S2 =

4, S1 = 12 (see the boxes in Fig. 4).

The general formula for Si follows.
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Proposition 2. In the (r1, . . . , rd; d)-gray code, the number of changes, Si, in the ith component, is given by

Si =
⎧⎪⎪⎨
⎪⎪⎩

d∏
j=i

rj −
d∏

j=i+1

rj, 1 ≤ i ≤ d − 1

rd − 1, i = d

Moreover,
∑d

i=1 Si = ∏d
j=1 rj − 1.

Proof. For i = d, Sd = rd − 1 since the last component is the one is moved least by gray coding. For 1 ≤ i ≤ d − 1,

Si = rd · rd−1 · · · ri+1 · (ri − 1), since the ith component has ri − 1 changes for each partial configuration of fixed values in

components i + 1, . . . , d, which are rd · rd−1 · · · ri+1.

Also,

d∑
i=1

Si =
d−1∑
i=1

⎛
⎝ d∏

j=i

rj −
d∏

j=i+1

rj

⎞
⎠ + rd − 1 = (r1 · · · rd) − (r2 · · · rd) + (r2 · · · rd) − (r3 · · · rd)

+ · · · +(rd−1 · rd) − rd + rd − 1 = r1 · · · rd − 1. �

Computations to obtain MPE in MBCs are reduced by using these gray codes. The next theorem shows the savings and

an upper bound when comparing the number of factors needed in the posterior probability computations with gray codes,

FGC , and with brute-force, FBF .

Theorem 2. Given an MBC with m feature variables and d class variables, where I is the space of joint configurations of the class

variables, then the number of factors needed in the posterior probability computations with gray codes, FGC , and with brute-force,

FBF , satisfy:

(i) FGC = m + d + ∑d
i=1 SiHi

(ii)
FGC
FBF

< 1
|I| + HMax

m+d
,

where Hi = 1 + hi, hi being the number of children (in the MBC) of the class variable that changes the ith in the gray code, and

HMax = max1≤i≤d Hi.

Proof. (i) FGC = m+ d+ ∑d
i=1 SiHi, sincem+ d corresponds to the number of factors (without savings) for calculating the

posterior probability for the first configuration where the gray code starts from, and, using Corollary 1, each configuration

that changes its ith class variable in the gray code requires 1 + hi = Hi new factors. Taking into account that the number

of changes in the ith class variable along the gray code sequence is Si, the second term,
∑d

i=1 SiHi, gives the total number of

factors required by all the configurations except the first one.

(ii) Obviously, FBF = (m + d)|I|. Also,

FGC = m + d +
d∑

i=1

SiHi ≤ m + d + HMax

d∑
i=1

Si = m + d + HMax(|I| − 1),

since
∑d

i=1 Si = |I| − 1 is the total number of changes in the gray code. Therefore,

FGC

FBF
≤ m + d + HMax(|I| − 1)

(m + d)|I| <
1

|I| + HMax

m + d
. �

Example 1 (continued). Given the MBC structure of Fig. 3, where variables C1 and C2 now take three possible values and C3
is still binary, we have that d = 3,m = 4,HMax = 4, |I| = 18.

Thus,

FGC

FBF
= 63

126
,

and the upper bound is
FGC

FBF
<

79

126
.
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Fig. 5. (a) A CB-decomposable MBC. (b) Its two maximal connected components.

Therefore, with gray codes the number of factors is reduced by half (63 against 126), while the upper bound is a little bit

higher.

Definition 3 (CB-decomposable MBC). Suppose we have an MBC where GC and GCX are its associated class and bridge

subgraphs respectively. We say that the MBC is class-bridge decomposable (CB-decomposable for short) if:

(1) GC ∪ GCX can be decomposed as GC ∪ GCX = ⋃r
i=1(GC i ∪ G(CX )i), where GC i ∪ G(CX )i, with i = 1, . . . , r, are its r

maximal connected components, 1 and

(2) Ch(VC i) ∩ Ch(VC j) = ∅, with i, j = 1, . . . , r and i �= j, where Ch(VC i) denotes the children of all the variables in VC i ,
the subset of class variables in GC i (non-shared children property).

Example 3. Let us take the MBC structure shown in Fig. 5(a). It is CB-decomposable with r = 2, as shown in Fig. 5(b). The

subgraph to the left of the dashed vertical line is GC1 ∪ G(CX )1, i.e. the first maximal connected component. Analogously,

GC2 ∪ G(CX )2 to the right-hand side is the second maximal connected component. That is, VC1 = {C1, C2, C3}, VC2 =
{C4, C5}, Ch(VC1) = {X1, X2, X3, X4} and Ch(VC2) = {X5, X6}. Note that Ch({C1, C2, C3}) ∩ Ch({C4, C5}) = ∅ as required.

Theorem 3. Given a CB-decomposable MBC where Ii = ∏
C∈VC i ΩC represents the sample space associated with VC i, then

max
c1,...,cd

p(C1 = c1, . . . , Cd = cd|X1 = x1, . . . , Xm = xm)

∝
r∏

i=1

max
c↓VC i∈Ii

∏
C∈VC i

p(c|pa(c)) ∏
X∈Ch(VC i)

p(x|paVC (x), paVX (x)), (3)

where c↓VC i represents the projection of vector c to the coordinates found in VC i.

Proof. Byusingfirstly the factorizationgiven in (1)andthenthegroupingofall thevariablesaccording to theCB-decomposable

MBC assumption, we have that

p(C1 = c1, . . . , Cd = cd|X1 = x1, . . . , Xm = xm)

∝ ∏
C∈VC

p(c|pa(c)) ∏
X∈VX

p(x|paVC (x), paVX (x))

=
r∏

i=1

∏
C∈VC i

p(c|pa(c)) ∏
X∈Ch(VC i)

p(x|paVC (x), paVX (x)).

Maximizing the last expression with respect to all the class variables amounts to maximizing over the identified class

variables of the maximal connected components. The new maximization problems are carried out on lower dimensional

subspaces than originally, thereby reducing the computational cost. Note that the feature subgraph structure is irrelevant

in this process. �

1 A graph is said to be connected if there is a path between every pair of vertices in its undirected version.



712 C. Bielza et al. / International Journal of Approximate Reasoning 52 (2011) 705–727

Given x, each expression to be maximized in Eq. (3) will be denoted as φx
i (c

↓VC i), i.e.

φx
i (c

↓VC i) = ∏
C∈VC i

p(c|pa(c)) · ∏
X∈Ch(VC i)

p(x|paVC (x), paVX (x))

It holds that φx
i (c

↓VC i) ∝ p(C↓VC i = c↓VC i |x).
Example 3 (continued). For the CB-decomposable MBC in Fig. 5(a), we have that

max
c1,...,c5

p(C1 = c1, . . . , C5 = c5|X1 = x1, . . . , X6 = x6)

∝ max
c1,...,c5

p(c1)p(c2)p(c3|c2)p(c4)p(c5|c4)p(x1|c1)p(x2|c1, c2, x1, x3)
· p(x3|c3)p(x4|c3, x3, x5, x6)p(x5|c4, c5, x6)p(x6|c5)
=

[
max

c1,c2,c3
p(c1)p(c2)p(c3|c2)p(x1|c1)p(x2|c1, c2, x1, x3)p(x3|c3)p(x4|c3, x3, x5, x6)

]

·
[
max
c4,c5

p(c4)p(c5|c4)p(x5|c4, c5, x6)p(x6|c5)
]

=
[
max

c1,c2,c3
φx
1(c1, c2, c3)

]
·
[
max
c4,c5

φx
2(c4, c5)

]
.

The use of a gray code in each maximal connected component of a CB-decomposable MBC leads to more computational

savings in posterior probability computations than without this decomposability. Theorem 4 states those savings and an

upper bound of
FGC
FBF

.

Theorem4. Given a CB-decomposableMBCwith r maximal connected components, where each component i has di class variables

and mi feature variables, the independent use of a gray code over the di class variables of each component i, can obtain:

(a) FGC =
r∑

i=1

(mi + di +
di∑
j=1

SijH
i
j)

(b)
FGC

FBF
<

1

|I| +
∑r

i=1 |Ii|Hi
Max

(m + d)|I| , where Hi
Max = max1≤j≤di H

i
j , H

i
j = 1 + hij, and hij is the number of children of the class

variable that changes the jth in the gray code of component i.

Proof. (a) is straightforward from Theorem 2. Note that
∑r

i=1 mi = m,
∑r

i=1 di = d.

(b) FGC ≤ ∑r
i=1(mi + di + (|Ii| − 1)Hi

Max). Then

FGC

FBF
≤

∑r
i=1(mi + di + (|Ii| − 1)Hi

Max)

(m + d)|I|
<

1

|I| +
∑r

i=1 |Ii|Hi
Max

(m + d)|I| �

Example 3 (continued). For the CB-decomposable MBC of Fig. 5(a), and considering that all class variables are binary, we

have that m = 6, d = 5,m1 = 4, d1 = 3,m2 = 2, d2 = 2, |I| = 32,H1
1 = 3,H1

2 = 2,H1
3 = 3,H2

1 = 2,H2
2 = 3,H1

Max =
3,H2

Max = 3, S11 = 4, S12 = 2, S13 = 1, S21 = 2 and S22 = 1, and we get:

FGC

FBF
= 4 + 3 + 4 · 3 + 2 · 2 + 1 · 3 + 2 + 2 + 2 · 2 + 1 · 3

(6 + 5) · 32 = 42

352
.

The upper bound is:
FGC
FBF

< 1
32

+ 8·3+4·3
(6+5)·32 = 47

352
. This bound is better than that obtained in Theorem 2 without considering

the decomposability, which is 1
32

+ 3
11

= 107
352

.
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4. Bayes decision rule under additive CB-decomposable loss functions

This section extends the previous one, beyond 0–1 loss functions and MPE computations, by providing for other loss

functions that conform to CB-decomposable structures.

Definition 4 (Additive CB-decomposable loss function). Let λ(c′, c) be a loss function. Given a CB-decomposable MBC B, we

say that λ is an additive CB-decomposable loss function according to B if

λ(c′, c) =
r∑

i=1

λi(c
′↓VC i , c↓VC i),

where λi is a non-negative loss function defined on Ii.

Theorem 5. Let B be a CB-decomposable MBC with r maximal connected components. If λ is an additive CB-decomposable loss

function according to B, then

min
c′∈I

R(c′|x) =
r∑

i=1

⎡
⎢⎣ min
c′↓VC i∈Ii

∑
c↓VC i∈Ii

λi(c
′↓VC i , c↓VC i) · φx

i (c
↓VC i)

⎤
⎥⎦

⎡
⎢⎣∏

j �=i

∑
c
↓VC j∈Ij

φx
j (c

↓VC j)

⎤
⎥⎦ . (4)

Proof

min
c′∈I

R(c′|x) = min
c′∈I

∑
c∈I

λ(c′, c)p(c|x)

= min
c′∈I

r∑
i=1

∑
c∈I

λi(c
′↓VC i , c↓VC i) ·

r∏
j=1

φx
j (c

↓VC j)

=
r∑

i=1

min
c′∈I

⎡
⎢⎣

⎡
⎢⎣ ∑
c↓VC i∈Ii

λi(c
′↓VC i , c↓VC i) · φx

i (c
↓VC i)

⎤
⎥⎦ ·

⎡
⎢⎣∏

j �=i

∑
c
↓VC j∈Ij

φx
j (c

↓VC j)

⎤
⎥⎦

⎤
⎥⎦

=
r∑

i=1

⎡
⎢⎣ min
c′↓VC i∈Ii

∑
c↓VC i∈Ii

λi(c
′↓VC i , c↓VC i) · φx

i (c
↓VC i)

⎤
⎥⎦ ·

⎡
⎢⎣∏

j �=i

∑
c
↓VC j∈Ij

φx
j (c

↓VC j)

⎤
⎥⎦

The second equality is due to Theorem 3 and because λ is additive CB-decomposable. The third equality takes advantage

of the fact that λ ≥ 0 and a grouping of the sums according to the domains of functions φx
i and λi. Finally, after the fourth

equality, the minimum is computed over the (smaller) spaces given by Ii, where the resulting functions are defined. �

Corollary 2. Under the conditions of Theorem 5,

arg min
c′∈I

R(c′|x) = (c∗↓VC1 , . . . , c∗↓VC r ), (5)

with c∗↓VC i = arg minc′↓VC i∈Ii
∑

c↓VC i∈Ii λi(c
′↓VC i , c↓VC i) ·φx

i (c
↓VC i). This sum, which is to be minimized, is the expected loss over

maximal connected component i. Obviously, (c∗1 , . . . , c∗d ) is readily obtained by assembling the vector in (5) above.

Proof. The proof is straightforward from Theorem 5, since
∏

j �=i

∑
c
↓VC j∈Ij φ

x
j (c

↓VC j) in (4) does not depend on i. �

Example 3 (continued). Let x be (0, 0, 0, 0, 0, 0). Assume we have the following probabilistic information for the CB-

decomposable MBC in Fig. 5(a), where all variables (classes and features) are binary:

• For the first maximal connected component:

· For the class variables: p(C1 = 0) = 0.3, p(C2 = 0) = 0.6, p(C3 = 0|C2 = 0) = 0.8, p(C3 = 0|C2 = 1) = 0.4.
· For the features:

∗ For X1, p(X1 = 0|C1 = 0) = 0.2, p(X1 = 0|C1 = 1) = 0.3
∗ For X2, p(X2 = 0|C1 = 0, C2 = 0, X1 = 0, X3 = 0) = 0.2,

p(X2 = 0|C1 = 0, C2 = 1, X1 = 0, X3 = 0) = 0.5,
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p(X2 = 0|C1 = 1, C2 = 0, X1 = 0, X3 = 0) = 0.6,
p(X2 = 0|C1 = 1, C2 = 1, X1 = 0, X3 = 0) = 0.3.

∗ For X3, p(X3 = 0|C3 = 0) = 0.5, p(X3 = 0|C3 = 1) = 0.7.
∗ For X4, p(X4 = 0|C3 = 0, X3 = 0, X5 = 0, X6 = 0) = 0.7,

p(X4 = 0|C3 = 1, X3 = 0, X5 = 0, X6 = 0) = 0.1.
• For the second maximal connected component:

· For the class variables: p(C4 = 0) = 0.6, p(C5 = 0|C4 = 0) = 0.3, p(C5 = 0|C4 = 1) = 0.1.
· For the features:

∗ For X5, p(X5 = 0|C4 = 0, C5 = 0, X6 = 0) = 0.3,
p(X5 = 0|C4 = 0, C5 = 1, X6 = 0) = 0.9,
p(X5 = 0|C4 = 1, C5 = 0, X6 = 0) = 0.8,
p(X5 = 0|C4 = 1, C5 = 1, X6 = 0) = 0.4.

∗ For X6, p(X6 = 0|C5 = 0) = 0.2, p(X6 = 0|C5 = 1) = 0.5.

Let λ be an additive CB-decomposable loss function given by

λ(c′1, . . . , c′5, c1, . . . , c5) = λ1(c
′
1, c

′
2, c

′
3, c1, c2, c3) + λ2(c

′
4, c

′
5, c4, c5),

where λi(c
′↓VC i , c↓VC i) = dH(c′↓VC i , c↓VC i), with i = 1, 2, and dH denotes the Hamming distance, i.e. the number of coor-

dinates where c′↓VC i and c↓VC i are different. Note that in our multi-dimensional classification problem, dH counts the total

number of errors made by the classifier in the class variables. Thus, λ1 is

λ1 (0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

(0,0,0) 0 1 1 2 1 2 2 3

(0,0,1) 1 0 2 1 3 1 3 2

(0,1,0) 1 2 0 1 2 3 1 2

(0,1,1) 2 1 1 0 3 2 2 1

(1,0,0) 1 3 2 3 0 1 1 2

(1,0,1) 2 1 3 2 1 0 2 1

(1,1,0) 2 3 1 2 1 2 0 1

(1,1,1) 3 2 2 1 2 1 1 0

and λ2 is

λ2 (0,0) (0,1) (1,0) (1,1)

(0,0) 0 1 1 2

(0,1) 1 0 2 1

(1,0) 1 2 0 1

(1,1) 2 1 1 0

We have that

φx
1(c1, c2, c3) = p(c1)p(c2)p(c3|c2)

·p(X1 = 0|c1)p(X2 = 0|c1, c2, X1 = 0, X3 = 0)p(X3 = 0|c3)
·p(X4 = 0|c3, X3 = 0, X5 = 0, X6 = 0)

Table 1 lists the whole set of φx
1 values on the left-hand side. The rest of the table develops the computations required

for c∗↓VC i as indicated in Corollary 2. Therefore, c∗↓{C1,C2,C3} = (1, 0, 0).
Furthermore, we have that

φx
2(c4, c5) = p(c4)p(c5|c4)p(X5 = 0|c4, c5, X6 = 0)p(X6 = 0|c5),

where the associated results are shown in Table 2. Therefore, c∗↓{C4,C5} = (0, 1).
Finally, our CB-decomposableMBC assigns the class vector c∗ = (1, 0, 0, 0, 1) to the feature vector x = (0, 0, 0, 0, 0, 0).
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Table 1

Computing the minimum expected loss in the first maximal connected

component.

(c1, c2, c3) φx
1(c1, c2, c3) (c′1, c′2, c′3)

∑
c1,c2,c3 λ1φ

x
1

(0, 0, 0) 0.0020160 (0, 0, 0) 0.0363048

(0, 0, 1) 0.0001008 (0, 0, 1) 0.0831432

(0, 1, 0) 0.0016800 (0, 1, 0) 0.0538776

(0, 1, 1) 0.0005040 (0, 1, 1) 0.0795480

(1, 0, 0) 0.0211680 (1, 0, 0) 0.0275016

(1, 0, 1) 0.0010584 (1, 0, 1) 0.0394632

(1, 1, 0) 0.0035280 (1, 1, 0) 0.0313656

(1, 1, 1) 0.0010584 (1, 1, 1) 0.0570360

Table 2

Computing the minimum expected loss in the second max-

imal connected component.

(c4, c5) φx
2(c4, c5) (c′4, c′5)

∑
c4,c5 λ2φ

x
2

(0, 0) 0.0108 (0, 0) 0.3394

(0, 1) 0.1890 (0, 1) 0.0956

(1, 0) 0.0064 (1, 0) 0.4608

(1, 1) 0.0720 (1, 1) 0.2170

Corollary 3. Under the same assumptions as in Theorem 5 with r = d maximal connected components, then

min
c′∈I

R(c′|x) =
d∑

i=1

[
min
c′i

∑
ci

λi(c
′
i , ci) · φx

i (ci)

] ∏
j �=i

∑
cj

φx
j (cj),

where

φx
i (ci) = p(ci)

∏
X∈Ch(Ci)

p(x|ci, paVX (x)).

Proof. The proof is straightforward from Theorem 5. Under this decomposability, class variables are not longer conditioned

to other class variables. �

Note that the simplest CB-decomposability applies in this case.

5. Performance evaluation metrics for multi-dimensional classifiers

We propose the following performance measures that extend metrics existing in the single-class domain. Cases i ∈
{1, . . . ,N} are assumed to belong to the test data set.

(1) Mean accuracy over the d class variables:

Accd = 1

d

d∑
j=1

Accj = 1

d

d∑
j=1

1

N

N∑
i=1

δ(c′ij, cij), (6)

where δ(c′ij, cij) = 1 if c′ij = cij , and 0 otherwise. Note that c′ij denotes the Cj class value outputted by the model for

case i and cij is its true value.

A similar concept may be extended to CB-decomposable MBCs by means of the mean accuracy over the r maximal

connected components:

Accr = 1

r

r∑
j=1

1

N

N∑
i=1

δ(c
′↓VC j
i , c

↓VC j
i ).

(2) Global accuracy over the d-dimensional class variable:

Acc = 1

N

N∑
i=1

δ(c′i, ci) (7)
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where δ(c′i, ci) = 1 if c′i = ci, and 0 otherwise. Therefore, we call for an equality in all the components of the vector

of predicted classes and the vector of real classes.

It holds that Acc ≤ Accr ≤ Accd. This is obvious since it is less demanding to count errors in a component-wise

fashion than as a vector of components that, as a whole, has to correctly predict all its coordinates.

If all the class variables are binary, then we also have:

(3) Macro F1:

Macro F1 = 2
Pred × Recd

Pred + Recd
, (8)

where mean precision and mean recall over the d class variables are defined, respectively, as

Pred = 1

d

d∑
j=1

Prej, Recd = 1

d

d∑
j=1

Recj.

Prej and Recj are the precision and recall, respectively, obtained from the single-class confusion matrix of Cj , i.e.

Prej = TPj

TPj+FPj
, Recj = TPj

TPj+FNj , where TPj, FNj , TNj, FPj are the counts for true positives, false negatives, true negatives

and false positives, respectively.

(4) Micro F1:

Micro F1 = 2
Preg × Recg

Preg + Recg
, (9)

where

Preg =
∑d

j=1 TP
j∑d

j=1(TP
j + FPj)

, Recg =
∑d

j=1 TP
j∑d

j=1(TP
j + FNj)

,

which could be seen as global precision and global recall.

6. Learning MBCs from data

In this section we introduce algorithms to learn MBCs from data. Let D be a database of N observations containing a

value assignment for each variable X1, . . . , Xm, C1, . . . , Cd, i.e. D = {(x(1), c(1)), . . . , (x(N), c(N))}. The learning problem

is to find an MBC that best fits the available data. We will use a score + search approach [10] to find the MBC structure.

MBC parameters can be estimated as in standard Bayesian networks. The score measuring the goodness of an MBC given D
can be independent of or dependent on the classifier performance measure (a filter score or a wrapper score respectively)

[21,35]. Although any kind of strategy could be employed to search the MBC space, the algorithms proposed below follow

a greedy search for computational reasons. The algorithms will, however, be flexible due to the possibility of incorporating

filter, wrapper or hybrid approaches and because, as opposed to other proposals found in the literature, any kind of structure

is allowed for the class and feature subgraphs.

6.1. pure filter algorithm

Given a fixed ordering of all the variables O = (OC,OX ) = (Cπ(1), . . . , Cπ(d), Xπ ′(1), . . . , Xπ ′(m)), where π and π ′ are
permutations over the variables in VC and VX , respectively, this algorithm first learns the class subgraph, GC , with a filter

score that takes into account ordering OC and then learns the feature subgraph, GX , using OX in the same way, once the

bridge subgraph, GCX , is fixed.
The learning problem can be solved as two separate problems: (1) the search for the best structure of GC , taking into

account only the DC = {c(1), . . . , c(N)} values, which is solved once; and (2) the search for the best structure of GX ,
constrained by fixed parents in VC given in a candidate bridge subgraph GCX , which is then updated via a best-first search in

GCX . By choosing a decomposable score, both searches, in GX and GCX , may reduce their computational burden considerably

since only local computations are carried out.

Considering theMBC structure, the global score s(D|G) to bemaximized, is the sum of the scores over the class variables,

s(DC |GC), and the score over the feature variables given a fixed structure GCX from classes to features, sGCX (D|GX ).
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Fig. 6. Pseudocode of the pure filter algorithm.

Fig. 7. Pseudocode of the pure wrapper algorithm.

The algorithm is in Fig. 6.

Note that the MBC structure and the ancestral fixed order O = (OC,OX ) allow us to use data from the class variables,

to search for the best class subgraph, G∗
C , independently of the other variables (step 1). On the other hand, we organize

the search of the rest of the graph by first fixing a bridge subgraph (steps 2 and 5) and then searching for the best feature

subgraph conditioned to the class parents given in the bridge subgraph (step 4). An examplewould be to apply a K2 algorithm

over the features using OX but with the bridge subgraph imposing some class variables as parents. Then, we move to a new

bridge subgraph which is equal to the previous one except for one added arc (step 3). This greedy strategy is handy from a

computational point of view, since if we use a decomposable score, the new and old scores only differ by the term involving

the new arc. That is, when arc (Cl, Xj) ∈ ACX is added to the bridge subgraph GCX (i) to have a candidate bridge subgraph

GCX (i+1), then the difference required in step 5, sGCX (i+1) (D|GX (i+1)) − sGCX (i) (D|GX (i)), consists of the score only evaluating

Xj and its new parents.

Note that the greedy strategy is forward, starting from the empty graph (step 2). Each time a better structure (bridge +

features) is found (a better score), we update the current structure with this new one –a best-first strategy– and start the

forward scheme from here. The process stops when any addition to the current bridge subgraph fails to provide a feature

subgraph that improves the score.

6.2. pure wrapper algorithm

This algorithm greedily searches for one arc, to be added or removed, in any position but respecting the MBC structure,

such that the global accuracy Acc, as defined in Section 5, is improved. Any general DAG structure is allowed for the class

and feature subgraphs. The algorithm stops if no arcs can be added or deleted to the current structure to improve the global

accuracy.

The algorithm is in Fig. 7.

This algorithm is controlled by the Acc measure. Any other performance measure defined in Section 5 could be used.

However, computing Acc involves the computation of the MPE for the class variables given the features, and this has the

advantage of being alleviated if there are CB-decomposableMBCs (Theorem3), which is likely to be the case as the algorithm

progresses, specially in the early stages. Also, gray codes will reduce the computations (Theorems 4 and 2).

Special case of an additive CB-decomposable loss function. Let λ(c′, c) be an additive CB-decomposable loss function

according to a CB-decomposable MBC B with r maximal connected components. Then the pure wrapper algorithm can be
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applied with the following modifications. The global accuracy Acc counts the number of correctly classified cases based on

the real and predicted class vectors. However, since the loss function is no any longer 0-1, the predicted class vector for each

x is obtained byminimizing its expected loss R(c|x). Whenλ is additive CB-decomposable, Theorems 4 and 5 and Corollary 2

provide computational savings via gray codes andMBCdecomposability,whichwouldbebeneficial in step2of the algorithm.

Moreover, when trying to move to a new structure at step 2, if λ is additive CB-decomposable, the added/deleted arc should

guarantee that a CB-decomposable MBC with r maximal connected components according to λ is yielded. This means that

the class subgraph is constrained by only allowing arcs among class variables of the same group VC i, i = 1, . . . , r defined
by λ. It also means that the non-shared children property for the r components should hold. Note that our forward strategy

starting from the empty structurewill produce structureswith h > rmaximal connected components in the early iterations.

These structures will be valid as long as they do not contradict the groups of class variables given by λ.

6.3. hybrid algorithm

This algorithm is equal to the pure filter algorithm but the decision on the candidate structures at step 5 is made based

on the global accuracy Acc (or any other performance measure), rather than on a general score s.

6.4. Cardinality of MBC structure space

The above learning algorithms move within the MBC structure space. Thus, knowledge of the cardinality of this space

can help us to infer the complexity of the learning problem. We will point out two cases. The first one is the general MBC,

whereas the second one places two constraints on the MBC bridge subgraph sometimes found in the literature [70,15].

Theorem 6. The number of all possible MBC structures with d class variables and m feature variables, MBC(d,m), is

MBC(d,m) = S(d) · 2dm · S(m),

where S(n) = ∑n
i=1(−1)i+1

(
n

i

)
2i(n−i)S(n − i) is Robinson’s formula [50] that counts the number of possible DAG structures of

n nodes, which is initialized as S(0) = S(1) = 1.

Proof. S(d) and S(m) count the possible DAG structures for the class subgraph and feature subgraph, respectively. 2dm is

the number of possible bridge subgraphs. �

We now consider MBCs satisfying the following conditions on their bridge subgraph: (a) for each Xi ∈ VX , there is a

Cj ∈ VC with (Cj, Xi) ∈ ACX and (b) for each Cj ∈ VC , there is an Xi ∈ VX with (Cj, Xi) ∈ ACX . These conditions were used

in van der Gaag and de Waal [70] and in de Waal and van der Gaag [15] for learning tree–tree and polytree–polytree
MBCs, respectively. The number of possible bridge subgraphs is given by the following theorem.

Theorem 7. The number of all possible bridge subgraphs, BRS(d,m), m ≥ d, for MBCs satisfying the two previous conditions (a)

and (b) is given by the recursive formula

BRS(d,m) = 2dm −
m−1∑
k=0

(
dm

k

)
−

dm∑
k=m

∑
x≤d,y≤m

k≤xy≤dm−d

(
d

x

)(
m

y

)
BRS(x, y, k),

where BRS(x, y, k) denotes the number of bridge subgraphs with k arcs in an MBC with x class variables and y feature variables

which is initialized as BRS(1, 1, 1) = BRS(1, 2, 2) = BRS(2, 1, 2) = 1.

Proof. It holds that

BRS(d,m) =
dm∑

k=max{d,m}=m

BRS(d,m, k)

=
dm∑
k=m

⎡
⎢⎢⎢⎣

(
dm

k

)
− ∑

x≤d,y≤m
k≤xy≤dm−d

(
d

x

)(
m

y

)
BRS(x, y, k)

⎤
⎥⎥⎥⎦

= 2dm −
m−1∑
k=0

(
dm

k

)
−

dm∑
k=m

∑
x≤d,y≤m

k≤xy≤dm−d

(
d

x

)(
m

y

)
BRS(x, y, k)
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The first equality is true since resulting MBCs must satisfy the two conditions on the bridge subgraphs, requiring at least

k = max{d,m} = m arcs. In the secondequality,BRS(d,m, k) is computedby subtracting thebridge subgraphsnot satisfying

the two required conditions from the number of possible bridge subgraphs with k arcs, which is
(
dm

k

)
. These “invalid” bridge

subgraphs include arcs from x class variables to y feature variables, such that x ≤ d, y ≤ m and k ≤ xy ≤ dm − d. xy must

be at least k to have k arcs in the bridge subgraph. Also, xymust be lower than dm − d + 1, which is the maximum number

of arcs for a valid bridge subgraph. Finally, the third equality is straightforward from the expansion of (1 + 1)dm. �

Theorem8. The number of all possibleMBC structureswith d class variables andm feature variables,m ≥ d, satisfying conditions

(a) and (b), MBCab(d,m) is

MBCab(d,m) = S(d) · BRS(d,m) · S(m).

Proof. The proof is straightforward from Theorems 6 and 7. �

Corollary 4. The number of all possible MBC structures with d class variables and m feature variables satisfies

O(MBC(d,m)) = O(MBCab(d,m)) = 2dm(max{d,m})2O(max{d,m})
.

Proof. ThecomplexityofRobinson’s formula [50]wasshowntobesuperexponential, i.e.O(S(n)) = n2
O(n)

. Also,O(BRS(d,m))
= 2dm. Therefore,

O(MBC(d,m)) = O(MBCab(d,m)) = d2
O(d) · 2dm · m2O(m)

≤ (max{d,m})2·2O(max{d,m}) · 2dm = 2dm(max{d,m})2O(max{d,m}) �

7. Experimental results on MPE

An upper bound for the number of factors saved when computing the posterior probabilities of the MPE with gray codes

was given in Section 3. This obviously has an effect on the required time. Here we compare the efficiency of the gray codes

against a brute force approach as exact algorithms for MPE computation.

The experiment consists of randomly generating 12 different MBCs with a number of binary class variables ranging from

d = 3 to d = 14 and with m = 10 binary feature variables. First, a DAG generator produces a general class subgraph

and a general feature subgraph. Second, the bridge subgraph is randomly generated. A data set with 10,000 cases is finally

simulated from the resulting MBC via probabilistic logic sampling [29]. We then compute ten MPE problems as in Eq. (2),

given ten random evidences x(1), . . . , x(10). For the gray codes, computations are based on Corollary 1.

Fig. 8 shows error bars for computation times when using both exact approaches. They are obtained from the average

times over the ten MPE problems and the 12 different MBCs minus/plus the standard deviation.

Note that the gray code approach is faster than brute force, and this effect is more significant as the number of class

variables, d, increases. This is consistent with the bounds computed in Section 3, since I and d appear in the denominator

of Theorem 2.

8. Experimental results on learning MBCs

8.1. Data sets

For the purpose of our study, we use three benchmark data sets. 2 Emotions data set [62] includes 593 sound clips

from a 30-seconds sequence after the initial 30 seconds of a song. The 72 features extracted fall into two categories: 8

rhythmic features and 64 timbre features. Songs are categorized by six class variables: amazed-surprised, happy-pleased,

relaxing-calm, quiet-still, sad-lonely, and angry-aggressive.

The Scene data set [4] has 2407 pictures, and their semantic scenes have to be classified into six class binary variables:

beach, sunset, foliage, field, mountain, and urban. The 294 features correspond to spatial color moments in the LUV space.

The Yeast data set [23] is about predicting the 14 functional classes of 2417 genes in the Saccharomyces Cerevisae Yeast.

Each gene is described by the concatenation of microarray expression data and a phylogenetic profile given by 103 features.

All class variables are binary. The details of the three data sets are summarized in Table 3.

However, feature variables are numeric. Since MBCs are defined for discrete variables, it is necessary to discretize all

the continuous features. We use a static, global, supervised and top-down discretization algorithm called class-attribute

contingency coefficient [7]. The Emotions and Scene data sets contain some missing records. Missing records in the class

2 Databases are available at: http://mlkd.csd.auth.gr/multilabel.html.
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Fig. 8. Error bars for running times when MPE is computed with gray code (blue) and brute force (red) approaches.

Table 3

Basic information of the three data sets.

Data set Domain Size m d

Emotions Music 593 72 6

Scene Vision 2407 294 6

Yeast Biology 2417 103 14

variables (only 0.16% for Scene and none for Emotions) were removed for MPE computations. When there are missing

values in the feature variables (0.15% for Scene and 0.11% for Emotions), MPE computations are carried out after their

imputation. In the estimation of (conditional) probabilities, we only consider the cases with no missing values for the

variables involved.

8.2. Experimental setup

We use eight different algorithms to learn MBCs. First, we apply five algorithms explicitly designed for MBCs: tree–tree

[70], polytree–polytree [15] and pure filter, pure wrapper and hybrid described in Section 6. pure filter and hybrid are

implemented using the K2 algorithm. Second, we use two greedy search algorithms that learn a general Bayesian network,

one guided by the K2 metric [10] (filter approach), and the other guided by a performance evaluation metric, as defined in

Section 5 (wrapper approach). The first onewill be denoted k2 bn, while the second onewill bewrapper bn. Algorithms pure

filter, hybrid and k2 bn require an ancestral ordering over the variables. We choose the best one after trying 1000 random

orderings for Emotions and Scene and 100 randomorderings for Yeast, which hasmore class variables. Third, we consider

a multi-label lazy learning approach named ml-knn [72], see Section 9.1, derived from the traditional K-nearest neighbor

algorithm. In this case, we set K to 3 in the Emotions and Scene data sets, and 5 in the Yeast data set. As explained in

Section 9.4, since it is unfeasible to compute the mutual information of two features given all the class variables, as required

in [15], we decided to implement the polytree–polytree learning algorithm using the (marginal) mutual information of

pairs of features. The heuristic searches always terminate after 200 unsuccessful trials looking for better structures, for

Emotions and Scene, and just 20 trials for Yeast.
The probabilities attached to eachnode in the learnt network are calculated bymaximum likelihood estimation, corrected

with Laplace smoothing. As regards MPE computations required in the performance evaluation metrics, we use gray codes

for all the data sets. The estimation method for performance evaluation metrics is 10-fold cross validation [58].
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Table 4

Estimated performance metrics (mean ± std deviation) and rank (in brackets) of the eight learning algorithms over the Emotions, Scene

and Yeast data sets using 10-fold cross validation.

Mean accuracy Global accuracy Macro F1 Micro F1

Emotions

tree–tree 0.8300 ± 0.0151 (2) 0.3844 ± 0.0398 (1) 0.7921 ± 0.0273 (3) 0.8072 ± 0.0225 (2)

polytree–polytree 0.8209 ± 0.0243 (4) 0.3776 ± 0.0622 (2) 0.7829 ± 0.0264 (4) 0.7915 ± 0.0329 (4)

pure filter 0.7548 ± 0.0280 (7) 0.2866 ± 0.0495 (6) 0.7106 ± 0.0363 (7) 0.7243 ± 0.0370 (7)

pure wrapper 0.8333 ± 0.0123 (1) 0.3708 ± 0.0435 (3) 0.9145 ± 0.1107 (2) 0.8077 ± 0.0189 (1)

hybrid 0.8210 ± 0.0170 (3) 0.3557 ± 0.0435 (4) 0.7580 ± 0.0342 (5) 0.7898 ± 0.0446 (5)

k2 bn 0.7751 ± 0.0261 (6) 0.2812 ± 0.0799 (7) 0.7315 ± 0.0351 (6) 0.7429 ± 0.0363 (6)

wrapper bn 0.7985 ± 0.0200 (5) 0.3033 ± 0.0752 (5) 1.0000 ± 0.0000 (1) 0.7932 ± 0.0284 (3)

ml-knn 0.6133 ± 0.0169 (8) 0.0254 ± 0.0120 (8) 0.3428 ± 0.0368 (8) 0.3385 ± 0.0455 (8)

Scene

tree–tree 0.7324 ± 0.0359 (7) 0.1857 ± 0.0977 (6) 0.3705 ± 0.1110 (5) 0.3465 ± 0.1256 (6)

polytree–polytree 0.7602 ± 0.0663 (6) 0.2643 ± 0.1915 (4) 0.3942 ± 0.1362 (4) 0.4181 ± 0.2105 (5)

pure filter 0.7726 ± 0.0700 (4) 0.3067 ± 0.1991 (1) 0.3494 ± 0.1263 (7) 0.4560 ± 0.2161 (3)

pure wrapper 0.7765 ± 0.0580 (2) 0.2688 ± 0.1642 (3) 1.0000 ± 0.0000 (1) 0.4893 ± 0.2436 (1)

hybrid 0.7229 ± 0.0442 (8) 0.1570 ± 0.1018 (7) 0.2593 ± 0.1491 (8) 0.2979 ± 0.1500 (7)

k2 bn 0.7689 ± 0.0692 (5) 0.2883 ± 0.1995 (2) 0.3571 ± 0.1272 (6) 0.4477 ± 0.2235 (4)

wrapper bn 0.7739 ± 0.0492 (3) 0.2277 ± 0.1372 (5) 0.9446 ± 0.1751 (2) 0.4612 ± 0.2029 (2)

ml-knn 0.8196 ± 0.0092 (1) 0.0311 ± 0.0147 (8) 0.6055 ± 0.5076 (3) 0.0567 ± 0.0233 (8)

Yeast

tree–tree 0.7687 ± 0.0065 (3) 0.2162 ± 0.0406 (1) 0.5112 ± 0.0631 (1) 0.6833 ± 0.0351 (1)

polytree–polytree 0.7181 ± 0.0288 (7) 0.1278 ± 0.0349 (5) 0.4947 ± 0.0234 (2) 0.6517 ± 0.0256 (6)

pure filter 0.7514 ± 0.0059 (5) 0.1254 ± 0.0210 (6) 0.4404 ± 0.0089 (5) 0.6711 ± 0.0084 (4)

pure wrapper 0.7920 ± 0.0187 (1) 0.1738 ± 0.0391 (2) 0.4840 ± 0.0552 (3) 0.6812 ± 0.0310 (2)

hybrid 0.7455 ± 0.0351 (6) 0.1312 ± 0.0404 (4) 0.4287 ± 0.0325 (7) 0.6427 ± 0.0154 (7)

k2 bn 0.7567 ± 0.0104 (4) 0.1465 ± 0.0252 (3) 0.4539 ± 0.0119 (4) 0.6760 ± 0.0181 (3)

wrapper bn 0.7712 ± 0.0052 (2) 0.1157 ± 0.0159 (7) 0.4377 ± 0.0429 (6) 0.6588 ± 0.0384 (5)

ml-knn 0.6364 ± 0.0196 (8) 0.0062 ± 0.0029 (8) 0.3077 ± 0.0273 (8) 0.3218 ± 0.0460 (8)

Table 5

Average rankings of the eight algorithms over four metrics and three data sets.

Mean Acc. Global Acc. Macro F1 Micro F1 Ave ranking

tree–tree 4.00 2.66 3.00 3.00 3.16

polytree–polytree 5.66 3.66 3.33 5.00 4.41

pure filter 5.33 4.33 6.33 4.66 5.16

pure wrapper 1.33 2.66 2.00 1.33 1.83

hybrid 5.66 5.00 6.66 6.33 5.91

k2 bn 5.00 4.00 5.33 4.33 4.66

wrapper bn 3.33 5.66 3.00 3.33 3.83

ml-knn 5.66 8.00 6.33 8.00 7.00

8.3. Results

Table 4 shows the results of the eight algorithms over the three data sets. Mean values and standard deviations are

listed for each metric. The number in brackets is the rank of the algorithm in decreasing order of performance (i.e. 1=best

performance, 8=worst performance).

The average ranking of the eight algorithms is presented in Table 5. The algorithms are ordered as follows: pure wrapper

� tree–tree � wrapper bn � polytree–polytree � k2 bn � pure filter � hybrid � ml-knn.

There are several non-parametric statistical tests and procedures to compare the performance of classifiers overmultiple

data sets. Following García and Herrera [25], we recommend Nemenyi’s test, and Holm’s, Shaffer’s static and Bergmann-

Hommel’s procedures to conduct all pairwise comparisons in a multiple comparison analysis. The authors detail how to

obtain adjusted and comparable p-values in such multiple comparison procedures.

The adjusted p-values are compared against a significance level of α = 0.05 to reject or accept the null hypothesis

stating that a pair of algorithms perform equally. By observing the significance of the tests in Holm’s, Shaffer’s static and

Bergmann-Hommel’s procedures, which are the most powerful, the conclusions are: (1) pure wrapper turns out to be

significantly better than k2 bn, pure filter, hybrid and ml-knn; (2) tree–tree is significantly better than ml-knn; and (3)

wrapper bn is better than ml-knn. Nemenyi’s procedure provides the same results given in (1), (2) and (3), except for the

pair pure wrapper and k2 bn, whose difference in performance is not statistically significant. Note that for these data sets,

all concerning multi-label classification, the state-of-the-art algorithm ml-knn has been beaten by three algorithms not

specifically designed for a multi-label setting.

In short, one of the new algorithms proposed here, pure wrapper, tree–tree [70], and the generalwrapper bn turn out

to be the best algorithms, where pure wrapper is the most outstanding of the three.
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(a) PURE WRAPPER

(b) TREE-TREE

(c) WRAPPER BN

Fig. 9. Graphical structures learnt with the best algorithms for the Emotions data set.

We present some examples of the networks learntwith the best three algorithms. Fig. 9 shows three networks learnt from

the Emotions data set: with pure wrapper, tree–tree and wrapper bn algorithms. Red nodes represent class variables,
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Fig. 10. Computation times of the learning process with the eight algorithms when using each performance metric for each data set.

yellow nodes are feature variables, red arrows represent arcs in the class subgraph, blue arrows represent arcs in the feature

subgraph and green arrows represent arcs in the bridge subgraph. Note that arrows from features to class variables are

allowed in wrapper bn. They are shown in gray.

Note that, in these examples, pure wrapper andwrapper bn yield sparser networks than tree–tree. This behavior holds

in general for the other data sets and performance evaluation metrics. This is because our specific implementation allows

to add many arcs to the bridge subgraph at a time.

Finally, computation times of the learning process with the eight algorithms are shown in Fig. 10. Fig. 10 illustrates the

computation time of each algorithm when using each performance metric for each data set. Tree-tree takes the longest for

Emotions and Scene, whereas ml-knn is always the fastest. The addition of many arcs in the Tree-tree bridge subgraph

slows down the learning process since the MPE computations cannot take advantage of the alleviations explained above.

Generally speaking, the algorithms using a filter approach, such as polytree–polytree, k2 bn and pure filter, require less

computation, whereas those using a wrapper approach take more computation.

All the experiments have been run on an Intel Core 2, running at 2.40 GHz, with 3.5 GB RAMusing Linux operating system

and Matlab parallel programming.

9. Related work

In this section we review works proposed for approaching multi-dimensional classification problems. The review is

organized into four subsections, discussing research addressing multi-label classification, structured prediction, multiple

fault diagnosiswith Bayesian networks andmulti-dimensional Bayesian networks classifiers, respectively. In the last section,

containing works quite closely related to our proposal, we stress the similarities and dissimilarities between our research

and the state-of-the-art.

9.1. Multi-label classification

Multi-label learninghas recently originated frommodern applications like text andmusic categorization, protein function

and semantic scene classification, where each instance is associated with a subset of labels (present in the instance) from a

set of d labels. Therefore, the cardinality of this subset varies depending on the instance. The aim is to build a model able to

predict the subset of labels for eachunseen instance. The problemcanbe cast into amulti-dimensional classificationproblem

where all class variables are binary. The particular semantics of the problem requires the use of different metrics than are

used in traditional single-label classification, like Hamming loss, one-error, coverage, ranking loss and average precision.
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Overviews of multi-label classification are given in [65,14,67]. They are divided into two main categories: (a) problem

transformation methods, and (b) algorithm adaptation methods.

Methods in (a) transform the multi-label classification problem into either one or more single-label classification prob-

lems. Examples include binary relevance [27], ranking via single-label learning [27], pairwise methods like ranking by

pairwise comparison [30] and calibrated label ranking [30], methods that combine labels like label powerset [4] and pruned

sets [47], ensemble methods like random k-label sets [68] and ensemble of pruned sets [47], methods that search for label

dependencies like correlation-based pruning of stacked binary relevance models [64], Chi-square tests to obtain a classifier

or an ensemble of classifiers –each built over a label set partition [61], and hierarchy of multi-label classifiers with sets of

labels identified via clustering [66].

Methods in (b) extend specific learning algorithms to handle multi-label data directly. Different models have been pro-

posed, including decision trees [71], support vector machines [23], k-nearest neighbor [72], k-nearest neighbor combined

withMallows probability distribution for permutations [6], a hybrid of logistic regression and k-nearest neighbor [5], neural

networks [73], probabilistic chain classifier [20], generative parametric mixture model [69], and boosting [55].

9.2. Structured prediction

Structured prediction is a framework for solving classification and regression problems in which the output variables are

constrained. The output space consists of structured objects, such as sequences, strings, trees, lattices or graphs. The aim

is to learn functional dependencies for these complex output spaces, i.e. to compute the structure that maximizes some

function of an input parameterized by a weight vector. Methods are based on likelihood like conditional random fields [59],

onmax-margin [60,63], and on search [12]. The state-of-the-art of structured prediction is given in [2] and in a recent special

issue [41].

9.3. Multiple fault diagnosis with Bayesian networks

A related field is the diagnosis of systemswithmultiple faults. These systems are devices composed of components (class

variables) that can be in either good or failing condition and there are some input/output variables (feature variables) related

to the system function. The aim is to find the failing component, or the set of failing components, that explains the observed

breakdown. From a probabilistic viewpoint this problem is equivalent to Eq. (2), a multi-dimensional classification problem

where, as in multi-label classification, all class variables are binary. This is a difficult problem due to the reliability of such

systems, where very few breakdown scenarios have been recorded.

Bayesian networks have been used in this context. However, most researchers build these networks systematically by

taking advantage of the logical relationships among the variables included in the (physical) devices. A consequence is

that only causal networks, a special case of Bayesian networks, are used [43,44]. Moreover, the structure and conditional

probabilities are not learnt from data but from experts or by supplied specifications. This is the case of Darwiche [11] and

Ibargüengoytia et al. [32] for example. Neither of them compute the posterior probabilities of the multiple diagnosis. In

contrast, Delcroix et al. [19] try to do this, but by assuming a hypothesis of strong independence among class variables.

9.4. Multi-dimensional Bayesian networks classifiers

To the best of our knowledge, there are four papers that are quite closely related to our proposal: Qazi et al. [46], van der

Gaag and deWaal [70], deWaal and van der Gaag [15] and Rodríguez and Lozano [51]. They all learn the structure from data

constrained to a pre-set family of MBCs.

Qazi et al. [46] propose learning a DAG-emptyMBC to predict heart wall motion for the 16 segments (class variables) of

the heart. Once the DAG for the class subgraph is learnt by standard Bayesian networks procedures, a naïve Bayes model

containing a subset of feature variables is obtained for each class variable using different features for each naïve Bayesmodel

to finally build the corresponding bridge subgraph.

Van der Gaag and de Waal (2006) use tree–tree MBCs as follows. They prove that the score+search learning strategy

based on theMDL score can be decomposed into optimization problems for the set of class variables and for the set of feature

variables separately. The class subgraph is firstly learnt by searching for the maximum weighted undirected spanning tree

and transforming it into a directed tree using Chow and Liu’s algorithm [8]. The weight of an edge is the mutual information

between a pair of class variables. For a fixed bridge subgraph, the feature subgraph is then learnt by building a maximum

weighted directed spanning tree [9]. The weight of an arc is the conditional mutual information between pairs of feature

variables given theparents (classes) of the second feature determinedby the bridge subgraph.Unlike these twofilter learning

processes, the bridge subgraph is greedily changed in a wrapper-like way, trying to improve the accuracy Acc as defined in

Eq. (7). Acc is the measure used to assess the quality of the learnt tree–treeMBC.

De Waal and van der Gaag (2007) theoretically find the conditions for the optimal recovery of polytree structures in

class and features subgraphs for the case of polytree–polytreeMBCs. The algorithms for learning the polytrees for the

class and feature subgraphs separately are based on Rebane and Pearl’s algorithm [48], although for the feature subgraph

the algorithm requires considering all the class variables in the conditional mutual information, which is unfeasible in real
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applications. This theoretical work does not state how the polytree–polytreeMBC is learnt because it omits how to find

the bridge subgraph.

Rodríguez and Lozano [51] extend polytrees to k-DB structures for class and features subgraphs (a special DAG–DAGMBC).

Each permitted structure is coded as an individual in a genetic algorithm with three substrings, one per subgraph. The

objective function is a vector with the accuracies Accj (see Eq. (6)) as components. Comparing MBCs amounts to finding

non-dominated structures according to this multi-objective fitness function, NSGA-II [16] being the chosen multi-objective

genetic algorithm.

Unlike these approaches, our proposal defines a unified framework allowing any Bayesian network structure in the three

subgraphs of anMBC. CB-decomposableMBCs in conjunctionwith a gray code for enumerating the joint configurations of all

the class variables in a special order, alleviate the computational burdenwhen calculating theMPE. The framework has been

extended beyond the 0–1 loss function, to general loss functions, where the additive CB-decomposable functions exploit the

structure decomposition to the utmost.While the learning approaches of theMBCs are filter-based for Qazi et al. [46], hybrid

for van der Gaag and deWaal [70] andwrapper for Rodríguez and Lozano [51], our framework allows the three strategy types.

Also, we have introduced several performance evaluation metrics of the MBC models, useful for wrapper-based algorithms

as well as for the quality assessment of the final model. Finally, note that the data sets tested in two of these papers are

relatively small (d = 3 and m = 40 in [70], d = 2 and m = 58 in [51]) compared with our experiments. A similar size is

used in [46] (d = 16 and m = 216), although their structure does not permit dependencies between the feature variables

(96 in the final model). De Waal and van der Gaag (2007) do not present any experimental results.

10. Conclusions and future research

This paper approaches themulti-dimensional classification problemusing a type of probabilistic graphicalmodels named

multi-dimensional Bayesian network classifiers. In MBCs, the multi-dimensional classification problem is equivalent, for a

0–1 loss function, to the search for the most probable explanation, which has shown to be a NP-hard problem.

We introduce a new type of MBCs, the so-called class-bridge (CB) decomposable MBCs that alleviates the computational

burden for computing MPEs. Also, thanks to an adaptation of the gray code, we can reduce this complexity in both general

MBCs and CB-decomposable MBCs even further. Upper bounds for the reductions are obtained for both types of models.

Theoretical results on how to obtain the Bayes decision rule for general MBCs in the case of 0–1 loss functions and in the

case of additive loss functions for CB-decomposable MBCs are proved. The paper also extends some usual performance

evaluation measures (accuracy and F1 measure), previously defined for the single-class domain, to this multi-dimensional

setting. Finally, flexible algorithms for learning MBCs from data are shown. Flexibility refers to the different families of

permitted MBCs (e.g. tree–tree, polytree–polytree, DAG–DAG, DAG–polytree, etc.), as well as to the filter, wrapper

and hybrid approaches considered to carry out the learning process.We also provide theoretical results counting the number

of all possible MBC structures, that is, the cardinality of the search space for the learning task. Empirical results on the

application of these learning algorithms to three data sets taken from the literature on multi-label classification problems

are encouraging, beating a state-of-the-art algorithm in this multi-label setting.

This work can be extended and improved in several ways. The consideration of problems when the vector of variables to

be predicted includes discrete, aswell as continuous variables (classification and regression problems), is a line for a possible

extension of the current approach. To avoid the discretization of the feature variables any other possibility for generalizing

this paper would be to allow discrete and continuous variables in the feature subgraph [45].

A characteristic of real-world data sets is the inclusion of instances with missing data. Thus, the adaptation of the EM

algorithm to the two-layer architecture of MBCs (or to the more sophisticated CB-decomposable MBC structures) is another

line for future research.

The parameters of an MBC are estimated from data and can be inaccurate, especially due to the data sparseness. For this

reason the sensitivity of the joint posterior probability of interest to parameter variation needs to be studied. This would be

harder than in the simplest naïve Bayes classifier case [49].

We also intend to look at the definition of concept drift for multi-dimensional classification problems in data stream

scenarios, and the development of the respective detection procedures for MBCs in the future.
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