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Abstract Barking is perhaps the most characteristic form

of vocalization in dogs; however, very little is known about

its role in the intraspecific communication of this species.

Besides the obvious need for ethological research, both in

the field and in the laboratory, the possible information

content of barks can also be explored by computerized

acoustic analyses. This study compares four different

supervised learning methods (naive Bayes, classification

trees, k-nearest neighbors and logistic regression) com-

bined with three strategies for selecting variables (all

variables, filter and wrapper feature subset selections) to

classify Mudi dogs by sex, age, context and individual

from their barks. The classification accuracy of the models

obtained was estimated by means of K-fold cross-valida-

tion. Percentages of correct classifications were 85.13 %

for determining sex, 80.25 % for predicting age (recodified

as young, adult and old), 55.50 % for classifying contexts

(seven situations) and 67.63 % for recognizing individuals

(8 dogs), so the results are encouraging. The best-per-

forming method was k-nearest neighbors following a

wrapper feature selection approach. The results for classi-

fying contexts and recognizing individual dogs were better

with this method than they were for other approaches

reported in the specialized literature. This is the first time

that the sex and age of domestic dogs have been predicted

with the help of sound analysis. This study shows that dog

barks carry ample information regarding the caller’s

indexical features. Our computerized analysis provides

indirect proof that barks may serve as an important source

of information for dogs as well.
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classification � K-fold cross-validation

Introduction

Canine communication (including dog–human communi-

cation) has become a well-studied topic among ethologists

in the last decade. Most efforts have focused on how and to

what extent dogs are able to understand different forms of

human communication, through visual gestures (Reid

2009), voice recognition (Adachi et al. 2007), acoustic

signals for ceasing or intensifying their activity (McCon-

nell and Baylis 1985; McConnell 1990), and ostensive

signals (Téglás et al. 2012). However, it has also been

found that dogs can get their message across to humans, for

example, by turning their head or alternating their gaze

between the human and their target (Miklósi et al. 2000),

and that dogs can emulate other behavioral forms so as to

convey feelings, of guilt for example, in an appropriate

situation (Hecht et al. 2012).

Unlike taxon-specific chemical and visual communica-

tion (Meints et al. 2010; Wan et al. 2012), acoustic signals
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are regarded as highly conservative and uniformly con-

structed within such broad groups of animals as avian and

mammalian species. Morton (1977) provided a set of so-

called motivation-structural rules to explain this point.

According to his theory, the quality of the sound (pitch,

tonality) strongly depends on the physical (anatomical)

constraints of the animal’s voice-producing tract, which in

turn depends on the physical features of the animal itself

(size, for example). Stronger, larger specimens within a

species will usually be the dominant, aggressive animals

and smaller, younger individuals are usually the subordi-

nates. Thus, the typical vocalizations (low pitched, broad-

band, noisy) emitted by the larger, more aggressive

individuals, for example, could, according to Morton,

evolve into the trademarks of agonistic inner states. Simi-

larly, the typical vocal features of a smaller, subordinate

animal (high pitched, narrow band, tonal) could project the

lack of aggressive intent communicative meaning.

Dogs have a rich vocal repertoire, see (Cohen and Fox

1976; Tembrock 1976; Yeon 2007), like other closely

related wild members of the Canidae family. The etholog-

ical analysis of the possible functions of canine vocaliza-

tions has so far provided data about the individual-specific

content of wolf howls (Mazzini et al. 2013; Root-Gutteridge

et al. 2013), the indexical content of dog growls, related to

the caller’s body size (Taylor et al. 2008, 2010; Faragó et al.

2010a; Bálint et al. 2013), and the context-specific content

of dog growls (Faragó et al. 2010b; Taylor et al. 2009).

However, even though barking is considered to be the most

characteristic form of dog vocalization, exceeding the barks

of wolves and coyotes both in its frequency of occurrence

and variability (Cohen and Fox 1976), the functional aspects

of dog barks are surprisingly little known. The theoretical

framework for the information content and evolution of

barking in the dog involves very different assumptions,

ranging from the theory that it is a non-communicative

byproduct of domestication (Coppinger and Feinstein

1991), through the low-information level mobbing signal

theory (Lord et al. 2000), to the context-specific information

source theory (Feddersen-Petersen 2000; Yin 2002; Pon-

grácz et al. 2010). As dogs are the oldest domesticated

companions of humans (Druzhkova et al. 2013), dog bark-

ing may have acquired a ’new target audience’ in humans

during the many 1,000 years of coexistence. A possible

indirect proof of this is a series of playback experiments

which showed that humans are able to correctly categorize

barks according to their contexts (Pongrácz et al. 2005). As

for contextual content, human listeners also had consistent

opinions about the inner state of the barking dogs, and the

acoustic analysis of the barks revealed that humans base

their decision on the kinds of acoustic parameters of the

barks that were expected on the basis of Morton’s theory

(Pongrácz et al. 2006). Besides the pitch and the harmonic-

to-noise ratio, however, it was found that the inter-bark

interval (or ‘pulsing’) of the barks is also important when

assessing the inner state of the barking dog.

Although there are convincing empirical demonstrations

that dog barks show acoustic features that are seemingly

context specific (Yin 2002; Pongrácz et al. 2005), and we

have also learned that humans can decipher information from

dog barks regarding the context of vocalization and the inner

state of the animal, it is less well understood whether dog

barks carry an equally rich (or even richer) content of

information for another dog. Until now, there have been only

a few experiments with dogs as subjects which revealed that

dog barks do carry individual-specific cues. One used a

habituation–dishabituation paradigm (Maros et al. 2008;

Molnár et al. 2009), and the other was a computerized bark

analysis study (Molnár et al. 2008). These results raise the

question of whether dog barks carry a much wider set of

information about the vocalizing animal than humans are

able to decipher. Another intriguing problem is which

acoustic parameters could be responsible for the finer details

of the information content of dog barks. Based on the vast

literature of vocalization-based sex and individual recogni-

tion in other species, e.g., African wild dog, Lycaon pictus

(Hartwig 2005); white-faced whistling duck, Dendrocygna

viduata (Volodin et al. 2005); or Wied’s black-tufted-ear

marmosets, Callithrix kuhlii (Smith et al. 2009), one might

expect dog barks to also carry specific cues of the caller’s

individual features, such as sex and age, for example. There

are, however, considerable obstacles in testing such subtle

pieces of information using classical techniques (i.e., play-

back). Fortunately, the current age of computer-based

methods opens up the possibility for analyzing and testing

lots of sound samples with the help of artificial intelligence.

Machine learning techniques have been used in behav-

ioral research on acoustic signals for a wide range of

species, see Table 1. For dolphins, artificial neural net-

works have been applied to model dolphin sonar, specifi-

cally for discriminating differences in the wall thickness of

cylinders using time and frequency information from the

echoes (Au et al. 1995). Also, support vector machines and

quadratic discriminant function analysis have been used to

classify fish species according to their echoes using a

dolphin-emulating sonar system (Yovel and Au 2010), and

Gaussian mixture models and support vector machines

have been employed to classify echolocation clicks from

three species of odontocetes (Roch et al. 2008). Differen-

tiation of categories or graded barks in mother-calf vocal

communication in Atlantic walrus have been analyzed with

artificial neural networks and discriminant functions

(Charrier et al. 2010). Frog song identification to recognize

frog species has been carried out with k-nearest neighbor

classifiers and support vector machines (Hunag et al. 2009).

Linear discriminant analysis, decision tree and support
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vector machines have been employed to automate the

classification of calls of several frog and bird species

(Acevedo et al. 2009). Gaussian mixture models have also

been used for individual animal recognition in birds

(Cheng et al. 2010). Bat species have been acoustically

identified using artificial neural networks (Parsons 2001;

Britzke et al. 2011), discriminant function analysis (Par-

sons and Jones 2000; Britzke et al. 2011), classification

trees (Adams et al. 2010), k-nearest neighbors (Britzke

et al. 2011) as well as other classifiers (random forests and

support vector machines) whose behavior has been com-

pared (Armitage and Ober 2010). Artificial neural networks

have been used to discriminate between the sounds of

different animals within a group of British insect species

(Orthoptera), including crickets and grasshoppers (Ches-

more 2001). Blumstein and Munos (2005) found poten-

tially significant information about identity, age and sex

encoded in yellow-bellied marmots calls using discrimi-

nant function analysis. For suricates, discriminant function

analysis was chosen to predict the predator type (mammal,

bird and snake) from the alarm calls (Manser et al. 2002).

Hidden Markov models have been used to analyze African

elephant vocalizations and speaker identification, discrim-

ination of rumbles in different contexts, and oestrous cycle

phase determination from rumbles of female elephants

(Clemins 2005). Moreover, other work has focused on

identifying calls from different animals such as bears,

eagles, elephants, gorillas, lions and wolves, with k-nearest

neighbor classifiers, artificial neural networks and hybrid

methods (Gunasekaran and Revathy 2011).

For canids, research analyzing the acoustic measures of

barks with machine learning methods is limited, see

Table 1. Discriminant functions have been used for indi-

vidual recognition within a wild population of Arctic foxes

(Frommolt et al. 2003) and African wild dogs (Hartwig

2005). Domestic dog barks have been analyzed again using

discriminant analysis (Yin and McCowan 2004) for clas-

sification into context-based subtypes (three different con-

texts) and in order to identify individual dogs. These two

tasks were further refined in the same paper to categorize

each individual’s barks into separate contexts and identify

the individual barking within each context. A total of 4,672

Table 1 Examples of machine learning technique usage from acoustic signals for different species with different aims

Animal Aim Technique Reference

Dolphin Discriminate cylinder thickness ANN Au et al. (1995)

Classify fish species SVM, quadratic DFA Yovel and Au (2010)

Odontocete Classify echolocation clicks GMM, SVM Roch et al. (2008)

Walrus Classify barks in mother-calf communication ANN, DFA Charrier et al. (2010)

Frog Classify species kNN, SVM Hunag et al. (2009)

Linear DFA, trees, SVM Acevedo et al. (2009)

Bird Classify species Linear DFA, trees, SVM Acevedo et al. (2009)

Recognize individuals GMM Cheng et al. (2010)

Bat Classify species ANN, DFA Parsons (2001), Parsons and Jones (2000)

Trees Adams et al. (2010)

Random forests, SVM Armitage and Ober (2010)

ANN, DFA, kNN Britzke et al. (2011)

Cricket, grasshopper Classify species ANN Chesmore (2001)

Marmot Classify identity, age and sex DFA Blumstein and Munos (2005)

Suricate Predict predator type DFA Manser et al. (2002)

African elephant Classify vocalization type HMM Clemins (2005)

Classify contexts HMM Clemins (2005)

Recognize individuals HMM Clemins (2005)

Female elephant Classify rumbles by oestrous cycle phase HMM Clemins (2005)

Artic fox Recognize individuals DFA Frommolt et al. (2003)

African wild dog Recognize individuals DFA Hartwig (2005)

Domestic dog Classify contexts DFA Yin and McCowan (2004)

Recognize individuals (breeds) DFA Yin and McCowan (2004)

Mudi dog Classify contexts Gaussian NB Molnár et al. (2008)

Recognize individuals Gaussian NB Molnár et al. (2008)

ANN artificial neural network, SVM support vector machine, DFA discriminant function analysis, GMM Gaussian mixture model, kNN k-nearest

neighbor classifier, HMM hidden Markov model, NB naive Bayes
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barks were recorded from ten dogs of six different breeds,

and 120 variables were extracted from the spectrograms.

More recently, 6,006 barks of 14 Mudi breed individuals

were recorded under six different communicative situations

(Molnár et al. 2008). After processing the spectrograms of

their signals, a genetic programming-based heuristic guided

the construction of new descriptors. The aims were the same

as in Yin and McCowan (2004), although the machine

learning technique was a Gaussian naive Bayes classifier.

In this paper, we extend Molnár et al.’s research in

several ways. As in Molnár et al. (2008), we classify barks

into contexts and identify individual barks. Unlike Molnár

et al., we also investigate whether barks encode information

about dog sex and age. Also, we specify context classifi-

cation per individual dog and recognize individual bark per

context. Therefore, we have six different classification

problems concerning sex, age, contexts, contexts per indi-

vidual, individuals and individuals per context. Moreover,

for each of these six problems, a thorough set of four

machine learning models (Gaussian naive Bayes, classifi-

cation trees, k-nearest neighbors and logistic regression) are

trained from a database of 800 barks corresponding to 8

Mudi dogs in seven behavioral contexts. Their performance

is estimated using cross-validation (K-fold scheme) which

assesses the ability to classify barks that had not been pre-

viously encountered. Given an incoming Mudi dog bark,

two models (Gaussian naive Bayes and logistic regression)

output the probability of each class value, whereas the other

two models deterministically provide the predicted class

value. Gaussian naive Bayes assumes normality and inde-

pendence of the features given the class value. Logistic

regression uses the sigmoid function of a linear combination

of the features as the probability of each class value.

Classification trees hierarchically partition the feature

space. Finally, k-nearest neighbors simply predicts the class

value by majority voting in a feature space neighborhood.

The diversity of these four models is representative of the

available supervised classifiers. Rather than using all the

extracted acoustic measures, we selected relevant features

with two methods, filter and wrapper, for each machine

learning model. Whereas wrapper methods use a predictive

model to score feature subsets, filter methods use a proxy

measure instead of the classification accuracy to score the

selected features.

Methods

Subjects

Barks recorded from Mudi dogs were used for this study.

The Mudi is a medium-sized Hungarian herding dog breed.

The Mudi breed standard is listed as #238 with the FCI

(Fédération Cynologique Internationale). Initially, we

collected 7,310 barks from 27 individuals. The number of

barks per dog ranged from 8 to 1,696. These barks were

recorded in different number of bouts for each dog. Trying

to minimize the effect of pseudoreplication, we only con-

sidered dogs whose initial number of barks was greater than

300. From each of these 8 dogs, 100 barks were randomly

selected using a systematic sampling procedure, thereby

balancing the number of samples coming from each indi-

vidual. Table 2 contains the characteristics of these selected

800 barks according to sex ratio (male–female 3:5), age

(ranging from 1 to 10 years old), number of bouts for each

dog (with a minimum of 5 and a maximum of 14) and

number of barks per dog in each of the seven contexts. Age

values are grouped into intervals to form a three-valued

class variable: young dogs (1–3 years old), adult dogs

(4–8 years old) and old dogs (more than 8 years old).

Recording and processing of the sound material

Recording contexts

Recordings were made using a Sony TCD-100 DAT tape

recorder and Sony ECM-MS907 microphone on Sony

PDP-65C DAT tapes. During recording of the barks, the

experimenter held the microphone at a distance of 3 to 4

m from the dog. We collected bark recordings in seven

different behavioral contexts. With the exception of two

contexts (Alone and Fight), all recordings were done at

the dog’s residence. Barks of the Fight context were

recorded at dog training schools. The training school dogs

were also taken to a park or other suitable outdoor area to

record the Alone barks. The seven situations are as

follows:

– Alone (N ¼ 106 recordings): The owner and the

experimenter (male, 23 years old) took the dog to a

park or other outdoor area, where the dog was tied to a

tree or fence by its leash. The owner left the dog and

walked out of the dog’s sight, while the experimenter

remained with the dog and recorded its barks.

– Ball (N ¼ 131): The owner held a ball (or one of the

dog’s favorite toys) approximately 1.5 m in front of the

dog.

– Fight (N ¼ 131): For dogs to perform in this situation,

the trainer acts as if he intends to attack the dog–owner

dyad. Dogs are expected to bark aggressively and even

bite the trainer’s glove. The owner keeps the dog on a

leash during this exercise.

– Food (N ¼ 106): The owner held the dog’s food bowl

approximately 1.5 m in front of the dog.

– Play (N ¼ 89): The owner was asked to play a game

with the dog, such as tug-of-war, chasing or wrestling.
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The experimenter recorded the barks emitted during

this interaction.

– Stranger (N ¼ 206): The experimenter acted as the

’stranger’ for all the dogs and appeared at the dog

owners’ garden or front door. The experimenter

recorded the barking dog for 2–3 min. The owner

was not in the vicinity (in the garden, or near to the

entrance) during the recording.

– Walk (N ¼ 31): We asked the owner to behave as if

he/she was preparing to go for a walk with the dog. For

example, the owner took the dog’s leash in her/his hand

and told the dog ‘We are leaving now.’

Initial processing of the sound material

The recorded material was digitalized with a 16-bit quan-

tization and 44.10 kHz sampling rate using a TerraTec

DMX 6Wre 24/96 sound card. As each recording could

contain at least three or four barks, individual bark sounds

were manually segmented and extracted. This process

resulted in a final collection of 7,310 sound files containing

only a single bark sound. Obviously, these sounds are not

independent from a statistical point of view. As some of the

machine learning methods used in this work assume that

the samples are independent and identically distributed, we

randomly selected non-consecutive barks, alleviating in

this way the pseudoreplication effect. The final data set

contains 800 barks from the initial 7,310 sound files.

Sound analysis

Based on the initial parameter set used in Molnár et al.

(2008), 29 acoustic measures were extracted from the bark

samples with an automated Praat script, see Table 3 and

Fig. 1.

The energy, loudness and the long-term average spec-

trum (LTAS) are measurements of sound energy, and the

LTAS parameters reflect its change over time, whereas the

spectral parameters show the distribution of energy over

the frequency components.

According to the source–filter framework (Fant 1976),

the fundamental frequency is the lowest harmonic com-

ponent of the source signal that is produced in the larynx by

the movements of the vocal fold. Measurements of the

fundamental show the modulation of this source signal

over time. One voice cycle is the unit of the movements of

the vocal folds. During sound production, the repeated

opening and closing of the vocal folds generates cyclic

pressure changes in the exhaled air, which will be the

sound wave itself. Measurements of the vocal cycles show

the regularities in voice production.

Finally, tonality or harmonics-to-noise ratio gives the

proportion of regular, tonal frequency components over the

noise caused by the irregular movements of the vocal folds,

or the turbulences in the air flow in the vocal tract. These

measurements are capable of describing the quality of the

sound and its change over time.

The process is illustrated in Fig. 2 (top).

Supervised classification

A common machine learning task is pattern recognition

(Duda et al. 2001), in which two different problems are

considered depending on the available information. We

always started from a data set in which each case or

instance (a single bark sound in this paper) is characterized

by features or variables (29 acoustical measures in our

case). In a supervised classification problem, an additional

variable—called the class variable—contains the instance

label (sex, age, context or individual in this paper), and we

look for a model able to predict the label of a new case with

known features. Alternatively, in an unsupervised classifi-

cation problem or clustering (Jain et al. 1999), the label is

missing and the aim is to form groups or clusters with cases

Table 2 Characteristics of the bark data set with seven context categories: Alone, Ball, Fight, Food, Play, Stranger and Walk

Context

Number Dog Sex Age (years) Bouts Alone Ball Fight Food Play Stranger Walk Total

1 Bogyó Male 1 5 50 50 100

2 Derüs Female 2 15 50 50 100

3 Fecske Female 2 10 25 25 25 25 100

4 Guba Female 5 14 50 50 100

5 Harmat Female 4 7 50 50 100

6 Sába Female 6 7 25 25 25 25 100

7 Ügyes Male 10 6 17 17 17 17 17 17 102

8 Merse Male 7 6 14 14 14 14 14 14 14 98

Total 106 131 131 106 89 206 31 800
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(dog barks) that are similar with respect to the features at

hand.

In this paper, we apply supervised classification methods

to automatically learn models from data. These models will

be used to separately predict dog sex, dog age, context and

the individual dog from a set of predictor variables cap-

turing the acoustical measures of the dog barks.

In a binary supervised classification problem, there is a

feature vector X 2 R
n whose components, X1; . . .;Xn, are

called predictor variables, and there is also a label or class

variable C taking values on f0; 1g. The task is to induce

classifier models from training data, which consists of a set

of N observations DN ¼ fðxð1Þ; cð1ÞÞ; . . .; ðxðNÞ; cðNÞÞg
drawn from the joint probability distribution pðx; cÞ, see

Table 4. In our dog data set, n ¼ 8 acoustical measures and

N ¼ 800 bark sounds. The classification model will be

used to assign labels to new instances, xðNþ1Þ, only char-

acterized by the values of the predictor variables.

To quantify the goodness of a binary classification

model, true positives (TP), true negatives (TN), false pos-

itives (FP) and false negatives (FN) are counted over the

test data and placed in a confusion matrix. This confusion

matrix contains in its diagonal the TP and TN observations.

Then, we can define the error rate as
jFNjþjFPj

N
, where N ¼

jTPj þ jFPj þ jTNj þ jFNj is the total number of instances,

or equivalently, the accuracy as
jTPjþjTNj

N
.

Dog sex classification is binary, XC ¼ {Female, Male},

where there are two possible errors: predict a Male as a

Female dog, and alternatively predict a Female as a Male.

The other classifications are multiclass, where C takes

r [ 2 possible class values. Let XC ¼ f1; 2; . . .; rg denote

this set. Thus, XC ¼ {Young, Adult, Old} for age, XC ¼
{Alone, Ball, Fight, Food, Play, Stranger, Walk} for con-

texts, and XC ¼ {dog1,...,dog8} for individuals in our case.

The r � r-dimensional confusion matrix contains all pair-

wise counts, mij, the number of cases out of N from the real

class ci classified by the model as cj. The accuracy is given

by
Pr

i¼1 mii=N.

Accuracy estimation of supervised classification models

An important issue is how to honestly estimate the

(expected) accuracy of a classification model when using

this model for classifying unseen (new) instances. A simple

method is to partition the whole data set into two subsets:

the training subset and the test subset. According to this

training and testing scheme, the classification model is

learned from the training subset, and it is then used in the

test subset for the purpose of estimating its accuracy.

However, the information in the data set is under-used, as

the classification model is learned from a subset of the

original data set.

In this paper, we will use an estimation method called

K-fold cross-validation (Stone 1974). This uses the whole

data set to honestly learn the model. The data set is parti-

tioned into K folds of approximately the same size. Each

Table 3 Twenty-nine acoustic measures extracted from barking

recordings

Name Description Variable

Measurements of sound energy

Energy Amount of energy in the sound

(Pa2 � s)

X1

Loudness Loudness X10

Ltasm Mean long-term average spectrum

(ltas)

X23

Ltass Slope of the ltas X24

Ltasp Local peak height between 1,700

and 3,200 in the ltas

X25

Ltasd Standard deviation of the ltas X26

Measurements of spectral energy

Banddensity Density of the spectrum between

2,000 and 4,000 Hz

X2

Centerofgravityfreq Average frequency in the spectrum X3

Deviationfreq Standard deviation of the frequency

in the spectrum

X4

Skewness Skewness of the spectrum X5

Kurtosis Kurtosis of the spectrum X6

Cmoment Non-normalized skewness of the

spectrum

X7

Energydiff Energy difference between 0–2,000

and 2,000–6,000 Hz bands

X8

Densitydiff Density difference between 0–2,000

and 2,000–6,000 Hz bands

X9

Measurements of the source signal

Pitchm Mean fundamental frequency (F0)

in Hertz

X11

Pitchmin Minimum F0 X12

Pitchmax Maximum F0 X13

Pitchmint Time point of the minimum F0 (s) X14

Pitchmaxt Time point of the maximum F0 (s) X15

Pitchd Standard deviation of the F0 X16

Pitchq Lower interquantile of the F0 X17

Pitchslope Mean absolute slope of the F0 X18

Pitchslopenojump Mean slope of the F0 without octave

jump

X19

Measurements of the voice cycles

Ppp Number of voice cycles X20

Ppm Mean number of voice cycles X21

Ppj Jitter X22

Measures of the tonality

Harmmax Maximum tonality X27

Harmmean Mean tonality X28

Harmdev Standard deviation of the tonality X29
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fold is left out of the learning process, which is carried out

with the remaining K � 1 folds, and used later as a test set.

This process is repeated K times. Thus, every instance is in

a test set exactly once and in a training set K � 1 times.

The model accuracy is estimated as the mean of the

accuracies for each of the K test sets. In our experiments,

we will fix the value of K to 10.

Feature subset selection

The feature subset selection (FSS) problem (Liu and Mo-

toda 1998) refers to the question of whether all the n pre-

dictor features are really useful for classifying the instances

with a given model. The FSS problem can be formulated as

follows: Given a set of candidate features, select the best

subset under some classification learning method.

This dimensionality reduction by means of an FSS

process has several potential advantages for a supervised

classification model, such as the reduction in the cost of

data acquisition, an improved understanding of the final

classification model, a faster induction of the classification

model and an improvement in classifier accuracy.

FSS can be viewed as a search problem, where each

state in the search space specifies a subset of selectable

features. An exhaustive search of all possible feature sub-

sets, given by 2n, is usually unfeasible in practice because

of the large computational burden, and heuristic search is

usually used.

For a categorization of FSS, see Saeys et al. (2007).

There are two main types of FSS depending on the function

used to measure the goodness of each selected subset. In

the wrapper approach to the FSS, the accuracy reported by

Fig. 1 Main parameters measured for the acoustic analysis using

Praat functions. The oscillogram shows the actual complex waveform

of a single bark. The amplitude of the waveform shows the intensity

change over time, which is represented here as the intensity profile.

The energy parameter is the overall energy transferred by the sound

over time. Fast Fourier transformation is used to create a sonogram

which shows the frequency spectrum of the bark over time.

Autocorrelation method was applied to extract the fundamental

frequency and its profile depicted as the pitch object. The fundamen-

tal frequency is the frequency of opening and closing cycles of the

vocal fold, which is represented by the point process object where

every vertical line represents one vocal cycle. This can be used to

measure the periodicity of the sound and irregularities in sound

production (jitter). The spectrum shows the overall power of each

frequency component. The harmonic-to-noise ratio gives the ratio of

harmonic spectral components (the upper harmonics of the funda-

mental frequency) over the irregular, noisy components. Finally, the

long-term average spectrum (LTAS) represents the average energy

distribution over the frequency spectrum
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a classifier guides the search for a good subset of features.

We have used a greedy stepwise search in our experi-

ments, i.e., one that progresses forward from the empty

set selecting at each step the best option among adding a

variable not yet included within the model and deleting a

variable from the current model. The search is halted

when neither of these options improves model accuracy.

When the learning algorithm is not used in the evaluation

function, the goodness of a feature subset can be assessed

using only intrinsic data properties, such as an information

theory based evaluation function. This is the filter

approach to the FSS problem. In this paper, we apply both

wrapper and filter approaches to the FSS problem. For the

second type, a multivariate filter based on mutual infor-

mation, called correlation feature selection, is used (Hall

1999). This tries both to minimize redundancy between

selected features and maximize correlation with the class

variable.

Supervised classification methods

Given an instance x, supervised classification builds a

function c that assigns to x a class label in XC ¼ f1; . . .; rg.
We provide a short description of each supervised classi-

fication method used.

Naive Bayes (Minsky 1961) is the simplest Bayesian

classifier. A Bayesian classifier assigns the most probable a

posteriori class to a given instance x, i.e., it yields the c

value of C that maximizes the posterior probability pðcjxÞ.
Using the Bayes’ theorem, this is equivalent to maximizing

pðcÞpðxjcÞ. The naive Bayes is built upon the assumption

of conditional independence of the predictive variables

given the class. Computationally, this means that pðxjcÞ in

the previous product is easily obtained as the product of all

factors pðxjjcÞ; j ¼ 1; . . .; n, each associated with one var-

iable. The Gaussian naive Bayes classifier applies for

continuous variables Xj following a Gaussian distribution

fj. Therefore, this model computes c such that

Fig. 2 Diagram of the study: data preprocessing (top) and questions to be answered by machine learning models (bottom)

Table 4 Raw data in a supervised classification problem: N denotes

the number of labeled observations, each of them characterized by n

predictor variables, X1; . . .;Xn and the class variable C

X1 . . . Xn C

(xð1Þ; cð1Þ) x
ð1Þ
1

. . . xð1Þn cð1Þ

(xð2Þ; cð2Þ) x
ð2Þ
1

. . . xð2Þn cð2Þ

. . . . . . . . .

(xðNÞ; cðNÞ) x
ðNÞ
1

. . . xðNÞn cðNÞ

xðNþ1Þ
x
ðNþ1Þ
1

. . . xðNþ1Þ
n

?

xðNþ1Þ denotes the new observation to be classified by the supervised

classification model
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max
c2XC

pðcÞ
Yn

j¼1

fjðxjjcÞ: ð1Þ

In a classification tree (Quinlan 1993), the learned function

c is represented by a decision tree. Each (non-leaf) node

specifies a value test of some variable of the instance. Each

descendant branch corresponds to one of the possible val-

ues for this variable. Each leaf node provides the class label

given the values of the variables jointly represented by the

path from the root to that leaf. Unseen instances are clas-

sified by sorting down the tree from the root to some leaf

node testing the variable specified at each node. A classi-

fication tree is learned in a top-down manner (starting with

the root node) by progressively splitting the training data

set into smaller and smaller subsets based on variable value

tests. This process is repeated on each derived subset in a

recursive manner called recursive partitioning of the space

representing the predictive variables. Key decisions are

how to select which variable to test at each node in the tree,

and how deep the tree should be, i.e., whether to stop

splitting or select another variable and grow the tree fur-

ther. These decisions make the differences between algo-

rithms. The C4.5 algorithm used in this paper chooses

variables by maximizing the gain ratio, which is the ratio of

the information gain of Xj and C and the entropy of Xj,

which are both concepts used in information theory. The

algorithm incorporates post-pruning rules to avoid the tree

becoming too deep thereby escaping from the training data

overfitting, i.e., its failure to work well with new unseen

instances.

The k-nearest neighbor classifier (Fix and Hodges 1951)

is a nonparametric method that assigns to a given instance

x the class label most frequently found among its k nearest

instances; that is, the predicted class is decided by exam-

ining the labels of the k nearest neighbors and voting. A

common distance used for obtaining the k nearest neigh-

bors for a continuous variable x is the Euclidean distance.

This classifier is a type of lazy learning where the function

is only approximated locally and all computation is

deferred until classification. In our experiments, we will fix

k ¼ 1.

Logistic regression (Le Cessie and van Houwelingen

1992), like naive Bayes, produces a posterior probability

pðcjxÞ for a given instance x. For binary classification, the

model assumes that it is a transformation of a linear

combination of the input variables, given by

pðC ¼ 1jxÞ ¼ 1=½1þ e�ðb0þb1x1þ���þbnxnÞ�;

where b0; b1; . . .; bn are model parameters estimated from

data by maximum likelihood. If Lðb0; . . .; bnÞ denotes the

log-likelihood function of the data under this model, the

problem is to find bs that maximize this function. The ridge

logistic regression used in this paper adds a penalization

term to L, and the problem is then to maximize the func-

tion Lðb0; . . .; bnÞ � k
Pn

j¼1 b2
j , for bs where k [ 0 con-

trols the amount of penalization. This penalty forces the

parameters to shrink to zero achieving a reduction in the

variance of the parameter estimates with an overall

increased accuracy. For multiclass classification, the pos-

terior probability of c 6¼ r is given by

pðcjxÞ ¼ eðb
ðcÞ
0
þbðcÞ

1
x1þ���þbðcÞn xnÞ

1þ
Pr�1

l¼1 eðb
ðlÞ
0
þbðlÞ

1
x1þ���þbðlÞn xnÞ

; l ¼ 1; . . .; r � 1

ð2Þ

and hence, pðrjxÞ is derived from the others since they all

sum to one. Note that in this multiclass case, we need a set

of nþ 1 parameters fbðlÞ0 ; b
ðlÞ
1 ; . . .;bðlÞn g for each l value,

l ¼ 1; . . .; r � 1; that is, a total of ðnþ 1Þðr � 1Þ
parameters.

All the results were calculated using WEKA software

(Hall et al. 2009).

Results

The six problems we will deal with are illustrated in Fig. 2

(bottom).

Sex

The k-nearest neighbor classifier produced the best results,

with an accuracy of 85.13 %, with a wrapper feature

selection (in bold), see Table 5. This model contains 12

predictor variables, see Table 16. The groups that record

spectral energy and source signal variables are under-rep-

resented, according to the categorization of acoustic mea-

sures provided in Table 3.

For the female barks, the misclassification rate is 9.40 %

(47 false males out of 500 real females), and it is higher for

males, 24.00 % (72 false females from a total of 300 real

males).

Table 6 shows the accuracies per dog of the k-nearest

neighbor model with 12 predictors. The model accuracy

when predicting the five female dogs is around 90 %, with

the worst predictions for dog3 and dog4 (87.00 %), and the

best for dog5 (97.00 %). The three male dogs are predicted

with accuracies ranging from 73.00 % for dog1 to 79.41 %

for dog7.

Supplementary Material contains the specifications of

the best models for the prediction of the dog sex. For naive

Bayes, the univariate conditional Gaussian densities for

each predictor variable are shown. The structure of the

classification tree model is also presented, as well as the

Anim Cogn (2015) 18:405–421 413

123



coefficients of the logistic regression model. For the k-

nearest neighbor classifier, the data set constitutes the

model and therefore it is not shown.

Age

Table 7 (left) shows the age results. As for the sex pre-

diction problem, k-nearest neighbors with a wrapper fea-

ture selection produced the best accuracy 80.25 %. The 15

selected variables in this model mainly contain measure-

ments of spectral energy, sound energy and voice cycles.

For this problem, the wrapper strategy outperformed the

other strategies in the four supervised classification

methods.

The confusion matrix in Table 7 (right) of the best

model shows that a Young dog is classified as Old in only

2.67 % of cases (8 out of 300), while old dogs are mis-

classified as Young in 6.86 % of cases (7 out of 102). The

error rates classifying Young, Adult and Old dogs are

21.00, 17.59 and 24.51 %, respectively. These figures

suggest that it is easier to get it wrong when classifying

Young and Old dogs.

Table 8 contains the accuracies per dog of the best

model. This model provides a 79.00 % of accuracy when

predicting Young dogs. This percentage is very similar for

each of the three young dogs (dog1, dog2 and dog3).

However, for the four adult dogs the model shows a wide

range of accuracies, varying from 66.00 % (dog6) to

90.00 % (dog5). Dog7, that is the only old dog, is classified

with an accuracy of 75.49 %.

Supplementary Material contains the specifications of

the best models for the prediction of the dog age.

Context

A single model for all dogs. Table 9 (left) shows the results

of a single model learned from the 800 barks to discrimi-

nate among the 7 contexts: Alone, Ball, Fight, Food, Play,

Stranger and Walk.

k-nearest neighbor classifier and wrapper selection is

once more the best-performing model with an accuracy of

55.50 %. The variables selected by this model correspond

mainly to spectral energy and voice cycle measurements.

Note that now we have a more difficult problem with more

class values to be predicted (7 contexts) and consequently

the estimated accuracy is expected to be lower.

From Table 9 (right), we can compute the contexts with

the highest and lowest true positive rates that correspond to

Fight (0.76) and Walk (0.35), respectively. The Ball

Table 5 Sex prediction

All Filter Wrapper

Naive Bayes 71.00 % 71.13 % 77.13 %

Classification tree 78.13 % 72.75 % 81.50 %

k-Nearest neighbors 82.00 % 64.25 % 85.13 %

Logistic regression 76.88 % 70.50 % 78.63 %

Accuracies of the twelve models: three selection feature methods for

each of the four supervised classifiers

Table 6 Sex prediction per dog

Accuracies of the best model in

Table 5 for each of the eight

dogs. The overall accuracy of

this model over the eight dogs is

85.13 %

Male

76.00 %

Female

90.60 %

Dog1 73.00 % –

Dog2 – 90.00 %

Dog3 – 87.00 %

Dog4 – 87.00 %

Dog5 – 97.00 %

Dog6 – 92.00 %

Dog7 79.41 % –

Dog8 75.51 % –

Table 7 Age prediction

All Filter Wrapper

Naive Bayes 68.50 % 65.63 % 71.88 %

Classification tree 70.88 % 69.13 % 74.13 %

k-Nearest neighbors 78.63 % 79.13 % 80.25 %

Logistic regression 75.63 % 73.88 % 76.00 %

Real class Predicted class

Young Adult Old

Young 237 55 8

Adult 61 328 9

Old 7 18 77

Accuracies of the twelve models: three selection feature methods for

each of the four supervised classifiers (top table). Confusion matrix of

the best model: k-nearest neighbors wrapper (bottom table)

Table 8 Age prediction per dog

Young 79.00 % Adult 82.41 % Old 75.49 %

Dog1 84.00 % – –

Dog2 74.00 % – –

Dog3 79.00 % – –

Dog4 – 85.00 % –

Dog5 – 90.00 % –

Dog6 – 66.00 % –

Dog7 – – 75.49 %

Dog8 – 88.77 % –

Accuracies of the best model in Table 7 for each of the eight dogs.

The overall accuracy of this model over the eight dogs is 80.25 %
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context is often misclassified as Food and vice versa. The

same holds for the Walk and Play pair. This is quite rea-

sonable since both pairs define quite similar underlying

concepts. Many barks under Fight or Alone situations are

misclassified as Stranger. However, the Stranger context is

usually confused with the Ball and Food context.

Table 10 contains the accuracies per dog of the best

model. This model provides 43.40 % accuracy when

predicting the Alone context, with extreme prediction

accuracies for dog7 (52.94 %) and dog8 (14.29 %). The

Ball context achieves 48.85 % accuracy, having dog7 and

dog8 the worst (29.41 %) and best (64.29 %) predictions,

respectively. These two dogs also present the worst and

best predictions for the Food context. The model shows

better accuracies for the Fight and Stranger contexts. In

the Fight context, the 98.00 % of success for dog5 is

noteworthy, whereas the worst behavior in the Stranger

context is for dog7 (35.29 %). The Play and Walk con-

texts show highly variable accuracies for the different

dogs.

Supplementary Material contains the specifications of

the best models for the prediction of the dog context.

A model per dog. More refined dog-specific models are

built here. By selecting instances from the same dog, the

corresponding model will identify the context for that dog.

A total of 96 models (8 dogs � 12 models per dog) have

been considered, where only the performance of the best

model is shown in Table 11.

Naive Bayes was the best model 3 times, k-nearest

neighbors 4 times, and logistic regression in 2 cases.

Regarding the feature subset selection methods, wrapper

reports the best results for all 8 dogs.

Table 11 shows that accuracies decrease in proportion to

the increase in the number of contexts. With two contexts,

accuracies fall in the interval [78, 100 %]. The accuracies

for the two dogs with four contexts are 74 and 73 %.

Increasing the number of contexts to six and seven, the

accuracies are 59.80 and 66.98 %, respectively.

Figure 3 displays, for the best models in Table 11, the

mean number of selected variables by the five types of

acoustic variables. Spectral energy and voice cycle mea-

surements were the two groups with more often selected

(in relative terms) variables regardless of the number of

barks.

From the previous table, we select some models for the

sake of illustration. Figure 4 shows the naive Bayes

model which performed best for dog5, with only two

observed contexts, Fight and Strange (see the first row in

Table 11). The model is built with only five variables,

Deviationfreq, Pitchmax, Pitchmaxt, Pitchd and Ppp

selected by the wrapper approach. The missing arcs

between predictor variables and the arcs from the class to

the predictor variables encode the assumption of condi-

tional independence underlying naive Bayes. Figure 4

also shows the parameters, pðcÞ and the mean and stan-

dard deviation of the Gaussian distributions fjðxjjcÞ in

Eq. (1).

Table 9 Context prediction

All Filter Wrapper

Naive Bayes 41.63 % 42.63 % 47.88 %

Classification tree 44.00 % 44.63 % 44.13 %

k-Nearest neighbors 50.88 % 50.75 % 55.50 %

Logistic regression 49.75 % 47.50 % 50.13 %

Real class Predicted class

Alone Ball Fight Food Play Stranger Walk

Alone 46 15 7 17 6 14 1

Ball 11 64 5 22 5 23 1

Fight 8 4 100 3 4 11 1

Food 7 20 2 55 3 15 4

Play 8 8 2 10 44 11 6

Stranger 12 24 5 26 13 124 2

Walk 0 3 4 5 6 2 11

Accuracies of the twelve models: three selection feature methods for

each of the four supervised classifiers (top table). Confusion matrix of

the best model: k-nearest neighbors wrapper (bottom table)

Table 10 Context prediction

per dog

Accuracies of the best model in

Table 9 for each of the eight

dogs. The overall accuracy of

this model over the eight dogs is

55.50 %

Alone

43.40 %

Ball

48.85 %

Fight

76.34 %

Food

51.89 %

Play

49.44 %

Stranger

60.19 %

Walk

35.48 %

Dog1 – – – – 76.00 % 68.00 % –

Dog2 – – – 64.00 % – 54.00 % –

Dog3 52.00 % 44.00 % 56.00 % – – 60.00 % –

Dog4 44.00 % 60.00 % – – – – –

Dog5 – – 98.00 % – – 70.00 % –

Dog6 – 36.00 % 76.00 % 44.00 % 12.00 % – –

Dog7 52.94 % 29.41 % 52.94 % 17.65 % – 35.29 % 41.18 %

Dog8 14.29 % 64.29 % 57.14 % 64.29 % 21.43 % 50.00 % 14.29 %
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Figure 5 displays the classification tree model which

performed second best for dog1, with two observed con-

texts, Play and Stranger (see the second row in Table 11).

Note that three variables are required: Energydiff, Harm-

mean and Ppj. Thus, if for a given bark, Energydiff = 10,

Harmmean = 15 and Ppj = 0.05, then the dog is classified as

barking at a stranger.

Figure 6 shows the 100 barks recorded for dog1, rep-

resented as a point in the 3-D space of three of the five

variables selected by the best model, a k-nearest neighbors

wrapper. Barks in the Play context are colored blue (dark),

whereas Stranger is shaded red (light). A new bark (an

asterisk in the figure) would be classified as the context of

its nearest neighbor bark, i.e., Play in this 3-D space,

although its nearest neighbor bark should be computed in

the 5-D space, also including variables Deviationfreq and

Harmmean.

Table 12 includes the details of the logistic regression

model which performed best for dog2, with two observed

contexts, Food and Stranger (see the second row in

Table 11). This model is built from the five predictor

variables in the first column. The regression coefficients

bðcÞj for these variables would be used as in Eq. (2) to

compute the posterior probability that yields the predicted

class.

Individual

A single model for all contexts. Table 13 shows the results

of a single model learned from the 800 barks for discrim-

inating among the 8 dogs.

k-nearest neighbors wrapper is the best model, as in the

three previous classification problems, with an extremely

high accuracy, 67.63 %, in an 8 multi-class problem. Thus,

feature subset selection methods have been proved to

produce improvements in model performance.

The true positive rate for each of the classes can be

computed from Table 14. Dogs numbers 8, 5 and 7 have

high true positive rates: 0.77, 0.75 and 0.74, respectively.

In contrast, dogs number 6 and 3 have the lowest true

positive rates 0.51 and 0.58, respectively.

A model per context. More refined context-specific

models are built here. By selecting bark sounds from the

same context, the corresponding model will classify the

individual dog for that context. Thus, a total number of 7

contexts (and their corresponding 12� 7 models) have

been considered, where the accuracy of the best model for

each context is shown (see Table 15).

Note that the model accuracies for identifying dogs have

increased to an 80–100 % range compared with the

67.63 % achieved by the global model learned from a

Table 11 Context discrimination: A model per dog

Dog Model Accuracy Context

Dog5 Naive Bayes wrapper

k-Nearest neighbors wrapper 100.00 % Fight � Stranger

Dog1 k-Nearest neighbors wrapper 97.00 % Play � Stranger

Dog2 Logistic regression wrapper 86.00 % Food � Stranger

Dog4 Naive Bayes wrapper 78.00 % Alone � Ball

Dog3 k-Nearest neighbors wrapper 74.00 % Alone � Ball � Fight � Stranger

Dog6 Logistic regression wrapper 73.00 % Ball � Fight � Food � Play

Dog7 Naive Bayes wrapper 59.80 % Alone � Ball � Fight � Food � Stranger � Walk

Dog8 k-Nearest neighbors wrapper 66.98 % Alone � Ball � Fight � Food � Play � Stranger � Walk

Summary of the best models, accuracies and corresponding contexts for each dog. Dogs are organized by number of contexts and then by model

accuracy
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Fig. 3 Mean number of variables (Y-axis) selected by the best models

per dog when predicting contexts (listed in Table 11), for each of the

five groups of acoustic measures (X-axis): sound energy, spectral

energy, source signal, voice cycles and tonality. Each of these groups

of acoustic measures contain 6, 8, 9, 3 and 4 variables, respectively
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database with all the contexts. We now have fewer dogs to

be identified, from 2 dogs for the Walk context to 5 dogs

for Ball and Fight contexts, whereas the global model had

the harder problem of identifying 8 dogs. Although the

problem is easier because there are fewer class variable

values, barking is expected to be homogeneous in a fixed

context, which complicates correct dog identification.

Fig. 4 Example of a naive

Bayes wrapper model. It

corresponds to the best model

for context classification in

dog5

Fig. 5 Example of a classification tree wrapper model. It corresponds

to the second best model for context classification in dog1
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Fig. 6 Example of a k-nearest neighbors wrapper model. It corre-

sponds to the best model for context classification in dog1 (Cmoment

scale is divided by 109). Classification of a hypothetical bark

(asterisk)

Table 12 Example of parame-

ter values of a logistic regres-

sion model

It corresponds to the best model

for context classification in

dog2

Variable Xj bðFoodÞ
j

Kurtosis -0.0008

Pitchd -0.0002

Pitchslope 0.0001

Ppp -0.0143

Ppm -7,424.9241

Intercept (b0) 31.5997

Table 13 Individual prediction

All Filter Wrapper

Naive Bayes 54.50 % 55.63 % 63.00 %

Classification tree 53.13 % 51.37 % 56.37 %

k-Nearest neighbors 63.87 % 58.62 % 67.63 %

Logistic regression 63.00 % 61.75 % 65.75 %

Accuracies of the twelve models: three selection feature methods for

each of the four supervised classifiers

Table 14 Confusion matrix for the best model, k-nearest neighbors

wrapper, identifying individual dogs

Dog Predicted class

1 2 3 4 5 6 7 8

Real class 1 68 10 8 5 0 5 3 1

2 6 71 5 1 5 8 2 2

3 9 8 58 6 2 14 1 2

4 7 3 4 67 2 9 2 6

5 1 6 3 2 75 7 6 0

6 5 12 11 6 6 51 9 0

7 2 3 2 5 5 10 74 1

8 1 4 1 8 1 4 2 77
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Predictor variables of sex, age, context and individual

The number of selected variables in the best models (see

Table 16) represents about 50 % of the 29 initial variables.

These numbers were 12 for sex, 15 for age, 16 for context

and 18 for individual. It is remarkable that some variables,

like Ltasm, Ltass, Pitchmint, Pitchslopenojump and

Harmmax were never chosen. On the other hand, the fol-

lowing six variables occur in all four models: Energy,

Ltasp, Deviationfreq, Skewness, Pitchq and Harmmean.

Harmdev appears to be specific for determining dog sex,

since it was not selected in the rest of the problems. This

also applies to Pitchd, only selected for discriminating dog

age and to Pitchmaxt for individual determination.

Considering the blockwise organization of predictor

variables in Table 3, sound energy (first block), source

signal (third block) and tonality (fifth block) measurements

are sparsely selected compared to a denser selection in the

remaining blocks.

Discussion

This work has empirically demonstrated the usefulness of

supervised classification machine learning methods for

inferring some characteristics of dogs from the acoustic

measurements given by their barks. From the four classi-

fication methods considered, k-nearest neighbors outper-

formed naive Bayes, classification trees and logistic

regression. Also, the wrapper feature subset selection

method provided significant improvements over a filter

selection or no-selection (all variables are kept).

A solution for two prediction problems, sex and age,

never previously considered in the literature has been

presented. The best of the 12 resulting models in this study

was able to predict dog sex in 85.13 % of the cases. The

age of the dog, categorized as Young, Adult and Old, was

inferred correctly in 80.25 % of the cases. An issue to be

considered as future work is the prediction of age as a

continuous variable, using a kind of regression task.

Determining the context of the dog bark, with seven

possible situations, is a more difficult problem than clas-

sification by sex and age. However, it was successfully

solved for 55.50 % of the bark cases. This is an improve-

ment on the results presented in Molnár et al. (2008), where

for six possible contexts the best model yielded a 43 %

success rate. With an accuracy rate of 63 % for classifying

three possible contexts, our results are similar to the find-

ings reported by Yin and McCowan (2004). In addition, a

model for each of the eight dogs with two or more different

Table 15 Summary of the results of classifying individuals by

context

Context No. barks No. dogs Accuracy

Alone 106 4 94.34 %

Ball 131 5 80.92 %

Fight 131 5 88.55 %

Food 106 4 87.74 %

Play 89 3 97.75 %

Stranger 206 5 80.58 %

Walk 31 2 100.00 %

k-nearest neighbors performed best for Alone, Ball, Play and Walk

contexts, naive Bayes for Fight and Walk, logistic regression for

Stranger and Walk, and classification trees for Food context. All best

models corresponded to a wrapper feature subset selection strategy

Table 16 Predictor variables of sex, age, context and individual

classification problems from the best model, k-nearest neighbors

wrapper

Var Name Sex Age Context Individual

X1 Energy x x x x

X10 Loudness x x

X23 Ltasm

X24 Ltass

X25 Ltasp x x x x

X26 Ltasd x x

X2 Banddensity x x x

X3 Centerofgravityfreq x x x

X4 Deviationfreq x x x x

X5 Skewness x x x x

X6 Kurtosis x x x

X7 Cmoment x x x

X8 Energydiff x x x

X9 Densitydiff x

X11 Pitchm x x

X12 Pitchmin x

X13 Pitchmax x x

X14 Pitchmint

X15 Pitchmaxt x

X16 Pitchd x

X17 Pitchq x x x x

X18 Pitchslope x

X19 Pitchslopenojump

X20 Ppp x x x

X21 Ppm x x x

X22 Ppj x x

X27 Harmmax

X28 Harmmean x x x x

X29 Harmdev x

The accuracies of these four models are 85.13 % for sex classification

(Table 5), 80.25 % for age prediction (Table 7), 55.50 % for context

categorization (Table 9) and 67.63 % for individual recognition

(Table 13)
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contexts was induced from the barks associated with this

specific dog. Thus, a total of 12 � 8 models have been

considered. For almost all dogs, the k-nearest neighbor

model was the most successful, although naive Bayes,

logistic regression and classification tree models provided

the best accuracy results for some dogs. As a tendency, the

wrapper feature subset selection strategy provided the best

results. Model accuracy ranges from 59.80 to 100 %.

The individual identification, a hard classification

problem with eight possible categories, produced up to

67.63 % accuracy in the best model. This result is extre-

mely good when compared to the 52 % reported in Molnár

et al. (2008) for 14 dogs, and the 40 % achieved by Yin and

McCowan (2004) for a 10-dog problem. When the dog

identification is performed within each context, the accu-

racies of the best models are in the interval [80.58 %,

100 %].

Recent ethological research on dog barking revealed

several features of the most characteristic acoustic com-

munication type of dogs which proved that barks serve as

a complex source of information for listeners (Yin and

McCowan 2004; Pongrácz et al. 2005, 2006). In experi-

ments where human participants evaluated the pre-recor-

ded dog barks, both the context and the possible inner

state of the signaling animals were classified with sub-

stantial success rates. However, the role of dog barks in

dog–dog communication remained (and still remains)

somewhat obscure, as there is a shortage of convincing

field data for the usage of barks during intraspecific

communication of dogs, though see Pongrácz et al. (2014)

for some positive evidence. The present study provides an

alternative approach for discovering the potential infor-

mation content encoded in dog barks. If one can prove that

dog barks carry consistent cues encoding such features of

the caller such as its sex, age or identity, this can prove

indirectly that barks can serve as relevant sources of

information to receivers that are able to decipher these

types of information.

Previously, it was known that dogs can differentiate

between individuals and contexts if they hear barks of other

dogs in experiments based on the habituation–dishabitua-

tion paradigm (Maros et al. 2008; Molnár et al. 2009). Our

new results provide some possible details of how such a

capacity for recognition might work. If dogs are sensitive

to the sex-, age- and identity-specific details of barks, this

can serve as an acoustic basis for the cognitive task of

discriminating between or recognition of individuals.

Although in dogs sex-related information is mostly

(thought to be) transferred via chemical compounds

(Goodwin et al. 1979), theoretically it would be adaptive if

a dog could survey the gender of the other dogs living

nearby (or farther) on the basis of hearing their barks as

well. Deciphering the age of an individual based on their

vocalizations would be also beneficial in a highly social

species, where age can be relevant in determining social

rank, reproductive status or fighting potential (Mech 1999).

Recognition of the context of barks was the least suc-

cessful task for our supervised learning methods. Although

present methods exceeded the accuracy of both the previ-

ously employed machine learning approach (Molnár et al.

2008) and the adult human listeners’ success rate (Pon-

grácz et al. 2005), this accuracy still lags behind the other

variables analyzed in this study. It is also true that human

listeners perform almost as successfully when recognizing

the context as the computerized models. The reason behind

this result may be that the individual variability of dog

barks can be considerable especially in particular contexts

(such as before the walk, or asking for a toy/food). Another

reason for the relatively low success rate of context rec-

ognition may be that while the human listeners received

short bark sequences, the computer worked with individual

bark sounds. Therefore, the inter-bark interval served as an

additional source of information for the humans (Pongrácz

et al. 2005, 2006), while this parameter was not involved in

the computerized analysis. For humans at least, the inter-

bark interval also seemed to be an important source of

information when discriminating between individual dogs,

as their performance improved with the length of bark

sequences they received (Molnár et al. 2006).

Supervised classification machine learning methods do

not only provide indirect proof about the rich and biolog-

ically relevant information content of dog barks, but they

also offer a promising tool for applied research, too. For

example, evaluating dog behavior has great importance for

various organizations, as well as professionals and dog

enthusiasts. Recognizing unnecessarily aggressive dogs can

be a challenge for the personnel of dog shelters as well as

for correspondents of breed clubs and for the experts of

legal bodies (Netto and Planta 1997; Serpell and Hsu

2001). Similarly, diagnosing particular behavioral abnor-

malities that can cause serious welfare issues for dogs, such

as separation anxiety, can present a difficult task when the

goal is to tell apart ’everyday’ and chronic stress reactions

in a dog (Overall et al. 2001). Behavioral evaluation usu-

ally does not cover the qualitative analysis of vocalizations

in these cases. However, this could be addressed if a reli-

able and easy to use acoustic analytic software could serve

as an aid for behavioral professionals. With such a method,

following a rigorous validating protocol, acoustic features

indicative of high levels of aggression, fear, distress, etc.

could be recognized in the subjects’ vocalizations.

The limitations of the supervised classification models

presented in this paper concern the standard problems with

the sample representativeness and the assumptions upon

which the models rely. On the other hand, the generality of

the four methods makes them directly applicable to other
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species. In addition, all the dogs in this study were of the

same breed, so our classifiers do not take any advantage of

the different patterns expected from the diversity of breeds.

An interesting problem for the near future would be to

see whether these methods would work for other breeds or

for a mixed breed group. Also, simultaneously classifying

the four dog features, sex, age, context and individual,

might be of interest. This issue falls into a category of a

new problem type called multi-dimensional classification

problems (Bielza et al. 2011; Borchani et al. 2012; Sucar

et al. 2014), where the dependence between the four class

variables is relevant.

Acknowledgments This work has been partially supported by the

Spanish Ministry of Economy and Competitiveness, projects Cajal

Blue Brain (C080020-09; the Spanish partner of the Blue Brain

Project initiative from EPFL) and TIN2013-41592-P, by the János

Bolyai Research Scholarship from the Hungarian Academy of Sci-

ences, and co-financed by a grant from OTKA K82020. The authors
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Bielza C, Li G, Larrañaga P (2011) Multi-dimensional classification

with Bayesian networks. Int J Approx Reason 52:705–727

Blumstein D, Munos O (2005) Individual, age and sex-specific

information is contained in yellow-bellied marmot alarm calls.

Anim Behav 69(2):353–361

Borchani H, Bielza C, Martı́nez-Martı́n P, Larrañaga P (2012)
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Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection

techniques in bioinformatics. Bioinformatics 23(19):2507–2517

Serpell J, Hsu Y (2001) Development and validation of a novel

method for evaluating behavior and temperament in guide dogs.

Appl Anim Behav Sci 72:347–364

Smith A, Birnie A, Lane K, French J (2009) Production and perception of

sex differences in vocalizations of wied’s black-tufted-ear mar-

mosets (callithrix kuhlii). Am J Primatol 71:324–332

Stone M (1974) Cross-validatory choice and assessment of statistical

predictions. J R Stat Soc B 36(2):111–147

Sucar E, Bielza C, Morales E, Hernandez-Leal P, Zaragoza J,
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