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Penalizing the model complexity is necessary to avoid overfitting when the number of data samples
is low with respect to the number of model parameters. In this paper, we introduce a penalization
term that places an independent prior distribution for each parameter of the multivariate von Mises
distribution. We also propose a circular distance that can be used to estimate the Kullback–Leibler
divergence between any two circular distributions as goodness-of-fit measure. We compare the
resulting regularized von Mises models on synthetic data and real neuroanatomical data to show
that the distribution fitted using the penalized estimator generally achieves better results than
nonpenalized multivariate von Mises estimator. C© 2016 Wiley Periodicals, Inc.

1. INTRODUCTION

Directional data appears in many science domains in the form of directions or
angles, but also as any kind of periodical data like the hours of the day. Indeed, this
periodicity is the main characteristic which differentiates directional data from linear
data. Recent examples of directional data in the literature cover a plethora of topics,
including wind direction,1,2 handwriting recognition,3 people orientation in com-
puter vision,4 animal orientation,5,6 marine currents,6 protein backbone angles,7–9

and text mining similarity measures10 among others.
Directional statistics11,12 provides specific tools for modeling directional data.

In the past years, new circular distributions and techniques have emerged in the
literature for univariate circular data13,14 but also for multivariate circular data.6,9,15,16

The von Mises distribution, the circular analogue of the normal distribution, is still
the distribution of choice in the directional statistics field.

The extension of the von Mises distribution to a multivariate distribution7

presents the problem that no closed formulation is known for the normalization
term when the number of variables is greater than two,17 and therefore it cannot be
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easily fitted nor compared to other distributions. In this article, we reformulate the
log pseudo-likelihood expression for the multivariate von Mises distribution in such
a way that it becomes easier to compute.

In some application areas such as neuroanatomy, quality data are scarce and
the process to obtain new data, a three-dimensional (3D) reconstruction of a neuron,
could take up to several days. In this situation when we deal with a small-sample
learning problem, penalizing the model complexity is needed to prevent overfitting
or, as shown in this paper, to compensate the estimator bias. Although the usual
approach is to use a uniform L1 penalization over the parameters of the model,8 in the
present paper we propose a more general penalization term that could, in some way,
be aware of previous knowledge about the structure of dependencies between the
variables in the data, for example, taking into account spatial relationships between
variables. In the linear case, for the multivariate normal distribution, this structure-
aware penalization paradigm has been applied to learn graphical models with hubs18

or to penalize according to some defined distance between the variables.19

The results in this paper extend those in Rodriguez-Lujan et al.20 The added
contributions of the present paper are a redefinition of a penalization term for
learning the parameters of the multivariate conditional distributions, a brief proof
of consistence of the penalized estimator, and the study of its bias and variance
properties through numerical experiments. The application to real-world data in
neuronatomy is extended to include new data sets from different species rather than
focus exclusively on human neurons.

This paper is organized as follows: Section 2 reviews the univariate and multi-
variate von Mises distributions and defines the maximum pseudo-likelihood estima-
tor. In Section 3, we propose a penalization term for the log pseudo-likelihood based
on the Frobenius norm, prove its asymptotic convergence, and compare it against the
nonpenalized estimator. Then, in Section 4, we compare the von Mises distribution
and the Gaussian distribution over real data from human, rat, and mouse neurons
using an approximation of the Kullback-Leibler (KL) divergence, introduced for the
first time for circular data in this paper, as the assessment metric. We conclude the
paper in Section 5 with a final discussion and some proposals for future work.

2. THE MULTIVARIATE VON MISES DISTRIBUTION

2.1. Definition of Density Functions

The von Mises distribution is one of the most relevant probability distributions
in the field of directional statistics, and it is often considered as the normal distri-
bution in the circumference.12 Contrary to other directional distributions, such as
wrapped11,14 or projected distributions,15,21 the von Mises distribution is a native
directional distribution. Owing to this purely directional nature, the von Mises distri-
bution has better mathematical properties than other nonnative circular distributions
like the wrapped-normal distribution. Perhaps, one of the most important properties
of the von Mises distribution is that it belongs to the canonical exponential family,
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FROBENIUS NORM REGULARIZATION FOR VON MISES DISTRIBUTION 155

which is obvious when we examine its density function:

fV M (θ ; μ, κ) = 1

2πI0(κ)
exp{κ cos(θ − μ)}; θ, μ ∈ [0, 2π), κ > 0 (1)

where μ stands for the mean angle, κ measures the concentration around the mean,
and I0 is the modified Bessel function of the first kind of order 0. The modified
Bessel function of the first kind of order n, when n is a integer, can be expressed as
the following integral formula:

In(z) = 1

π

∫ π

0
ez cos θ cos(nθ)dθ (2)

The density in Equation (1) is the angular interpretation of the von Mises
distribution. It is easy to define the equivalent geometrical formulation using similar
parameters over the unit circumference S1 = {(x, y) ∈ R

2 : x2 + y2 = 1}:

fV M (�x; �μ, κ) = 1

2πI0(κ)
exp{κ �x · �μ}; �x, �μ ∈ S1, κ > 0 (3)

Here · is the canonical dot product in R
2 and �μ is the mean direction. From this

definition, we can observe that the probability density for each direction (unitary
vector) is proportional to its projection onto the real line determined by the mean
direction. For example, the von Mises–Fisher distribution,22 the analogue of the von
Mises distribution in higher dimensions, is usually defined from this geometric point
of view. In this paper, however, we will follow the angular interpretation of the von
Mises distribution in both univariate and multivariate cases.

Continuing the analogy between the normal distribution and the von Mises
distribution, we can define a multivariate von Mises distribution (MVM)7 as the
directional equivalent to the multivariate normal distribution. The density function
of the p-variate von Mises distribution is

fMV M (θ ; μ, κ, �) = 1

C(κ, �)
exp{κ · cos(θ − μ)

+ 1

2
sin(θ − μ)� sin(θ − μ)T };

θ , μ ∈ [0, 2π)p, κ = (κ1, . . . , κp), κj > 0 ∀j, � ∈ Sp(R) (4)

where Sp(R) is the set of real symmetric matrices of size p, μ is a p-dimensional
vector, the multivariate equivalent of the mean angle in Equation (1), κ is the
concentration vector, � = (λij ) is a square symmetric matrix of size p whose
diagonal elements λii are zero, and C(κ, �) is the normalization term. Here cos
and sin are applied entrywise to the p-dimensional vector θ − μ. The matrix � can
be seen as a dependency matrix, where the element λij measures the conditional
probabilistic dependency between the ith and the j th variables. Actually, if the
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156 RODRIGUEZ-LUJAN, LARRAÑAGA, AND BIELZA

distribution is highly concentrated, that is, the fluctuations in each component are
sufficiently small, we can express the correlation coefficient between the ith and the
j th component as a function of λij :7

ρij = λij√
κiκj

The normalization term C(κ, �) in Equation (4) is the source of many problems
that arise with the multivariate von Mises distribution. It does not have17 a known
closed-form formula for p > 2; therefore, its exact value has to be computed through
numerical approximation, which can be troublesome in high-dimensional settings.
However, as we will see in the following subsections, we can overcome some of
the difficulties derived from the lack of a closed formula for the normalization term
using the univariate conditional distributions of a multivariate von Mises distribution,
which are indeed univariate von Mises distributions with known parameters:

fMV M (θj |θ1, . . . , θj−1, θj+1, . . . , θp; μ, κ, �) = fV M (θj ; μ\j , κ\j )

μ\j (θ ; μ, κ, �) = μj + arctan

⎛
⎝ 1

κj

∑
l �=j

λjl sin(θl − μl)

⎞
⎠

κ\j (θ ; μ, κ, �) =

√√√√√κ2
j +

⎛
⎝∑

l �=j

λjl sin(θl − μl)

⎞
⎠

2

(5)

It is also important to note that the multivariate von Mises distribution is
symmetrical and rotationally equivariant with respect to the mean μ. This last
property allows us to assume in the following sections that μj = 0, ∀j = 1, . . . , p
without loss of generality. We will also restrict the values of κ and � such that
matrix

P = diag(κ1, . . . , κp) − � (6)

is positive definite, where diag(κ1, . . . , κp) denotes the square diagonal matrix whose
diagonal entries are κ1, . . . , κp. The positive-definiteness of P is a sufficient condi-
tion to ensure that the unique maximum of the multivariate von Mises distribution
is attained at μ.23

2.2. Sampling

In this subsection, we present the two methods provided in the literature to
generate samples from a multivariate von Mises distribution. Both methods rely
on efficient sample generation from a von Mises distribution.24 The first method
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FROBENIUS NORM REGULARIZATION FOR VON MISES DISTRIBUTION 157

relies on the Gibbs sampling (GS) technique.7,8 Our implementation of the GS is
described in Algorithm 1, where kthinning is introduced to break the dependence
between consecutive draws. In practice, a certain number of the first draws (Nburnin)
is discarded to reduce the dependency of the generated samples on the starting point,
so the selected samples are closer to the stationary distribution.

ALGORITHM 1.
Input: Parameters μ, κ, �
Output: θ (1), . . . , θ (N). That is N random samples from MVM(μ, κ, �)
Steps:

1. Initialize θ (0) = (θ (0)
1 , . . . , θ (0)

p ) to some arbitrary value and set i = 1
2. Repeat N times:

(a) Update θ (i) = θ (i−1)

(b) Select one component θ
(i)
j at random and update it as:

θ
(i)
j ∼ fMVM(θ (i)

j |θ (i)
1 , . . . , θ

(i)
j−1, θ

(i)
j+1, . . . , θ

(i)
p )24

(c) Repeat the previous step a minimum of kthinning times until all components have been
updated at least once

(d) Update i = i + 1
3. Return θ (1), . . . , θ (N)

The second method is based on the rejection sampling algorithm using an
independent product of one-dimensional von Mises distributions.23 This method is
only applicable when the matrix P is positive-definite. Additionally, the acceptance
probability of the sampler decreases exponentially on the number of variables p, but
also depends on the eigenvalues of P. In our experiments, we will use the rejection
sampling whenever the number of variables is low (p ≤ 10), preferring the Gibbs
sampler for medium and high dimensionality settings (p > 10).

2.3. Parameter Learning: Maximum Pseudo-Likelihood Estimator

Using the maximum likelihood estimator for the multivariate von Mises dis-
tribution is an often complicated and costly process due to the lack of a known
closed formula for the normalization term C(κ, �) in Equation (4). Although with
high concentration values and moderate correlation between variables C(κ, �) can
be approximated by a Taylor series expansion,9 this procedure cannot be extended
to the general case. As a consequence, for each possible value of κ and � the
value of the C(κ, �) has to be approximated numerically. Since we select the para-
metric configuration comparing the likelihood (or pseudo-likelihood) value, even
relatively small errors in the estimation of the normalization term could lead to a
completely wrong parameter estimation. Although there are methods that can pro-
vide an estimate avoiding the curse of dimensionality, e.g., Monte Carlo integration
with uniform sampling, if we require an extremely precise estimation of the normal-
ization term, the computational cost does not justify the precision gain compared to
the use of the pseudo-likelihood. This cost just grows bigger as we need to recal-
culate the normalization term in each step of the minimization algorithm. For this
reason, some authors have proposed the use of other estimators different from the
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158 RODRIGUEZ-LUJAN, LARRAÑAGA, AND BIELZA

maximum likelihood estimator, like the pseudo-likelihood, to learn the parameters
of a multivariate von Mises distribution given a set of data samples.6–8

The pseudo-likelihood of a multivariate density function25 is defined as the
product of all its univariate conditional densities f (θ (i)

j |θ (i)
1 , . . . , θ

(i)
j−1, θ

(i)
j+1, . . . ,

θ (i)
p ). Fortunately, as we have mentioned before, the univariate conditional densities

of a multivariate von Mises distribution are von Mises distributions with known
parameters. This makes the maximum pseudo-likelihood estimator computationally
tractable, at the expense of providing less efficient estimations than the maximum
likelihood.26 The full pseudo-likelihood for N independent p-dimensional samples
� = {θ (1), . . . , θ (N)} is expressed as

PL(�| μ, κ, �) = (2π)−Np

N∏
i=1

p∏
j=1

1

I0
(
κ

(i)
\j
) exp

{
κ

(i)
\j cos

(
θ

(i)
j − μ

(i)
\j
)}

(7)

where μ
(i)
\j and κ

(i)
\j are the univariate conditional parameters in Equation (5) given

the ith data sample θ (i). The usual approach is to maximize the natural logarithm of
the pseudo-likelihood expression, which is more tractable and does not change the
location of the maximum. In our case, the expression of the log pseudo-likelihood
is

logPL(�| μ, κ, �) = −Np log(2π)

+
N∑

i=1

p∑
j=1

(− log I0
(
κ

(i)
\j
)+ κ

(i)
\j cos

(
θ

(i)
j − μ

(i)
\j
))

(8)

Similarly to the multivariate normal distribution, the maximum likelihood estimator
for the mean parameter μ̂ = (μ̂1, . . . , μ̂p), given a data sample, is the principal
argument of the sample (circular) mean:

μ̂j = arg
N∑

k=1

eiθ
(k)
j (9)

We can compute μ̂ and then rotate (center) the data sample �, so that we can assume
μ = 0 for the rest of this section.

To find the maximum of function (8), we use the low memory extension of
the widespread Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method
with simple box constraints (L-BFGS-B).27 The concentration values are restricted
to be positive, that is, κj > 0, ∀ j = 1, . . . , p. An advantage of the quasi-Newton
methods is that it suffices to compute first-order derivatives of the function to maxi-
mize (8), i.e., we need to compute the partial derivatives of the log pseudo-likelihood
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FROBENIUS NORM REGULARIZATION FOR VON MISES DISTRIBUTION 159

function with respect to κj and λjk . The resulting equations are

∂logPL
∂κj

=
N∑

i=1

[
∂κ

(i)
\j

∂κj

(
cos
(
θ

(i)
j − μ

(i)
\j
)− A1

(
κ

(i)
\j
))+ ∂μ

(i)
\j

∂κj

κ
(i)
\j sin

(
θ

(i)
j − μ

(i)
\j
)]

∂logPL
∂λjk

=
N∑

i=1

[
∂κ

(i)
\j

∂λjk

(
cos
(
θ

(i)
j − μ

(i)
\j
)− A1

(
κ

(i)
\j
))+ ∂μ

(i)
\j

∂λjk

κ
(i)
\j sin

(
θ

(i)
j − μ

(i)
\j
)]

∂κ
(i)
\j

∂κR

= δ(R, j )
κj

κ
(i)
\j

∂κ
(i)
\j

∂λR,S

= δ(R, j )
sin(θS)

∑
l �=j λR,l sin θ

(i)
l

κ
(i)
\j

∂μ
(i)
\j

∂κR

= δ(R, j )
−∑l �=j λR,l sin θ

(i)
l(

κ
(i)
\j
)2

∂μ
(i)
\j

∂λR,S

= δ(R, j )

∑
l �=j λR,l sin θ

(i)
l(

κ
(i)
\j
)2 (10)

where A1 = I1
I0

is the ratio of the modified Bessel functions of order one and zero,
and δ(x, y) = 1 if x = y and zero otherwise. In these expressions, R and S can be
substituted for any valid index from 1 to p.

2.3.1. Computational Complexity Reduction

Our goal in this section is to simplify function (8) and specially (10) from a
computational point of view. Our first step is to express certain sums as a matrix
product to take advantage of highly efficient implementations of linear algebra
computations such as BLAS or LAPACK.28 We define the N × p auxiliary matrix
�:

� = sin(�)�, that is, ψij =
∑
l �=j

λjl sin
(
θ

(i)
l

)
(11)

Then we focus on the right-hand term of (8). By applying some basic trigonometric
identities, we obtain

cos
(
θ

(i)
j − μ

(i)
\j
) = cos

⎛
⎝θ

(i)
j − arctan

⎛
⎝ 1

κj

∑
l �=j

λj,l sin
(
θ

(i)
l

)⎞⎠
⎞
⎠
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160 RODRIGUEZ-LUJAN, LARRAÑAGA, AND BIELZA

= cos
(
θ

(i)
j

)
cos

⎛
⎝arctan

⎛
⎝ 1

κj

∑
l �=j

λj,l sin
(
θ

(i)
l

)⎞⎠
⎞
⎠

+ sin
(
θ

(i)
j

)
sin

⎛
⎝arctan

⎛
⎝ 1

κj

∑
l �=j

λj,l sin
(
θ

(i)
l

)⎞⎠
⎞
⎠

= cos
(
θ

(i)
j

) κj

κ
(i)
\j

− sin
(
θ

(i)
j

)∑l �=j λj,l sin
(
θ

(i)
l

)
κ

(i)
\j

(12)

If we substitute this expression in (8) and express the sums as elements of the
� matrix defined in Equation (11), we obtain a more compact version of the log
pseudo-likelihood function that does not require to compute the inverse of the
tangent:

logPLop(�| μ, κ, �) = −Np log(2π) +
N∑

i=1

p∑
j=1

(− log I0
(
κ

(i)
\j
)

+ cos
(
θ

(i)
j

)
κj − sin

(
θ

(i)
j

)
ψij

)
(13)

Additionally, the partial derivatives obtained from Equation (13) are simpler
partial derivatives than those in (10):

∂logPLop

∂κj

=
N∑

i=1

[
cos
(
θ

(i)
j

)− A1
(
κ

(i)
\j
) κj

κ
(i)
\j

]

∂logPLop

∂λjk

=
N∑

i=1

[
sin
(
θ

(i)
k

) (
sin
(
θ

(i)
j

)− A1
(
κ

(i)
\j
)ψij

κ
(i)
\j

)]
(14)

To evaluate the performance gain between expressions (8) and (13), we compare
the average execution time to compute the maximum pseudo-likelihood estimation
using each one. To maximize the likelihood function, we use the L-BFGS-B al-
gorithm, a quasi-Newton method with reduced memory footprint. In both cases,
the routines that perform most of the calculations are implemented in ANSI C. We
propose two experiments: First, the number of variables p varies for a fixed number
of samples N (Experiment A); and second, the other way around (Experiment B).
We repeat each experiment 100 times for every one of the 10 randomly generated
P positive definite matrices to compute the average time as well as the standard de-
viation. The experimental configuration is summarized in Table I. The experiments
were executed in a common desktop computer with an i7-4790k processor at 4 GHz
and 8 GB of RAM at 1600 MHz.
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FROBENIUS NORM REGULARIZATION FOR VON MISES DISTRIBUTION 161

Figure 1. Average fitting time for the naive implementation (8) and the optimized version (13)
of the log pseudo-likelihood function. Each execution has been repeated 100 times with two
additional warm-up iterations. We have plotted an envelope of width σ around the average time
line, but, due to its small size, it can be hardly seen.

Table I. Experimental configuration summary for time comparison.

Experiment p N Number of repetitions

A {3, 4, . . . , 10} 100 10 random P matrices × 100 times
B 3 {10, 20, 40, . . . , 1000} 10 random P matrices × 100 times

Figure 1 shows that the optimized version is significantly faster in every case,
and it scales better when the number of samples (N) or variables (p) increases,
although both versions have the same computational complexity O(p2N). Based
on these results, we will use this optimized version of the log pseudo-likelihood
function in the next experiments.

2.3.2. Estimator Properties

Asymptotic consistency of an estimator is perhaps the most important prop-
erty of any admissible estimator as it guarantees that the estimator is arbitrar-
ily close to the estimated value provided sufficient number of samples. In other
words, the estimation improves as the number of samples increases. The consis-
tency of the maximum pseudo-likelihood estimator has been already proved by other
authors.8

Although there are some related works on the analytical study of mean and
variance properties on implicitly defined biased estimators,29 we follow an em-
pirical approach to evaluate the bias and the variance of the maximum pseudo-
likelihood estimator when estimating κ and �. Specifically, we aim to determine the
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162 RODRIGUEZ-LUJAN, LARRAÑAGA, AND BIELZA

Table II. Experiments to estimate bias and variance properties.

Experiment p N κ � Number of repetitions

A 3 10 (3, 3, 3) � = 0 5000
B 3 10 (3, 3, 3) � �= 0 5000
C 3 10 (0.01, 0.01, 0.01) � = 0 5000
D 3 10 (0.01, 0.01, 0.01) � �= 0 5000
E 10 50 (3, . . . , 3) � = 0 5000
F 10 50 (3, . . . , 3) � �= 0 5000
G 50 100 (3, . . . , 3) � = 0 10000
H 50 100 (3, . . . , 3) � �= 0 10000

properties of the estimator for low and medium concentration values (κ), as well as
for configurations when the variables are independent (� = 0) and dependent (� �=
0). Based on the previous goals, we define the experimental configurations listed in
Table II.

For each parametric configuration, we repeat the same process a high num-
ber of times: First, N independent samples are generated from a MVM(μ = 0,
κ , �). Then, the maximum pseudo-likelihood estimator is applied to get the es-
timated values ξ̂PL = (κ̂, �̂). Finally, after all repetitions have been completed,
we compute the bias and the variance of the estimator. Note that in the cases
where � = 0 the pseudo-likelihood estimator is in fact the maximum likelihood
estimator.

For each experiment, we apply the Hotelling’s T-square test,30 a multivariate
hypothesis test, over κ̂ and �̂ independently to verify whether the estimator is
unbiased for that configuration. For those cases where the unbiasedness is rejected,
we perform a one-sided t-test for each individual parameter ξj to check if its estimator

is overestimating the real value (E[ ξ̂j

ξj
] > 1) or either underestimating it. The κ̂

unbiasedness hypothesis is rejected with a significance level α = 0.05 in every case,
whereas it is not rejected for �̂ in experiments A, C, and E and rejected in the
rest with the same α. Defying our belief that the �̂ estimator is unbiased when
� = 0, the hypothesis is rejected in experiment G, even when the average bias
value is low (≈ 10−2) for each λ̂ij . Therefore, due to this last result, we cannot
draw any conclusion about the unbiasedness hypothesis. Finally, the overestimation

hypothesis H0 : E[ ξ̂j

ξj
] > 1 is not rejected for every single parameter where the

unbiasedness hypothesis has been rejected, which means that the maximum pseudo-
likelihood statistic overestimates the real value of the parameters.

Finally, we perform a last experiment. We want to check for a relation between
the distance of � to the zero matrix, measured as the Frobenius norm of � (‖�‖F ),
and Bias(�̂). To do so, we generate N = 10 samples from a three-variate MVM
with fixed κ = (3, 3, 3) and compute the Euclidean norm of the estimator bias while
varying ‖�‖F from 0 to 4, verifying in each case that the matrix P is positive definite.
For every parameter configuration, the process is repeated 10,000 times. As seen in
Figure 2, there is a clear linear relationship between ‖�‖F and ‖Bias(�̂)‖2.
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FROBENIUS NORM REGULARIZATION FOR VON MISES DISTRIBUTION 163

Figure 2. Relation between the distance to the zero matrix ‖�‖F and ‖Bias(�̂)‖2.

3. PENALIZED PARAMETER LEARNING

Learning the parameters of a multivariate von Mises distribution using a pe-
nalized maximum pseudo-likelihood estimator has been already proposed in the
literature by other authors.8 Their approach is to add a term in the pseudo-likelihood
expression that penalizes the absolute value of all λij elements equally. Since the
pseudo-likelihood overestimates the parameters, specially when learning from small
samples, it is broadly justified to apply a penalization on the parameter absolute
value. The actual problem is that, if we apply the exact same penalty on each λij we
are implicitly assuming that all λij are similar in size.

From the Bayesian data analysis perspective,31 the parameters κ and � are
real-valued random variables with a specific distribution given the data �, the
posterior probability distribution p(κ, � |�). This function is obtained from the prior
probability distribution p(κ, �), a distribution that reflects the prior knowledge about
the value of the parameters, and the aforementioned likelihood function through
Bayes’ theorem:

p(κ, � |�) ∝ p(κ, �)p(�| κ, �) (15)

Hence, the maximum likelihood estimator corresponds to a scenario with an unin-
formative prior where maximizing the posterior probability actually corresponds to
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164 RODRIGUEZ-LUJAN, LARRAÑAGA, AND BIELZA

maximizing the likelihood. Under this Bayesian framework, a uniform L1 regular-
ization corresponds to setting the exact same prior distribution, centered at zero, for
each parameter and to assuming that all λij are similar in size. This issue has been al-
ready studied in the literature, but focusing on multivariate normal distributions.18,19

Here we propose a penalized estimator based on the maximum pseudo-likelihood
estimator where each parameter is penalized individually; in other words, the prior
distribution for each parameter is independent from the rest.

3.1. F-Norm Penalized Pseudo-Likelihood

Let P be the positive definite matrix defined in Equation (6), � a p × p
real symmetric matrix, and H a triangular real p × p matrix, whose elements hij

are nonnegative. Then, we add the following penalization term to the log pseudo-
likelihood introduced in Equation (13):

pen(κ, �) = −‖(P − �) ◦ H‖F (16)

where ‖A‖F =
√

tr(AAT ) is the Frobenious matrix norm (F-norm) and ◦ is the
entrywise Hadamard product A ◦ B = (aij bij ). In the penalization term given by
Equation (16), the matrix � is our prior guess about the elements pij of P; whereas
hij , the elements of the confidence matrix H ,32 measures our degree of confidence
in the correctness of the value φij . Note that the triangular structure imposed to H
is not arbitrary since it prevents the same λij = λji parameter from being penalized
twice.

The last requirement to use the penalized pseudo-likelihood with the term given
by Equation (16) is to update the partial derivatives in Equation (14) by adding the
following terms:

∂pen(κ, �)

∂κj

= − h2
jj (κj − φjj )

‖(P − �) ◦ H‖F

∂pen(κ, �)

∂λjk

= − h2
jk(λjk − φjk)

‖(P − �) ◦ H‖F

(17)

Now, we face the problem of selecting values for � and H such that the estimation
given by the penalized version is at least as good as the unpenalized one. Based on
the results in the preceding section that show how the maximum pseudo-likelihood
estimator overestimates the scale of κ and �, we can mimic the L1 penalization
and set � = 0 if no prior information is available, but we still need to define the
values of the confidence matrix for each parameter. A conservative approach, given
the absence of reliable prior information, is to set the elements hij to some medium-
low value close to 1; otherwise, there is a risk of underestimating the parameters.
Obviously, the exact best value for each hij depends on the number of variables p
and the real value of pij . In Section 4, we show a real example where the structure of
this confidence matrix is clearly induced by the problem itself. Another interesting
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FROBENIUS NORM REGULARIZATION FOR VON MISES DISTRIBUTION 165

approach for highly concentrated data, could be to use the inverse of the sample
circular covariance matrix7 as our � matrix.

Going back to the Bayesian analysis framework, the penalization term in Equa-
tion (16) in the log pseudo-likelihood could be intuitively seen as placing an inde-
pendent normal prior N (φij , σ (hij )) over each pij .

3.2. Properties

As we did with the maximum pseudo-likelihood estimator in Section (2.3.2),
in this section we analyze the properties of the penalized estimator and compare the
experimental results between the unpenalized and the penalized maximum pseudo-
likelihood estimators. The following proposition addresses the consistency of the
penalized estimator.

PROPOSITION 1. The penalized maximum pseudo-likelihood estimator

ξ̂PPL := argmax
ξ=(κ,�)

{logPL(�| μ, κ, �)op + pen(κ, �)}

is consistent.

Proof. Let ξ̂
n

PL and ξ̂
n

PPL be the unpenalized and penalized maximum pseudo-
likelihood estimators, respectively, and ξ 0 the real parameter that exists is unique and
well-defined. Then, we can define that the maximum pseudo-likelihood estimator
ξ̂

n

PL as an M-estimator that maximizes the function:

Mn(ξ ) = 1

n

n∑
i=1

(logPL(θ i | μ, κ, �))

If we restrict ourselves to a compact neighborhood of ξ 0, B(ξ 0), and having in
mind that the log-pseudo-likelihood function is continuous and square-integrable,
then the conditions to apply the uniform strong law of large numbers are met on that
neighborhood, as a result:

sup
ξ∈B(ξ 0)

‖Mn(ξ ) − E[logPL(θ |μ, κ, �)]‖ −→
a.s.

0

For convenience, in the rest of the proof we will refer to the function
E[logPL(θ | μ, κ, �)] simply as M(ξ ). Please recall that ξ = (κ, �).

On the other hand, let hn(ξ ) = ‖(P−�)◦H‖F

N
be our complexity penalization

function. It is clear that hn is continuous, positive and the sequence decreases
monotonically (i.e., hn < hm, ∀ m > n). Since the numerator is obviously finite
in any compact set of the parameter space, hn −→ 0 pointwise. Furthermore, by
applying Dini’s theorem, we can state that hn converges to 0 uniformely in any
compact subspace of the parameter space.
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166 RODRIGUEZ-LUJAN, LARRAÑAGA, AND BIELZA

As we did before, the penalized maximum pseudo-likelihood estimator ξ̂
n

PPL
can be also defined as an M-estimator:

M
pen
n (ξ ) = 1

n

n∑
i=1

(logPL(θ i | μ, κ, �)) + hn(ξ )

Now, due to the fact that ξ 0 exists, is unique and well-defined, ∃R such that
∀ r < R Sr : {ξ | ‖ξ 0 − ξ‖ ≤ r

2 } verifies that

∀ξ �∈ Sr M(ξ ) ≤ M(ξ 0) − εr

Therefore, ∀δ > 0 ∃N1 | ∀n1 > N1 such that

P

{
sup

ξ∈B(ξ 0)
‖Mn(ξ ) − M‖ >

εr

2

}
< δ

In parallel, supξ∈B(ξ 0) ‖Mn − M
pen
n ‖ = supξ∈B(ξ 0) hn, as hn converges uni-

formly to 0 in any compact, then ∃N2 | ∀n2 > N2 supξ∈B(ξ 0) hn < εr

2 . It follows
that

sup
ξ∈B(ξ 0)

∥∥M − M
pen
n

∥∥ ≤ sup
ξ∈B(ξ 0)

‖M − Mn‖ + sup
ξ∈B(ξ 0)

∥∥Mn − M
pen
n

∥∥

⇒ P

{
sup

ξ∈B(ξ 0)

∥∥M − M
pen
n

∥∥ > εr

}
< δ

which implies that P {‖ξ 0 − ξ̂
n

PPL‖ > r
2 } < δ ∀ n > max(N1, N2). Then when can

take r −→ 0 and δ −→ 0 so the argument holds when n −→ ∞. �
To experimentally study the properties of the penalized estimator and compare

it with the unpenalized version, we repeat the experiments of Table II. Following
our own recommendations, we will test the penalized estimator with prior matrix
� = 0 and compare two penalization strategies: a conservative approach where the
elements hi≥j = 0.5, and a more aggressive penalization with mid-high confidence
values hi≥j = 3. Our expectation is that while the conservative approach will reduce
both bias and variance with respect to the nonpenalized estimator, the aggressive
approach will increase the bias due to underestimation in low-dimensional settings
where the real parameters values are far from zero, but with a much lower variance.
On the other hand, in the cases where the number of parameters is high we expect a
sharp increase in the parameter overestimation produced by the pseudo-likelihood
estimator. It is reasonable to believe that in those cases a higher penalization would
perform better. Results in Table III agree with our expectations.

Finally, we also repeat the low-dimensional experiment shown in Figure 2
including the two penalized approaches. In Figure 3, we can see how the conservative
approach clearly reduces the bias in both �̂ and κ̂ estimations and outperforms the
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FROBENIUS NORM REGULARIZATION FOR VON MISES DISTRIBUTION 167

Table III. Euclidean norm of the bias, trace of the variance matrix, and mean square error
(MSE) comparison between unpenalized, conservative penalization, and aggressive penalization
for the experiments defined in Table (II).

Nonpenalized Penalized hij = 0.5 Penalized hij = 3

Experiment Bias Var MSE Bias Var MSE Bias Var MSE

A 3.75 61.69 75.80 0.14 5.55 5.57 3.13 0.13 9.90
B 3.94 80.57 96.70 1.38 5.31 7.22 4.57 0.18 21.07
C 1.17 3.99 5.37 1.08 1.90 3.07 1.00 0.64 1.65
D 1.31 4.04 5.77 1.24 2.19 3.74 1.15 0.70 2.04
E 1.88 31.15 34.70 1.27 24.08 25.69 1.10 7.16 8.38
F 2.24 61.15 66.18 1.71 43.79 49.72 2.04 6.47 10.65
G 14.34 1717.14 1922.76 14.10 1712.23 1910.97 10.76 852.14 967.99
H 14.23 1676.50 1879.01 13.64 1469.97 1655.95 10.16 798.11 901.24

Best results are in bold characters.

Figure 3. Bias comparison between unpenalized, conservative penalization, and aggressive pe-
nalization for a three-variate von Mises distribution with κ = (3, 3, 3) from N = 10 samples and
‖�‖F varying from 0 to 4.

aggressive approach. As we anticipated before, Figure 3b shows how the most
aggressive penalization actually increases the bias of �̂ due to underestimation,
which it is not the case in Figure 3a.

4. A REAL-WORLD APPLICATION IN NEUROANATOMY

As an application of the penalized estimator on real-world data, we use the
von Mises multivariate distribution to model the angles between basal dendrites of
pyramidal cells. A neuron can be divided into three main parts: the cell body or
soma, dendrites, and axon. Among all the different types of neurons in the nervous
system, pyramidal neurons stand out as one of the most important types. They play
a key role in the connectivity of cortical columns which are the functional blocks in
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168 RODRIGUEZ-LUJAN, LARRAÑAGA, AND BIELZA

the neocortex. Since the morphology of a neuron determines its connectivity pattern
to a large extent,33 we are interested in studying the pyramidal neurons from an
anatomical point of view. A unique characteristic of the pyramidal neurons is that
they have basal dendrites, so called because they grow from the base of the soma
and spread out horizontally. Our goal is to characterize the angles between these
basal dendrites and to find differences or similarities between species, brain regions,
etc. Ultimately, this knowledge will lead to better single-cell simulations and will
improve our understanding on how the brain works.

4.1. Evaluation: Approximated KL Divergence

First of all, we need to determine how to assess the goodness-of-fit of our
models. Here we face the problem of dealing with multivariate directional data,
for which we have very few available tools compared to the well-known field of
multivariate linear data. Other authors use a variety of techniques to evaluate the
goodness of fit, such as using a multivariate normal approximation7 that cannot be
applied in the general case or they assess the log-likelihood value,8 which can be
hard to compute accurately for the multivariate von Mises distribution, and it is not
appropriate to compare distributions from different families.

Here, we propose to use an approximation of the KL divergence for multivariate
distributions that does not make any assumption on the underlying true distribution
of the samples34 as evaluation metric. Suppose that we have two sets of samples X =
{xi}Ni=1 and Y = { yi}Mi=1 from two p-dimensional unknown probability distributions,
P and Q, respectively. Then the estimated KL divergence is

D̂k(P||Q) = p

N

N∑
i=1

[
log

(
sk(xi)

rk(xi)

)]
+ log

M

N − 1
(18)

where rk(xi) and sk(xi) are the distance to the kth nearest neighbor of xi in X \ {xi}
and Y , respectively.

With this approximation of the KL divergence between the unknown underlying
distribution of the data and the fitted model, we can measure how far is the fitted
distribution from the data just by taking one set of samples from the data and the
other generated by sampling the fitted distribution using any method defined in
Section 2.2 for the multivariate von Mises distribution. However, there is still a
missing piece to compute the estimation: We need to define which distance are we
going to use. Any linear norm such as the Euclidean norm is not adequate since
they do not take into account the periodicity of the data. Another option would be
to use the geodesic distance in the hyper-torus T

p, but it is rather complicated to
compute. To overcome these drawbacks, we define a distance between two points
a,b ∈ [0, 2π)p in Equation (19) that is easy to compute and takes into account the
periodicity of circular data.

d(a, b) = ||a − b∗||2 (19)
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FROBENIUS NORM REGULARIZATION FOR VON MISES DISTRIBUTION 169

Figure 4. Circular distance computation for p = 2 defined by Equation (19).

where

b∗ = (b∗
i )pi=1 =

⎧⎨
⎩

bi if |ai − bi | ≤ π
bi + 2π if |ai + bi | > π and ai > π
bi − 2π if |ai − bi | > π and ai ≤ π

Figure 4 provides a graphical explanation on how this distance works for p = 2.

4.2. Data Extraction and Modeling

Two sets of 3D reconstructions of pyramidal neurons were downloaded from
NeuroMorpho.Org,35 a public repository of neural reconstructions. One contains
1915 reconstructions of human pyramidal cells from different brain regions,36

whereas the other has 90 reconstructions of mouse pyramidal cells from the
neocortex.37 A third set of 38 reconstructions of rat pyramidal neurons from the
somatosensory cortex was downloaded from a different source.38,39 Table IV con-
tains the count of reconstructions per data set aggregated by the number of basal
dendrites. We only pick those cases where the number of samples is at least six;
otherwise, we are not able to estimate the KL divergence properly as with smaller
samples the test set would be too small to provide a reliable KL estimation. If a
neuron has p basal dendrites, then we have p − 1 variables between dendrites since
the last angle is fully determined by the rest. Note that there is a linear restriction
over the angles as they must total less than 2π , although it is not considered in
the model. The restriction should be taken into account when computing the condi-
tional distribution of one angle given the others, as the range of accepted values is
restricted. However, the model is still valid as a first approach, and these issues will
be considered as future improvements.
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170 RODRIGUEZ-LUJAN, LARRAÑAGA, AND BIELZA

Table IV. Number of reconstructions per data set aggregated by the number of basal dendrites.

Data set

Basal count Human Mouse Rat

1 8 0 0
2 11 0 0
3 133 1 1
4 475 11 4
5 598 31 13
6 420 32 6
7 143 9 4
8 87 5 7
9 18 1 1
10 11 0 2
11 8 0 0
12 2 0 0
13 1 0 0

Total 1915 90 38

Figure 5. Angles between dendrites.

Since basal dendritic roots do not exactly lie in a plane, we need to project
them onto the basal plane, defined as the plane that minimizes the distance of
the basal roots to their projection onto the plane, which is exactly what principal
component analysis solves. Then, we need to establish a consistent criterion to select
the basal tree from which we start numbering in counter-clockwise order as shown in
Figure 5. The data extraction procedure is detailed in Algorithm 2, which is applied
to measure the angles from each reconstruction.

ALGORITHM 2.
Input: 3D reconstruction
Output: θ1, . . . , θp angles between basal dendrites
Steps:

1. Extract Cartesian coordinates of the basal roots
2. Find the basal plane using principal component analysis on the coordinates of the basal

roots
3. Project the basal roots onto the basal plane
4. Measure the total length of each basal tree and designate the longest as the first
5. Measure planar angles between the projected basal roots in counter-clockwise order

International Journal of Intelligent Systems DOI 10.1002/int
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FROBENIUS NORM REGULARIZATION FOR VON MISES DISTRIBUTION 171

Table V. Mean KL divergence results for angles between basal dendrites ± standard deviation
(lower is better).

Multivariate von Mises MV Normal

p Samples Nonpenalized hj>i = 0.5 H = Hdist L1(1) Linear Wrapped

Rat
4 12 1.56 ± 1.26 0.62 ± 0.42 0.68 ± 0.45 0.51 ± 0.36 0.79 ± 0.76 1.09 ± 0.90
7 8 9.31 ± 1.86 2.72 ± 0.85 1.96 ± 0.64 2.60 ± 0.85 2.69 ± 0.85 2.69 ± 0.94

Mouse
3 11 2.04 ± 1.16 1.01 ± 0.48 0.56 ± 0.44 0.75 ± 0.48 1.33 ± 0.85 1.78 ± 1.28
4 31 0.37 ± 0.35 0.72 ± 0.40 0.34 ± 0.26 0.55 ± 0.31 0.34 ± 0.27 0.35 ± 0.30
5 32 0.44 ± 0.35 0.61 ± 0.40 0.39 ± 0.28 0.42 ± 0.28 0.35 ± 0.29 0.35 ± 0.26
6 9 8.95 ± 1.99 3.07 ± 0.64 0.94 ± 0.63 1.78 ± 1.11 2.29 ± 1.12 2.65 ± 1.30

Human
3 475 0.51 ± 0.10 0.53 ± 0.10 0.52 ± 0.09 0.52 ± 0.09 0.55 ± 0.09 1.16 ± 0.11
4 598 0.74 ± 0.10 0.74 ± 0.10 0.76 ± 0.10 0.76 ± 0.11 0.85 ± 0.11 0.94 ± 0.11
5 420 0.87 ± 0.13 0.88 ± 0.11 0.85 ± 0.12 0.85 ± 0.11 0.80 ± 0.13 0.68 ± 0.12
6 143 0.67 ± 0.21 0.70 ± 0.21 0.63 ± 0.23 0.69 ± 0.24 0.51 ± 0.17 0.47 ± 0.22
7 87 0.33 ± 0.22 0.56 ± 0.26 0.35 ± 0.22 0.45 ± 0.28 0.27 ± 0.24 0.29 ± 0.23
8 18 4.69 ± 1.96 1.71 ± 0.70 0.80 ± 0.69 0.63 ± 0.43 0.84 ± 0.68 0.84 ± 0.68
9 11 8.96 ± 1.60 3.10 ± 0.93 1.41 ± 0.93 2.88 ± 1.04 2.26 ± 1.19 2.25 ± 1.09

Average rank 4.62 4.31 2.23 3.38 3.00 3.46

For the F-norm penalized multivariate von Mises estimation, the prior matrix is � = 0 in both cases, whereas
the penalization parameter is 1 in the L1 case. Best results are in bold characters.

6. Return θ1, . . . , θp

Probably, the weakest point in the procedure described in Algorithm 2 is the
determination of the order of the angles, i.e., selecting the first angle based on the
longest basal tree. In the absence of a common coordinate system for all reconstruc-
tions in a data set, any local criterion would be (up to some point) arbitrary. Indeed,
we have verified that the null hypothesis that all marginal distributions are equal is
not rejected by the q-sample uniform-scores test12 in all cases included in Table V.
This result suggests that either the criterion is totally arbitrary, the reconstruction
angles are truly equidistributed, or both are true. Despite these shortcomings, this
method is valuable as, to the best of our knowledge, there are no other multivariate
approaches in the literature in this regard.

In our experiments, we compare the KL divergence estimate between the
underlying distribution and the multivariate von Mises distributions with parameters
estimated with the unpenalized maximum pseudo-likelihood, penalized with � = 0
and hj>i = 0.5 and penalized with � = 0 and H = Hdist . Here, Hdist is defined
in such a way that hij is linearly proportional to the distance between the ith and
j th angles with max hj>i = 1 and diagonal elements hii = min hj>i . For example,
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172 RODRIGUEZ-LUJAN, LARRAÑAGA, AND BIELZA

in the case depicted in Figure 5 the Hdist matrix is

⎛
⎜⎝

0.5 0.5 1 1
0 0.5 0.5 1
0 0 0.5 0.5
0 0 0 0.5

⎞
⎟⎠

In addition, we include in the comparison the L1 penalized multivariate von
Mises distribution,8 the multivariate normal and the wrapped-normal multivariate
distributions with parameters estimated using the method of moments but shrinking
the covariance matrix if it is not positive definite. To get an honest estimation
of the KL divergence, we performed repeated train and test validation with 100
repetitions. In each trial, the 50% of the original samples are selected at random
without replacement as training set, leaving the remaining portion of samples as test
set to compute the KL divergence estimation.

4.3. Results

Results are summarized in Table V. The penalized von Mises distribution
obtains similar or better results than the unregularized estimation, specially in the
cases where the number of samples is low with respect to the number of variables.
Also, we can see how the penalization with the structure-aware confidence matrix
Hdist provides, in general terms, better estimations that the ones using a uniform
confidence matrix.

To assess the statistical significance of the results, we first apply a variation
of the Friedman test, a nonparametric equivalent of the repeated ANOVA. The test
compares the ranks of each method in different data sets under the null hypothesis
that all methods are equivalent.40 The statistic

FF = (N − 1)χ2
F

N(k − 1) − χ2
F

(20)

is distributed as an F-distribution with k − 1 and (k − 1)(N − 1) degrees of freedom
under the null hypothesis. In Equation (20), k is the number of methods that we
are comparing (six in our case), N is the number of data sets on which we evaluate
our algorithms (13), and χ2

F is the Friedman statistic. The test rejects the null
hypothesis with a significance level α = 0.05, which means that there are significant
performance differences between the methods. Then, we compare all methods with
the F-norm penalized von Mises estimator with structure-aware confidence matrix
H using the Bonferroni–Dunn test. The test finds significant differences (α = 0.05)
with the nonpenalized von Mises estimation and with the F-norm penalized estimator
with uniform confidence matrix. Figure 6 summarizes these results.

The plots in Figure 7 summarize the von Mises distribution fitted for pyramidal
neurons with five basal dendrites from the three species: human, rat, and mouse.
The boxes in the diagonal show the marginal distribution of the original data for
each variable. Each diagonal box contains a rose plot (i.e., a circular histogram) and
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1 4 5 62 3

vM H dist.

Mv Normal

vM L1 Wrapped

vM H unif. 

vM non-pen

Figure 6. Comparison of F-norm penalized von Mises estimator with structure-aware confidence
matrix H against the others with the Bonferroni–Dunn test. All methods with ranks outside the
dashed interval are significantly different (α = 0.05) from the control.

Figure 7. Fitted distributions for the angles between basal dendrites from rat, mouse and human
with five basal dendrites (p = 4).

the circular density approximated with the von Mises circular kernel. The boxes
in the upper triangle are the λij parameters of the fitted distributions, whereas the
boxes in the lower contain a scatterplot of the variables in that row/column. Finally,
the κi and μi parameters are represented in the first column. We do not observe
significant differences between species, except for the anomalous low mean for the
second angle for the rat in Figure 7a.
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174 RODRIGUEZ-LUJAN, LARRAÑAGA, AND BIELZA

5. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a simplified formulation of the log pseudo-
likelihood for the multivariate von Mises distribution that it is also faster to compute,
reducing significantly the time needed to obtain the maximum pseudo-likelihood
estimator. We have also proposed a penalization term based on the Frobenius norm
of the P matrix that allows to penalize each parameter independently. We have
proved the consistency of the penalized estimator, and we have also provided some
recommendations to set the penalization parameters. Additionally, we have defined
a multivariate circular distance that is easy to compute and takes into account the pe-
riodicity of circular data and then used it to compute a nonparametric approximation
of the KL divergence between two circular samples. The penalized estimator has
been tested in both synthetic and real-world experiments using the KL approxima-
tion with the circular distance in the latter case. The results prove that the penalized
estimator provides similar or better estimations, specially when the number of sam-
ples is low, and we have a reasonable prior knowledge of the dependencies between
the variables.

An analytical study of the properties of the maximum pseudo-likelihood es-
timator could provide consistent rules to set the penalization parameters � and
H , whereas the study on efficient approximations of the normalization term of the
multivariate von Mises distribution will help to apply this same penalization to the
maximum likelihood instead. Another major work line in the future could be to ana-
lyze the convergence rate of the penalized estimator compared to the nonregularized
estimator. Additionally, it would be interesting to work on a more efficient sampling
method based on rejection sampling in high-dimensional settings, for example, by
using a mixture of multivariate normal distributions as reference.

All methods described in this paper have been included in the R package
mvCirculara that implements sampling and fitting of the multivariate von Mises
distribution as well as multivariate circular plots and statistics.
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