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Abstract
Quantum architecture search (QAS) involves optimizing both the quantum
parametric circuit configuration but also its parameters for a variational quantum
algorithm. Thus, the problem is known to be multi-level as the performance of a
given architecture is unknown until its parameters are tuned using classical routines.
Moreover, the task becomes even more complicated since well-known trainability
issues, e.g., barren plateaus (BPs), can occur. In this paper, we aim to achieve two
improvements in QAS: (1) to reduce the number of measurements by an online
surrogate model of the evaluation process that aggressively discards architectures of
poor performance; (2) to avoid training the circuits when BPs are present. To detect
the presence of the BPs, we employed a recently developed metric, information
content, which only requires measuring the energy values of a small set of
parameters to estimate the magnitude of cost function’s gradient. The main idea of
this proposal is to leverage a recently developed metric which can be used to detect
the onset of vanishing gradients to ensure the overall search avoids such unfavorable
regions. We experimentally validate our proposal for the variational quantum
eigensolver and showcase that our algorithm is able to find solutions that have been
previously proposed in the literature for the Hamiltonians; but also to outperform the
state of the art when initializing the method from the set of architectures proposed in
the literature. The results suggest that the proposed methodology could be used in
environments where it is desired to improve the trainability of known architectures
while maintaining good performance.

Keywords: Quantum architecture search; Evolutionary algorithm; Information
content; Barren plateaus; Estimation of distribution algorithm; Multi-level
optimization; Variational quantum eigensolver

1 Introduction
Variational quantum algorithms (VQAs) [1] have become prominent tools in the noisy
intermediate-scale quantum (NISQ) era, where quantum computers face limitations due
to noise and connectivity issues. A well-known example of this type of approaches is the
variational quantum eigensolver (VQE) [2]. Its adaptability and ability to efficiently explore
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solution spaces make them valuable tools for quantum computation, offering promising
applications in areas such as quantum chemistry [2], optimization [3], and machine learn-
ing [4, 5], despite the challenges presented by the NISQ era hardware.

VQAs employ (i) an objective cost function to be minimized, (ii) a quantum parametric
circuit (henceforth called as ansatz), and (iii) a classical optimization technique that tunes
the ansatz.

First, a Hamiltonian (H) is a quantum Hermitian operator that describes a physical sys-
tem, yielding the energy of a quantum state, which is often used as the objective cost func-
tion to be minimized in VQAs. Finding the global minima of the Hamiltonian (ground
energy) implies finding a ground state of the quantum system. Although the literature
proposes other objective functions such as the conditional value at a risk [6], or the Gibbs
objective function [7], the most widely used one is the expectation value, often simplified
as,

min
θ

〈H〉U(θ) , (1)

where θ is the variational parameter, to be optimized classically, and 〈H〉U(θ ) describes the
measurements of a quantum system as,

〈H〉U(θ ) = 〈0|UT (θ )HU(θ) |0〉 , (2)

where U(θ) is the unitary state generated by an ansatz, parameterized by θ ∈ [0, 2π]d ,
where d is the number of parameters.

Second, an ansatz is a quantum circuit which is parameterized by a set of parameters θ ,
and its quantum state is denoted as,

|�(θ )〉 = U(θ) |�0〉 , (3)

where |�0〉 is the given initial state, typically set to the |0〉 state, i.e., |00 · · ·0〉⊗n state, where
n is the number of qubits of the system.

The ansatz found in the literature are traditionally classified into problem-inspired or
hardware-efficient, depending on its design [1]. The former considers the intrinsic physics
of the problem to be solved for its design, and it has been shown to achieve good per-
formance in terms of quality and convergence. An example is the quantum approximate
optimization algorithm [8]. However, the latter proposes ansatzes that fit to the hardware
limitations underlining a quantum device, i.e., available quantum gates or quantum con-
nectivity.

Third, the overall performance of the VQA heavily depends on both, ansatz selection
and the parameter optimization. Thus, the literature proposes a wide range of approaches
to tune the parameters, which are typically classified into gradient-based or gradient-
free optimizers. Some examples of the former include gradient descent [9] and limited
Broyden-Fletcher-Goldfarb-Shanno [10]; while some examples of the latter include evo-
lutionary algorithms (EAs) [11, 12] and reinforcement learning [13], among others.

When choosing an ansatz for a problem and optimizing its parameters, we assume that
the ansatz is expressive enough to converge to the ground state of our Hamiltonian. Find-
ing the ideal ansatz for a given H but also the parameters θ becomes a multi-level opti-
mization problem [14] in which each proposed ansatz also involves a new optimization
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task regarding the parameters of the specific architecture. Some approaches are presented
in the literature using heuristics, where most of them involve too many measurements, and
therefore lead to an increase of the computational resources and time. This is crucial for
the feasibility of the algorithm in NISQ devices as the number of available measurements
is limited before the device is re-configured. Overcoming these limitations leads us to the
quantum architecture search (QAS) research topic, where some authors have proposed
different ideas. Further approaches regarding QAS are reviewed in Sect. 2.

The training/optimization of the variational parameters is known to be a non-trivial
task for deep circuits, since we might face quite a few challenging trainability issues, e.g.,
BPs and traps [15]. BPs are typically described as vanishing gradients close to zero in
the landscape, where the classical optimization becomes challenging, i.e., non-trainable
or hard-to-train ansatz. Several works are found in the state of the art where this phe-
nomenon is studied in order to analyze the trainability of the ansatz [16, 17]. However,
computing these gradients involves the parameter optimization of the ansatz, and thus
increasing the number of quantum simulations, as we need to estimate the variance of the
partial derivatives over the entire parameter space (exponential complexity). These tasks
becomes more difficult with the number of qubits. Recently, Pérez-Salinas et al. [18] have
shown that the information content (IC) metric can reliably estimate the average (over the
parameter space) norm of the gradient with a small number of evaluations of parameters
of the ansatz.

In this paper we propose a domain-agnostic approach based on EAs in which, given a set
of ansatzes, for which a good performance is expected, we seek to find a new set of ansatzes
similar to the initial one, but which are easier to train, and therefore are more likely to
avoid the presence of BPs. The number of quantum simulations are drastically reduced by
implementing a surrogate model which predicts the performance of the ansatz, and the IC
is used to maximize the trainability of the proposed architectures avoiding the presence of
BPs. Experimental results are shown in noisy environments for different problems. Thus,
the main contributions of the paper are:

• The use of surrogate models to rank the ansatz proposed by the EA without any
measurements.

• The maximization of the trainability during the optimization process by using the IC.
• The use of multi-objective optimization to optimize the IC and the score provided by

the surrogate model.
To the best of our knowledge this is the first work in which IC is optimized for quan-
tum ansatz design, and we conjecture this approach can pave the way to bridging the gap
towards an ideal training-free approach.

The rest of the paper is organized as follows. Section 2 reviews the QAS literature. In
Sect. 3 we provide a theoretical background for evolutionary approaches, IC for the ap-
proximation of the average norm of the gradients, and surrogate modelling. The proposed
methodology is presented in Sect. 4 and Sect. 5 shows some experimental results. Sec-
tion 6 rounds the paper off with some further conclusions and future open research lines.

2 Related work
This section reviews some of the existing works regarding QAS in the literature.

Regarding reinforcement learning (RL), [19] uses a multi-level optimization process in
which the agent proposes new architectures while a classical secondary optimizer tunes
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the parameters of the ansatz. In [20], a RL approach is proposed with a different purpose:
given an ansatz, return an optimized structure in terms of circuit depth and used gates.
A RL approach is proposed [21] where an agent systematically modifies the ansatz and
achieves shallow circuits for chemical domains. More recently, a novel approach based in
RL is proposed in [22] with competitive results.

Regarding EAs, [23] proposes a multi-level genetic algorithm where a multi-objective
approach is used to minimize the energy of the VQE while minimizing the number of
CNOT gates, and the parameter optimization is performed by CMA-ES optimizer. In [24]
the authors use a genetic algorithm to optimize a weighted single-objective cost function
combining the energy of the proposed ansatz, its depth, and number of two-qubit gates.
Recently, GA4QCO framework [25] is proposed in which a single-objective optimization
is performed by a genetic algorithm, and compared to random instances.

Regarding chemistry simulation, AdaptiveVQE [26] is a methodology that systematically
grows an ansatz for chemical simulation; and RotoSelect and RotoSolve methods [27] are
two efficient methods for jointly optimizing ansatz structure and parameters.

Several works are found in the literature in which neural architecture search method-
ologies are applied to QAS. QuantumDARTS [28] is an adaptation of classical DARTS
[29] for neural network architecture search to QAS, in which two methods are proposed:
one for whole architecture search, and another for promising sub-architectures. Another
example is [30] in which new architectures are sampled from a probabilistic model, and
gradients between the best energies found are computed.

Additionally, SuperNet structure [31], samples several architectures and its parameters
are classically optimized. Based on the performance, the ansatz are ranked and a new ar-
chitecture is constructed based on the knowledge gained from them. SuperNet has also
been used to enhance VQAs on an 8-qubit superconducting quantum processor for clas-
sification tasks [32].

Our work is an EA which differs from the rest by using a multi-objective approach, re-
ducing the complexity of the multi-level optimization task by using surrogate modeling
and information content to evaluate the presence of BPs.

3 Background
3.1 Estimation of distribution algorithms
EAs are a class of optimization and search techniques inspired by the principles of nat-
ural selection and biological evolution. Rooted in the idea of survival of the fittest, these
algorithms mimic the process of evolution to iteratively improve and evolve a population
of candidate solutions to a problem. Traditional EAs rely on crossover and mutation op-
erators, whereas, estimation of distribution algorithms (EDAs) [33] iteratively learn and
sample unclear modelling what target probability distribution. EDAs have shown to be a
power tool for optimization problems in which the number of variables to be optimized
is big.

Algorithm 1 describes the baseline of EDA approaches. Given a population of size N , the
ratio of the population α ∈ (0, 1) to be promoted to next iteration, and the cost function
g(·) to be optimized, the algorithm iteratively selects the top �αN� individuals from a set
of solutions according to g(·) (lines 3-4), learns a probabilistic model (line 5) from these
top individuals, and samples it to generate a new set of solutions (line 6). The algorithm
iterates until a convergence criterion is met, and returns the best cost and solution found
so far.
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Algorithm 1 Estimation of distribution algorithms
Input: Population size N , selection ratio α, cost function g
Output: Best individual x′ and cost found g(x′)

1: G0 ← N individuals randomly sampled or provided
2: for t = 1, 2, . . . until stopping criterion is met do
3: Evaluate Gt–1 according to g(·)
4: GS

t–1 ← Select top �αN� individuals from Gt–1

5: pt–1 ← Learn a probabilistic model from GS
t–1

6: Gt ← Sample N individuals from pt–1(·)
7: end for

Regarding the type of probabilistic model, we can distinguish between multivariate
EDAs and univariate EDAs. The former learns a joint probability distribution factorized
with conditional probabilities over the variables involved in the problem. The latter learns
a univariate probability distribution per variable in which no dependencies are considered,
speeding up the computation and thus allowing to face bigger optimization problems, in
terms of the number of variables.

Considering the set of random variables X = (X1, X2, . . . , Xd) involved in the problem,
where d regards the dimension of the feature space, the joint probability distribution is
approximated in the univariate EDAs as,

p(X) = p(X1, X2, . . . , Xd) =
d∏

i=1

p(Xi), (4)

where p(Xi) is the marginal probability distribution of variable Xi. Note that computing
the joint probability distribution of multivariate EDAs is much more costly, and thus in
this approach we use univariate EDAs.

3.2 Information content for BPs diagnosis
BPs are traditionally described as exponentially vanishing gradients of the cost function
where a classical optimizer is placed in a flat landscape, in which finding the global op-
timum becomes challenging. Avoiding this type of landscapes increases the probability
of reaching better solutions. However, computing the gradients involves optimizing the
ansatz, and thus, drastically increasing the number of quantum simulations.

Formally, BPs are characterized by the following properties,

Eθ (∂kE(θ)) = 0, (5)

Var(∂kE(θ)) ∈O(exp(–n)), (6)

where E(∂kE(θ)), k ∈ [1 . . . m], and Var(∂kE(θ)) are the expectation and variance of the
partial derivatives of the objective cost function, respectively, θ is the set of parameters of
the unitary representing the ansatz, and n is the number of qubits.

Recently, Pérez-Salinas et al. [18] have shown that the norm of the gradients can be
bounded efficiently with a small number of quantum measurements (which grows linearly
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with the number of parameters), without the need of optimizing the ansatz parameters.
This method performs a random walk in the parameter space and measures the entropy
of fluctuations of cost values along the walk. The measured entropy value can be used
to analytically bound the gradient of the cost function along the walk. We notice that the
average of the gradient field (henceforth named as IC) can be approximated by the average
along the random walk (due to Monte Carlo integration):

‖ ∇E ‖2≈ EW

( m∑

k=1

(∂kE(θ))2

)
=

m∑

k=1

VarW (∂kE(θ)), (7)

where VarW denotes the variance found in the objective cost function using m different
θ parameters generated from a random walk W . Note that this sampling is more efficient
than estimating the gradients from random points.

Therefore, we propose to measure the IC metric for each candidate architecture, and
maximize the IC value across the architecture search in addition to minimizing the cost
value. This approach can help the architecture to generate more trainable circuits.

3.3 Surrogate modelling
Surrogate modelling is a common approach in machine learning for approximating the
performance of an expensive computational task. Formally, we define a surrogate model
as a function h′(X) that approximates the output of h(X), where X = (X1, X2, . . . , Xd) is the
input space with dimension d, and h(·) is a multivariate function that is time consuming to
compute. The surrogate model h′(·) is formulated to provide a computationally efficient
alternative and as a supervised approach it is constructed based on a set of observed data
points D = {(xi, h(xi))}S

i=1, where xi is an instance of the dataset with associated perfor-
mance h(xi), and S is the number of instances in the dataset.

3.4 Multi-objective optimization
Multi-objective optimization deals with the simultaneous optimization of multiple objec-
tives g1(x), . . . , gno (x) in the context of decision variables, where some of them might be
conflicting. Multi-objective optimization aims at identifying a set of solutions that repre-
sent the trade-offs between different objectives, i.e. the best Pareto frontier approximation.
Then, a multi-objective optimization problem is defined as

max
x

G(x) = (g1(x), . . . , gno (x))

subject to x ∈R
d

(8)

where no and d are the number of objectives and variables involved in the problem, re-
spectively, and the optimization criterion is maximization.

Quality indicators in multi-objective optimization are quantitative measures used to as-
sess the performance and characteristics of solutions generated by multi-objective opti-
mization algorithms [34]. An example is the hypervolume (HV) [35].

HV measures the volume of the objective space that is not dominated by a set of so-
lutions. It quantifies how well a set of solutions covers the entire Pareto front. A higher
hypervolume indicates a better spread of solutions. HV of a set S, given a reference point
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Figure 1 Example of Pareto frontier identified for two
conflicting objectives. Reference point (r) assists the
computation of the hypervolume metric

Figure 2 Flowchart of the proposed approach, starting from the white spot and finishing in the black spot
one the convergence criteria is met. Dashed lines regard the train and update of the surrogate model

r = (gref
1 , gref

2 , . . . , gref
no ), is the volume of the union of the hypercubes determined by each of

its solutions s ∈ S and r,

HV (S, r) = �(
⋃

S

{[g1(s), gref
1

] × · · · × [
gno (s), gref

no

]}), (9)

where gref
i refers to the reference ideal point for objective function gi and �(·) refers to the

Lebesgue measure. Figure 1 illustrates an example of the HV computation over the Pareto
frontier for no = 2 objectives.

4 Method
This section explains the proposed approach and describes each of the modules in the
following subsections. Figure 2 summarizes the flowchart of the approach where the main
steps of the proposed algorithm are stated.
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4.1 Codification
For an ansatz of n qubits and maximally depth m, we propose the following integer-valued
matrix representation:

X =

⎡

⎢⎢⎣

X11 · · · X1m
...

. . .
...

Xn1 · · · Xnm

⎤

⎥⎥⎦ (10)

→ [X11, . . . , X1m, . . . , Xn1, . . . , Xnm],

where each entry Xij ∈ {0, 1, . . . , ngates} represents the choice of the quantum logic gate
at position (i, j) of the matrix. Given a predetermined number of qubits n and maximal
depth m, the architecture representation has a fixed dimension d = nm. This way, each
column represents all the operators executed in parallel along the total depth, and each
row represents a qubit.

Note that regarding two-qubit gates such as CNOT, applying a CNOT with the same
control qubit, but different target qubits, are considered as different gates. This allows
to restrict the evolutionary search according to hardware constraints by restricting the
search space, although in this work an all-to-all connectivity is considered. In our case,
ngates = (n–1)+5, as we consider the following universal operators: {Rx(·), Ry(·), Rz(·), H , I}
and the CNOT gate with different target qubits. Note that CNOT(i, j) denotes that i and j
are the control and target qubits, respectively. Therefore, we establish the following rules
for the codification of Xij:

• 0 ≤ Xij < n and Xij �= i corresponds to the CNOT gate configurations from qubit i to
the possible target qubits.

• Xij = i corresponds to Ry(·).
• Xij = n corresponds to Rz(·).
• Xij = n + 1 corresponds to H .
• Xij = n + 2 corresponds to I gate.
• Xij = n + 3 corresponds to Rx(·).
The initial state of all the proposed architectures is set to the |0〉 state, i.e., |00 · · · 0〉⊗n

state.
Figure 3 shows four examples where the following codifications are represented as

ansatzes,

A1 =

⎡

⎢⎣
4 0 1 3
4 4 5 2
2 2 5 5

⎤

⎥⎦ , A2 =

⎡

⎢⎣
4 0 5 3
4 4 0 5
2 2 5 1

⎤

⎥⎦ , (11)

A3 =

⎡

⎢⎣
4 1 5 5
5 5 2 5
5 5 5 5

⎤

⎥⎦ , A4 =

⎡

⎢⎣
1 5 5 2
5 2 5 5
5 5 0 5

⎤

⎥⎦ ,

where n = 3 and m = 4.

4.2 Probabilistic model
The joint probability distribution factorizes in a univariate EDA approach according to
Equation (4), where p(Xij) is the marginal probability distribution of variable Xij. In this
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Figure 3 Four examples of the ansatz codifications (A1, A2, A3, A4) defined in Equation (11)

approach, d = nm, and p(Xij) follows a multinomial distribution,

Xij ∼ Mult(nm = �αN�, km = (ngates + 1)), (12)

where nm and km are the number of trials and mutually exclusive events that define the
multinomial probability distribution, respectively.

Note that the marginal probabilities over the set of solutions are computed after the
truncation process (Algorithm 1 Line 4), where the top �αN� solutions are selected ac-
cording to the cost function to be optimized. The sampling process generates N new so-
lutions as detailed in Algorithm 1, and duplicate ansatz are rejected in order to reduce
redundancy. Each solution represents an ansatz, and the algorithm is expected to learn
itself the best gates configuration during runtime.

4.3 Post-processing
In order to restrict the search space of the QAS problem, we establish a series of hard rules
to remove redundancy and simplify the ansatz architectures proposed in the sampling
process of the EDA.

• Two consecutive H gates are removed, as they are equivalent to an I gate.
• Consecutive application of Rx(·) gates, are simplified as one single Rx(·) gate, to

remove redundancy.
• Consecutive application of Ry(·) gates, are simplified as one single Ry(·) gate, to

remove redundancy.
• Consecutive application of Rz(·) gates, are simplified as one single Rz(·) gate, to

remove redundancy.
Once the algorithm samples a new set of architectures (Algorithm 1 Line 6), the post-

processing step is applied to each of them. Figure 4 shows an example of the application of
these hard rules, where (i) in the second qubit, both consecutive H gates were suppressed,
and (ii) in the third qubit the two Ry(·) gates are simplified as a single gate.

4.4 Surrogate model
A characteristic of traditional EDAs is that once the solutions of the same population are
ranked according to g(·), no matter how much better a solution is compared to others, as
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Figure 4 Post-processing of an ansatz where hard rules (Sect. 4.3) have been applied to the architecture
represented in Equation (11) with n = 3 andm = 4

all solutions included in the top �αN� will contribute equally to the probabilistic model
learning [36] (see Algorithm 1, Line 4). The surrogate model used in this approach sur-
rogates the minimal thing needed for the EDA, that is, the ranking of solutions (line 4
Algorithm 1). This is introduced by a metric Score(A) (inspired in [37]) which measures
the quality of a solution A within the rest of solutions of the population,

Score(A) =
∑

B∈X

(h(A, B) + 1 – h(B, A)), (13)

where the higher Score(A), the better the quality of A, and h(A, B) compares ansatz A to
ansatz B as,

h(A, B) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if PB ≥ PA + ε

1, if PA ≥ PB + ε

2, otherwise

(14)

where PA, and PB are the minimum expectation values (Equation (1)) found by a classical
optimizer for architectures A and B, respectively and ε is a tolerance error configured by
the user. Note that h(A, B) = h(B, A) = 2 means that two ansatz A and B are non comparable
or very similar performance is expected.

Computing Score(A) involves �αN� – 1 comparisons, and thus, this is clearly the main
bottleneck of the task. In order to overcome this, we propose the use of support vector
machines (SVMs) to approximate h(A, B). We take the following input feature to the sur-
rogate model:

Flatten(A + B, A – B) (15)

where A and B are the two ansatz architectures to be compared, and the resultant vec-
tor size is d = 2nm. Thus, h(A, B) ∈ {0, 1, 2} is approximated by h′(Flatten(A, B)) ∈ {0, 1, 2}
using SVM.

Several classification methods have been tested over some initial data randomly gener-
ated for different values of n, where SVM achieved better accuracy metrics. Results using
cross-validation can be found in Appendix B.

The implementation has been obtained from LibSVM library [38].
The surrogate model is re-fitted after each iteration with the top 5 solutions in the rank-

ing of the best solutions computed by the EDA (Sect. 4.5). Thus, in each iteration 5 classical
parameter optimizations are carried out, and the number of parameter tuning processes
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executed during runtime is N + 5t, where t is the total number of iterations. Without the
usage of the surrogate model approach, this number would have been N(1 + t).

4.5 Evaluation
This approach aims to find the optimal ansatz for a given problem H in terms of train-
ability and expected energy. Here we define the following metrics to be computed for each
proposed architecture.

First, IC (Equation (7)) maximization has been proved to be able to avoid BP in the
ansatz parameter tuning [18]. Those architectures with low associated IC are less train-
able/optimizable, compared to those with high IC. Our approach maximizes this metric
through the optimization process. Here, the IC of an ansatz A is denoted as,

IC(A) = εM
√

M, (16)

where εM is the ε associated to the norm of the gradient computed after a random walk
over the parameters (Sect. 3.2), and M is the number of parameters of ansatz A.

Second, Score(·) (Equation (13)) evaluates the quality of a solution compared to a subset
of solutions. Our approach implements an elite approach, in which the best solution of
generation Gi also appears in generation Gi+1. Then finding a different best solution in
Gi+1 will lead to a best global solution in the whole optimization process. Thus, Score(·) is
also desired to be maximized.

Maximizing both metrics becomes a multi-objective optimization problem, in which
the Pareto frontier between both objectives is explored. During the optimization process
defined in Algorithm 1 and Fig. 2, the truncation process ranks the solutions according to
g(·), which is here defined as,

g(A) = HV((Score(A), IC(A)), r), (17)

where HV(·) is the hypervolume contribution between the surrogate model output
(Score(A)) and the information content computed (IC(A)), and r is the reference point.
The �αN� best solutions in terms of HV(·) minimization are the ones that better approx-
imate the Pareto frontier, and are the ones that promote to the next EDA iteration.

The reference point can be estimated based on the bounds of Score(A) and IC(A). In the
former, the lower bound is set to zero (the worst solution within the population) and the
upper bound to 2N (the best solution within the population). In the latter, the lower bound
is set to zero (the least trainable scenario) and the upper bound to 2, based on previous
experience. Then, Score(A) ∈ {0, 1, . . . , 2N} and IC(A) ∈ [0, 2] ∈ R, so the reference point
is set to r = (2N , 2). We would like to remark that the reference point definition becomes
more sensitive when decreasing the number of solutions selected in the truncation phase.
The more solutions chosen, the less probable to discard a good solution due to wrong
reference point definition.

Finally, the optimization problem is formalized as,

min
X

g(X)

subject to X ∈ {0, 1, . . . , ngates},
(18)

where X denotes a codified ansatz (Equation (10)), and g()̇ is defined at Equation (17).
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5 Results
This section shows some numerical results on solving different Hamiltonians H ∈
{H1, H2, H3, H4} (Appendix A), already studied in [39] for n ∈ {4, 8, 12}. The following sec-
tions compare the results found by the EDA approach with those presented in the dataset
from [39]. In the original paper, the authors present several architectures which find sim-
ilar state vectors in the search space of VQE ansatz, for each Hi. Henceforth, Dn

i denotes
the set of architectures proposed in the dataset to solve the Hamiltonian Hi with n qubits.

Two experiments have been carried out in which, (i) the initial population of the EDA
approach is initialized randomly to test if the algorithm is able to converge to similar solu-
tions to those proposed in the dataset (Sect. 5.1), and (ii) the initial population is initialized
from the ansatzes proposed in the dataset [39] to test if the algorithm is able to improve
the given architectures (Sect. 5.2).

The size of the population, and maximum number of iterations of the EDA have been set
to N = 150 and t = 60, respectively, for all the experiments. Note that, during this experi-
mentation we will determine that an algorithm has already converged at a given iteration
if there was no improvement in the best cost found in the previous 10 iterations. A dif-
ference lower than 1e – 8 is reported as zero in the experimental results. Regarding the
quantum circuit simulation, we simulate the measurement noise.

5.1 Random initialization
To randomly generate the initial population (G0), a predefined probabilistic model is set to
the algorithm, from which the set of solutions are sampled. Thus, some of the outcomes
for each variable can be restricted, or boosted, decreasing or increasing the associated
probabilities, respectively, as demanded by the user.

In this experiment, initially, all the possible outcomes have been set to equal probability
for all the variables:

p(Xi = j) =
1

ngates + 1
, (19)

for all i = 1, . . . , d and j = 0, 1, . . . , ngates.
The initial population samples a set of N solutions, according to Equation (19). Each

sample corresponds to a different architecture following the codification in Equation (10)
and is post-processed (Sect. 4.3). The expectation value (Equation (1)) of each architecture
is computed, where its parameters are classically optimized using an external optimizer. In
this experiment we use COBYLA optimizer, as it has been shown to achieve good results
in terms of CPU time and energy minimization [41]. Considering the set of solutions and
associated expectation values, a surrogate model is trained (Sect. 4.4) and each solution is
evaluated (Sect. 4.5).

The original dataset [39] proposes using dimensionality reduction to demonstrate that
the minimal energy states achieved within Dn

i are very similar. Figure 5 shows the dimen-
sional reduction using t-SNE [40] for the Hamiltonians approached, represented as clus-
ters in two dimensions. The solutions found by the EDA approach (EDAn

i , where i denotes
the index of the faced Hamiltonian and n the number of qubits) are also represented by
stars and different colors. Note that our approach is able to reach very similar solutions to
the ones presented in the dataset.
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Figure 5 Visualization of the ansatzes found in the dataset (Dn
i ) using t-SNE [40], which are colored

depending on the Hamiltonian to be solved (Hi , where i ∈ {1, 2, 3, 4}). Additionally, the best architectures
found by the EDA approach (EDAn

i ) are represented using different colored and shaped points. Note that
EDAn

i regards the solutions found for Hamiltonian Hi . All the results shown correspond to n = 4

Table 1 ANOVA one-way test to reject the null hypothesis of equal means between the mean
distances (Equation (20)), from the proposed by [39] ansatzes found by EDAs and {Dn

1,D
n
2,D

n
3,D

n
4}

proposed for {H1,H2,H3,H4}, respectively. A threshold of 5e-2 has been set to reject the null
hypothesis, highlighting in bold those results below this value

Hi n = 4 n = 8 n = 12

H1 3.0e-34 3.0e-2 6.0e-1
H2 1.3e-4 1.1e-2 1.5e-1
H3 1.0e-15 3.0e-1 1.1e-1
H4 2.0e-8 5.1e-2 2.1e-1

In the following analysis the fidelity of the lowest energy state found by the EDA ap-
proach is compared to those obtained by the ansatzes provided in the dataset for different
problems {H1, H2, H3, H4} and number of qubits (n), that is, by Dn

i .
The distance from each proposed ansatz (A) in EDAn

i to each cluster of architectures
Dn

i is computed by the arithmetic mean distance to each of the ansatzes belonging to Dn
i

as,

dist(A, Dn
i ) =

1
|Dn

i |
(
∑

B∈Dn
i

1 – F(|�A〉 , |�B〉)), (20)

where Dn
i is the subset of ansatzes (with size |Di|) in the dataset proposed to solve Hi with

n qubits and meet m ± √
m restriction, F(·) is the fidelity between two quantum states,

and |�A〉 and |�B〉 are the lowest energy states achieved by ansatzes A and B, respectively,
after classical parameter optimization.

Table 1 shows the p-values computed using the ANOVA test1 to reject the null hypoth-
esis of equal means between each ansatz in EDAn

i and the different clusters Dn
i , where

highlighted results are rejected. Appendix C details the distance computations statisti-
cally analyzed in this table. An increasing number of non-rejected hypotheses is observed
for increasing number of qubits (n), which suggests that the EDA is proposing architec-

1All the data used for the ANOVA tests fit Gaussian distributions.
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Figure 6 Confusion matrices for n ∈ {4, 8, 12}

Figure 7 Mean and standard deviation of IC maximization aggregating the optimization process of different
Hi for different numbers of qubits (n)

tures much different to the ones available at the dataset for n = 12. Increasing the num-
ber of qubits (n) also involves increasing the number of variables of the EDA optimizer.
According to the results found, the population size set is not enough to generate a large
number of samples which covers the increasing cardinality of the problem. Also, larger
number of qubits should also involve a larger ansatz depth, so m should also be increased
to allow more expressive quantum circuits. This suggests that the chosen configuration is
valid to problems up to n < 8. For bigger instances, a different configuration of the hyper-
parameters m and N should be chosen, although this would involve a drastic increase of
the CPU time.

Assuming that a truly classified ansatz (A) is the case in which the closest cluster Dn
i

represents Hi, and A ∈ EDAn
i was optimized for Hamiltonian Hi as well, Fig. 6 shows the

confusion matrices. The percentage of correctly classified ansatzes is 95%, 75% and 35%
for n = 4, 8, 12, respectively, where a decreasing tendency is observed for increasing n;
however, for n = 12 the EDA was not able to found any statistical significant result.

Figure 7 shows the IC convergence plot during the optimization process of the EDA
approach. The associated shade shows a mean aggregation of the optimization processes
regarding different {H1, H2, H3, H4}, where a maximizing monotonic tendency is observed.
Regardless of the results encountered, the three scenarios show that the algorithm has
converged. Note that, the mean IC found by the optimizer denotes an exponential decay
with the number of qubits (n), as expected according to [16, 18].

Because Score(A) returns a metric comparing ansatz A with the rest of the architectures
within the population to which A belongs, the trend throughout the optimization process
is not an interesting fact to analyze.

Appendix D shows the Pareto frontier approximation (non-dominated solutions high-
lighted as orange spots) for each Hi we are facing (in columns) and different values of n
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Figure 8 Ratio of {CNOT ,RY ,RZ,H} gates in the ansatz design of the randomly generated initial data (G0),
best EDA solutions found (EDAni ), and dataset (Dn

i ) [39], for n ∈ {4, 8, 12}, respectively

(in rows). It is observed how both objectives are conflicting, and maximizing one of the
objectives worsens the second, and vice-versa. Thus, a trade-off between both objectives
through the Pareto frontier approximation is desired. Note that the scale of the Y-axis (IC)
is different for different number of qubits, as explained before.

Considering the best solutions found by the EDA, i.e., those that better approximate
the Pareto frontier, we now compare the characteristics of the ansatzes proposals with
those available in the dataset [39] with depth in the range m ± √

m (for a fair comparison
and ensure a minimum number of instances from the original dataset). A drastic increase
in the number of certain quantum gates might improve the performance of the ansatz,
however, this may lead to a poor trainability. Thus, the ratio among the gates set used, and
the number of gates is further analyzed.

Figure 8 shows the ratio of the different available universal gates in the set of initial
randomly generated data (G0), the solutions found by EDA approach (EDAn

i ) and the best
solutions from the original dataset (Dn

i ), for different values of n. A strong correlation is
observed between the initial data and the proposed solutions, independently of n, where
the EDAn

i has a slightly higher ratio of CNOT gates compared to G0. However, comparing
to Dn

i , our proposals achieve a much lower ratio of parametric gates, compensating it with
superposition and two-qubit gates. Although the ratios for Dn

i seem to remain constant
along n, our approach increases the number of CNOT gates with n.

Figure 9 plots the number of parameters as a function of n, in the set of initial randomly
generated data (G0), the solutions found by the EDA approach (EDAn

i ) and the original
dataset (Dn

i ). Although the number of gates increases linearly in the three cases, comparing
the slopes found in the linear approximations of the three cases, the green function (Dn

i )
denotes a coefficient approximately 6 times bigger than the other two functions. We show
that our EDA is able to learn that a bigger number of parameters is needed, however, it does
not increase this number drastically, as it is able to converge to simpler ansatz. Shallower
ansatzes (low values in the Y-axis) are more convenient to be executed in real quantum
devices due to quantum coherence and other issues of the NISQ devices.

In this experiment we tested whether our approach initialized from a random set of
ansatzes is able to converge and find similar solutions to the ones proposed in the dataset,
assumed to be optimal. Figure 5 and Table 1 show that our algorithm finds solutions with
similar state fidelity as the ones in the dataset.
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Figure 9 Mean and standard deviation of the number of parameters (Y-axis) as a function of the number of
qubits (X-axis), in the ansatzes found in the randomly generated initial data (G0), best EDA solutions found
(EDAni ), and dataset (Dn

i ) [39]. Note that the values for n = 6, 10 have been approximated through a linear
regression

5.2 Initialization with the dataset
The previous results have shown that the EDA approach is able to provide trainable and
well performing architectures. In this section we initialize the EDA optimizer from the
ansatzes provided in the dataset (Dn

i ) to test whether it is able to converge to better solu-
tions. Thus, the EDA execution used to face the Hamiltonian Hi will be initialized using
G0 = Dn

i . In this case, Dn
i will consist of all those architectures that meet the depth con-

straint imposed by the EDA. Note that, in case an architecture has a depth smaller than
that imposed, the coding in binary (Equation (10)) would be equivalent to fill with identity
gates (I) until the desired depth is reached.

The purpose of this experiment is that, given a set of ansatzes, which are known to
have good performance, we try to improve their trainability while maintaining a similar
behavior. In order to compare the results found by the EDA, the energy (Equation (1))
using a second level classical optimizer and the IC (Equation (7)) are computed for all the
ansatzes in all Dn

i . Results are shown in Table 6.
Figure 11 (Appendix) shows the Pareto frontier approximations for each Hi we are facing

and different numbers of n. Note that, with increasing number of qubits, the conflict be-
tween both objectives becomes more drastic. However, the EDA approach is able to iden-
tify the promising solutions in the Pareto frontier. Note that the initial generation G0 = Dn

i

has been also represented to establish a reference in terms of IC. However, Score(A) for
the first generation should not be taken into account, as Dn

i represents similar minimal
energy state vectors (Fig. 5), and thus, are not comparable.

Table 7 (Appendix) shows the best E and IC found by the EDA approach where COBYLA
optimizer is used, for the ansatz parameter optimization. Note that the solutions shown
in the tables are the ones that maximize HV in the Pareto frontier approximation, that is, a
trade-off between both objectives in the non-dominated solutions set is found. Although
in this case it is important to show the solution that optimizes the HV, it is possible to
analyze each of the non-dominated solutions from the Pareto front in order to maximize
any of the two metrics.

Regarding the results shown in Table 7, it is observed a good performance in terms of
expectation value minimization for n = 4. Moreover, the IC achieved is noticeable better,
which also happens in the case of n = 8. However, the expectation value obtained for H3



Soloviev et al. EPJ Quantum Technology           (2024) 11:69 Page 17 of 23

and H4 for n = 8 is worse than that described in the original dataset, which suggests that
the EDA approach is not able to improve the metrics in Table 6.

In this experiment we tested whether our approach is able to improve the quality of
the ansatz provided in the dataset, from which the EDA is initialized. Our results show
that the EDA approach is able to improve them in some of the cases, and suggest that a
hyper-parameter tuning should be carried out for increasing number of qubits.

6 Conclusions
In this paper we present a novel method for architecture search, in which the complexity
of the multi-level optimization problem has been drastically reduced by using surrogate
modelling. The EDA approach optimizes the energy estimated by the surrogate modelling
by performing comparisons by pairs, and reduces the possibility of barren plateaus issues.

The experimental results showcase two different situations for optimizing different
Hamiltonians: (i) the EDA is initialized from a random subset of solutions, and (ii) the
EDA is initialized from the best solutions presented in the dataset. In the former case, the
results show that the optimizer is able to converge to the same solutions presented in the
dataset when the number of qubits is lower than n = 8, and the hyper-parameters should
be tuned for greater values of n. In the latter case, the EDA is able to improve the state of
the art in some of the cases. Our approach is able to find solutions that keep a good per-
formance regarding energy minimization, but also improve the trainability of the ansatzes
encountered.

The numerical results analyzed suggest that the performance of our approach worsens
with the number of qubits, unless the population size (N ) and the number of iterations
(t) are increased. However, in order to implement a useful approach for NISQ and fault
tolerant devices, the algorithm runtime for the optimization process is limited, in contrast
to neural network architecture search, where the coherence of the devices do not change
during time. Future work in this field would include the scalability of the algorithm to
higher number of qubits (n). We suggest combining our approach with large-scale EA
techniques which have been deeply studied in the last decade [42, 43].

The EDA internally uses HV for ranking the architectures to be selected. Although the
IC upper bound has been set based on previous experience, future work would include a
dynamic definition of the reference point for the HV computation, during runtime.

Given that this research is at an early stage, our primary focus is on showing underpin-
nings and initial feasibility rather than conducting exhaustive empirical comparisons with
state-of-the-art methods. Comprehensive benchmarking and detailed empirical evalua-
tions are planned for future studies.

Appendix A: Hamiltonians
This section describes the Hamiltonians used for the experimental results. Note that the
following benchmarks and coefficients have been used in order to compare the results
with the ones found in [39].

1D transverse-field Ising model:

H1 =
n–1∑

i=1

ZiZi+1 + 2
n∑

i=1

Xn
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1D Heisenberg model:

H2 =
n–1∑

i=1

(XiXi+1 + YiYi+1 + ZiZi+1) + 2
n∑

i=1

Zn

Su-Schrieffer-Heeger model:

H3 =
n–1∑

i=1

(
1 +

3
2

(–1)i–1
)

(XiXi+1 + YiYi+1 + ZiZi+1) + 2
n∑

i=1

Xn

J1 - J2 model:

H4 =
n–1∑

i=1

(XiXi+1 + YiYi+1 + ZiZi+1) + 3
n–2∑

i=1

(XiXi+2 + YiYi+2 + ZiZi+2)

Appendix B: Surrogate model prediction
Here we compare the performance of different surrogate models by comparing different
ansatzes by pairs in a given initial data for different number of qubits.

Different architectures have been built for problems described in Appendix A and dif-
ferent values of n. The number of architectures have been set to N = 37.5n, and the circuit
depth to m = 60. Table 2 shows the accuracy found for different models with different
configurations. Results show that support vector classifier (SVC) achieves the best met-
rics, and thus, is used as surrogate model in our approach.

Table 2 Accuracy found after evaluating each model in a set of initial architectures using
cross-validation with 15 folds. Independently of n, all the ansatzes have been restricted tom = 60,
and N = 37.5n. Random forest with different numbers of estimators, k-nearest neighbors (KNN) with
different numbers of neighbors, support vector classifier (SVC), decision tree, and naive Bayes have
been tested

model n = 4 n = 8 n = 12

Random_forest_20 0.76 0.77 0.75
Random_forest_50 0.81 0.82 0.80
Random_forest_80 0.82 0.83 0.80
KNN_2 0.64 0.66 0.68
KNN_5 0.72 0.74 0.75
KNN_15 0.78 0.79 0.79
SVC 0.91 0.92 0.90
Decision tree 0.64 0.65 0.65
Naive Bayes 0.69 0.76 0.78

Appendix C: Distance computation
Here we detail the distance comparison between all the proposed solutions within EDAn

i

and each of the clusters Dn
i by computing Equation (20). Note that index j denotes each

of the 5 best results found by the EDA. Table 3-5 show the distance computations for
n ∈ [4, 8, 12], respectively.
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Table 3 Distance (Equation (20)) between each ansatz in EDA4ij and D4
i , where i denotes the

Hamiltonian index and n = 4. Bold values represent those instances in which the closest cluster to
EDA4ij is D

4
i

ansatz (EDA4ij ) Hi dist(EDA41j ,D
4
1) dist(EDA42j ,D

4
2) dist(EDA43j ,D

4
3) dist(EDA44j ,D

4
4)

EDA411 H1 0.018 0.998 0.990 0.999
EDA412 H1 0.011 0.999 0.995 0.995
EDA413 H1 0.011 0.999 0.989 0.999
EDA414 H1 0.027 0.990 0.991 0.995
EDA415 H1 0.011 0.999 0.989 0.999
EDA421 H2 0.999 0.038 0.982 0.997
EDA422 H2 0.999 0.049 0.993 0.999
EDA423 H2 0.993 0.954 0.233 0.880
EDA424 H2 0.999 0.035 0.976 0.990
EDA425 H2 0.970 0.374 0.794 0.965
EDA431 H3 0.993 0.999 0.051 0.660
EDA432 H3 0.992 0.999 0.058 0.648
EDA433 H3 0.988 0.998 0.064 0.646
EDA434 H3 0.995 0.997 0.069 0.631
EDA435 H3 0.987 0.999 0.056 0.637
EDA441 H4 0.991 0.995 0.691 0.077
EDA442 H4 0.993 0.992 0.752 0.061
EDA443 H4 0.998 0.991 0.811 0.081
EDA444 H4 0.992 0.997 0.702 0.099
EDA445 H4 0.990 0.993 0.329 0.011

Table 4 Distance (Equation (20)) between each ansatz in EDA8ij and D8
i , where i denotes the

Hamiltonian index and n = 8. Bold values represent those instances in which the closest cluster to
EDA5ij is D

8
i

ansatz (EDA8ij ) Hi dist(EDA81j ,D
8
1) dist(EDA82j ,D

8
2) dist(EDA83j ,D

8
3) dist(EDA84j ,D

8
4)

EDA811 H1 0.973 0.995 0.995 0.997
EDA812 H1 0.950 0.996 0.996 0.994
EDA813 H1 0.830 0.998 0.998 0.998
EDA814 H1 0.553 0.999 0.999 0.999
EDA815 H1 0.942 0.995 0.990 0.997
EDA821 H2 0.990 0.926 0.968 0.991
EDA822 H2 0.998 0.906 0.998 0.999
EDA823 H2 0.998 0.963 0.989 0.995
EDA824 H2 0.996 0.992 0.998 0.998
EDA825 H2 0.999 0.991 0.999 0.999
EDA831 H3 0.999 0.999 0.957 0.995
EDA832 H3 0.999 0.958 0.983 0.985
EDA833 H3 0.999 0.999 0.522 0.949
EDA834 H3 0.998 0.996 0.958 0.983
EDA835 H3 0.999 0.922 0.999 0.996
EDA841 H4 0.999 0.999 0.971 0.981
EDA842 H4 0.999 0.998 0.992 0.945
EDA843 H4 0.998 0.998 0.988 0.996
EDA844 H4 0.999 0.999 0.982 0.994
EDA845 H4 0.999 0.999 0.999 0.988

Appendix D: Pareto frontier approximations
Figure 10 shows the Pareto frontier approximation for different H and number of qubits.
The columns refer to the problem instances, while the rows refer to the number of qubits
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Table 5 Distance (Equation (20)) between each ansatz in EDA12ij and D12
i , where i denotes the

Hamiltonian index and n = 12

ansatz (EDA12ij ) Hi dist(EDA121j ,D
12
1 ) dist(EDA122j ,D

12
2 ) dist(EDA123j ,D

12
3 ) dist(EDA124j ,D

12
4 )

EDA1211 H1 0.999 0.999 0.999 0.999
EDA1212 H1 0.999 0.999 0.999 0.999
EDA1213 H1 0.999 0.999 0.999 0.999
EDA1214 H1 0.999 0.999 0.999 0.999
EDA1215 H1 0.999 0.999 0.999 0.999
EDA1221 H2 0.999 0.999 0.999 0.999
EDA1222 H2 0.999 0.999 0.999 0.999
EDA1223 H2 0.999 0.999 0.999 0.999
EDA1224 H2 0.999 0.999 0.999 0.999
EDA1225 H2 0.999 0.999 0.999 0.999
EDA1231 H3 0.999 0.998 0.999 0.999
EDA1232 H3 0.999 0.999 0.999 0.999
EDA1233 H3 0.999 0.999 0.999 0.999
EDA1234 H3 0.999 0.999 0.998 0.999
EDA1235 H3 0.999 0.999 0.999 0.999
EDA1241 H4 0.999 0.999 0.999 0.999
EDA1242 H4 0.999 0.999 0.999 0.999
EDA1243 H4 0.999 0.999 0.999 0.999
EDA1244 H4 0.999 0.999 0.999 0.999
EDA1245 H4 0.999 0.999 0.999 0.999

Figure 10 Pareto frontier approximation (orange spots) over all the ansatzes considered (blue spots) during
optimization process. Columns refer to problem instances, while rows refer to number of qubits (n)

(n). Each subplot shows all the evaluated ansatzes (blue spots) from which the non-
dominated solutions are highlighted (orange spot).



Soloviev et al. EPJ Quantum Technology           (2024) 11:69 Page 21 of 23

Figure 11 Pareto frontier approximation (black stars) over all the ansatzes considered (colored spots) during
the optimization process. Black triangles regard the ansatzes included in the dataset. Columns refer to
problem instances, while rows refer to number of qubits (n)

Table 6 Mean and standard deviation of expectation value (E) (Equation (1)) and information
content (IC) (Equation (7)), respectively, found in the ansatz in the dataset whose depth is in the
rangem± √

m, for different number of qubits n and Hamiltonian Hi

n = 4 n = 8

E IC E IC

H1 –8.37 ± 0.01 0.47 ± 0.14 –16.89 ± 0.01 0.46 ± 0.16
H2 –7.83 ± 0.01 0.51 ± 0.16 –15.92 ± 0.02 0.45 ± 0.06
H3 –14.19 ± 1.87 0.63 ± 0.15 –30.07 ± 0.01 0.51 ± 0.07
H4 –17.18 ± 2.20 0.80 ± 0.09 –39.05 ± 0.04 0.82 ± 0.15

Table 7 Best expectation value (E) (Equation (1)) and information content (IC) (Equation (7)) found
by the EDA approach (assisted by COBYLA) for different number of qubits (n) and Hamiltonians (Hi),
where HV is maximized in the best Pareto approximation

n = 4 n = 8

E IC E IC

H1 –7.81 0.97 –16.18 0.56
H2 –6.74 0.73 –13.58 0.45
H3 –14.03 1.00 –29.28 0.43
H4 –17.21 1.47 –26.87 1.57

Appendix E: IC and expectation values comparison
Table 6 describes the mean expectation value (Equation (1)) and IC (Equation (7)) for the
ansatzes available in the dataset (Dn

i ) for different values of n.
Table 7 describes the best expectation value and IC found by the EDA approach for

different Hi and values of n, where the HV is maximized. That is, the solutions which
maximize HV within EDAn

i .
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