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Abstract. Recently, several approaches have been proposed to deal with the increasingly challenging task of mining concept-
drifting data streams. However, most are based on supervised classification algorithms assuming that true labels are immediately
and entirely available in the data streams. Unfortunately, such an assumption is often violated in real-world applications given
that it is expensive or because it takes a long time to obtain all true labels. To deal with this problem, we propose in this paper
a new semi-supervised approach for handling concept-drifting data streams containing both labeled and unlabeled instances.
First, contrary to existing approaches, we monitor three possible kinds of drift: feature, conditional or dual drift. Drift detection
is based on a hypothesis test comparing Kullback-Leibler divergence between old and recent data, whose distribution under
the null hypothesis of coming from the same distribution is approximated via a bootstrap method. Then, if any drift occurs, a
new classifier is learned from the recent data using the EM algorithm; otherwise, the current classifier is left unchanged. Our
approach is so general that it can be applied to different classification models. Experimental studies, using the naive Bayes
classifier and logistic regression, on both synthetic and real-world data sets demonstrate that our approach performs well.
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1. Introduction

With the rapid growth of information technology, infinite flows of records are collected daily. These
flows, defined as data streams, pose many challenges to computing systems due to limited time and
memory resources. Furthermore, they are characterized by their concept-drifting aspect [10,27]. Concept
drift means that the learned concepts and/or the underlying data distribution are not stable and may change
over time. As a result, the model in use becomes out-of-date and has to be updated.

The field of mining concept-drifting data streams has received increasing attention and has been
intensively researched in recent years. Several approaches have been proposed [3,5,13,19,25,28] and
applied to a wide range of real-world applications including network monitoring, telecommunications
data management, market-basket analysis, information filtering, fraud and intrusion detection, etc.

However, most of these approaches are based on supervised classification algorithms assuming the
availability of labeled data for accurate learning. Generally, they continuously monitor classification
performance and detect a concept drift if there is a significant fall over time. Unfortunately, the assumption
of entirely labeled data streams availability is often violated in real-world problems, as labels may be
scarce and not readily available.
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For instance, for the malware detection problem, only a few true labels (i.e. malware or goodware)
may be available immediately after the classification process, and therefore we may have to wait for a
quite long time until all the instances are labeled. This leads a traditional stream classification algorithm
to choose between updating the classifier with just a few labeled data, which usually results in a poor
classifier, or waiting longer to get all labeled data. This can also affect the quality of the classifier since
most of the data will be outdated.

Semi-supervised learning methods have proved to be useful in such cases since they combine both
labeled and unlabeled data to enhance the performance of classification algorithms [34]. However, they
mainly assume that data is generated according to some stationary distribution, which is not true when
learning from evolving data streams, where changes may occur over time.

In this paper, we propose a new semi-supervised learning approach for concept-drifting data streams.
Our aim is to take advantage of unlabeled data to detect possible concept drifts and, if necessary, update
the classifier over time even if only a few labeled data are available.

To this end, inspired by earlier work by Dasu et al. [6], we use the Kullback-Leibler (KL) diver-
gence [20] to measure distribution differences between data stream batches. Then, based on a bootstrap-
ping method [8], we determine whether or not the KL measures are statistically significant, i.e. whether
or not a drift occurs. However, our approach differs from Dasu’s work on three key points. First, we
do not only detect whether or not a drift occurs, but we further distinguish and monitor three possible
kinds of drift: feature, conditional or dual drift. Second, we do not assume the available data streams are
entirely labeled. Indeed, we detect possible drifts using both labeled and unlabeled instances. Moreover,
we propose a general approach for learning from all these instances. In fact, when any of the three
possible kinds of drift is detected, a new classifier is learned using the expectation-maximization (EM)
algorithm [7]. EM has been widely used in semi-supervised learning where it has been found to improve
classification accuracy, especially when there is a small number of labeled data [24]. Otherwise, i.e.
when no drift is detected, the current classifier is left unchanged.

Note that our approach is so general that it can be applied with different classification learning
algorithms. In‘this paper, we consider two classifiers, namely naive Bayes and logistic regression. We
perfonn' experiments on rotating hyperplane and mushroom data sets using different percentages of
labeled instances. Moreover, we evaluate our approach using a real-world malware detection data set,
where we deal with the additional problem of imbalanced data streams and make use of two recently
proposed approaches for mining skewed data streams, namely clustering-sampling [31] and SERA [5].
The results show that our approach performs well even using limited amounts of labeled data.

The remainder of this paper is organized as follows. Section 2 defines the concept drift problem and
three types of drift. It then goes on to briefly review existing approaches for learning from concept-

dl"ifting data streams. Section 3 introduces our new approach. Section 4 presents the experimental study.
Finally, Section 5 rounds the paper off with some conclusions.

2. Concept drift

2.1. Problem definition

In dynamic e.nv.ironments, the characteristic properties of data streams are often not stable but change
;)ver t1m<?. This is known as the: concept drift problem [32]. According to Tsymbal [27], there are
wo possible types of concept drift: real concept drift, defined as a change of the target concept that
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the classifier is trying to predict, and virtual concept drift, defined as a change of the underlying data
distribution.

From a probabilistic point of view, concept drift can be defined as the change in the joint probability
distribution P(x, ¢), where c is the class label of a feature vector x. P(x,c) is the product of the class
posterior distribution P(c | x) and the feature distribution P(x). According to [14], there are three
possible sources of concept drifts:

— Conditional change: In this case, a change occurs in P(c | x), that is, the class labels change given
the feature vectors. For instance, a conditional change may occur in an information filtering domain
consisting of classifying a stream of documents, denoted by x, as relevant or irrelevant, denoted by c,
if the relevance of some documents changes over time, that is, their class labels change from relevant
to irrelevant or vice versa. With respect to Tsymbal’s concept drift categorization, a conditional
change corresponds to a real concept drift.

— Feature change: In this case, a change occurs in P(x). Intuitively, some previously infrequent
feature vectors may become more frequent or vice versa. For instance, the relative frequency of
some documents in information filtering domain changes over time regardless of their relevance,
which may remain constant over a long period of time. With respect to Tsymbal’s concept drift
categorization, a feature change represents a virtual concept drift.

— Dual change: In this case, changes occur in both P(x) and P(c | x). According to the information
filtering example, changes in both the relative frequency and the relevance of some documents are
observed, i.e. a virtual and a real concept drift both occur together.

Moreover, Zhang et al. [33] proposed an additional categorization also based on the decomposition of
P(x, c¢) into two parts, as P(x,c) = P(x) - P(c | x). In fact, they defined rigorous concept drifting for
changes in both P(x) and P(c | x), and loose concept drifting for changes in P(x) only.

To the best of our knowledge, in spite of these categorizations, all existing approaches dealing with the
concept drift problem either update the current classifier without using any detection method, or detect
only whether or not there is drift, i.e. without specifying which type of concept drift occurs.

In this paper, we propose an efficient approach for quantifying and detecting the three possible types
of drift: feature, conditional or dual using both labeled and unlabeled data. Details are presented in
Section 3.2.

2.2. Related work

Different approaches have been proposed to handle concept-drifting data streams. As pointed out
in [12], these approaches can be classified into blind approaches that adapt the classifier at regular
intervals without considering whether changes have really occurred, and informed approaches that are
used in conjunction with a detection method and only adapt the classifier after a change is detected.

Examples of blind approaches include weighted examples [16] and fixed size time windows [32].
Weighted examples assigns lower weights to old instances according to their age and/or utility in order
to focus more on recent instances incorporating the new concepts. Fixed size time windows consider
over time a fixed number of instances over time: In this case, the choice of an appropriate window size
should trade off fast adaptation in phases with concept drifts against good generalization in stable phases
without concept drifts.

Ensemble methods can also be considered as blind approaches. In fact, the general technique applied
by these methods is that the data stream is divided into sequential blocks of fixed size, and each of these
blocks is used to train a classifier. The ensemble is continuously refined by adding a new classifier,
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removing the oldest or the weakest classifier, increasing or decreasing the classifier weights using some
criteria usually based on current data block performance [4,19,28,30,31].

The adaptive size time window is an example of informed methods [32]. In fact, the window size is
adjusted dynamically to the current concept drift: As a general rule, if a drift is detected the window size
decreases to exclude the out-of-date instances; otherwise the window size increases to include the more
recent instances [21].

Clearly, informed methods are more interesting since they are a more efficient way of coping with
concept drifts and avoid the uncontrolled updating of the current classifier. The main issue is how to
detect concept drifts. Most of the existing research monitors at least one performance indicator over
time [3,12,18,25,32]. Classification accuracy is the most used indicator, i.e. if there is a consistent drop
in the accuracy, a drift is signaled. Other performance indicators, such as error rate, recall and precision,
have also been used.

An alternative approach detecting drift is to monitor the data distribution in two different windows [13,
15,29]. It is assumed that as long as the distribution of old instances is similar to the distribution of
recent ones, no concept drift occurred. A distribution difference, on the other hand, indicates a concept
drift. In particular, Dasu et al. [6] and Sebastido and Gama [26] used the Kullback-Leibler divergence to
measure the distance between the probability distributions of two different windows to detect possible
changes, and proved its generality, efficiency and resilience to false alarms.

However, note that ail previously presented works assume that true labels are entirely available in data
streams. To the best of our knowledge, only two relevant previous works have addressed the problem of
scarceness of labeled instances in concept drifting data streams.

The first, proposed by Klinkenberg [17], is based on transductive support vector machines and it
maintains two separate adaptive windows on labeled and unlabeled data in order to monitor, respectively,
the probabilities P(c | x) captured by labeled data and P(x) underlying both labeled and unlabeled data.
This was justified by the fact that P(c | x) and P(x) may change at different rates. However, although
theoretically well-founded, this method has never been evaluated.

The second work was recently proposed by Masud et al. [22]. It is based on an ensemble approach
where each model in the ensemble is built as micro-clusters using a semi-supervised clustering technique.
In .fa'cF, t.he learning step of each model starts by choosing k. points from the labeled data of class C
to initialize k. centroids. Then, the EM algorithm is applied by iterating the following two steps until
convergence: .The E-step assigns each unlabeled data point x to a cluster such that its contribution to a
cluster—@pmty function is minimized, and the M-step recomputes each cluster centroid by averaging
all the points in that cluster. Finally, a summary of the statistics of the instances belonging to each built
cluster is savgd as a micro-cluster. These micro-clusters serve as a classification model.

To cope “./lth stream evolution, Masud et al. [22] keep an ensemble of L models. Whenever a new
model is built fron? a new data chunk, they update the ensemble by choosing the best L models from
L + 1 models (previous L models and the new model), based on their individual accuracies on the labeled
instances of the new data chunk. Besides, they refine the existin g models in the ensemble whenever a new

class of data evolves in the stream. Note finally that this a h is blind since i i
any drift detection method. y pproach is blind since it does not incorporate

3. Background on EM algorithm

Le.t D d;,note thg data strearr.x t.ha.lt arrives over time in batches. Let D° denotes the batch at step s. D*®
consists of the union of two disjoint subsets Dy, and Dj. D$ denotes a set of N, unlabeled instances



H. Borchani et al. / Classifying evolving data streams with partially labeled data 659

(x), whereas D} denotes a set of N labeled instances (x, ¢), s.t. x represents an n-dimensional feature
vector (z1,...,2Zn) and ¢ € Q¢ = {c1, ¢z, . . ., ¢ |} represents the corresponding class value for labeled
instances. N° = N + N}’ denotes the total size of D°.

Learning a classifier from the D* data corresponds to maximizing the likelihood of D?® given the
parameters 6°. Assuming that instances are independent, this likelihood is the product of all (labeled
and unlabeled) instance probabilities expressed as follows [24]:

le
P(D* | 6°) =[] P(cj | %:;6°) P(x: | 6°)
i=1
Ny 1C|
HZP(CJ |xl,03)P(xZ I 08) (1)
i=1 j=1

where the first term is derived from labeled instances, and the second one is based on unlabeled data
where the sum expresses the fact that the unknown class value can be any of the existing values.
Then, considering logP(D? | 6°) = LL(D? | 8°), we have:

Np
LL(D* | 6°) = Y log(P(c; | x:;6°)P(x; | 6°))
=1

N; C|
+ log Y P(c; | xi;0°)P(x; | 6°)- )
i=1 j=1

Notice that this equation contains a log of sums for the unlabeled data, which makes a maximization by
partial derivatives with respect to 8° analytically intractable.

Consider that we can have access to the class labels of all the instances, represented using a matrix
of binary indicator variables z, where rows correspond to different instances and columns to different
classes, so that an entry is z;; = 1 iff ¢; is the class of instance x;, and z;; = 0 otherwise. Thus, Eq. (2)
can be rewritten as follows without a log of sums, because only one term inside the sum would be
non-zero:

Ne |C]
LL(D* | 8%2) = 3 i log(P(c; | xi;6%) P | 6°)): ©)

i=1 j=1

We use the EM algorithm [7] to find the maximum 6’ of Eq. (3). Let z; and 9f denote the estimates

for z and 6° at iteration ¢. EM starts with an initial estimate of classifier parameters éi from only the
labeled data in Dj. Then, it iterates over the E- and M-steps:

— The E-step uses the current classifier parameters to probabilistically assign labels to the unlabeled
instances in D;. Formally, it computes the expected value of

211 = Elz | D%;0,)- @

Clearly, for labeled data, z;; is easily determined since classes are already known. For unlabeled
data, z;; should be estimated as follows:

~S 1 ife = P -;95-
£t 2t = {5 Lnn Pl ®
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— The M-step re-estimates the classifier for all the data in D?, i.e. using all instances (the originally
labeled and the newly labeled by the E-step). In fact, this step consists of computing new parameters
9: +1 using the current expected value of z. Formally, we have

é:“ = argmazgs LL(D® | 6% 2¢11)- (6)

These two steps are iterated until convergence as proved by Dempster et al. [7]. At convergence, EM
finds 6° that locally maximizes the log likelihood with respect to both labeled and unlabeled data.

4. New approach for mining concept-drifting data streams with a limited number of labeled
instances

In this section, we will first introduce the two considered classifiers, namely naive Bayes and logistic
regression, learnt from both labeled and unlabeled instances. Then, we will present the drift detection
method.

4.1. Used classifiers

4.1.1. Naive bayes (NB)

Naive Bayes [23]is a generative classifier that optimizes the joint log likelihood of the data as previously
detailed. Based on the assumption that the features are all conditionally independent of one another
given the class variable C, parameters 6° denote the probability table of C, i.e. P(C), as well as the
conditional probability tables of each feature X, givenC,ie. P(X, | C),r € {1,...,n}.

To classify a given instance, the posterior probability of each possible class value ¢; is computed, and
then, the most probable class is selected. More formally,

n
¢ = arg mazx.; P(c;) H P(z, | c;)- @)
r=1
4.1.2. Logistic regression (LR)

Logistic regression [11] is a discriminative Classifier that maximizes the conditional log likelihood

ifnstea(li of the log likelihood. Hence, in this case, instead of (3), EM algorithm maximizes the following
ormula:

Ne [C]
LL(D® | 6%2) = 3 3" 2 logP(c; | xi; 6°)- ®)
i=1 j=1
where parameters 0° are represented by the vector (6%, 051,...,05,) forj=1,... IC|.
To classify a given instance, the posterior probability of each possible class value c; is computed as
follows: I
exP(O;O"-Zn—l 6:19'7'3:"')
CT=T e Vi < |C|,
P(C =c;|x;6° = 2 pm xp(0p0+3 " 05,2,) <]

1 )
1+chi|1'1exp(9:0+Z:=lgzrzr) for j = |C|-

Then, the c¢; value with the maximum probability is assigned as a label.
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4.2. Detecting a concept drift

Given a new batch of data D**1, the objective is to detect changes whenever they occur and adapt the
current classifier if necessary. In general, it is assumed that as long as the joint probability distribution
of D**! is similar to the distribution of D*, no concept drift occurs. Otherwise, a concept drift should
be indicated.

In order to detect possible changes, we use the KL divergence [20], also known as the relative entropy,
to measure differences between the empirical distributions of D5*1 and D*. Note that the KL divergence
has two fundamental properties, namely, non-negativity, being 0 iff the two compared distributions
are the same, and asymmetry. Moreover, a higher KL value indicates a higher dissimilarity between
distributions, and so, a pronounced drift.

First, in order to monitor the conditional change, we proceed to measure the KL divergence kl..between
the class posterior distributions of D**! and D? using only their corresponding labeled instances. ki is
computed as a sum of KL divergences, each of which measuring the divergence between the conditional
distributions of the class given feature instantiation, expressed as follows:

klee = ZKL(PD;H(C | )11 Pp; (C | x))

]Cl PD3+1 (CJ | X)

= P s+1 c Ix l092 (10)
=22 Poplo Pps(c; | x)

X j=1

In addition, to monitor the feature change, we measure the KL divergence ki, between the feature
distributions of D**! and D* using all the labeled and unlabeled instances except the class variable:

PDs+1 (X)
Pps(x)

klfe = K L(Ppas1(x)|| Pps (x)) = Z Ppa+1(x)logy—= (11

In order to determine whether or not the computed KL measures are statistically significant, we use the
bootstrapping method [8] following previous work reported in [6]. Intuitively, this method allows us to
determine, by repeated sampling with replacement from the data, whether or not a specific measurement
on the data is significant.

Specifically, to decide whether or not the resulting kl.. value is significant, we consider the null
hypothesis

Ho,. : Ppei(C'| X) = Ppy(C | X),

denoting that no conditional change has occurred. So, our objective is to determine the probability of
observing the value k.. if Hy,, is true.

To this end, given the empirical distribution PDs (C | x), we sample k data sets denoted Sy, b =
1,...,k, each of size 2N/. Then, we consider the ﬁrst N7 instances S as coming from the distribution
PDs (C | x), and the remaining N} instances Spz = Sp \ Sp; as coming from the other distribution

Df+1(C | x); and we compute the bootstrap estimates Kkl = Yx K L(Pgbz(C’ | x)IIIA’Sbl (C | x))
between each two samples Sy and Sp;, b = 1,...,k. The obtained estimates form an empirical
distribution from which we construct a critical region [Eljc, 00), where El?c represents the (1 — a)-
percentile of the bootstrap estimates, and « is a desired significance level.
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Finally, if we observe that kl.. falls into the critical region, i.e. kl.. > Iél?c, we conclude that it is

statistically significant and invalidates Ho . In other words, we conclude that a conditional change is
detected.

Similarly, in order to decide whether or not the resulting k! e value is significant, we consider the null
hypothesis

H()fc : PDs+1(x) = PDs(X),

and apply the same process to determine the critical region [151?0; o0) and decide about a feature change.

Note that, if either a feature or conditional change is detected, we proceed to learn a new classifier.
Otherwise, the current classifier is left unchanged.

To recapitulate, Algorithm 1 outlines the whole proposed approach. First, KL divergence and the
bootstrapping method are used to monitor possible conditional and feature changes (steps 1 to 4). If any
change is detected, a new classifier is learned using the expectation maximization algorithm (step 5.1):

an initial estimate of classifier parameters @i“ is induced using only the labeled instances of the new
data set D51 (step 5.2), then EM iterates over the E- and M-steps until convergence (step 5.3). In case
that no change occurred, the classifier is left unchanged (step 6).

Algorithm 1

begin

Input: D*,0°, D’ | o
Output : 6°+'

. Compute kl..

. Compute the bootstrap estimates Iélccb, b=1,.
. Compute klg,

- Compute the bootsirap estimates k?l,cb, b=1,
if Klee > Kl or kige > KIf. then
5.1 A change is detected, learn a new classifier from D*+!

5.2 01 « initial parameters induced only from labeled data Di*'
5.3 while no convergence do

L E-step: compute the expected labels for all unlabeled instances using (4)
M-step: update classifier parameters using (6) obtaining °+"
54 0°F — gt
6. else
| No change is detected: 0! «— g+
7. Return @°+!
end

-k, and critical region [k:,l:.',;, )

-y k, and enitical region [1517(,, )

N

5. Experimental study

5.1. Used data sets

We test our approach on the following synthetic and real data sets.

5.1.1. Rotating hyperplane data set
The rotating hyperplane data set is considered as a

used to simu at'e the concept drift problem [10,14,28,30]. In fact

\ : ift, as well as different percentages of labeled data and,
hence, to investigate the performance of our approach under controlled conditions.

A hype_:rplane in an n-dimensional space is denoted by 3 wir; = wp, where w = (wi, ..., wa)"
is the weight vector. Instances for which D i1 WiT; > wy are labeled positive, and instances for which
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Yo, wiz; < wo are labeled negative. Weights w; are initialized by random values in the range of [0, 1],
and wg values are determined so that wy = %— o ws

We generated x; from a Gaussian distribution with mean p; and variance ai2. The feature change
is simulated by changing the mean, i.e. u; is changed to u;s;(1 + t), and the conditional change is
simulated by the change of weights w; to w;s;(1 + t). Parameter ¢ € [0, 1] represents the magnitude of
the changes, and parameter s; € {—1, 1} specifies the direction of the changes which could be reversed
with a probability of 0.1. We generated a data stream of 10 dimensions (n = 10) with 80,000 instances,
using different magnitudes of change ¢ respectively set to 0.1, 0.2, 0.5, 1 for each 20,000 instances. Then,
we split the whole data stream into sets of blocks of size 2000, and from each block we considered equal
training and testing subsets of size 1000, such that every training set is followed by a testing set.

5.1.2. Mushroom data set

The mushroom data set, from the UCI repository [2], is regarded as having virtual concept drift (i.e.
feature changes) but no real concept drift (i.e. conditional changes) [19]. The mushroom data set contains
22 variables and 8124 instances. We split it into 6 blocks, and used 1000 instances from each block for
training and 354 instances for testing.

5.1.3. Malware detection data set

The malware detection data set represents the important problem of continuously classifying received
files into malware (e.g. viruses, spyware, trojans, phishing, spam, etc.) or goodware to ensure that users
are protected against malicious code. This data set has been provided by an IT security company and
consists of 40,000 records. It contains 5398 features and a binary class taking either the malware or
goodware value. Due to the confidentiality of the data, we omit the name of the company here, as well
as the detailed description of the features.

Contrary to experiments with the previous data, we do not know whether or not changes occur in this
real data set; and if so, we do not know when and which kind of changes occur. Moreover, we do not fix
the percentage of labeled data in each block. Instead, we use all the available labeled data, the number
may vary from one data block to another.

We also deal with two additional issues to process this malware detection data set. The first is feature
selection, which aims to select a small subset of relevant features in order to avoid features dependency
and redundancy and enhance classifier performance. In this paper, we use the conditional mutual
information maximization criterion (CMIM) [9]. It iteratively picks features that maximize their mutual
information with the class variable, conditionally upon the response of the already picked features. In
this way, CMIM ensures weak dependency and no redundancy as it does not select a feature similar to
any that have already been picked even if it is individually powerful.

In our case, feature selection is applied each time we learn a new classifier, i.e. each time we detect
changes. Hence, a new and more informative subset of features is selected given new incoming data.
In fact, some old selected features may be removed and new different features may be selected. This,
consequently, allows us to build more efficient classifiers.

The second issue is imbalanced data since the number of malware instances is much higher than
goodware instances. This leads to an important problem since the learned classifier may be biased
towards the malware class, and therefore its predictive accuracy may be very poor on the goodware class.
We apply two recent approaches to balance the class distribution:

— The clustering-sampling approach proposed by Wang et al. [31] makes use of the k-means clustering
algorithm to select negative instances for representing the negative class (i.e. malware class in our
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Table 1
Data set descriptions
Data set Number of Number of Number of Number of
features instances blocks instances in a block
Rotating hyperplane 10 80000 40 2000
Mushroom 22 8124 6 1354
Malware detection 50 40000 10 4000

case). Firstly, the number of clusters nc is set to the size of positive instances (i.e. goodware
instances). Then, the negative instances are clustered into nc clusters and the centroid of each
cluster is used as as negative instance for representing the negative class.

— The selectively recursive approach (SERA) proposed by Chen and He [5] makes use of the previous
data blocks knowledge to balance the current data block. In fact, it consistently collects the positive
instances from the previous data blocks. Then, it applies the Mahalanobis distance to measure the
similarity between each instance and the current positive instances, and includes a subset of the
most similar previous positive instances of a size proportional to the size of the current negative set
only. This is justified by the fact that only the previous positive instances not including the drifting
concepts are actually helpful for the learning process.

The malware detection data set is divided into sets of blocks of size 4000, and from each block, the
first 2000 instances are used for training while the remaining instances are used for testing. For feature
selection, we select 50 of the 5398 features.

To summarize, the details of the three considered data sets are given in Table 1. Note finally that,
for bootstrap parameters, we use the significance level o = 0.05 and samples number & = 500 in all
experiments. Our choice is based on Dasu et al.’s work [6] where they prove that the number of samples
does not significantly affect the quality of the results and suggest that k£ = 500 is a reasonable number of
samples. They also point out that lower o values make the null hypothesis harder to reject, leading to a

lower change detectability. According to our experiments, o = 0.05 works well and can be considered
as an appropriate value.

5.2. Experimental results

5.2.1. Results with rotating hyperplane data set
Table 2 represen'ts'the results for the drift detection proposal. The first column represents the block
numbers of the training sets. For instance, 1-2 denotes that the current data is the training set of the

first block, while the new data corresponds to the training set of the second block. Then, in columns 2

o 4
and 3, we show the kly. and kl;, values. These values are the same for all experiments irrespective of

the different percentages of labeled data, since they only use the feature values. F inally, columns 4 to 9
report kl. and kl, respectively, for 2%, 5% and 10% of labeled data.

As expected, a feature change is only detected between blocks 10 and 11 where the magnitude of
change ¢ goes from 0.1 to 0.2, blocks 20 and 21 where ¢ goes from 0.2 to 0.5, and blocks 30 and 31
wher(.e the ¢ goes fror_n 0.5 to 1. The larger the modification of ¢ values, the higher the kly. values are,
showing a more s‘1gmﬁcant drift in the feature distributions between the data blocks.
| l’)I'he same applies tq the conditional distributions monitored by ki, values for both 5% and 10% of
abeled data, where higher ki, values are obtained for higher ¢ values. However, in the case of 2%
of lal.)leed daFa, no <.:onditional changes are detected. This can be explained by tl;e fact that the true
conditional distribution cannot be accurately approximated with very few labeled instances. In their
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Table 2
Drift detection results for rotating hyperplane data set

Feature change

Conditional change

2% labeled 5% labeled 10% labeled
blocks  kl;.  Klj, Klee Kkl klee Ko Klee  Kloe
12 00962 0.1386 04807 3.1025 0.1168 0.5257 0.0222  0.4989
2-3  0.1353 0.1801 0.8112  3.9845 0.0862 1.7670 0.0514  0.6499
34 01214 0.1364 0.0637 5.7233 03874  0.1958 0.1013  0.7847
45 01245 0.1381 0.0158 6.1474 04248 14025 02139  0.5257
56 01069 0.1404 03166 2.6613 0.2985  1.4885 03100 0.7380
67 01008 0.1378 1.4039  6.9068 07706  1.3782 0.5962  0.8997
78 0.1013 0.1381 1.2359  5.6246 0.6927 1.3755 0.1665 03234
89  0.1304 0.1388 09124  6.2563 0.5369 1.6424 0.1990 0.2339
9-10  0.1017 0.1398 12339 4.2875 02925 1.3847 02180  0.6060
10-11 01434  0.1405 32875 6.4493 13862  1.2369 0.9812  0.6499
11-12  0.1249  0.1402 1.2026  6.2875 02534 1.7670 0.1355 0.5428
12-13  0.1154  0.1390 1.9967  7.3604 04209 1.5021 0.1544 03575
13-14 00882 0.1398 1.8104 82256 1.0638  1.7860 0.1419  0.7648
14-15  0.0956 0.1378 24464  6.4493 05212 1.3369 02552  0.6499
15-16  0.1344  0.1369 23008  6.3567 0.8237  1.6660 0.1580  0.6694
16-17  0.1373  0.1866 0.7418  6.2875 1.6932  1.8060 0.1862 03013
17-18  0.1374 0.1444 1.0548  5.1297 0.7915  1.9310 0.1273  0.6499
18-19  0.1316  0.1400 23245  6.5493 13169 1.8142 0.1355  0.5005
1920 0.0932 0.1392 14075 6.3649 0.5472 13725 03919 0.7842
20-21  0.1544  0.1408 4.1283  6.4512 1.3821  1.2364 1.0118  0.8162
21-22  0.1378 0.1538 0.0637  6.4502 04669 1.7670 0.0456  0.5257
22-23  0.1141 0.1387 0.9158 5.8614 03925 1.6927 0.1153 02978
2324 0.1296 0.1366 14257  6.5915 04248  1.2849 0.1030  0.1375
24-25 00851 0.1370 1.1079  6.1807 03472  0.5288 00168 02311
25-26  0.0849 0.1382 1.0042  6.4346 02812 12745 0.0953 02110
26-27 0.0653 0.1342 14721 6.3684 0.5004 1.3369 03651 05147
27-28  0.0880 0.1373 1.2339  6.6503 0.5257 1.1575 02120 0.6499
28-29 0.1139 0.1434 1.9099  6.5288 0.6927 1.7670 0.3275  0.5005
29-30  0.1383  0.1521 17233 6.8027 0.0818  1.7495 0.1094 04257
30-31 0.1767 0.1466 47233  6.4346 19310  1.3660 13369  0.7648
31-32 01011 0.1373 14792 6.2875 0.1613  0.2534 0.0375 0.3409
32-33 01332 0.139%4 0.6748  6.7841 04838 1.7897 0.1978  0.4885
33-34  0.1360 0.1565 0.9099 5.1964 0.6927 1.0546 03248  0.7648
34-35  0.1171 0.1395 0.8475 3.5168 04354  0.4999 0.1279  0.5694
35-36  0.0951 0.1376 12339 6.4593 09211 1.3369 0.1947  0.6348
36-37 0.0957 0.1395 09213  4.8143 03234  1.7495 0.1456  0.5257
37-38  0.1056 0.1367 0.6014  6.3684 0.2648  0.6364 0.1898  0.2339
38-39  0.1264 0.1625 0.9078  6.3125 0.1763  0.4376 0.1504  0.4342
39-40 0.1378  0.1367 03478  5.6177 04517  1.6849 03973  0.5389
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experiments studying the effect of window size on the performance of the change detection scheme,
Dasu et al. [6] come to the same conclusion, i.e a larger window size gives better approximation of the
true underlying distribution and results in a better detection of changes.

Furthermore, Fig. 1 presents accuracy curves for NB and LR. For each curve, the x-axis represents the
block number, and the y-axis represents the classification accuracy. Obviously, the performance of both
NB and LR is much better when higher percentages of labeled data are considered. Note also that in this
data set LR always outperforms NB, which is mainly due to the small percentages of labeled data. In
fact, as also pointed out in [1], the presence of only few labeled data may lead to poor estimates of the
generative approach.
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Table 3
Drift detection results for mushroom data set
Feature change Conditional change
2% labeled 5% labeled 10% labeled
blocks  klz. ki, Klee klo, Klee Klo, Klce kLo,

1-2 0.2251  0.0450 0.0003  0.1430 0.0001  0.0035 0.0079  0.0176
2-3 0.0365 0.0755 0.0019  0.0156 0.0005  0.0030 0.0003  0.0009
34 0.1184 0.1536 0.0031  0.0049 0.0054 0.0057 0.0002  0.0181
4-5 1.2973  0.2373 0.0043  0.1347 0.0002  0.0063 0.0013  0.0030
5-6 0.0007 0.0814 0.0028 0.0105 0.0018  0.0092 0.0001  0.0053

0,95
%9 Naive Bayes
0,85
0,8
0,75

0,7 et 10% labeled
0,65 -

0,6 = - 5% labeled
0,55 1%.’&,‘

R e nansnsnan i — g : = —a— 2% labeled
1 4 7 10 13 16 19 22 25 28 31 34 37 40

Block number
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0,95
0,9 Logistic regression
0,85
0,38
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0,7
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0,6
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Fig. 1. Classification results of NB and LR for rotatin

o http://dx.doi.org/10.3233/IDA-2011-0488) g hyperplane data set. (Colours are visible in the online version of the

5.2.2. Results with mushroom data set

as expected. This proves that our detection

Moreover, according to Fig. 2, using more
and LR. Nevertheless, the improvement is
corresponding curves are almost superimp
more stable behavior especially when mor:

labgle.zd data improves the predictive accuracies of both NB
negligible for LR from 5% to 10% of labeled data and the

osed. Notice also that LR always outperforms NB and has a
e labeled data are used.

5.2.3. Results with malware detection data set
Table 4 presents drift detection results for the

. malware detection as
previously the block numbers, while Sasacan data set. The first column reports

d column represents the percentage of labeled instances
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Table 4
Drift detection results for malware detection data set

e d

blocks % labeled instances  kly.  klj,  Klee  Kle

1-2 70.00-80.45 0.1304 0.2049 0.0797 0.9180
2-3 80.45-69.30 0.1057 0.1553 0.1609 0.2062
34 69.30-67.10 0.3892 0.1408 0.4330 0.2717
4-5 67.10-78.35 0.1272  0.1939 0.2975 0.3473
5-6 78.35-71.25 0.1095 0.3717 0.0190 0.1652
6-7 71.25-74.85 0.0665 0.2760 0.5373 0.6614
7-8 74.85-76.05 0.0967 0.1434 0.5028 0.5484
89 76.05-83.80 1.0006 0.2445 0.7558 0.6033
9-10 83.80-78.85 0.1221 0.9668 0.3390 0.4493
Naive Bayes Logistic regression
1 ‘W‘ 1
<
= 0,95 .._/V >0,95
[
§ o —\\J § e
0,
§ 0,85 § 085 === 10% labeled
< 0,8 < 0,8 = 5% |abeled
0,75 0,75 + T ' J 2% labeled
1 2 3 4 5 6 1 2 3 4 5 6
Block number Block number

Fig. 2. Classification results of NB and LR for mushroom data set. (Colours are visible in the online version of the article;
http://dx.doi.org/10.3233/IDA-2011-0488)

in each considered block. Then, columns 3 to 8 show respectively kl ¢, Iél‘;c, klc. and El?c values. We
observe that feature and conditional changes occur together and are detected between blocks 3 and 4,
and again between blocks 8 and 9.

To evaluate classifier performance, we previously used only the overall classification accuracy. How-
ever, when dealing with imbalanced data sets, this metric is often insufficient, as it does not distinguish
between the number of correctly classified instances of different classes.

Using balancing methods mainly aims to improve the classifier performance over the positive class,
i.e. reduce the number of false positives. In order to appropriately monitor the behavior of NB and LR
classifiers on the positive class in this case, then, we also calculate the precision, recall, F1 and G-mean
metrics based on the confusion matrix analysis.

The results of the NB and LR classifiers for the first balancing approach SERA are described in Table 5.
We observe that, in most cases, LR accuracies are slightly higher than for NB.

Furthermore, both NB and LR provide high precision values for all testing blocks, where all values
are greater than 95%, and yield good results in terms of F1 and G-mean values, which is indicative of a
good performance predicting the positive instances.

For the clustering-sampling balancing approach, as shown in Table 6, LR outperforms NB, except on
the last two testing sets, where NB shows better accuracies, as well as better recall and F1 values.

Finally, note that the results of the two applied balancing approaches are comparable, with a slightly
better performance of the clustering-sampling approach in terms of overall accuracy, recall and F1
metrics. In most cases, though, SERA provides slightly better precision with both NB and LR classifiers.
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Table 5
Performance results of NB and LR for malware detection data set using
SERA balancing approach

blocks Algo. Accuracy Recall Precision F1 G-mean

1 NB 0.7063  0.6392 09792 07735 0.7795
LR 0.7211 06483  0.9942 0.7848  0.7996
2 NB 0.7995  0.7701 0.9613  0.8551 0.83i2
LR 07212 06696 09537 0.7868  0.7729
3 NB 0.7540  0.7354 09838  0.8417 0.8148
LR 0.7951 0.7788 09883  0.8711 0.8491
4 NB 0.7970  0.7375 09656  0.8363 0.8316
LR 0.8328  0.7846 09722  0.8684  0.8620
5 NB 0.7668  0.7330  0.9818  0.8393  0.8270
LR 0.7787 07409  0.9904  0.8477 0.8455
6 NB 0.7462  0.7289  0.9781 0.8353  0.7995
LR 0.8051 0.7906 09858  0.8775 0.8503
7 NB 0.7488 07019 09890  0.8211 0.8227
LR 0.7576  0.7111 0.9911 0.8281  0.8308
8 NB 0.8385  0.8334 09993  0.9089  0.9058
LR 0.8006  0.7964 09966  0.8853  0.8568
9 NB 0.7625 07551 09746  0.8509  0.7907
LR 0.7339 07182 09799  0.8289  0.7909
10 NB 0.8044  0.7878 1.0000  0.8813 0.8876
LR 0.8011 0.7884 09947  0.8797 0.8658

Table 6
Performance results of NB and LR for malware detection data set using
clustering-sampling balancing approach

blocks Algo. Accuracy Recall Precision F1 G-mean

1 NB 0.6992 06279 09823 0.7661 0.7759
LR 0.7087  0.6347 09906 0.7737 0.7879

2 07546 07226 09447 08188 0.7884
LR 0.8455  0.8344 09592 0.8925 0.8581

3 NB 07793 0.7696 09774 08611 0.8122
LR 0.8381 0.8314 09840 09013 0.8609
0.7508  0.7042 09231 0.7989  0.7787
LR 0.8078 07745 09418  0.8500 0.8287
0.7936  0.7645 09834  0.8602 0.8462
LR 0.8590  0.8389 09899 09082 0.8964
0.8014 07949 09756  0.8760 0.8221
LR 0.8753 07837 09832 09252 0.8807
0.8403  0.8240  0.9781 0.8945  0.8684
LR 0.9359 09304 09909 09597 0.9456
0.8795  0.8966 09769  0.9350 0.5918
LR 09195 09238 09924 09569 0.8580
0.8457 08735 09506 09104 0.7253
LR 0.8264 08435 09582 8972 0.7559
09038 09142  0.9802 0.9460  0.8453

LR 0.8648  0.8623  0.9897 0.9217 0.8782
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6. Conclusion

We deal with a more realistic and important problem in data stream mining, which most existing
research has failed to address assuming data streams to be entirely labeled. In our research, using
both labeled and unlabeled instances, we not only assert the presence or absence of drift but we also
efficiently determine which kind of drift has occurred -feature, conditional or dual-using Kullback-
Leibler divergence and a bootstrapping method. Then, if required, we update the classifier using the
EM algorithm. Experimental results with naive Bayes and logistic regression show that our approach
is effective for detecting different kinds of changes from data containing both labeled and unlabeled
instances, as well as having a good classification performance.

In the future, it would be interesting to investigate and compare the performance of other classifiers
with our results. Furthermore, note that in this paper we assume that labeled and unlabeled data come
from the same distribution. This usually leads to a better classification accuracy. An interesting future
line of research would be to consider the scenario where labeled and unlabeled data possibly come from
different distributions, inspect the impact of unlabeled data, and study the possibility of refining the
change detection proposal.
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