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Structure Learning of Bayesian Networks 
by Genetic Algorithms: 

Performance Analysis of Control Parameters 
Pedro Larrafiaga, Mike1 Poza, Yosu Yurramendi, Roberto H. Murga, and Cindy M.H. Kuijpers 

Abstract-We present a new approach to structure learning in the field of Bayesian networks: We tackle the problem of the search 
for the best Bayesian network structure, given a database of cases, using the genetic algorithm philosophy for searching among 
alternative structures. We start by assuming an ordering between the nodes of the network structures. This assumption is necessary 
to guarantee that the networks that are created by the genetic algorithms are legal Bayesian network structures. Next, we release 
the ordering assumption by using a “repair operator” which converts illegal structures into legal ones. We present empirical results 
and analyze them statistically. The best results are obtained with an elitist genetic algorithm that contains a local optimizer. 

Index Terms-Bayesian network, genetic algorithm, structure learning, combinatorial optimization, performance analysis 

+ 
1 INTRODUCTION 

AYESIAN networks (BNs) have become popular over the 
last few years within the AI probability and uncertainty 

community as a method of reasoning under uncertainty. 
From an informal perspective, BNs are directed acyclic 
graphs (DAGs), where the nodes are random variables and 
where the arcs specify the independence assumptions be- 
tween these variables. After construction, a BN constitutes 
an efficient device for performing probabilistic inference. 

The problem of searching the BN that best reflects the 
dependence relations in a database of cases is a difficult one 
because of the large number of possible DAG structures, 
given even a small number of nodes to connect. In this pa- 
per, we present a method for solving this problem of the 
structure learning of BNs from a database of cases based on 
genetic algorithms. 

The structure of the paper is as follows. In the next sec- 
tion, we introduce the Bayesian networks and we describe 
the problem of the search of such a network from a data- 
base of cases. A brief introduction on genetic algorithms is 
given in Section 3. In Section 4, we show how genetic algo- 
rithms can be used for tackling the problem of the structure 
learning of BNs. We describe two different approaches, 
namely with and without assuming an ordering between 
the nodes of the network. In the latter approach, the off- 
spring constructed by the genetic algorithm are not neces- 
sarily BN structures, they may have to be repaired. In both 
approaches we use a Bayesian approach to measure the 
fitness of the structures. Empirical results obtained with 
simulations of the ASIA and ALARM networks are pre- 
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sented in Section 5. Finally, in Section 6, we conclude the 
work and give some directions for future research. 

2 BAYESIAN NETWORKS AND STRUCTURE LEARNING 
Bayesian networks and associated schemes constitute a 
probabilistic framework for reasoning under uncertainty 
that in recent years has gained popularity in the community 
of artificial intelligence [l], [21, [3]. 

From an informal perspective, Bayesian networks are di- 
rected acyclic graphs (DAGs), where the nodes are random 
variables, and the arcs specify the independence assump- 
tions that must be held between the random variables. 

To specify the probability distribution of a BN, one must 
give prior probabilities for all root nodes (nodes with no 
predecessors) and conditional probabilities for all other 
nodes, given all possible combinations of their direct prede- 
cessors. These numbers in conjunction with the DAG, spec- 
ify the BN completely. The joint probability of any particu- 
lar instantiation of all n variables in a BN can be calculated 
as follows: 

n 

p(q, ..An) = r p J ( X ,  1 XI) 
r=l 

where x, represents the instantiation of the variable X, and 
n, represents the instantiation of the parents of XI. 

Once the network is constructed it constitutes an effi- 
cient device to perform probabilistic inference. Neverthe- 
less, the problem of building such a network remains. The 
structure and conditional probabilities necessary for char- 
acterizing the network can be provided either externally by 
experts or from direct empirical observations. The learning 
task in a BN can be separated into two subtasks, structure 
learning, that is to identify the topology of the network, and 
parameter learning, the numerical parameters (conditional 
probabilities) for a given network topology. 
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Our work focuses upon structure learning rather than 
upon parameter learning. However, for complete BN con- 
struction it is also necessary to estimate the parameters. 
Previous research in structure learning of BNs has already 
been carried out. Some authors 141, [51, 161 have worked on 
inducing the structure of trees or polytrees from a database 
of cases. The more relevant works on structure learning on 
multiply connected networks have been developed in [71, 
181, t91, [lo], ill], t121, [131, [141, 1151, 1171, 1181, [191, 
[201, [211,[221, [231, [24, [251,[261. 

A frequently used procedure for BN network structure 
construction from data is the K2 algorithm of Cooper and 
Herskovits [91. This algorithm (see Fig. 1) searches, given a 
database D for the BN structure B,* with maximal P(B,,D), 
where P(B,,D) is as described in the following theorem 
proved in [9]. 

Algorithm K2 
INPUT: A set of n nodes, an ordering on the nodes, an up- 
per bound U on the number of parents a node may have, 
and a database D containing m cases. 
OUTPUT: For each node, a printout of the parents of the 
node. 
BE GIN K2 

FOR i : = l T O n D O  
BEG IN 

rr, := 0; 
Pold := g(i, a): 
OKToProceed := TRUE 
WHI LE OKToProceed AND I II, I < U DO 

BEG IN 
Let Z be the node in Pred(X,) - IT, that 
maximizes g(i, rI, U {Zl); 
P,,, := g(i, rr, U {Z}); 
IF P,,, > Pold THEN 

BEG IN 
Pold := pnew; 

r& := I-& U {ZI 
END 

ELSE OKToProceed := FALSE; 
END; 

WRITE('Node:,' X,, 'Parents of this node:,' 9) 
END; 

END K2. 

Fig. 1. The K2 algorithm. 

THEOREM. Let Z be a set of n discrete variables, where a variable 
X, in Z has r, possible value assignments: (vzl ,  . . . , v,?, ) . Let 
D be a database of m cases, where each case contains a 
value assignment for each variable in Z .  Let Bs denote a 
belief network structure containing just the variables in Z ,  
and B, the conditional probabilities. Each variable X ,  in B ,  
has a set of parents, which are represented with a list of 

variables p. Let w,] denote the jth unique instantiation of 
Il, relative to D. Suppose there are q, such unique instan- 
tiations of r&. Define N,lk to be the number of cases in D in 
which variable X, has the value v , ~  and II, is instantiated as 
w,,. Let N,] = c" N,, . If given a BN model, the cases 

k = l  

occur independently and the density function f (B ,  I B,) is 
uniform, then it follows that 

The K2 algorithm assumes that an ordering on the vari- 
ables is available and that, a priori, all structures are equally 
likely. It searches, for every node, the set of parent nodes 
that maximizes the following function: 

K2 is a greedy heuristic. It starts by assuming that a node 
lacks parents, after which in every step it adds incrementally 
that parent whose addition most increases the probability of 
the resulting structure. K2 stops adding parents to the nodes 
when the addition of a single parent can not increase the 
probability. Obviously, this approach does not guarantee to 
obtain the structure with the highest probability. 

A possible improvement of K2 could be the determination 
of the best combination of at most U parent nodes in which 
case the number of searches to be carried out for a node j 

would increase from nu ( n  - j - i) to xu ( - 1 - 
{:-I 1=1 z 

In Section 4, we present a genetic search algorithm for 
BN structures that for the evaluation of these structures 
uses the same metric as K2. We start by maintaining the 
same ordering restiction on the variables as K2, after which 
this restriction is released. 

3 GENETIC ALGORITHMS 
Recently five approaches of heuristic search have emerged 
for solutions to combinatorial complex problems: evolution- 
ary algorithms, neural networks, simulated annealing, tabu 
search, and target analysis. The first two-evolutionary algo- 
rithms and neural networks-are inspired by principles de- 
rived from biological sciences; and simulated annealing de- 
rives from physical science, notably the second law of ther- 
modynamics. Tabu search and target analysis stem from the 
general tenets of intelligent problem-solving. 

Evolutionary algorithms are probabilistic search algo- 
rithms which simulate natural evolution. They were pro- 
posed about 30 years ago [271, [281. Their application to 
combinatorial optimization problems, however, has only 
recently become an actual research topic. Roughly speaking 
three different types of evolutionary algorithms exist: ge- 
netic algorithms [29], [30], [31], evolutionary programming 
[32], and evolution strategies [33]. In this paper we consider 
the genetic algorithms (GAS). GAS are search algorithms 
based on the mechanics of natural selection and natural 
genetics. They combine survival of the fittest among string 
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structures with a structured yet randomized information 
exchange to form a search algorithm that under certain 
conditions evolves to the optimum with probability arbi- 
trarily close to 1 [341,1351, 1361,1371, [381. 

In GAS the search space of a problem is represented as a 
collection of individuals. The individuals are represented 
by character strings, which are often referred to as chromo- 
somes. The purpose of the use of a GA is to find the indi- 
vidual from the search space with the best "genetic mate- 
rial." The quality of an individual is measured with an ob- 
jective function. The part of the search space to be exam- 
ined is called the population. 

Roughly, a GA works as follows: First, the initial popu- 
lation is chosen, and the quality of each of its individuals is 
determined. Next, in every iteration parents are selected 
from the population. These parents produce children, 
which are added to the population. For all newly created 
individuals of the resulting population a probability near 
zero exits that they "mutate," i.e., they change their he- 
reditary distinctions. After that, some individuals are re- 
moved from the population according to a selection crite- 
rion in order to reduce the population to its initial size. One 
iteration of the algorithm is referred to as a generation. 

The operators which define the child production process 
and the mutation process are called the crossover operator 
and the mutation operator respectively. Both operators are 
applied with different probabilities named the crossover 
probability and the mutation probability. Mutation and 
crossover play different roles in the GA. Mutation is needed 
to explore new states and helps the algorithm to avoid local 
optima. Crossover should increase the average quality of 
the population. By choosing adequate crossover and muta- 
tion operators as well as an appropriate reduction mecha- 
nism, the probability that the GA results in a near-optimal 
solution in a reasonable number of iterations increases. 

The pseudocode of an abstract genetic algorithm (AGA), 
is shown in Fig. 2. 

Definitions and details of operators related to GAS are 
defined in Appendix A. 

begin AGA 
Make initial population at random 
WHILE NOT stop DO 

BEGIN 
Select parents from the population. 
Produce children from the selected parents. 
Mutate the individuals. 
Extend the population by adding the children to it. 
Xeduce the extended population. 
END 

Output the best individual found. 
end AGA 

Fig. 2. The pseudocode of the abstract genetic algorithm 

4 GENETIC ALGORITHMS IN THE STRUCTURE 
LEARNING OF BAYESIAN NETWORKS 

4.1 Notation and Representation 
Our approach on structure learning in the framework of 
Bayesian networks is based on genetic algorithms. Denot- 
ing with D the set of BN structures for a fixed domain with 
n variables, and the alphabet S being {0,1 1, a Bayesian net- 
work structure can be represented by an n x n connectivity 
matrix C, where its elements, cli, verify: 

1 if I is a parent of i, 
ClJ = { 0 otherwise. 

In our genetic approach, we represent an individual of the 
population by string: 

C l l C Z l  . . . cn1c12c22 . . . c,2 . . . ClnC2n . . . cnn. 

With this representation in mind, we will show how the 
crossover and mutation operators work, by using simple 
examples. 
EXAMPLE 1. Consider a domain of three variables on which 

the two BN structures of Fig. 3 are defined. The con- 
nectivity matrices that correspond to the network 
structures are, respectively, 

[! 8 i )  and [ i  a). 
Using the above described representation, the net- 
works are represented by the strings: 001001000 and 
000000110. Suppose now that the two network struc- 
tures are selected to crossover and that the crossover 
point is chosen between the sixth and the seventh bit. 
This gives the offspring strings 001001110 and 
000000000. Hence, the created offspring structures are 
the ones presented in Fig. 4. 

Fig. 3. The parent structures of Example 1,  

Fig. 4. Crossover does not always result in legal structures. 

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on February 15,2023 at 11:59:36 UTC from IEEE Xplore.  Restrictions apply. 



LARRANAGA ET AL.: STRUCTURE LEARNING OF BAYESIAN NETWORKS BY GENETIC ALGORITHMS 915 

5 I 1.024e03 

We see that the offspring structures do not correspond to 
DAGs. We say that the one point crossover operator is not a 
closed operator. 

EXAMPLE 2. Consider the DAG of Fig. 5a. It is represented 
by the string 010001000. Suppose that the seventh bit 
is altered by mutation. This gives the string 
010001100, which corresponds with to cyclic graph of 
Fig. 5b. We observe that the mutation operator is not a 
closed operator either. 

2.928e04 

Fig. 5. Mutation is not a closed operator 
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4.2 With Ordering Between the Nodes 
In the previously mentioned methods to tackle the structure 
learning of BN structures, most often an ordering between 
the variables of the BN is assumed. This means that a node 
X, can only have node X, as a parent node if in the ordering 
node XI comes before node X,. It is easy to verify that in 
case an ordering is assumed, the connectivity matrices of 
the network structures are triangulated and that therefore 
the genetic operators are closed operators. In this case the 
string's length used to represent a BN structure with n 

nodes is (a), instead of n2 of the general case. Under the 

ordering assumption the cardinality of the search space is 

given by the formula 2('). In 1391, the authors demonstrate 
that for a domain of 10 nodes, which means a search space 
of approximately 35 x 10 different structures, the genetic 
approach is able to find the optimum structure with an av- 
erage number of structures evaluated that is smaller than 
4,000. In [40], two different types of algorithms are com- 
pared using simulations of the ALARM network. See Table 1 
for the cardinality of the search space for different values of 
n, where n is the number of nodes in the BN. 

TABLE 1 
THE CARDINALITY OF THE SEARCH SPACE 

2.684e08 
3.518e13 
4.056e31 
1.569e57 
2.037e90 
8.872e130 
1.296e179 
3.061 e200 
6.359e234 

7.837e11 
4.175e18 
2.377e41 
2.344e72 

2.659e111 
2.71 4el58 
2.118e213 
3.008e237 
1.124e276 

4.3 Without Ordering Between the Nodes 
If we do not assume ordering between the nodes, the genetic 
operators are not closed operators. Then the cardinality of the 
search space (see Table 1) is given by the formula 1411: 

To assure the closeness of the genetic operators we intro- 
duce a repair operator, which converts structures that are not 
a DAG into a DAG. This repair operator is inserted in the 
algorithm, just after the mutation operator. The objective of 
the repair operator is to transform the child structures that 
do not verify the DAG conditions into DAGs, by randomly 
eliminating the edges that invalidate the DAG conditions. 

4.4 The Algorithm 
In this section, we describe the characteristics of the algo- 
rithms to be used. The initial population of A individuals is 
generated at random. Due to the huge magnitude of the 
search space, the individuals are created subjected to the re- 
striction that a node never has more than four parent nodes. 
Hoffgen 1421 proves that even subject to this restriction, the 
problem of model search of BN structures is NI'-hard. 

The objective function to be used to evaluate the quality of 
a structure, is based on the formula of Cooper and 
Herskovits, described in Section 2, expressed in terms of the 
natural logarithm. Therefore, our aim is to find the struc- 
ture with the highest joint probability. 

Each individual is selected to be a parent with a prob- 
ability proportional to the rank of its objective function. If 
we denote by I: the jth individual of the population at time 
t ,  and by rank(g(1:)) the rank of its objective function, then 
the probability p1,* that individual I: is selected to be a par- 
ent is equal to 

The purpose of this transformation is to avoid the premature 
convergence of the algorithm caused by superindividuals, in- 
dividuals which, because of their extremely large fitness 
with respect to the rest of the population, would be selected 
almost always. 

In the offspring production process, two parent BN 
structures are recombined by means of 1-point crossover. 
The mutation of the offspring structures consists of the 
probabilistic alteration of the bits that represent their con- 
nectivity matrices. This alteration is performed with a 
probability near to zero. As we already remarked in Sec- 
tion 4.2, crossover and mutation only result in legal DAGs 
in case an ordering between the nodes is assumed. 

After applying crossover and mutation, the created 
structures do not necessarily fulfill the restriction that the 
nodes all have at most four parents. To maintain this re- 
striction, in a first approach, we select q parents at random, 
(0 5 q 5 4), for every node from the parent nodes resulting from 
crossover and mutation. This approach, however, will give 
poor results. Therefore, we try a second approach in which we 
hybridize the genetic algorithm, with a local optimizer. This 
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optimizer selects the best subset of at most four parent nodes 
for each node in a network structure. The process of generat- 
ing child structures and the application of the local optimizer, 
is repeated in every iteration of the algorithm. 

Once the offspring are converted into DAGS in which the 
nodes never have more than four parents, they are added to 
the population, after which this population is reduced to its 
original size. This reduction is carried out following two 
different criteria to which we will refer to as the elifzst (of 
degree 1) reduction criterion and the simple reduction crite- 
rion. Using the former criterion, the population in the next 
iteration consists of the A best structures (among parents 
and offspring) in the current iteration. With the latter crite- 
rion, the children in the current iteration constitute the 
population in the next iteration. 

We decide to stop the algorithms when either 10,000 
structures have been evaluated or when in 1,000 successive 
evaluations, the value of the objective function of the best 
structure corresponds with the average value of the objec- 
tive function. 

Population size A, in the next section we will present results 
of experiments carried out with 1 = 10 and 1 = 50. 

Crossover probability pcr we choose p c  = 0.5 and p c  = 0.9. 
Mutation rate pm, we will consider p, = 0.1 and p, = 0.01. 
Reduction criterion, we use the simple reduction criterion 

as well as the elitist reduction criterion. 
Ordering restriction, experiments are done with and with- 

out assuming ordering between the nodes. The ab- 
sence of the ordering assumption implies the neces- 
sity of the repair operator. 

Hybridization, we carry out experiments with and without 
local optimizer. When the local optimizer is not used 
the excess parent nodes are deleted at random. If the 
local optimizer is used, for each node the best subset 
of at most four parents is chosen-the subset which 
maximizes the posterior probability-from the set of 
its parent nodes. 

The algorithm uses the following parameters: 

5 RESULTS OF THE EXPERIMENTS 

5.1 Introduction 
In this section we present the empirical results obtained. 
The different steps to evaluate the behavior of the genetic 
algorithms considered, have been the following: 

Step 1: Determinate a BN (structure + conditional 
probabilities) and simulate it, obtaining a database of 
cases D, which must reflect the conditional independ- 
ence relations between the variables. 
Step 2: Using the approach based on genetic algo- 
rithms try to obtain the BN structure €I,*, which 
maximizes the probability P(D I €Is). 

* Step 3: Evaluate the fitness of the solutions found. 

Fig. 6 shows these steps. 

XI X2 X3 X4 XS X6 X l  X8 

SIMULATION 

Logic Samplm 
P(X1=n)=O01 

Bayesian network 1 databaseofcases I laduced structure 

COMPARISON mhal structuie - lnduced sttucture 

Fig. 6. The evaluation of the proposed method for structure learning 
from a database of cases. 

The BNs used in the experiments are the ASIA and the 
ALARM networks. The ASIA network, introduced by Lau- 
ritzen and Spiegelhalter [43] to illustrate their method of 
propagation of evidence, considers a small piece of ficti- 
tious qualitative medical knowledge. Fig. 7 presents the 
structure of the ASIA network. Several techniques exist for 
simulating BNs, we used probabilistic logic sampling [44], 
with which we generated a database of 3000 cases. The 
ALARM network, see Fig. 8, was constructed by Beinlinch 
et al. [45] as a prototype to model potential anesthesia 
problems in the operating room. We will use the 3000 first 
cases of the database that was generated from it by 
Herskovits [46]. For both database we consider different 
subsets consisting of the first 500, 1000, 2000, and 3000 
cases. The evaluations of the initial structures for the differ- 
ent databases can be seen in Table 2. 

Visit to Asia? Q Smoker? G 

Fig. 7. The structure of the ASIA network. 

Qr 
\ 

'Ga 
Fig. 8. The structure of the ALARM network. 

I 
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number of cases 
500 

TABLE 2 
THE EVALUATIONS OF THE INITIAL STRUCTURES 

log P(DIB,) 
ASIA ALARM 

-5.4856e02 I -2.6461e03 
1000 
2000 
3000 

-1.0800e03 -5.0345e03 
-2.1 541 e03 -9.7291 e03 
-3.2437e03 -1.441 2e04 

-log P(D I Bs) 

1.2 -- 

1.0 number of 
evaluations 

-- 

I 

5.3 Results Obtained with Order Restriction 
5.3.1 The ASIA Network 
The results corresponding to the 500, 1000, 2000, and 3000 
cases databases are represented in the Tables 3, 4, 5, and 6, 
respectively. Noticeable is that of all genetic algorithms that 
follow the elitist reduction criterion, independent of the 
other parameters, the average results are better than the 
evaluation of the initial network structure (compare Table 2 
and Tables 3, 4, 5, 6). For all databases, the Kruskal-Wallis 
test [471 shows that statistically significant differences exist 
in the evaluation function and in the Hamming distance, 
with respect to the hybridization, the reduction criterion 
and the mutation probability. In the average number of 
evaluations statistically significant differences are found 
with respect to the hybridization, the population size and 
the crossover operator. Moreover, the robustness of the hy- 
brid algorithms which incorporate the local optimizer can 
be observed, as well as the bad results of the no-hybrid al- 
gorithms which use the simple selection criterion. As the 
database size increases, the evaluation function increases 
and the evaluation function corresponding to the network 
structure, induced by the algorithm, adjusts to the evalua- 
tion of the initial structure. With respect to the average 
Hamming distance between the initial network structure 
and the best structures obtained in the last iteration of the 
algorithm, the worst results are obtained when no local 
optimizer is incorporated, the simple reduction criterion is 
used and the mutation rate is high. The rest of the algo- 
rithms have a quite stable behavior, obtaining AHD values 
of roughly 4,4,1, and 0 for the databases with, respectively, 
500,1000,2000, and 3000 cases. 

Evidently, the algorithms that use a population of 10 in- 
dividuals converge faster than the ones that have a popula- 
tion of 50 individuals, the ones with a population of 10 
carry out about half of the evaluations of the ones with a 
population of 50. Moreover, the hybrid algorithms with a 
low mutation rate have a relatively high number of evalu- 
ated structures. 

5.3.2 The ALARM Network 
Tables 7, 8, 9, and 10 represent the results found with the 
databases of 500, 1000, 2000, and 3000 cases, respectively. 
All the hybrid algorithms that use the elitist reduction crite- 
rion give, independent of the other parameters, better aver- 
age results than the evaluation that corresponds to the ini- 
tial structure. Also the hybrid algorithms that are not elitist 
in combination with a low mutation rate sometimes are 
able to obtain, on average, superior results compared to the 
evaluation of the initial structure. 

With relation to the statistical significance of the ana- 
lyzed parameters, we observe, for all databases, the same 
significances as we found with the ASIA network and sta- 
tistically significant differences in the average number of 
evaluations with respect to the mutation probability. In this 
case, probably because of the increasing dimension of the 
search space, only the hybrid algorithms that use elitist re- 
duction maintain a low variability in its behavior. 

Like with the ASIA network, increasing the database size 
results in structures the evaluations of which are better ap- 
proximations of the evaluation of the initial structure. 
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with local optimizer 
elitist simple 

a = i o  a=50 a = i o  a=50 
545.7 545.7 551.4 545.7 
545.7 545.7 545.7 545.7 

4.0 4.0 3.7 4.0 
283 475 

545.7 545.7 545.7 545.7 
545.7 545.7 545.7 545.7 

4.0 4.0 4.0 4.0 

- - 
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v 
el 

a = i o  
546.2 
545.7 
5.5 
558 

545.9 
545.7 
4.6 

TABLE 3 
RESULTS WITH THE ASIA NETWORK WITH ORDER RESTRICTION (500 CASES) 

;t 

545.9 
545.7 

4.4 
825 

545.9 
545.7 
4.6 

1170 
545.7 
545.7 
4.4 
838 

545.7 
545.7 

4.1 
1800 

a = 5 0  
simple 

545.9 546.1 
545.7 545.7 

4.5 4.5 

545.9 545.7 
545.7 545.7 

4.7 4.1 

552.0 547.8 
547.6 547.3 
8.5 5.6 

562.3 552.6 
553.5 549.3 

8.8 7.5 
- 

a = i o  a = 5 0  

- - 

- - 

- - 

- 

- 261 I 585 I 
545.7 545.7 545.7 545.7 545.7 1 4.0 ;'o"o 1 4&, 

1 4.0 1 4.6 
495 

545.7 545.7 545.7 545.7 545.7 
545.7 545.7 545.7 545.7 545.7 

4.0 4.0 4.0 4.0 4.0 
806 162 608 

- - 

- - 

TABLE 4 

I 527 - 

iptimizer 

RESULTS WITH THE ASIA NETWORK WrTHoRDER RESTRICTION (1,000 CASES) 

without local optimizer 

el 
A= 10 
1076.1 
1076.1 

4.0 
240 

1076.1 
1076.1 

4.0 
270 

1076.1 
1076.1 

4.0 
110 

1076.1 
1076.1 

4.0 
144 

simple 

2154.0 I 2154.0 
a = i o  I a=50 

ith loca 
st 

1076.1 
1076.1 

4.0 
41 3 

1076.1 
1076.1 

4.0 
608 

1076.1 
1076.1 

4.0 
375 

1076.1 
1076.1 

4.0 
652 

a =  50 

elitist sin 
a = i o  I a=50 a = i o  
2154.0 I 2154.0 2154.1 

lptimizer m 

- 

sii 

1076.1 
1076.1 

4.0 

1076.1 
1076.1 

4.0 

1076.4 
1076.1 

3.5 

1077.7 
1076.1 

3.7 

a =  I O  

- 

- 

- 

- 

- 

4.0 

2154.0 
1.8 
- 

1076.1 1076.1 

1076.1 1076.1 
1076.1 1076.1 

680 - 

2154.0 2154.0 2154.0 2160.5 
0.9 1 .o 1 .o 8.5 
- 743 1778 - 

lout local oDtimizer I 

4.3 4.0 

1076.3 
1076.1 

1076.1 
1076.1 

1078.7 
1077.2 

6.3 

TABLE 5 
RESULTS WITH THE ASIA NETWORK WITH ORDER RESTRICTION (2,000 CASES) 

with locs 
elitist 

2154.0 2154.0 
1 .o I 1.0 

2154.0 
1 .o 
288 

2154.0 
2154.0 

1 .o 

21 54.0 
1 .o 
608 

21 54.0 
2154.0 

1 .o 

2154.0 2154.0 

1040 473 
1.0 1 1.0 

1 .o 
- - - 

2154.0 I 2154.0 I 2154.0 I 2154.0 I 2154.1 

1 .o 

2154.0 2154.0 2154.0 2154.0 2157.2 
0.8 I 1.0 I 1.1 I 1.2 I 7.7 

2165.1 I 2154.0 I 2154.0 I 2154.0 I 2177.4 

2154.0 
I .2 

2154.0 
21 54.0 

1 .o 

21 56.8 
2154.1 

4.2 

21 62.8 
2157.8 

6.1 

- 

- 

- 

- 
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with local optimize1 
elitist sii 

a = i o  a=5o a = i o  
3243.7 3243.7 3243.7 
3243.7 3243.7 3243.7 

0.0 0.0 0.0 
235 338 

3243.7 3243.7 3243.7 
3243.7 3243.7 3243.7 

0.0 0.0 0.0 
207 450 

3243.7 3243.7 3243.7 
3243.7 3243.7 3243.7 

0.0 0.0 0.5 
75 250 

3243.7 3243.7 3246.02 
3243.7 3243.7 3243.7 

0.0 0.0 0.6 
126 495 

- 

- 

- 

- 

919 

ithout local optimizer 
)le 
a =  50 
3243.7 
3243.7 

0.0 

3243.7 
3243.7 

0.0 

- 

- 

st simple 

3243.7 
3243.7 

0.0 
- 

- 788 I 

3243.7 
3243.7 

0.0 
- 

- 

el 
a= IO 
3244.5 
3243.7 

0.4 
488 

3243.7 
3243.7 

0.0 
527 

3243.7 
3243.7 

0.0 
520 

3243.8 
3243.7 

0.4 
585 

3243.7 
0.0 

1215 
3243.7 
3243.7 

0.8 
963 

3243.7 
3243.7 

0.2 
1800 

3243.7 3243.7 
0.0 0.1 

3259.2 3248.8 
3244.6 3245.8 

7.1 3.6 

3307.0 3258.0 
3256.2 3252.2 

9.4 7.5 

- - 

- - 

- - 

a=50 I a = i o  I a=5o 
3243.7 I 3243.7 I 3244.1 

~~ 

with local optimizer 

3243.7 3243.7 3243.7 
0.2 I 0.1 I 1.5 

without local optimizer 
elitist simole elitist simole 

TABLE 7 
RESULTS WITH THE ALARM NETWORK WITH ORDER RESTRICTION (500 CASES) 

5027.9 
4.0 
925 

5027.9 
5027.9 

4.0 
1058 

5028.4 
5027.9 

4.4 
1623 

5027.9 
5027.9 

4.0 
2664 

5027.9 
4.0 

2438 
5027.9 
5027.9 

4.0 
3353 

5030.9 
5027.9 

4.5 
2425 

5027.9 
5027.9 

4.0 
6683 

- -  

a = i o  I a=50 I a = i o  I ~ = S O  I a = i o  I ~ = S O  I a = i o  I ~ = S O  
2635.0 I 2635.0 I 2635.0 I 2635.0 I 2784.2 I 2807.2 I 3535.6 I 3144.7 

5050.3 
5027.9 

6.3 

5586.4 
5361.4 
20.2 

5686.2 

- 

- 

2635.0 2635.0 2635.0 2635.0 2744.2 2778.9 3406.6 3058.7 I 12.2 I 12.0 I 12.2 I 12.6 I 61.2 I 63.6 I 105.7 I 91.5 I 

5027.9 521 3.3 5344.6 71 69.3 6481.8 
5027.9 5164.3 5294.0 6882.5 6330.9 

4.0 54.8 66.7 109.7 95.6 
- 8919 9000 - - 

5234.0 6854.3 7010.8 7674.5 7515.5 
51 60.7 6729.0 6800.1 7447.6 7302.5 

12.8 107.8 113.7 112.7 112.6 
- 1285 1675 - - 

5467.7 6891.4 6756.9 7833.7 7614.9 

- 963 I 2238 I - I - I 4790 I 5000 I - I 
2635.0 I 2635.0 I 2646.4 I 2635.0 I 2746.8 I 2807.2 I 3693.4 I 3407.5 
2635.0 2635.0 2635.0 2635.0 2725.9 2778.9 3492.5 3267.1 I 12.6 I 12.2 I 11.0 I 12.0 I 54.8 I 61.8 I 111.7 I 103.0 I 

- I 8932 I 9000 I - I - 1179 I 3195 I - I 
2635.6 I 2635.3 I 2875.9 I 2723.8 I 3648.2 I 3605.8 I 3974.7 I 3853.5 
2635.0 2635.0 2783.3 2666.7 3546.3 3423.1 3890.8 3748.5 

~ :I 1 11.3 1 2: 1 1; 1 111.2 1 103.7 1 1; 1 1; 

2635.2 2635.1 2976.1 2839.3 3531.6 3517.8 3982.2 3948.4 
2635.0 2635.0 2864.9 2782.5 3444.0 3438.2 3820.4 3856.9 

11.4 29.9 23.6 102.8 102.3 121.2 113.9 

1590 2838 1073 1563 

2570 5693 2979 6638 

TABLE 8 
RESULTS WITH THE ALARM NETWORK WITH ORDER RESTRICTION (1,000 CASES) 

5027.9 5027.9 5216.6 5264.8 6570.6 5881.8 
3.9 61.2 74.5 112.4 104.2 
- I 2 I 497.5 I Finno I - I - I 

5515.9 5350.3 
2:9 1 19.1 

6669.4 6504.7 7578.6 7451.2 
111.1 108.0 116.8 113.0 
2043 I 5490 1 - 1 - 1 
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545.8 
544.9 

9.4 
250 

545.6 
544.9 

9.1 

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 18, NO. 9, SEPTEMBER 1996 

545.7 550.2 545.1 548.5 546.6 565.0 553.9 
545.4 545.5 544.9 546.2 545.2 553.5 549.5 

9.8 9.8 5.7 13.9 11.6 15.6 14.1 
925 - - 395 1975 - - 

545.3 558.4 547.8 547.4 546.2 574.9 565.8 
544.9 548.3 545.5 546.2 544.9 564.1 555.9 
6.8 13.0 10.4 13.1 9.5 14.9 16.1 

TABLE 9 
RESULTS WITH THE ALARM NETWORK WITH ORDER RESTRICTIONS (2,000 CASES) 

with loca 
elitist 

3.1 2.9 

lptimizer vw 

9720.0 
3.4 
- 

9757.2 
9720.0 

4.6 

9720.0 
3.0 
- 

9720.0 
9720.0 

3.0 

9995.4 
66.3 
4625 

9955.6 
9902.4 
52.7 

I 8879 - - 
10,714 I 10,151 I 13,326 

20.5 

12,497 
110.2 

13,417 
13,039 
113.3 

lout loc 
3t 

10,353 
10,202 
74.4 
5000 

10,244 
10,167 
70.4 
9000 

13,574 
13,100 
111.4 
1538 

13,087 
12,838 
107.4 
7335 

a =  50 

optimizer 
sin 

a =  I O  
13,238 
12,627 
111.8 
- 

13,806 
13,297 
115.0 
- 

15,027 
14,665 
118.5 
- 

15,461 
15,080 
120.2 
- 

11,031 
97.2 I 
- 

12,658 
11,999 
100.6 

14,091 
114.4 

14,786 
14,233 
115.1 
- 
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elitist 

92 1 

simple 

TABLE 12 
RESULTS WITH THE ASIA NETWORK WITHOUT ORDER RESTRICTION (1,000 CASES) 

2152.5 
11.5 

2153.0 
2152.5 

8.3 

- 
2152.5 2153.7 2152.5 2153.0 

8.8 10.7 11.5 10.5 

2152.7 2153.9 2153.1 2155.4 
2152.5 2152.5 2152.5 2154.3 

7.8 11.4 10.6 10.2 

475 1400 - - 

495 
2153.9 
2152.5 

10.8 
315 

2153.1 
2152.5 

11.3 
504 

792 1485 - - 
2152.6 2192.0 2153.0 2156.7 
2152.5 2155.3 2152.5 2154.6 

8.1 10.4 8.8 11.9 
1075 - - 460 

2152.5 2202.4 2166.0 2155.5 
2152.5 2167.0 2153.5 2152.5 

7.0 11.4 8.3 10.7 
1935 - - 1116 

2153.8 
21 52.5 

8.5 

2152.8 
2152.5 

10.2 
5445 

1800 

2225.4 2170.6 
21 74.7 21 60.7 

16.5 12.5 

2291.9 2212.6 
2228.7 2182.4 

16.3 15.2 

- - 

- - 

with local optimizer without local optimizer 
elitist 

a = i o  I a=50 
3247.2 1 3242.5 

simple elitist simple 
a = i o  I a=50 a = i o  I a=50 a = i o  I a=50 
3243.2 I 3242.0 3245.6 I 3243.9 3245.9 I 3242.6 

3372.7 
3275.0 

15.3 

3267.7 
3248.0 

14.2 

I oDtimizer without lo( 
de elitist 
a=50 a = i o  a=50 
1075.0 1077.2 1075.9 
1074.7 1075.5 1074.7 

9.6 13.7 13.2 
- 470 1550 

1075.3 1076.1 1075.1 
1074.7 1074.7 1074.7 
11.2 12.6 10.5 

el 
a =  i o  
1077.3 
1074.7 
14.1 
350 

1076.0 
1074.7 
11.7 
540 

1075.7 
1074.7 
11.1 
230 

1075.2 
1074.7 

9.4 
540 

1076.2 1075.3 
1074.7 1074.7 
11.8 11.6 
- I -  

1575 

12.3 

1113.7 1088.1 
1088.9 1083.4 

1 125.6 1 105.8 
1099.7 1098.9 
13.9 

1074.7 1075.9 1074.7 
7.3 I 15.5 I 11.6 
- 1 430 I 2250 

1082.2 I 1076.8 1 1075.4 
1074.7 1076.2 

8.0 I 10.1 
2115 - 

1077.2 1074.7 1074.7 
‘”8 1 12.2 1 10.9 

1179 5580 

TABLE 13 
RESULTS WITH THE ASIA NETWORK WITHOUT ORDER RESTRICTION (2,000 CASES) 

with local optimizer 
elitist I simole 

a = i o  I a=50 I a = i o  I a=50 
2153.9 I 2153.0 I 2153.6 I 2153.0 

a = i o  I a = 5 0  I a = i o  1 a=50 
2156.4 I 2153.4 I 2154.3 I 2152.9 

2152.5 2152.5 
12.1 10.0 

2152.5 
10.6 

2152.9 
2152.5 

9.4 

- 

2152.5 2152.5 
11.0 9.5 

2745 I - I -  

TABLE 14 
RESULTS WITH THE ASIA NETWORK WITHOUT ORDER RESTRICTIONS (3,000 CASES) 

3243.0 3241.6 3241.6 3241.6 3242.9 3241.6 3241.6 3241.6 
12.7 I 8.8 I 8.5 I 8.4 I 11.1 I 10.9 I 10.2 I 10.2 

- I 540 I 1800 I - I - 

3242.1 I 3244.8 I 3242.3 I 3252.5 I 3252.7 
3242.5 3241.6 

10.8 I 10.2 
3242.1 

11.1 
648 

3242.6 
3241.6 

9.8 

3241.6 3242.2 

3242.8 3247.6 
3242.1 3242.7 

3241.6 
8.8 

2520 
3243.6 
3242.4 

11.4 

- I -  

340 I 1150 I - I - I 535 I 2350 I - I - 
3242.3 I 3241.7 I 3340.3 I 3265.8 I 3244.2 I 3243.1 I 3408.5 I 3315.0 
3241.6 3241.6 3272.6 3243.0 

7.4 1 6.7 1 10.8 1 9.3 
495 1800 - - 

3246.9 3242.0 3265.5 3252.5 
8.9 I 10.0 I 15.9 I 15.8 

1197 4860 - - 
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W 

TABLE 15 
RESULTS WITH THE ALARM NETWORK WITHOUT ORDER RESTRICTION (500 CASES) 

;t 

4984.1 
4972.9 

33.3 
5700 

4933.8 
4969.7 

31.4 

5235.8 
5142.6 
47.8 

5160.3 
5093.2 
45.4 

11,545 

a=50 

15,480 

3610 

with local optimizer 

sin 
a = i o  
5185.5 
5122.7 
44.5 
- 

5537.9 
5489.8 
57.1 

5991 .O 
5875.3 

64.7 

5991 .O 
5845.5 

59.9 
- 

- 

- 

elitist 

le 

4995.5 
4983.8 
22.25 

5185 5 
5096.8 
45.6 
- 

5688.9 
5575.6 
49.7 

5940.7 
5889.9 
56.1 

a = 5 0  

- 

- 

- 

2642.1 2634.1 

2647.5 2641 .O 
2636.0 2632.2 

ell 
a = i o  
6293.1 
6127.6 
115.3 
940 

6041.4 
5938.7 

95.1 
3540 

7451 .O 
7362.2 
108.3 
390 

7300.0 
7189.5 

93.7 
970 

2733.2 2708.5 
50.8 I 45.1 

10,147 
60.5 
1386 

271 3.3 2653.9 
54.2 1 40.0 
1404 13,500 

9951.8 10,958 11,423 13,967 13,715 14,871 14,744 
49 0 64.7 62.7 100.8 106 4 103.3 107 7 

- 1080 6480 - - 9360 - 

simple 

2661.9 2632.6 
42.7 I 34.4 

- I -  

- I -  

- I -  

without local optimizer 
elitist 

3357.9 3125.3 3788.1 
31 81.4 301 3.9 371 3.7 
100.8 1 95.9 I 99.4 

3086.9 2921.6 3780.3 
92.5 88.1 100.3 
3168 17,010 - 

3866.5 3766.1 4043.9 
3821 .O 3677.2 3907.5 
101.9 100.6 103.6 
360 1750 - 

3789.5 3717.4 4059.4 
3673.4 3624.9 3972.7 

98.7 98.5 98.8 
810 5850 - 

a =  50 
3491.7 
3386.1 

97.6 

3770.0 
3661.5 
95.8 

3955.0 
3887.5 
101.7 

4006.9 
3808.0 
102.0 

- 

- 

- 

- 

TABLE 16 
RESULTS WITH THE ALARM NETWORK WITHOUT ORDER RESTRICTION (1 000 CASES) 

el 

5074.7 
5057.2 
42.7 
1750 

5039.5 
5024.9 
36.4 
2470 

5437.2 
5285.4 

65.7 
725 

5286.2 
51 54.3 

53.1 
1560 

a =  10 

lout loc 
;t 

5789.6 
5645.6 
115.9 
7500 

5638.6 
5425.8 

91.6 
2790 

71 99.3 
6947.2 
105.4 
2830 

7148.9 
7043.4 
110.8 
71 25 

a =  50 

optimizer 
sir 

7300.0 
7245.9 

98.6 

a =  i o  

- 
7501.4 
7322.6 
108.5 

7853.8 
7775.2 

92.5 

7803.4 
7795.7 
105.4 

- 

- 

- 

le 

6595.1 
6443.5 
101.2 

a =  50 

- 
7199.3 
6972.4 
95.4 

7602.0 
751 5.6 
107.3 

7702.7 
7560.8 
102.8 

- 

- 

- 

TABLE 17 
RESULTS WITH THE ALARM NETWORK WITHOUT ORDER RESTRICTION (2,000 CASES) 

1460 I 6850 I - I - I 970 I 6150 
9765.6 I 9734.4 I 11,082 1 10,072 I 11,709 I 10,869 
9726.5 9723.3 10,747 9932.3 10,917 10,440 :;$ 1 28.8 1 6 L 3  1 1 g: 1 99.4 

10,710 21,870 
10,739 10,239 12,048 11,262 14,575 14,125 
10,499 10,020 1 1,721 10,990 14,244 13,725 
63.7 51.9 63.2 102.1 1026 

- 

14,795 
14,299 
104.5 

15,475 
14,871 
101.9 

- 

- 

14,052 
13,907 
98.7 

14,949 
14,587 
102.1 

- 

580 I 3250 I - I - I 340 I 2300 I - I - 
10,399 I 10,137 I 11,840 I 11,750 I 14,279 I 13,986 I 15,433 I 15,147 
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TABLE 18 
RESULTS WITH THE ALARM NETWORK WITHOUT ORDER RESTRICTION (3,000 CASES) 

el 

14,519 
14,455 
44.5 
1690 

14,446 
14,417 
39.0 
3222 

16,039 
15,286 
64.2 
580 

15,657 
15,223 
61.6 
1296 

a =  IO 
14,444 15,066 
14,412 14,737 
37.6 43.2 

14,412 15,772 
31.1 I 57.3 

15,055 16,952 
55.5 64.2 

14,678 17,490 
50.8 I 66.2 

12.600 - 

14,413 17,515 
35.5 107.4 

14,735 I 1::: 
41.2 

104.7 

Considering the average Hamming distance, we observe 
that the hybrid elitist algorithms as well as the simple hy- 
brid algorithms that have a low mutation rate give a good 
performance. For these algorithms the AHD values are 
about 12, 4, 3, and 1 for, respectively, the 500, 1000, 2000, 
and 3000 cases databases. 

With respect to the ANE value, we see also here that the 
algorithms with population size 10 converge faster than the 
ones with population size 50. We observe that in contrast 
with the ASIA network, as in the elitist hybrid algorithms, 
the mutation rate grows, the number of evaluations needed 
to produce convergence increases, while the no hybrid al- 
gorithms show the opposite tendency. 

5.4 Results Obtained Without Order Restriction 
5.4.1 The ASIA Network 
The results obtained with the different simulations of the 
ASIA network are shown in Tables 11,12,13,14. We observe 
that as the number of cases increases it becomes more diffi- 
cult to find better results than the evaluation of the initial 
structure. For example, for the 500 cases database, we see that 
except for the algorithms without local optimizer, that use 
the simple selection criterion, all algorithms give, on average, 
better values than the initial structure evaluation. For the 
database of 1,000 cases, this observation can be done for all 
algorithms except for the ones that use simple reduction and 
a high mutation probability. With the 2,000 case database, on 
average, there are better results found than the initial struc- 
ture evaluation by the elitist algorithms that incorporate the 
local optimizer, by the algorithms with the local optimizer 
that use simple reduction and a low mutation probability, 
and by the elitist algorithms that do not contain the local op- 
timizer and have a large population size. The absence of the 
local optimizer in combination with simple reduction, low 
mutation probabilities and large population sizes also give, 
on average, better results than the evaluation of the initial 
structure. Finally, for the 3,000 case database, the best results 
were found using an elitist algorithm with a large population 
size, by algorithms that incorporate the local optimizer, that 
use simple reduction and a low mutation rate and by elitist 

lout IO( 
st 

17,377 
16,525 
115.4 
4550 

16,114 
15,646 
101.1 

24,480 
21,130 
20,623 
103.5 
2050 

20,910 
20,451 
103.8 
6570 

a=50 

I optimizer 
si1 

a =  I O  
21,632 
20,433 
101.5 

22,016 
20,931 
100.0 

22,998 
22,312 
101.1 

23,259 
22,201 
103.0 

- 

- 

- 

- 

,le 

19,384 
18,885 
102.8 

20,986 
20,687 
102.0 

22,469 
22,114 
99.9 

a =  50 

- 

- 

- 
22,508 
21,827 
103.3 
- 

algorithms that contain the local optimizer and that have a 
high mutation probability. 

With regard to the statistical significance of the analyzed 
parameters, for all databases we find that with respect to 
the evaluation function, statistically significant differences 
exist in the use of the local optimizer, the reduction crite- 
rion, the population size and the mutation probability. With 
respect to the Hamming distance statistically significant 
differences exist in the use of the optimizer and in the 
population size. Moreover, significant differences are de- 
tected with the 500 and the 1,000 case databases in the mu- 
tation probability, with the 2,000 case database in the selec- 
tion criterion. 

Concerning the AHD values, we observe that the effect of 
the parameters is similar to the one described in Section 5.3.1. 
The worst performance is found with no hybrid algorithms 
that use simple reduction and have a high mutation rate. 
For the rest of the algorithms the AHD takes a value of 
about 10, independent of the size of the database. 

With respect to the ANE value, the algorithms with a 
population size of 50 evaluate about 4 times more struc- 
tures than the algorithms with a population size of 10. In 
general the ANE value increases as the mutation rate 
grows. 

5.4.2 The ALARM Network 
The results obtained are represented in Tables 15,16,17,18. 
Like with the ASIA network, we observe that as the simu- 
lation size grows it becomes more difficult to find parame- 
ter combinations for the genetic algorithm that obtain 
structures with better evaluations than the initial structure. 

For the 500 case database, we observe a good perform- 
ance of the elitist hybrid algorithms as well of the simple 
hybrid algorithms that have a low mutation rate. Only two 
parameter combinations result in better average results than 
the evaluation corresponding to the ALARM network struc- 
ture. There are 4 elitist hybrid algorithms with a low muta- 
tion rate and one simple hybrid algorithm (A = 50, pm = 0.01, 
and pc = 0.5) that have better evaluations than the initial 
structure. 
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For the 1,000 case database, only the elitist hybrid algo- 
rithms with population size 50 and a low mutation rate re- 
sult in a better evaluation than that of the one of the initial 
network structure. Moreover, the elitist hybrid algorithm 
that has a population size 10 and a high crossover prob- 
ability has found a better evaluation than the one of the 
ALARM network. 

With 2,000 cases, the best results were obtained with the 
elitist hybrid algorithms with p m  = 0.01, as well as with the 
simple hybrid algorithm with A = 50, p c  = 0.5, and p ,  = 0.01. 
None of the parameter combinations give on average a 
better performance than the initial structure. For some pa- 
rameter combinations, however, some results were found 
that were better than the ALARM network evaluation. 

For the 3,000 case database, the best results were ob- 
tained with the elitist hybrid algorithms that had a low 
mutation rate, as well as with the simple hybrid algorithm 
with il = 50, p ,  = 0.01, and p c  = 0.5. None of the searches 
found better results than the ALARM network evaluation, 
but in both of them we found the same evaluation than that 
of the initial structure. 

With respect to the statistically significant differences in 
the evaluation function, for all four databases a similar be- 
havior was detected. Significant differences are found with 
respect to the use of the local optimizer, the reduction crite- 
rion, the population size and the mutation rate. In the 
Hamming distance statistically significant differences are 
detected, for all the four databases, with respect to the use 
of the local optimizer and the mutation rate. For the 500 
case database, significant differences in the Hamming dis- 
tances also exist with respect to the reduction criterion. The 
best values of the average Hamming distance are obtained 
with elitist hybrid algorithms that have a low mutation rate 
as well as by simple hybrid ones that have low mutation 
and crossover rates. In these algorithms the AHD takes a 
value between 35 and 40. 

An algorithm with population size 10 evaluates about 
1/5 of the number of structures that an algorithm with 
population size 50 evaluates. 

6 CONCLUSIONS AND FURTHER RESEARCH 
We have presented a method for structure learning of Bay- 
esian networks from a database of cases. The method is 
based on genetic algorithms. To guarantee the closeness of 
the genetic operators, we have devised a repair operator. 

Using simulations of the ASIA and ALARM networks, we 
carried out a performance analysis on the control parameters 
of the genetic algorithms (population size, local optimizer, 
reduction mechanism, probability of crossover, mutation 
rate). The obtained results indicate that in using genetic algo- 
rithms in the structure learning of BNs, it is recommended to 
use a hybrid algorithm that uses elitist reduction in combina- 
tion with a not too small population size and a relatively low 
mutation rate. This is even more true if no ordering restric- 
tion between the nodes is assumed. 

It would be interesting to experiment with a repair op- 
erator that does not break cycles by deleting arcs at ran- 
dom, but by some optimization criterion or with a repair 
operator based on the fusion of two structures like in 1481. 

In the future we want to extend the described structure 
learning approach based on genetic algorithms by trying to 
find the optimal ordering of the system variables. We think 
to tackle the search for an optimal ordering with a genetic 
algorithm that uses genetic operators that were used in the 
tackling of the Traveling Salesman Problem. 

We also plan to adapt the described structure learning 
approach to dynamic BNs [491. In other two problems re- 
lated to Bayesian networks of which we expect that they 
can be tackled successfully with genetic algorithms are the 
so-called optimal decomposition of a BN, and the fusion of mul- 
tiple authors BNs. 

APPENDIX-BASIC DEFINITIONS 
DEFTNITION 1. a )  An instance of an optimization problem is a 

pair ( D ,  j') wheve D is the domain of the feasible points, and 
f is the cost function The problem is to find a w E D for 
which f(w) I f(y) for all y E D 6 )  An optimization problem 
is a set I of instances of an optimization problem. 

DEFINITION 2. An encoding of a domain D is a function e : D + 
S', where S is the alphabet, S' is the search space, and 1 2 

Thus the encoding of the elements of D is a mapping 
from the domain D to the strings of length 1 over S. 

DEFINITION 3. g(x) = f(e(x)), the composition of the functions f 

Suppose that At denotes the size of the population of the 
genetic algorithm at time t .  To simplify, we assume that = 

A for every t .  P, denotes the population at time t .  
P, = { I , ,  ..., I,"], where I : ( ]  = 1, ..., A) denotes the Ith indi- 
vidual of the population at time t ,  and I: = (sl, ..., s l ) ,  
where s,(w = 1, ..., I )  are elements of the alphabet S. P S ,  de. 
notes the set of populations of size A. 

In the following, and without loss of generality, we will 
not use the t index. 

DEFINITION 4. The global selection function, fsel, selects randomly 
with reemplacement a collection y E PS,from a population 
X E  PS,: 

1% IISll II D 11. 

and e, is the objective function. 

1 

f s e l  : (a, 4 -+ y, 
where a is a vector of dimension 1 of randomly chosen values 

DEFINITION 5. The selection function is based on the rank of the 
oblectzve function zf the probability that I' becomes a parent 
is proportional to  the rank of its evaluation. This means 
that. 

pparent(I') = r(rank(g(1'))) 
where r is a decreasing function of the rank of g(I'), and 
rank (g(1')) = d e 3d - 1 individuals with better evalua- 
tion function than 1'. 

As an example of this kind of selection function, we 
have: 

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on February 15,2023 at 11:59:36 UTC from IEEE Xplore.  Restrictions apply. 



925 LARRANAGA ET AL.: STRUCTURE LEARNING OF BAYESIAN NETWORKS BY GENETIC ALGORITHMS 

DEFINITION 6. The global production function, fprod, produces 
offspring z E PS, from selected individuals y E PS, using 
a crossover operator: 

fprod (a Y )  -3 2, 

where p is a vector of dimension il of randomly chosen in- 
teger values from 1 to il. 

DEFINITION 7. The production function is one point crossover if 
the parents I’ = (sl, ..., sI)  and I’ = (b,, ..., b,) produce chil- 
dren CH’”’’ = (cl, ..., c,) and CH’”’* = (dl, ..., d,) verifiying: 

i f j  < m 

bl i f j 5 m  
d 1 = {  sI i f j > m  

where m is taken from the uniform distribution defined on 
the interval 11,lI. 

DEFINITION 8. The individual mutation function, find-,& applied 
to individual I = (sl, ..., sI), generates another individual 
MI = (sm,, . . ., sm,), that is flnd-mut (n = MI, such that E 

(1, ..., 11, P(sm, = s,) = 1 - pm, where pm is the mutation 
probability. 

DEFINITION 9. The extension function, fext, creates from two 
populations x, z E PS,, a population n E PS,,: 

fext  : (x, z )  -+ n. 
Denoting by NI with i = 1, ..., 2A the ith individual in n, 
and by X,, with k = 1, ..., ;1 the kth individual in x, and by 
Z, with j = 1, ..., il the jth individual in z ,  we have: 

DEFINITION 10. The global reduction function, f r e d ,  converts a 

ficd : n +r. 

population n E PS,, to a population r E PS, 

Notice that r denotes the population of individuals at 
time t + 1. 
DEFINITION 11. The reduction function is elitist of degree A if the 

population at time t+ l  is formed by selecting the best il in- 
dividuals-taking into account the objective function- 
among the il individuals of the population at time t and the 
offspring derived from them. 

DEFINITION 12. The reduction function is simple if the popula- 
tion at time t + 1 is formed by the offspring derived from 
the population at time t. Using the notation introduced in 
definitions 6, 9, and 10, the reduction function will be sim- 
ple if and only if r = z. 
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