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Summary 
Objectives: The “large k (genes), small N 
(samples)” phenomenon complicates the 
problem of microarray classification with lo-
gistic regression. The indeterminacy of the 
maximum likelihood solutions, multicollinear-
ity of predictor variables and data over-fitting 
cause unstable parameter estimates. More-
over, computational problems arise due to the 
large number of predictor (genes) variables. 
Regularized logistic regression excels as a sol-
ution. However, the difficulties found here in-
volve an objective function hard to be opti-
mized from a mathematical viewpoint and a 
careful required tuning of the regularization 
parameters. 
Methods: Those difficulties are tackled by in-
troducing a new way of regularizing the logis-
tic regression. Estimation of distribution algo-
rithms (EDAs), a kind of evolutionary algo-
rithms, emerge as natural regularizers. Ob-
taining the regularized estimates of the logis-
tic classifier amounts to maximizing the likeli-
hood function via our EDA, without having to 
be penalized. Likelihood penalties add a 
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number of difficulties to the resulting opti -
mization problems, which vanish in our case. 
Simulation of new estimates during the evol-
utionary process of EDAs is performed in such 
a way that guarantees their shrinkage while 
maintaining their probabilistic dependence 
relationships learnt. The EDA process is em-
bedded in an adapted recursive feature elim-
ination procedure, thereby providing the 
genes that are best markers for the classifi-
cation. 
Results: The consistency with the literature 
and excellent classification performance 
achieved with our algorithm are illustrated on 
four microarray data sets: Breast, Colon, 
Leukemia and Prostate. Details on the last 
two data sets are available as supplementary 
 material. 
Conclusions: We have introduced a novel 
EDA-based logistic regression regularizer. It 
implicitly shrinks the coefficients during EDA 
evolution process while optimizing the usual 
likelihood function. The approach is combined 
with a gene subset selection procedure and 
automatically tunes the required parameters. 
Empirical results on microarray data sets pro-
vide sparse models with confirmed genes and 
performing better in classification than other 
competing regularized methods. 

1. Introduction 
The development of DNA microarray tech-
nology allows screening of gene expression 
levels from different tissue samples (e.g. can-
cerous and normal). The resulting gene 
 expression data help explore gene inter-
actions, discover gene functions and classi  -
 fy individual cancerous/normal samples, 
using different supervised learning tech-
niques [1, 2]. 

Among these techniques, logistic regres-
sion [3] is widely used because it provides 
 explicit probabilities of class membership, 
 interpretation of the regression coefficients of 
predictor variables and it avoids gaussianity 
or correlation structure assumptions. 

Microarray classification is a challenging 
task since these data typically involve ex-
tremely high dimensionality (thousands of 
genes) and small sample sizes (less than one 
hundred cases). This is the so-called “large k 
(variables), small N (samples) problem” or 
the “curse of dimensionality”. This may cause 
a number of statistical problems for estimat-
ing parameters properly. First, a large number 
of parameters have to be estimated using a 
very small number of samples. Therefore, an 
infinite number of solutions is possible as the 
problem is undetermined. Second, multicol-
linearity largely exists. The likelihood of some 
gene profiles being linear combinations of 
other gene profiles grows as more and more 
variables are introduced into the model, 
thereby supplying no new information. 
Third, over-fitting may occur, i.e. the model 
may fit the training data well but perform 
badly on new samples. These problems yield 
unstable parameter estimates. Furthermore, 
there are also computational problems due to 
the large number of predictor variables. 
Traditional numerical algorithms for find -
ing the estimates, like Newton-Raphson’s 
method [4], require prohibitive computa -
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tions to invert a huge, sometimes singular 
matrix, at each iteration. 

To alleviate this situation within the con-
text of logistic regression, many authors use 
techniques of dimensionality reduction and 
feature (or variable) selection [5]. Feature se-
lection methods yield parsimonious models 
which reduce information costs, are easier to 
explain and understand, and increase model 
applicability and robustness. The goodness of 
a proposed gene subset may be assessed via an 
initial screening process where genes are se-
lected in terms of some univariate or multi-
variate scoring metric (filter approach [6]). 
By contrast, wrapper approaches search for 
good gene subsets using the classifier itself as 
part of their function evaluation [7]. A per-
formance estimate of the classifier trained 
with each subset assesses the merit of this 
subset.  

Imposing a penalty on the size of logistic 
regression coefficients is another different 
solution. Finding a maximum likelihood esti-
mate subject to spherical restrictions on the 
logistic regression parameters leads to ridge 
or quadratic (penalized) logistic regression 
[8]. Therefore, the ridge estimator is a re-
stricted maximum likelihood estimator 
(MLE). Shrinking the coefficients towards 
zero and allowing a little bias provide more 
stable estimates with smaller variance.  

Apart from ridge penalization, there are 
other penalties within the more general 
framework of regularization methods. All of 
them aim at balancing the fit to the data and 
the stability of the estimates. These methods 
are much more efficient computationally 
than wrapper methods with the similar 
 performance. Furthermore, regularization 
methods are more continuous than usual 
 discrete processes of retaining-or-discarding 
features thereby not suffering as much from 
high variability. 

Here we introduce estimation of distribu-
tion algorithms (EDAs) as natural regular-
izers within the logistic regression context. 
EDAs are a recent optimization heuristic in-
cluded in the class of stochastic population-
based search methods [9]. EDAs work by 
 constructing an explicit probability model 
from a set of selected solutions, which is then 
conveniently used to generate new promising 
solutions in the next iteration of the evol-
utionary process. An optimization heuristic is 
an appropriate tool since shaping the logistic 

classifier means estimating its parameters, 
which in turn entails solving a maximization 
problem. Unlike traditional numerical meth-
ods, EDAs do not require derivative infor -
mation or matrix inversions. Moreover, used 
as fitness functions, EDAs could similarly 
 maximize penalized likelihoods to tackle the 
k  >>  N problem. This would just reveal the 
potential of a heuristic (EDA) against a nu-
merical (Newton-Raphson) method. In this 
paper we will show that the EDA framework 
is so general that, under certain parameteri -
zations, it obtains the regularized estimates in 
a natural way, without penalizing the original 
likelihood. EDAs receive the unrestricted like-
lihood equations as inputs and they generate 
the restricted MLEs as outputs. 

2. Methods 

2.1 Logistic Regression  
for Microarray Data 

Assume we have a (training) data set DN of N 
independent samples from microarray ex-
periments DN = {(cj, xj1, ..., xjk), j = 1, ..., N}, 
where xj = (xj1, ..., xjk)

t ∈ Rk is the gene ex-
pression profile of the j-th sample, xji indi-
cates the i-th gene expression level of the j-th 
sample and cj is the known class label of the 
j-th sample, 0 or 1, for the different states. We 
assume the expression profile x to be prepro-
cessed, log-transformed and standardized to 
zero mean and unit variance across genes. 

Let πj, j = 1, ..., N denote P(C = 1⏐xj), i.e. 
the conditional probability of belonging to 
the class state 1 given gene expression profile 
xj. Then the logistic regression model is de-
fined as 

 
 

(1) 

 
 

where β = (β0, β1, ..., βk)
t denotes the vector of 

regression coefficients including intercept β0. 
From DN, the log-likelihood function is built 
as 
 

  (2) 
 

where πj is given by (1). MLEs,  , are ob-
tained by maximizing l with respect to β. Let 

237

© Schattauer 2009 Methods Inf Med 3/2009

 be the maximizer of l. 
Newton-Raphson’s algorithm is traditional -
 ly used to solve the resulting nonlinear 
equations. Other methods [10] are gradient 
ascent, coordinate ascent, conjugate gradient 
ascent, fixed-Hessian Newton, quasi-Newton 
algorithms (DFP and BFGS), iterative scaling, 
Nelder-Mead and random integration.  

2.2 Regularized Approaches  
to Logistic Regression 

Ridge logistic regression seeks MLEs subject 
to spherical restrictions on the parameters. 
Therefore, the function to be maximized is 
the penalized log-likelihood given by  
 
   (3) 

 
where λ >  0 is the penalty parameter and con-
trols the amount of shrinkage. λ is usually 
chosen by cross-validation. The cross-vali-
dation deviance, error, BIC or AIC are used as 
the criteria to be optimized. Let  be the 
maximizer of Equation 3 or ridge estimator. 
This estimator always exists and is unique. 

In the field of microarray classification, 
Newton-Raphson’s algorithm may be em-
ployed but it requires a matrix of dimension 
k + 1 to be inverted. Inverting huge matrices 
may be avoided to some extent with algo-
rithms like the dual algorithm based on se-
quential minimal optimization [11] or SVD 
[12]. Combined with SVD, [13, 14] use a 
 feature selection method called recursive 
 feature elimination (RFE) [15] that iterative -
ly removes genes with smaller absolute values 
of  . 

Within a broader context, log-likelihood 

can be penalized as  , where the 

penalty function is generally   

  The Ll penalty ψ  (βi) = 

|βi| results in lasso, introduced by [16] in the 

context of logistic regression. In a Bayesian 
setting, the prior corresponding to this case is 
an independent Laplace distribution (or 
double exponential) for each βi. Cawley and 
Talbot [17] even model the penalty parameter 
λ by using a Jeffreys’ prior to eliminate this 
parameter by integrating it out analytically. 
Although the objective function is still con-
cave in lasso (as in ridge regression), an added 



238 C. Bielza et al.: Estimation of Distribution Algorithms as Logistic Regression Regularizers of Microarray Classifiers

Methods Inf Med 3/2009 © Schattauer 2009

computational problem is that this function 
is not differentiable. Generic methods for 
nondifferentiable concave problems, such as 
the ellipsoid method or subgradient meth-
ods, are usually very slow in practice. Faster 
methods have recently been investigated [18, 
19]. Interest in lasso is growing because Ll 
penalty encourages the estimators be either 
significantly large or exactly zero, which has 
the effect of automatically performing feature 
selection and hence yielding concise models. 

2.3 EDAs for Regularizing Logistic 
Regression-based Microarray 
 Classifiers 

Among the stochastic population-based 
search methods, EDAs have recently emerged 
as a general framework that overcomes some 
weaknesses of other well-known methods 
like genetic algorithms [9]. Unlike genetic al-
gorithms, EDAs avoid the ad hoc design of 
crossover and mutation operators, as well as 
the tuning of a large number of parameters, 
while they explicitly capture the relationships 
among the problem variables by means of a 
joint probability distribution (jpd). The main 
system underlying the EDA approach, which 
will be denoted Proc-EDA, is: 
 
1. D0 ← Generate M points of the search 

space randomly  
2. h = 1 
3. do { 
4.  ← Select M  ′ <  M points of the search 

space from Dh – 1 

5. ph(z) = p  (z   |   )← Estimate the jpd 
from the selected points of the search 
space  

6. Dh ← Sample M points of the search space 
(the new population) from ph(z) 

7. } until a stopping criterion is met  
 
M points of the search space constitute the in-
itial population and are generated at random. 
All of them are evaluated by means of a fitness 
function (step 1). Then, M  ′(M  ′ <  Μ) points 
are selected according to a selection method, 
taking the fitness function into account (step 
4). Next, a multidimensional probabilistic 
model that reflects the interdependencies be-
tween the encoded variables in these M  ′ se-
lected points is induced (step 5). The estima -
tion of this underlying jpd represents the EDA 

bottleneck, as different degrees of complexity 
in the dependencies can be consid ered. In the 
next step, M new points of the search space – 
the new population – are obtained by sam-
pling from the multidimensional probabilis-
tic model learnt in the previous step (step 6). 
Steps 4 to 6 are repeated until some pre-de-
fined stopping condition is met (step 7). Like-
wise other numerical methods (see above) as 
Nelder-Mead’s, EDAs work by simply evalu-
ating the objective function at some points. 
However, Nelder-Mead’s algorithm is deter-
ministic and evaluates the vertices of a sim-
plex, while EDAs are stochastic, require a 
population and to learn/simulate models. 

If we confine ourselves to logistic regres-
sion classifiers, EDAs have been used for esti-
mating the parameters from a multiobjective 
viewpoint [20]. EDAs could be successfully 
used to optimize any kind of penalized likeli-
hood because, unlike traditional numerical 
methods, they do not require derivative infor-
mation or matrix inversions. However, we 
 investigate here a more interesting approach 
that shows that EDAs can act as an intrinsic 
regularizer if we choose a suitable represen-
tation. Thus, let us take l  (β) (�see Eq. 2) as 
the fitness function that assesses each possible 
solution β to the (unrestricted) maximum 
likelihood problem. β is a k + 1 dimensional 
continuous random variable. EDAs would 
start by randomly generating the initial 
population D0 of M points of the search space 
 . After selecting M  ′ points (e.g. the 
top M  ′), the core of the EDA paradigm is step 
5 above to estimate the jpd from these se-
lected M  ′ points. Without losing generality, 
we start from a univariate marginal distribu-
tion algorithm (UMDAc

G) [21] in our con-
tinuous β-domain. UMDAc

G assumes that at 
each generation h all variables are indepen-
dent and normally distributed, i.e.  
 

  

(4)
 

 See [22] for the UMDAc
G theoretical support. 

We now modify UMDAc
G to tackle the regu-

larized logistic regression by shrinking the βi 
parameters during the EDA simulation step. 
Specifically, we introduce a new algorithm 
UMDAc

G  * that learns a UMDAc
G model given 

by (4) at step 5 and iteration h. This involves 

estimating the new μih and σih with the MLEs 
computed on the selected set of M  ′ 
points of the search space from the previous 
generation. However, sampling at step 6 now 
generates points from (4) with the normal 
distributions ph(βi) constrained to lie in an 
interval [–bh, bh]. This is readily achieved by 
generating values from a Gaussian of param-
eters μih and σih for each variable βi and con-
straining its outputs, according to a standard 
rejection method to fall within [–bh, bh]. 

The idea is that, as long as the algorithm 
progresses, forcing the βi parameters to be in 
a bounded interval around 0 constrains and 
stabilizes their values, just like regularization 
does. At step 5, we learn, for the random vari-
able β, the multivariate Gaussian distribution 
with a diagonal covariance matrix that best 
fits, in terms of likelihood, the M  ′ β-points 
that are top ranked in the objective function 
l  (β). We then generate, at step 6, M new 
points from the previous distribution trun-
cated at each coordinate at –bh (bottom) and 
at bh (top). New data are ranked with respect 
to their l  (β) values, and the best M  ′ are 
chosen and so on. In spite of optimizing func-
tion l  (β) rather than another penalized log-
likelihood function like e.g. ridge regression’s 
l*(β), the evolutionary process guarantees 
that the βi’s values belong to intervals of the 
desired size. Therefore, our estimates of βi are 
regularized estimates. In fact, we have empiri-
cally verified that the standard errors of our 
estimators are smaller than those of regular-
ized approaches like ridge logistic regression 
and exhibiting less outliers than lasso. More-
over, since we use the original l  (β) objective 
function of the logistic regression, we do not 
need to specify the λ parameter of other pe-
nalized approaches like (3). 

Note that plenty of probability models are 
possible in (4), without necessarily assuming 
all variables to be Gaussian and independent. 
Different univariate, bivariate or multivariate 
dependencies may be designed with the bene-
fit of having an explicit model of (possible) 
complex probabilistic relationships among 
the different parameters. Traditional numeri-
cal methods are unable to provide this kind of 
information. 

Thus, the estimation of Gaussian network 
algorithm (EGNA) [21] models multivariate 
dependencies among βi by learning at each 
generation a nonrestricted normal density 
that maximizes the Bayesian information 
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criteria (BIC) score. In EGNA, ph(β) factor-
izes as a Gaussian network [23]. The rationale 
for this assumption is in part justified by the 
fact that the MLEs asymptotically follow a 
multivariate normal distribution. However, 
in our case the number of observations N is 
small and, as mentioned above, we do not 
have MLEs either since our estimators are re-
stricted MLEs. 

Finally, the last step, say at iteration 
h = T, would contain  from which 
argmax would be chosen as 
the final regularized estimate of β. 

2.4 Gene Selection 

Our EDA-based regularization is now em-
bedded in a gene selection procedure. We 
propose it to take into account the strength of 
each gene i given by its regression coefficient 
βi and besides to automatically search for an 
optimal bh according to the classification ac-
curacy of the associated regularized model. 
The general procedure, denoted Proc-gene, is: 
1. For a subset of genes S, search for bh of 

EDA approach using the classification ac-
curacy as the criterion. Let bh

op be the op -
timal value.  

2. With bh
op

 fixed, eliminate a percentage of 
the genes with the smallest βι

2 values. Let S 
be the new (smaller) set of genes.  

3. Repeat steps 1 and 2 until there is only one 
gene left. An optimal subset of genes is 
 finally derived.  
 

Some remarks follow. In step 1, subset S to in-
itialize the process may be chosen in different 

ways. Basically, we can start with all the genes 
or we can use a filter approach to reduce the 
size of this subset. Since it is not clear which 
filter criterion to use and different filter crite-
ria may lead to different conclusions, we pro-
pose here a kind of consensus among differ-
ent filter criteria. Thus, for four filters f1, f2, f3 
and f4, if gene i is ranked first by f1, second by 
f2, third by f3 and fourth by f4, then its rank ag-
gregation would be 11. The top-ranked genes 
by this new agreement would be chosen. In 
our experiments we have used the following 
four filter criteria: 1) the BSS/WSS criterion 
(as in [24]), 2) the Pearson correlation coef-
ficient to the class variable (as in [5, 25]), 3) a 
p-metric (as in [26]), and 4) a t-score. 

The search for the optimal bh for the EDA 
in step 1 amounts to running EDA (Proc-
EDA) several times (for different bh values) 
and measuring which of the fitted logistic re-
gression models is the best. This is assessed by 
estimating the classifier’s accuracy (percent -
age of correctly classified microarrays) as the 
generalization performance of the model. 

Braga-Neto and Dougherty [27] proved the 
.632 bootstrap estimator to be a good overall 
estimator in small-sample microarray clas-
sification, and it was therefore the chosen 
method in this paper. 

In step 2 of Proc-gene, EDA has already 
provided a fitted model (with the best bh 

value) and then a gene selection method in-
spired by RFE is carried out. As in [13, 14], we 
remove more than one feature at a time for 
computational reasons (the original RFE only 
removes one), based on the smallest βι

2 val -
ues, indicators of a lower relative importance 
in the gene subset. 

3. Results and Discussion 

We illustrate how our approach really acts as a 
regularizer on some publicly available bench-
mark microarray data sets. First, the Breast 
data set [25] with 7129 genes and 49 tumor 
samples, 25 of them representing estrogen 
 receptor-positive (ER+) and the other 24 

Fig. 1 Number of genes in set S vs. accuracy (%) and vs. bh
op for Breast and Colon data sets 

Table 1 Selected top 7 genes with their β estimate for Breast 

GenBank ID [ref.] Description  β 

X87212_at [25] H. sapiens mRNA for cathepsin C  –6.988 

L26336_at [32] Heat shock 70kDa protein 2   6.980 

L17131_ma1_at [16, 33] Human high mobility group protein  –5.402 

J03827_at  Y box binding protein-1 mRNA  –3.549 

S62539_at [34]  Insulin receptor substrate 1   3.419 

HG4716-HT5158_at [35] Guanosine 5’-monophosphate synthase  –2.685 

U30827_s_at [25, 36] Splicing factor, arginine/serine-rich 5   2.480
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being estrogen receptor-negative (ER–). Sec-
ond, the Colon data set [28] that contains 
2000 genes for 62 tissue samples: 40 cancer 
tissues and 22 normal tissues. Other public 
data sets have been studied: the Leukemia 
data set [29] and the Prostate cancer data set 
[30]. See the supplementary material on the 
web pagea. 

We have developed our own implemen-
tation in C++ for the EDA-based regularized 
logistic regression (Proc-EDA) and in R for 
the gene selection method (Proc-gene) that 
calls the former. We tried two different EDA 
approaches: UMDAc

G and EGNA. To run 
EDAs we found that an initial population of 
at least M = 100 points and of at least M  ′ = 50 
selected points for learning guarantee robust 
β estimates. The relative change in the mean 
fitness value between successive generations 
was the chosen value for assessing the conver-
gence of the Proc-EDA algorithm. 

As regards Proc-gene, we considered rea-
sonable to initialize it with 500 genes for the 
size of subset S. These were selected according 
to the aggregation of the four filter criteria as 
described above. Based on our experience, a 
good choice in the experiments for the 
number of bootstrap samples used for train-
ing was 100. The percentage of genes to be re-
moved in step 2 is fixed as 10%. 

�Figure 1a and �Table 1 show the ex-
perimental results on the Breast data set. 
Since perfect classification (100%) is 

 achieved with many different gene subsets, we 
choose the subset with fewer genes, i.e. the 
7-gene model. Note how bh

op obtained at 
step 1 of procedure Proc-gene varies as long as 
the number of selected genes changes due to 
the adapted RFE. Its minimum value is 0.5. 
Running times on an Intel Xeon 2GHz under 
Linux are quite acceptable: almost 3 minutes 
for 500 genes, 39 s for 250, between 2.5 and 
5 s for 75–125 genes, and less than 2 s for 
70 genes or fewer. 

The seven genes found to separate ER+ 
from ER– samples achieve a higher classifi-
cation accuracy than other up-to-date regu-
larized methods. Shevade and Keerthi [16] 
report an accuracy of 81.9% and use logistic 
regression with Ll penalty solved by the 
Gauss-Seidel method. They propose a differ-
ent gene selection procedure and retain six 
genes, two of them also found by us (see 
below). Fort and Lambert-Lacroix [31] use a 
combination of PLS and ridge logistic regres-
sion to achieve an about 87.5% accuracy. 
They perform a gene selection based on the 
BSS/WSS criterion choosing some fixed 
number of genes: 100, 500, 1000, although 
they do not indicate which are they. Finally, a 
slightly different approach followed by the 
original paper by West et al. [25], where a 
probit (binary) regression model is combined 
with a stochastic regularization and SVDs, 
yields a 89.4% accuracy using 100 genes se-
lected according to their Pearson correlation 
coefficient to the class variable. When our re-
sults are compared to the most popular regu-
larization methods, lasso and ridge logistic 

regressions only achieve 98.23% and 98.46% 
accuracies, respectively, using in both cases 
the same 500 selected genes provided by the 
aggregation of the four filter criteria. All of 
our seven selected genes have been linked 
with breast cancer proving the consistency of 
our results with the literature (see Table 1). 

�Figure 1b and �Table 2 show the results 
on the Colon data set. Classes are less well 
 separated outputting at most a 99.65% accu-
racy, for the 9-gene model. Running times are 
longer than before: almost 10 minutes for 500 
genes, 1.5 minutes for 250, between 2 and 7 s 
for 60–125 genes, and less than 2 s for 55 
genes or fewer. 

An analysis of the selected genes and the 
accuracy reported by other directly related 
methods is as follows. Shevade and Keerthi 
[16] achieve an accuracy of 82.3% with eight 
genes, three of them – Z50753, T62947 and 
H08393 – included in our list. Liu et al. [37] 
use logistic regression with Lp penalty, where 
p = 0.1 and retain 12 genes. Genes Z50753, 
M76378 and H08393 of their list are also in 
ours. They do not compute the accuracy but 
the AUC (0.988), which in our case for the 
9-gene model is better (0.9996). Using a ridge 
logistic regression approach, Shen and Tan 
[14] keep 16 genes with a similar RFE than in 
our case and report a 99.3% accuracy, with-
out any mention to the specific genes se-
lected. When our results are compared to 
lasso and ridge logistic regressions, these only 
achieve 89.74% and 90.51% accuracies, re-
spectively, both lower than our 99.65% accu-
racy. Our 9-gene list includes genes identified 
as relevant for colon cancer in the literature 
(see Table 2).  

See the supplementary material for details 
on EGNA factorizations. 

4. Conclusions 

The high interest of combining a regulariza -
tion with a dimension-reduction step to en-
hance classifier efficiency has been pointed 
out elsewhere [31]. Combined with a gene 
subset selection procedure that adapts the 
RFE and automatically tunes the required pa-
rameters, we have introduced a novel EDA-
based logistic regression regularizer. It in-
cludes the shrinkage of the coefficients impli-
citly during EDA evolution process while op-
timizing the usual likelihood function. The 

GenBank ID [ref.]  Description  β 

T94579 [38] Human chitotriosidase precursor mRNA, complete cds  –0.500 

D26129 [40] Ribonuclease pancreatic precursor (human) –0.500 

T40578 [39] Caldesmon 1 –0.499 

R80427 [38] C4-dicarboxylate transport sensor protein dctb (Rhizobium  
leguminosarum) 

–0.497 

Z50753 [38] H.sapiens mRNA for GCAP-II/uroguanylin precursor   0.496 

M76378 [38] Human cysteine-rich protein (CRP) gene, exons 5 and 6   0.494 

H06061 [38] Voltage-dependent anion-selective channel protein 1 (Homo 
sapiens) 

 0.485 

H08393 [38] Collagen alpha 2(XI) chain (Homo sapiens)   0.482 

T62947 [38] 60S ribosomal protein L24 (Arabidopsis thaliana) –0.480

a http://laurel.datsi.fi.upm.es/~vrobles/eda_lr_reg 

Table 2 Selected top 9 genes with their β estimate for Colon



empirical results on several microarray data 
sets have provided models with a low number 
of relevant genes, most of them confirmed by 
the literature, and performing better in clas-
sification than other competing regularized 
methods. 

Unlike the traditional procedures for find-
ing maximum likelihood βi parameters, the 
EDA approach is able to use any optimization 
objective, regardless of its complexity or the 
non-existence of an explicit formula for its 
expression. In this respect, our framework 
could find parameters that maximize the 
AUC objective (a difficult problem [41]) or it 
would also fit the search for parameters of any 
regularized logistic regression. The inclusion 
of interaction terms among (possibly co-
regulated) genes in ηj of expression (1) would 
also be feasible as other future direction to 
 explore. 
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