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Neuronal morphology is hugely variable across brain regions and species, and their classifi-

cation strategies are amatter of intense debate in neuroscience. GABAergic cortical interneu-

rons have been a challenge because it is difficult to find a set of morphological properties

which clearly define neuronal types. A group of 48 neuroscience experts around the world

were asked to classify a set of 320 cortical GABAergic interneurons according to themain fea-

tures of their three-dimensionalmorphological reconstructions. Amethodology for building

a model which captures the opinions of all the experts was proposed. First, one Bayesian

network was learned for each expert, and we proposed an algorithm for clustering Bayesian

networks corresponding to experts with similar behaviors. Then, a Bayesian network which

represents the opinions of each group of experts was induced. Finally, a consensus Bayesian

multinet which models the opinions of the whole group of experts was built. A thorough

analysis of the consensus model identified different behaviors between the experts when

classifying the interneurons in the experiment. A set of characterizing morphological traits

for the neuronal types was defined by performing inference in the Bayesian multinet. These

findingswere used to validate themodel and to gain some insights into neuronmorphology.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable

[1–4]. Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information process-

ing and functional identification. Except for some special cases, this variability makes it hard to find a set of features that

unambiguously define a neuronal type [3]. In addition, there are distinct types of neurons in particular regions of the brain.

Indeed, neurons in the cerebral cortex can be classified into two main categories based on their morphology: pyramidal

neurons and interneurons (Fig. 1). In general, pyramidal neurons are excitatory (glutamatergic) cells which display spines in

their dendrites and have an axon which projects out of the white matter. Their name refers to the pyramidal shape of their

soma. Interneurons are cells with short axons that do not leave the white matter and their dendrites show few or no spines.

These interneurons appear to be mostly GABAergic (inhibitory) and constitute ∼15–30% of the total neuron population,

but they display chemical, physiological and synaptic heterogeneity [3]. Thus, the identification of classes and subclasses of

interneurons is clearly critical for gaining a better understanding of how these cell shapes relate to cortical functions in both

health and disease. This paper focuses on GABAergic interneurons, which also show a remarkable morphological variability

between species, layers and areas [5]. The Internet has made it possible for researchers to share digital three-dimensional

reconstructions of neuronal morphology in publicly accessible databases [6,7]. With such amount of available data, a com-
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Fig. 1. Photomicrograph from Cajal’s preparation of the occipital pole of a cat stained with the Golgi method, showing a pyramidal cell (one arrow) and an

interneuron (neurogliaform cell) (two arrows). From DeFelipe and Jones (Cajal on the Cerebral Cortex, Oxford University Press, New York, 1988).

monnomenclature for naming cortical neurons is a crucial prerequisite for advancing in our knowledge of neuronal structure

[3,8].

Bayesian networks [9,10] are a kind of probabilistic graphical model that provides a natural way of modeling uncertainty

in artificial intelligence. Therefore, they have been successfully applied across a large number of problems fromvery different

domains [11]. Bayesian networks are specially well suited for modeling and incorporating expert’s knowledge, although this

kind of analysis has not been applied to its full potential for neuron classification. There are two approaches for integrating

this information into a Bayesian network. First, we can elicit both the structure [12] and the parameters [13] of the Bayesian

network. Second, we can build a dataset which reflects the behavior of the expert and learn a Bayesian network from the

data. This paper focuses on the second approach, i.e., a consensus Bayesian network is built based on data which reflects

expert opinions.

Wepresent amethodology for building aBayesiannetwork thatmodels the opinions of a groupof experts. First, a Bayesian

network was learned for each expert, representing his/her behavior in the classification task. Second, a clustering algorithm

was run on the Bayesian networks to find groups of experts with similar behaviors, and a representative Bayesian network

was induced for each cluster of experts. Expert behavior when classifying the set of interneurons was extremely variable.

Therefore, experts with similar behaviors have to first be clustered and then combined. Otherwise, combining all experts

behaviors into a single consensus model would presumably hide some of these differing behaviors [14,15]. In this way,

we can explicitly model each group of similar experts as a representative Bayesian network for the cluster. Third, the final

consensusmodelwas a Bayesianmultinet [16] encoding amixture of Bayesian networks [17,18], where each componentwas

the Bayesian networkwhich represented the opinions of a cluster of experts. A similar idea has been proposed for case-based

Bayesian networks [19,20], where the authors cluster the observations before learning a Bayesian network which captures

the different properties of each cluster. Bayesian multinets are a kind of asymmetric Bayesian network which allows to

model different statistical (in)dependences between the variables for different values of a distinguished variable. Bayesian

multinets can capture local differences between variables andmodel the problem domainmore closely, allowing for sparser

models and more robust parameter estimation. For instance, they have been shown to outperform other Bayesian network

models in supervised classification problems [21].

Themodel was studied at length to validate the proposedmethodology and to gather useful knowledge for neuroscience

research. The resulting consensus Bayesian multinet can be used to analyze the behavior of a set of experts and to reason

about the underlying classification task. The representative Bayesian networks for each cluster can be compared to find

similarities and differences between groups of experts and to identify different behaviors or currents of opinion. Also, we

can use the consensus model to reason about the task the experts were asked to perform. For instance, we can introduce

some evidence into the consensus Bayesian multinet and infer “agreed” answers to those queries. These “agreed” answers

could be compared to those obtained by each representative Bayesian networks to find clusters of experts with outlying

behaviors against experts with moderate opinions.
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We apply the proposed methodology to the problem of the morphological classification of GABAergic interneurons from

the cerebral cortex. The research is based on a previous study [22], where we selected and asked a group of 48 experts to

classify a set of 320 interneurons according to their most prominent morphological features. However, the methodology

presented in this study can be applied to a wide range of scientific fields. For instance, in a medical setting, it may be

interesting to model and analyze the different opinions of a group of physicians regarding the diagnosis, prognosis or

the most appropriate treatment for a given disease. Another example can be found in a risk assessment scenario, where

different people could have different opinions on a given matter depending on their personal preferences, risk perception,

etc. The process of obtaining the opinions of different experts on a given task (here, the morphological classification of

interneurons) is challenging because it can be difficult, costly and time-consuming. However, new Internet tools and crowd-

sourcing techniques have alleviated some of these problems, and obtaining classification data from different experts is now

affordable for a lot of problems [23].

The paper is organized as follows. Section 2 explains the data acquisition process for gathering the experts’morphological

classification of the set of interneurons. Section 3 details the proposed methodology for building a consensus Bayesian

multinet which models experts’ opinions. Section 4 includes the evaluation of the model and the biological interpretation

of the results. Finally, Section 5 ends with conclusions and suggestions for future work.

2. Interneuron classification by a set of experts

We selected N = 320 cortical GABAergic interneurons from different species: cat, human, monkey, mouse, rabbit and

rat used in a previous study [22]. Briefly, three-dimensional reconstructions of 241 of those interneurons were retrieved

fromNeuroMorpho.org [7], whereas the rest were scanned from relatively old paperswith no data on the three-dimensional

distribution of their dendrites and axons. A set of 48 experts were asked to classify each one of the neurons according to

their most prominent morphological features. A web application1 was built to display the neuronal morphologies for the

participants and to retrieve their classifications. Two-dimensional projections of all the neuronswere available. Additionally,

a three-dimensional visualization applet based on Cvapp software [24] was provided for the neurons taken fromNeuroMor-

pho.org, which experts could use to navigate, rotate and zoom the neuronal morphologies. Fig. 2 shows a screenshot of the

web application. Additional data about the location of the neuron, such as the cortical area, the layer and the thickness of

the layer were included when available. Other web application features included a help page with instructions and defini-

tions of the neuronal types, and a search engine which showed other neurons previously classified by the expert as a given

neuronal type. These data were obtained and analyzed in [22]. The goal of this research was to achieve a common nomen-

clature for the cortical GABAergic interneurons with a utilitarian purpose. The agreement between experts when classifying

the interneurons was studied at length. We found that agreement was reasonably high for the attributes describing the

general neuronal morphology. Looking at the low-level classification into ten different neuronal types, however, we found

remarkable disagreements between the experts for some neuronal types. Here, the goal is to build a consensus Bayesian

multinet which models the opinions of all the experts and to use this model to further investigate their agreements and

disagreements.

The expertswho participated in the experimentwere asked to classify the neurons according to four attributes describing

the main morphological features of the neurons:

1. The first attribute described the horizontal distribution of the axon relative to the cortical layer. Here, the experts had

to separate neurons with an axonal arborization in the same layer as the soma (Intralaminar) from neurons with

axons distributed in different layers (Translaminar).
2. The second attribute referred to the vertical distribution of the axon relative to a reference cortical column (width =

300 μm). Theexperts had to classify eachneuronaccording towhether the axonal arborization is distributedprimarily

in the same cortical column (Intracolumnar) or in different cortical columns (Transcolumnar).
3. The third attribute represented the relative position of the axon and the dendrites. Neurons with dendritic arbors

placed in the center of the axonal arborization were classified as Centered, whereas neurons with dendrites shifted

with respect to the axon were classified as Displaced. When a neuron was classified as both Translaminar and

Displaced, the experts were asked to further characterize the neurons according to whether the axon was directed

towards the cortical surface (Ascending), the white surface (Descending) or both (Both).
4. The fourth attribute included a low-level classification of the neurons into nine neuronal types which are frequently

used in the literature [25]: Arcade, Cajal-Retzius, Chandelier, Common basket, Horse-tail, Large basket,
Martinotti, Neurogliaform and Common type. Additionally, the experts could classify a neuron as Other and

provide an alternative name for that neuron if they felt that it did not fit any of the proposed neuronal types.

A neuron was classed as Uncharacterized when the reconstructed part of the morphology was not clear enough (due

to incomplete labeling, reconstruction noise, etc.) for it to be worthwhile having a go at classification. When a neuron was

classified as Uncharacterized, no value could be given for the other attributes.

1 Available at http://cajalbbp.cesvima.upm.es/gardenerclassification/. Username: ijar. Password: ijar.

http://cajalbbp.cesvima.upm.es/gardenerclassification/


6 P.L. López-Cruz et al. / International Journal of Approximate Reasoning 55 (2014) 3–22

Fig. 2. Web application showing one of the 320 neurons to be classified by each expert.

Each expert was administered the form in Fig. 2 for each neuron. When the experiment finished, 42 out of the 48 experts

had classified all 320 neurons. We only used the information about the 42 experts who completed the experiment. The

goal in this paper was to build a model which encoded the opinions of the experts when classifying the interneurons in the

experiment.

3. A methodology for inducing a consensus Bayesian multinet from a set of expert opinions

In this section, we detail the process for obtaining a Bayesian multinet representing the consensus among the experts

who completed the experiment. Fig. 3 visually represents the whole methodology, which can be summarized in three main

steps:

1. Learn one Bayesian network for each expert using the classifications provided in the experiment.

2. Cluster the Bayesian networks into groups and induce a new representative Bayesian network for each cluster, which

models the opinions of the experts in the cluster.

3. Combine the representative Bayesian networks of each cluster into one consensus Bayesian multinet.

The following sections describe each step in the previous methodology. Section 3.1 introduces Bayesian networks theory

anddetails how to use the classification provided by each expert to learn a Bayesian network representing his/her behavior in

the experiment. Section 3.2 explains how to discover groups of similar Bayesian networks by applying clustering algorithms

and how to induce a representative Bayesian network for each group. In Section 3.3, the final consensus Bayesian multinet

model is built from the representative Bayesian networks of each cluster.

3.1. Bayesian network modeling of each expert’s behavior

Bayesian networks [9,10] are a class of probabilistic graphical models, defined as a pair B = (G(X,A), P), where:

• G(X,A) is the graphical component of themodel, i.e., a directed acyclic graph (DAG) where the nodes (X) represent the

variablesX = {X1, . . . , Xn} in theproblemdomainand thearcs (A) encode theprobabilistic conditional (in)dependence

relationships between the variables.
• P is the probabilistic component of the model. P includes a conditional probability table P(Xi|Pa(Xi)) for each variable

Xi, i = 1, ..., n in the problem, where Pa(Xi) is the set of parents of Xi in G: Pa(Xi) = {Y ∈ X|(Y, Xi) ∈ A}. Therefore,
P = {P(Xi|Pa(Xi), i = 1, . . . , n}.

A Bayesian network encodes a factorization of the joint probability distribution (JPD) over all the variables in X:

P(X) =
n∏

i=1
P(Xi|Pa(Xi)). (1)
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Fig. 3. General methodology for building a consensus Bayesian multinet which represents the behavior of a set of experts.

Bayesian networks are both interpretable and efficient. The graphical component of a Bayesian network is a compact

representation of the problem domain, while the factorization of the JPD reduces the computational workload of using

high-dimensional probability distributions.

Bayesian network learning from data is a two-step procedure [26–28]: structural search and parameter fitting. There are

twomainmethods for learning the structureG of a Bayesian network: constraint-basedmethods and score+searchmethods.

Constraint-basedmethods relyonperforming statistical tests tofindconditional independence relationshipsbetweengroups

of variables in the network. Then, an undirected independence graph is built, and edge orientation discovers a Bayesian

network structure which encodes those conditional independence relationships. Score+search approaches use a heuristic

search algorithm to explore the space of DAGs, and a score function to evaluate the candidate network structures and direct

the search procedure. Once the network structure has been found, the parameters in the conditional probability tables (P)

are estimated from the counts in the dataset.

We focused on score+search methods and learned the Bayesian network structure using the greedy thick thinning (GTT)

algorithm [29] implemented in the GeNIe free modeling environment. 2 K2 scoring function [30] was used to evaluate each

candidate structure, by measuring the joint probability of the Bayesian network structure G and a dataset D:

P(G,D) = P(G)
n∏

i=1

qi∏

j=1
(ri − 1)!

(Nij + ri − 1)!
ri∏

k=1
Nijk!, (2)

where P(G) is the prior probability of the network structure G, ri is the number of distinct values of Xi, qi is the number of

possible configurations of Pa(Xi), Nij is the number of instances in the dataset D where the set of parents Pa(Xi) takes their
j-th configuration, and Nijk is the number of instances where the variable Xi takes the k-th value xik and Pa(Xi) takes their

j-th configuration
(
Nij = ∑ri

k=1 Nijk

)
.

The GTT algorithm implements a two-step procedure for discovering a Bayesian network structure (see Algorithm 1).

Given an initial (empty) graph G, it iteratively adds the arc which maximizes the increase in the likelihood (thicking step).

When no further increment is possible by adding arcs, the algorithm iteratively removes arcs until no arc deletion yields a

positive increase in the likelihood (thinning step). Then, the algorithm stops and the resulting Bayesian network structure is

returned. The GTT algorithm has a number of advantages, e.g., unlike other methods [30–32] it does not require an ordering

of the variables. Also, it is simple, computationally efficient and avoids overfitting by removing arcs in the thinning step.

2 Developed by the Decision Systems Laboratory of the University of Pittsburgh: http://dsl.sis.pitt.edu.

http://dsl.sis.pitt.edu
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Algorithm 1 (Greedy thick thinning algorithm).

Given an initial graph G(X,A) and a dataset D

1. Thicking step: While the K2 score function (2) increases:

(a) Find the arc (Xi, Xj) which maximizes (2) when included in G′(X,A′) with A′ = A ∪ {
(Xi, Xj)

}
.

(b) Set G← G′.
2. Thinning step: While the K2 score function (2) increases:

(a) Find the arc (Xi, Xj) which maximizes (2) when deleted in G′(X,A′) with A′ = A \ {
(Xi, Xj)

}
.

(b) Set G← G′.
3. Return G.

A Bayesiannetworkwas learned for eachoneof theNe = 42 expertswho completed the experiment. The goalwas to build

amodelwhich captures how each expert understands the values of themorphological attributes and their relationships. The

graphical representation of the Bayesian networks structures offers a compact and easyway for the experts in the domain to

interpret their models. The Bayesian networks were learned independently for each expert, so they do not capture whether

or not the experts classified the same neurons in the same way. However, since the experts classified the same set of

interneurons, we can use the Bayesian networks to systematically analyze their opinions and behaviors. One would expect

that if two experts differed in their opinions (as encoded in their Bayesian networks), then they would also classify the

neurons differently. Also, having an individual Bayesian network for each expert makes it easier to analyze and validate the

representative Bayesian networks for each cluster and the final consensus Bayesian multinet, because the inputs (Bayesian

networks) and the output (Bayesian multinet) share the same representation.

Therefore, one dataset for each expert was generated with the classifications provided in the experiment. The resulting

dataset hadN = 320 observations (the number of interneurons in the experiment) andn = 6 variables,which corresponded

to the features that the experts were asked to classify. Some restrictions on different combinations of feature values were

imposed in the experiment design (see Section 2). For instance, selecting Uncharacterized in the first feature disabled all

the other variables. Therefore, when a neuron was classified as Uncharacterized, the values for the other variables were

empty. Similarly, the Ascending/Descending/Both feature was only available when Translaminar and Displaced
were selected for the corresponding features. To build the dataset for each expert, we filled in incomplete observations with

a new category named Dummy. Therefore, for each expert, we had a dataset with n = 6 categorical variables with values:

• X1 (r1 = 2): Characterized, Uncharacterized.
• X2 (r2 = 3): Intralaminar, Translaminar, Dummy.
• X3 (r3 = 3): Intracolumnar, Transcolumnar, Dummy.
• X4 (r4 = 3): Centered, Displaced, Dummy.
• X5 (r5 = 4): Ascending, Descending, Both, Dummy.
• X6 (r6 = 11): Common type, Horse-tail, Chandelier, Martinotti, Common basket, Arcade, Large basket,
Cajal-Retzius, Neurogliaform, Other, Dummy.

We used the data provided by each expert in the experiment to learn a Bayesian network which encoded the conditional

independence relationships between the variables for that expert. The GTT algorithmwas used to find the Bayesian network

structure, and the parameters were fitted using maximum likelihood estimators with Laplace correction. We did not allow

any variable to be a parent of variableX1, corresponding to theCharacterized/Uncharacterized feature. This restriction
encoded the knowledge that the decision of classifying a neuron as Characterized or Uncharacterized should be taken

before classifyingall theother features (modeledwithvariablesX2 toX6).We limited the complexityof theBayesiannetworks

by imposing a maximum of three parents for each variable. This allowed us to control the size of the conditional probability

distributions and to compute robust estimators of their parameters. However, this was not a very restrictive constraint since

only 5 out of 6× 42 = 252 variables in all the Bayesian networks had three parents.

In [22], a remarkable variability among experts’ opinions when classifying the interneurons was found. We performed a

preliminary analysis of the Bayesian networks induced for each expert to check whether or not this variability was reflected

in the network structures. Fig. 4 shows howmany of the 42 Bayesian networks contained each possible edge between every

pair of variables. Disagreements were highlighted in dark grey, showing relationships that appeared in half of the Bayesian

networks but omitted in theother half. TheBayesiannetwork structures showedan important variability, e.g., arcs containing

relationships between X1 − X2 or X1 − X3 were found in approximately half of the Bayesian networks but were absent in

the rest. Additionally, some relationships appeared in almost all the Bayesian networks (X4 − X5 and X3 − X6), whereas

other relationships were not found in any network structure (X3−X4 and X3−X5). We can conclude that the disagreements

between expertswere also reflected in their induced Bayesian network structures. These disagreements between the experts

prevented us from building a single Bayesian networkwhich represented them all, because a single common structure could

obscure the differences in the experts’ behavior [14,15]. Therefore, we first performed a clustering step to find groups of

Bayesian networks encoding similar expert opinions and built the final consensus Bayesianmultinet reflecting all the groups

of experts.
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Fig. 4. Number of Bayesian networks including the edge for each pair of variables. The matrix is symmetric so only the upper triangle is shown. Light-shaded

cells show agreements in the experts’ Bayesian network structures, i.e., edges which appear inmost or none of the Bayesian networks, whereas dark-shaded cells

show disagreements in the Bayesian network structures.

3.2. Clustering of Bayesian networks

The experiment was designed to find groups of Bayesian networks corresponding to experts with similar behaviors.

In this section, we detail the process of finding groups of Bayesian networks which define similar JPDs and inducing a

representative Bayesian network for each cluster. To the best of our knowledge, the problem of clustering Bayesian networks

had not been studied before. Note that this is not the same problem as using Bayesian networks to cluster data [33,34] or

clustering variables in Bayesian network learning for high-dimensional problems [35,36]. Bayesian networks have twomain

components (see Section 3.1): the graphical part and the probabilistic part. Therefore, we could consider clustering at the

two levels:

• Clustering of Bayesian network structures: The graphical component G(X,A) of a Bayesian network is a DAG which

encodes the conditional (in)dependence relationships between the variables in the problem domain. Therefore, we

could use existing approaches for clustering graphs [37,38] and, in particular, clustering DAGs [39] to find groups of

structurally similar Bayesian networks. Another approach could be to list the conditional independence relationships

encoded in a Bayesian network and then apply a clustering algorithm to group Bayesian networks which share the

same set of conditional independences.
• Clustering of Bayesian network probabilities: The probabilistic component P in a Bayesian network contains the condi-

tional probability distributions of each variable Xi given its parents Pa(Xi). Clustering of probability distributions has

not received much attention in the statistics and machine learning fields. The approaches in [40,41] cannot be directly

applied to our problem because P includes several (conditional) probability distributions: one probability distribution

for each variable given its parents’ values. Comparing the conditional probability distributions of the same variable

in two different Bayesian networks is challenging because each variable can have a different number of parents, and

the set of parents may be different. Therefore, the conditional probability distributions cannot be directly compared.

A simple approach, which could also be useful in problem domains with a lot of variables, would be to compute the

marginal probability distribution for each variable in each Bayesian network and to cluster the Bayesian networks based

on these marginal distributions.

Here, we propose clustering the Bayesian networks based on the joint probability distributions that they encode. There-

fore, our approach is included in the second group of techniques. Fig. 5 outlines the proposed methodology, which can be

summarized in three steps. First, the JPD encoded by each Bayesian network is computed. These JPDs alsomodel the experts’

behavior in the experiment. Second, groups of similar experts/Bayesian networks are found by clustering their correspond-

ing JPDs. Third, a representative Bayesian network is induced for each cluster, which represents the common behavior of the

experts in the cluster. The following sections detail each one of these three steps.

3.2.1. Computation and preprocessing of the joint probability distributions

For each expert,we computed the JPDover the six variables encodedby theBayesiannetwork learned in theprevious step.

Not all the experts selected all the possible values when completing the experiment, e.g., some experts did not classify any

neuron asArcade,Cajal-Retziusor Other in variableX6. Therefore, not all the Bayesiannetworks contained all the values

for all the variables. However, we wanted all the JPDs to have the same number of values for the purposes of comparison.

Therefore, we completed the conditional probability tables in the Bayesian networks learned with GeNIe using maximum

likelihood estimators with Laplace correction, so that all the Bayesian networks had all the values for all the variables. Then,

the JPD over all the variables encoded by each Bayesian network was computed by multiplying the conditional probability

distributions in P, as in Eq. (1). The resulting JPD had 2 × 3 × 3 × 3 × 4 × 11 = 2376 values. However, most of these

values corresponded to inadmissible combinations of the values of the variables. For example,when Uncharacterizedwas

selected, all the other variables should have the value Dummy and any other combination of values was not valid. Similarly,

variable X5 could only take a value different from Dummy when X2 = Translaminar and X4 = Displaced. We erased the

values in the JPDs corresponding to these forbidden combinations. The resulting JPDs had 121 values each.

3.2.2. Clustering of joint probability distributions

Weapproached theproblemoffindinggroupsof similar Bayesiannetworks by clustering the JPDsobtained in theprevious

step (Section 3.2.1).We generated a datasetwithNe = 42 observations and r = 121 variables, where each observation (row)
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Fig. 5. Procedure for clustering Bayesian networks. In step 3, the solid line represents the proposed workflow for inducing a representative Bayesian network for

each cluster, whereas the dashed lines show alternative ways of achieving this goal.

was a JPD corresponding to the Bayesian network of each expert and each variable (column) was a value of the JPD. There

are three main paradigms which can be used for clustering [42]: probabilistic, hierarchical and partitional clustering.

Hierarchical and partitional paradigms are the classical approaches to clustering. In general, both paradigms rely on the

definitionofadistanceordissimilaritymeasurebetweentheobservations.Aclassical agglomerative (bottom-up)hierarchical

clustering algorithm starts with one cluster per observation and iteratively merges the two most similar clusters according

to some criterion, called linkage function, which depends on the distances of the observations in the clusters. Therefore,

hierarchical clustering techniques do not generate a single partition but a hierarchy of clusters. On the contrary, partitional

clustering techniques generate a single partition of the objects into clusters by applying an optimization process which

maximizes/minimizes an objective function. This objective function usually measures the distances between the objects in

the samecluster (minimization) and/or thedistancebetweenobjects indifferent clusters (maximization). Inbothhierarchical

and partitional approaches, the number of clusters to be generated is a free parameter that has to be set by the expert. Also,

an appropriate distance measure has to be chosen depending on the nature of the data.

Probabilistic clustering deals with the problem of fitting a finite mixture of distributions [43], where each component is

the probability distributionwhichmodels the observations belonging to the cluster. Probabilistic clustering offers a number

of advantages. First, it generates a probabilistic model which describes the data. Using that model, one can compute the

(posterior) probability of a given observation belonging to each cluster. Also, it is able to formally address the problem of

model selection (finding an appropriate number of clusters). Since each of our observations is a JPD, theDirichlet distribution

[44] couldbea suitable choiceof aprobabilitydensity function for eachcomponent.However, the lownumberof observations

(Ne = 42) over the number of variables (r = 121) ruled out the use of this approach, because it is difficult to obtain accurate

estimators of a finite mixture model with so few data.

Here, we chose to adapt the classical K-means algorithm [45] to characterize properties of our data. Algorithm 2 shows a

general outline of the algorithm. The algorithm alternates two steps. First, the observations are assigned to the cluster with

the closest center. Second, the cluster centers are recomputed taking into account only the observations in the clusters.

Algorithm 2 (K-means algorithm).

Input: the number of clusters K and a dataset of r-dimensional observations P = {oi, . . . , oNe
}. Steps:

1. Initialize the cluster centers C = {c1, . . . , cK} to K random observations in P without replacement.

2. While the cluster centers C change

(a) For each observation oi, compute the dissimilarity between oi and each cluster center ck: d(oi, ck).
(b) Assign each observation oi to cluster k∗i ∈ {1, . . . , K}with the closest center: k∗i ← arg mink=1,...,K d(oi, ck).
(c) Recompute the cluster centers from the observations in each cluster: ck ← Combine({oi ∈ P|k∗i = k}).

3. Return the cluster centers C.
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The K-means algorithm iterativelyminimizes the sumof the distances of each observation to its cluster center: J(P, C) =∑Ne

i=1 d
(
oi, ck∗i

)
.K-means is guaranteed tofinda localminimumof J(P, C). Therefore, Algorithm2 isusually restarted several

times with different initialization values for step 1. A similar approach was used in [14,15] in the context of decision making

in influence diagrams. In order to apply the K-means algorithm to the problem of clustering JPDs we have to choose a

suitable dissimilarity measure d(oi, ck) and amethod for computing the cluster centers from the observations in the cluster

(Combine function in step 2(c) of Algorithm 2).

Dissimilarity measures for probability distributions. In general, our choice of a dissimilarity measure d(oi, ck) should be, at

least, symmetric. Therefore, one could consider using the symmetric Kullback–Leibler divergence,

dKL(p1, p2) = KL(p1||p2)+ KL(p2||p1),

where KL(p1||p2) is the Kullback–Leibler divergence [46] from an empirical probability distribution p1 to the true

distribution p2

KL(p1||p2) =
r∑

j=1
p1j log

p1j

p2j
,

where r is the number of values of the probability distribution pi, and pij is the probability of the jth value in the probability

distributionpi. Onedisadvantage of theKullback–Leibler divergence is that it is not upper bounded.However, othermeasures

can be considered, such as the Jensen–Shanon divergence,

dJS(p1, p2) = 1

2
KL(p1||m)+ 1

2
KL(p2||m), (3)

wherem is themean probability distributionm = 0.5(p1+p2). The Jensen–Shanon divergence has a number of interesting

properties [47]: it is symmetric, its square root is a metric and it is bounded 0 ≤ dJS ≤ 1. Therefore, we chose dJS as the

dissimilarity measure for the K-means algorithm. Additionally, the fact that dJS is a bounded measure was also useful when

computing the representative Bayesian network for each cluster (Section 3.2.3).

Combination of probability distributions. Two main methods can be found in the literature to compute an average prob-

ability distribution p from a set of probability distributions [48]: the linear combination pool (LinOp) and the logarithmic

combination pool (LogOp). If we have Nk probability distributions {p1, . . . , pNk
} in a cluster, the linear combination pool is

defined as the weighted arithmetic mean

pLinOp =
Nk∑

i=1
ωipi, (4)

where
∑Nk

i=1 ωi = 1 andωi > 0 is theweight for the probability distribution pi. The logarithmic combination pool is defined

as the weighted geometric mean

pjLogOp =
∏Nk

i=1 p
ωi

ij∑r
v=1

∏Nk

i=1 p
ωi

iv

. (5)

Genest andZideck [48]giveanumberof reasons for choosingLogOpover LinOp, themost compellingbeing that it is externally

Bayesian, i.e., it can be derived from joint probabilities [49]. Also, it is known that LinOp does not preserve independences

[50], i.e., combining probability distributions which share a common independence does not guarantee that the resulting

distribution will be equally independent. Heskes [51] showed that using LogOp is equivalent to finding the probability

distribution p which minimizes the weighted sum of the Kullback–Leibler divergences to each probability distribution pi

pLogOp = arg min
p

Nk∑

i=1
ωiKL(p||pi).

Therefore, we chose LogOp as a combination method for computing the cluster centers in the K-means algorithm (step 2(c)

of Algorithm 2). All the experts were considered as equals, so the weights ωi were all set to 1/Nk for each cluster.

3.2.3. Finding a representative Bayesian network for each cluster

Once the JPDs have been clustered and K cluster centers (JPDs) have been obtained, the next step is to induce a Bayesian

network which represents the common features of the corresponding Bayesian networks (and experts) in the cluster. Step

3 in Fig. 5 shows four possible approaches for finding a representative Bayesian network for each cluster. In the follow-

ing, we discuss the four approaches for performing this task, we review the works related to each one and analyze their

advantages and disadvantages formodeling experts’ opinions on the problem of themorphological classification of GABAer-

gic interneurons.

The first approach consists of directly combining a set of Bayesian networks into a single representative one (Fig. 5, step

3.1.1). Learning Bayesian networks from a set of expert opinions has been a recurrent interest in the field. However, [52]

showed that even when the Bayesian networks share the same structure, there is no way of combining the parameters
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to preserve that structure. They proposed a methodology for combining both the Bayesian network structures and the

parameters. The algorithm finds a common network structure by transforming the DAGs into moral graphs, performing

the union of the edges and transforming the resulting moral graph back into a DAG. The conditional probability tables are

combined by applying the LogOp combination pool of Eq. (5). This approach is expected to yield highly connected Bayesian

networks because of the union of the edges of the moral graphs. Therefore, the conditional probability distributions will

have a lot of parameters and their estimates will not very robust when there are few training instances (in our scenario,

320 neurons). Sagrado and Moral [53] studied the theoretical properties of Bayesian networks obtained by performing

either the intersection or the union of the arcs of the network structures, and proposed ways for finding the consensus

Bayesian network structure. However, they left the combination of the conditional probability tables as a matter for future

research. Zhang et al. [54] built on the work by Sagrado and Moral [53] and proposed a score+search method for fusing the

Bayesian network structures. However, they applied Bayesian inference not data to combine the parameters of the Bayesian

networks and to compute the scores of the network structures. Peña [55] derived a correction of the algorithms proposed

by Matzkevich and Abramson [56,57] for finding the consensus Bayesian network structure with a minimum number of

parameters. It represents only the common independences appearing in all the Bayesian network structures. He outlined

some ideas for combining the parameters of the Bayesian networks, but this issuewasmainly left for future research. Finally,

other methods for Bayesian network aggregation have been proposed in the context of model averaging (for a review, see

Section 4.13 in [28]). These methods combine the probabilities inferred with a set of Bayesian networks but they do not

obtain a single representative Bayesian network which models the opinions of a set of experts. In the neuron classification

problem, obtaining the representative Bayesian network explicitly was important because the experts would like to analyze

and interpret these models and not only their outputs.

The second approach deals with the problem of learning a consensus Bayesian network from data. Maynard-Reich and

Chajewska [58] assumed that the differences between experts are the result of observing different subsets of data. This is

related to the problem of learning Bayesian networks from distributed datasets, see e.g. [59]. In our experiment, however,

all the experts classified the same 320 interneurons, so this assumption did not apply. Steps 3.2.1 and 3.2.2 show another

possibility which conformed to our problem: joining the original datasets for each expert in the cluster and learning a

Bayesian network from this cluster’s dataset. We could consider different degrees of membership of each expert to his

cluster by only including a subset of interneurons from his dataset in the cluster’s dataset. However, there were some

neuronal morphologies which did not appear frequently in the data. Therefore, this approach could erase some important

information about the experts.

The third approach is based on sampling the JPDs and learning a Bayesian network from the generated data as explained

in Section 3.1 (Fig. 5, steps 3.3.1 to 3.3.3). First, we compute a representative JPD for each cluster, then we sample the JPD

to obtain a dataset and, finally, we learn a Bayesian network from that dataset. Again, one could consider using the LinOp

(Eq. (4)) or the LogOp (Eq. (5)) combination pools for computing the representative JPD and different weights could be

applied to each expert’s JPD. However, if the cluster center JPD does not accurately represent all the experts in the cluster,

the resulting representative Bayesian network for the cluster would not model all the experts’ opinions either.

Here, we implemented another approach based on proportional sampling of the individual JPDs of each expert (Fig. 5,

steps 3.4.1 and 3.4.2). The goalwas to obtain a sample of data for each cluster k, taking into account the dissimilarity between

each JPD and the cluster center ck to decide the number of samples to draw from each JPD. The fact that dJS(pi, ck) (Eq. (3))
is upper bounded facilitates the computation of these expert degrees of membership. For a given cluster k, we found the

JPDs included in the cluster and computed a degree of membership μi for each one as

μi = 1− dJS(pi, ck)∑Nk

j=1
(
1− dJS(pj, ck)

) .

Then, to obtain a sample with size M for cluster k, μi × M observations were drawn from each JPD pi in cluster k. Finally,

both the structure and the parameters of the representative Bayesian network were learned (Section 3.1) from that sample

of size M obtained for each cluster.

This approach tries to avoid some of the disadvantages of the other three approaches. The learning algorithm allows to

fully specify the Bayesian networks as opposed to the methods in the first approach (step 3.1.1), which can have problems

when computing the parameters of the conditional probability distributions. An advantage of this method over the second

approach (steps 3.2.1 and 3.2.2) is that our approach uses the Bayesian networks themselves (through their JPDs) to compute

the representative Bayesian network for the cluster. The second approach, on the other hand, assumes that the Bayesian

networks were learned from data and that experts’ data is still available. This may not be the case in some scenarios where

Bayesian networks are elicited fromexperts’ knowledge and not induced fromdata. Finally, as opposed to the third approach,

we consider each Bayesian network in the cluster individually through its JPD while taking into account different degrees of

membership to the cluster.

3.3. Building the consensus Bayesian network

The final step in the methodology (see Fig. 3) deals with the problem of building a probabilistic graphical model that

represents all the experts who participated in the experiment and also takes into account their differing behaviors. We



P.L. López-Cruz et al. / International Journal of Approximate Reasoning 55 (2014) 3–22 13

Fig. 6. Finite mixture of Bayesian networks represented as a Bayesian multinet with the cluster variable as the distinguished variable.

modeled the whole problem as a finite mixture of Bayesian networks [17]

P(X = x) =
K∑

k=1
πkP(X = x|C = k, Gk, Pk), (6)

where πk was set to the proportion of experts in the kth cluster (Nk/Ne), and each component P(X = x|C = k, Gk, Pk) was

the representative Bayesian network for the kth clusterwith structural componentGk and probabilistic component Pk . Finite

mixtures of Bayesian networks form a kind of Bayesian multinet [16] with a distinguished variable C which represents the

cluster variable. In principle, the cluster variable C is hidden but we found it previously by clustering the Bayesian networks

(Section 3.2). Fig. 6 is a diagram of the final consensus Bayesian multinet.

4. Results

This section includes the results corresponding to one run of the whole process as described in Section 3 (see Fig. 3).

First, one Bayesian network was learned for each one of the 42 experts who completed the experiment (Section 3.1). Then

we clustered the Bayesian networks following the procedure described in Section 3.2. We started the process by computing

the JPD encoded by each Bayesian network and generating a data matrix with dimensions 42× 121, where each row was a

JPD corresponding to an expert and each column corresponded to a value of the JPD, i.e., a combination of possible values

of the variables in the experiment. We used the K-means algorithm with Jensen–Shanon distance (Eq. (3)) and the LogOp

combination pool (Eq. (5)) to cluster the JPDs. We used K = 6 clusters because we were thus able to find distinguishable

clusters with characterizing properties.We used proportional sampling to get a dataset for each cluster, and a representative

Bayesian network was learned from that sample using GeNIe. Finally, a consensus probabilistic graphical model was built

as a finite mixture of Bayesian networks represented with a Bayesian multinet (Section 3.3). In the consensus Bayesian

multinet, the cluster variable was the distinguished variable and each component of the mixture was the representative

Bayesian network for a cluster (see Fig. 6).

In the following sections, we analyze the results by studying the consensus Bayesian multinet at different levels. Fig. 7

shows the representative Bayesian networks learned for each cluster of experts. These Bayesiannetworks can bedownloaded

in GeNIe format from the supplementary material website. 3 First, the Bayesian networks for each expert learned with the

GTT algorithmwere comparedwith other algorithms for learning Bayesian network structures from data (Section 4.1). Then,

we tried to characterize each one of the clusters by studying the marginal probabilities of their representative Bayesian

networks (Section 4.2). Also, a structural analysis of the Bayesian networks was performed to validate the results and to

find agreements and differences between clusters (Section 4.3). We extracted agreed definitions of the different neuronal

types proposed in the experiment by performing inferences in both the consensus Bayesianmultinet and the representative

Bayesian networks for each cluster (Section 4.4). A principal component analysis was performed to visually inspect a low-

dimensional representation of the clusters (Section 4.5). Finally, we looked for possible currents of opinion by studying

correlations between the clusters and the geographical location of the experts’ workplace (Section 4.6).

4.1. Validation of the Bayesian network structure learning algorithm

We studied the influence of the structure learning algorithm when finding the Bayesian networks for each expert (see

Section 3.1).We compared the Bayesian networks learnedwith the greedy thick thinning algorithm (Algorithm1)with other

four algorithms for learningBayesiannetwork structures available in thebnlearnpackage [60] for R statistical software [61]:

a hill-climbing algorithm (HC), a tabu search algorithm (TA), a max-min algorithm (MM) and the 2-phase restricted search

max-min algorithm (RS). HC and TA are score+search algorithms, whereas MM and RS are hybrid algorithms combining

score+search with constraint-based approaches. 100 restarts were computed for the hill-climbing algorithm and the best

3 Available at http://cig.fi.upm.es/index.php/members/138-supplementary-material.

http://cig.fi.upm.es/index.php/members/138-supplementary-material
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Fig. 7. Network structures and marginal probabilities of the representative Bayesian networks for each cluster. Each one of the Bayesian networks corresponds to

a component in the finite mixture of Bayesian networks that builds up the consensus Bayesian multinet.

scoring network structure was returned. Additionally, we considered two scoring functions: K2 [30] and BIC [62]. Thus,

for each expert, we learned eight Bayesian network structures using the four algorithms and the two scoring functions.

Maximum likelihood estimators of the parameters with Laplace correction were computed for filling in the conditional

probability tables. The JPD encoded by each Bayesian network was computed and simplified to a 121-dimensional JPD as
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Fig. 8. Comparison between the greedy thick thinning (GTT) algorithm and eight algorithms for learning the Bayesian network structures: (1) HC-K2, (2) TA-K2,

(3) MM-K2, (4) RS-K2, (5) HC-BIC, (6) TA-BIC, (7) MM-BIC and (8) RS-BIC. Each boxplot summarizes the 41 Jensen–Shanon divergence values (42 experts minus

expert #33) between the JPDs of the Bayesian networks obtained with the GTT algorithm and the JPDs obtained with each one of the eight alternative methods.

explained in Section 3.2.1. The Jensen–Shanon divergence (Eq. (3)) between the JPD corresponding to the Bayesian network

learned with the GTT algorithm and the eight alternative structure learning methods was computed. The structure learning

algorithms could not be applied for expert #33 because he/she classified all the neurons as X2 = Intralaminar and the

algorithms could not handle variables with only one value.

Fig. 8 shows boxplots of the Jensen–Shanon divergence values (Y axis) between the GTT algorithm and the other eight

algorithms (X axis) obtained for the 41 experts (42 minus expert #33). Note that the JS divergence is both lower and upper

bounded: 0 ≤ dJS ≤ 1. We can see that the JS divergence yielded very low values, being almost all of them below 0.2.

On the one hand, the TA-K2 algorithm (second boxplot in Fig. 8) yielded the lowest JS divergence values. On the other

hand, the RS algorithm (fourth and eighth boxplots in Fig. 8) learned Bayesian networks which yielded JPDs differing the

most compared to those obtainedwith the GTT algorithm. As expected, we can see that algorithms using K2 scoring function

yielded lower JSdivergences than thoseusingBIC, because theGTTalgorithmalsoused theK2 scoring function.Weconcluded

that the algorithm used for learning the Bayesian network structures did not have an important influence in the proposed

methodology becausewe used the JPDs for clustering the Bayesian networks and theywere similar regardless of the applied

algorithm.

4.2. Cluster labeling and analysis of the probability distributions

We identified differences between the groups of experts by studying the marginal (or prior) probabilities in the repre-

sentative Bayesian networks for each cluster (see Fig. 7). We used these marginal probabilities to characterize each group of

experts and we interpreted these differences as different approaches when classifying the neurons:

• Cluster 1 (including three experts) represented experts who considered that half of the neurons in the experiment did

not have enough reconstructed axonal processes for it to be feasible to actually try to classify them. Thus, they assigned

the neurons to the Uncharacterized category in X1 (probability 0.51). The probability of Uncharacterized was

much lower in all the other Bayesian networks (≤0.07). In fact, the combination of values of the variables with higher

probability (mode) corresponded to X1 = Uncharacterized, X2 = Dummy, X3 = Dummy, X4 = Dummy, X5 = Dummy and X6

= Dummy.
• Cluster 2 included 15 experts with a coarse classification scheme. In this Bayesian network, most of the neurons were

classified as Common basket (0.30). The mode of the JPD encoded in the representative Bayesian network was X1 =

Characterized, X2 = Intralaminar, X3 = Intracolumnar, X4 = Centered, X5 = Common basket and X6 = Dummy.
• Cluster 3 (including four experts) represented experts who stuck to the fine-grained classification scheme proposed

in the experiment and tried to distinguish between the different neuronal types, including the difficult ones such as

Common basket, Common type, Large basket and Arcade cells. Experts in this cluster found more Arcade cells

(0.07) than the experts in the other clusters. In this cluster, Common type (0.17), Common basket (0.14) and Large
basket (0.20) cells had similar probabilities. The mode of the JPD encoded by the representative Bayesian network

was the same as in cluster 2.
• Similarly to cluster 2, experts in cluster 4 (including 12 experts) showed a less detailed classification scheme than those

in clusters 3 or 5. However, experts in cluster 4 assigned a high probability to the Common type class (0.40), whereas

the most likely neuronal type in cluster 2 was Common basket. Accordingly, the mode of the JPD of the representative
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Bayesian network was X1 = Characterized, X2 = Translaminar, X3 = Intracolumnar, X4 = Centered, X5 = Common
type and X6 = Dummy.
• Cluster 5 represented a group of seven experts with a detailed classification scheme, since they distinguished between

Common type,Common basket andLarge basket cells. However, the experts didnot seem to agreewith thenomen-

clature included in the experiment or found it incomplete. This was observed in the high probability of the category

Other (0.22) in X6, where they could propose an alternative name for that class of neurons. Interestingly, the mode of

the JPD of the representative Bayesian network for this cluster was X1 = Uncharacterized, X2 = Dummy, X3 = Dummy,
X4 = Dummy, X5 = Dummy and X6 = Dummy. In fact, we can see that this cluster assigned the second highest probability to

Uncharacterized in all the clusters.
• Cluster 6 included only one expert with a remarkably different behavior than the other experts. This expert did not

classify any neuron as Translaminar in X2, so the probability of that value in the representative Bayesian network is

almost 0. Also, this expert assigned a very high probability to Centered in X4 (0.96). Therefore, X5 was disabled for all

the neurons (recall that X5 was only available when Translaminar and Displaced were set as values in X2 and X4,

respectively). Therefore, X5 had a constant Dummy value in Fig. 7(f). The conclusions of the analysis of the mode of the

JPD were the same, as the combination of values of the variables with highest probability was X1 = Characterized,
X2 = Intralaminar, X3 = Transcolumnar, X4 = Centered, X5 = Large basket and X6 = Dummy.

4.3. Analysis of the Bayesian network structures

Similarities in the behaviors of all the group of experts were identified by analyzing the representative Bayesian network

structures. Variables X3 and X6 were the only two variables which were directly related in all the Bayesian networks.

Variable X3 describes the neuronal morphology in the horizontal dimension. This feature encodes whether or not the axonal

arborizationof theneuronextendsmore than300 μmfromthe soma. Thismeans that the interneuron contactswithneurons

inside and outside its cortical column, so we could conclude that some neuronal types mainly connect with other neurons

from the same cortical column, whereas other neuronal types connect additionally with neurons from different cortical

columns.

Additionally, variables X2,X4 andX5 were related in all but one Bayesian network, the one corresponding to cluster 6. Also,

there was an edge between X5 and X6 in all the Bayesian networks but the one for cluster 6. Note that cluster 6 contained

only the outlying expert 33. Variables X2, X4 and X5 aremainly related to the neuronalmorphology in the vertical dimension.

These relationships could determine whether a given neuronal type sends the information to other neurons in the same

cortical layer or in different (either upper or lower) layers. We also analyzed the Markov properties of the representative

Bayesian network structures to identify conditional independence relationships between the variables. X3 was conditionally

independent of variables (X2, X4, X5) given the value of X6 and X1. Therefore, the morphological properties of GABAergic

interneurons in the horizontal and vertical dimensions seemed to be independent given the neuronal type.

4.4. Finding agreed definitions for neuronal types using inference in Bayesian networks

The representative Bayesian networks were used to infer the main properties of the different neuronal types in X6 by

setting evidence in some variables and updating the probabilities in the unobserved variables. We studied the propagated

probabilities and identified differences and similarities between clusters. Cluster 6 corresponded to an outlier expert which

has already been analyzed, so we focused on the other five clusters. First, themainmorphological properties of the neuronal

types were found by setting every value in X6 as evidence and propagating the probabilities using the clustering algorithm

[63,64] in GeNIe:

• Martinotti cellswere defined as Translaminar (≥0.94), Displaced (≥0.83) and Ascending (≥0.57) cells. Experts
in cluster 5 classified these neurons as mostly Transcolumnar (0.73), whereas they were classified in clusters 1, 2, 3

and 4 as either Intracolumnar or Transcolumnarwith similar probabilities.
• Horse-tail cells seem to have a common and easily recognizable morphology, since the most likely values achieved

high probabilities in all the clusters: Translaminar (≥0.92), Intracolumnar (≥0.80), Displaced (≥0.88) and

Descending (≥0.50).
• Chandelier cells seemed to be mainly Intracolumnar (≥0.72). However, they were classified as either

Intralaminar or Translaminar and Centered or Displaced in different clusters. Clusters 2 and 4 assigned a

higher probability to Translaminar, cluster 3 assigned a higher probability to Intralaminar and the probabilities

were almost uniform in the X3 variable in clusters 1 and 5. Centered received a higher probability in cluster 3, whereas

the probabilities were more uniform in the other clusters.
• Neurogliaform cells were defined as mainly Intracolumnar (≥0.83). Experts in clusters 3, 4 and 5 classified them

as Intralaminar (≥0.76), whereas experts in clusters 1 and 2 assignedmore uniform probabilities in variable X2. For

experts in cluster 5, Neurogliaform cells could be either Centered or Displaced, whereas Centered was more

likely in all the other clusters (≥0.75).
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• Common type cells were characterized as Translaminar (≥0.62) cells. Experts in clusters 4 and 5 classified them as

either Intracolumnar or Transcolumnar, whereas experts in clusters 1, 2 and 3 selected Intracolumnar as the

most likely value (≥0.66).
• The properties for Common basket cells could not be easily identified. Experts in cluster 2 and 4 classified most of

them as Translaminar (≥0.63), cluster 3 assigned the highest probability to Intralaminar (0.82), whereas in the

other clusters they were classified as either Translaminar or Intralaminar. Intracolumnar was always more

likely than Transcolumnar, although the differences in the probability values greatly varied in the clusters. We also

found major disagreements in X4: Clusters 1 and 3 assigned Centered with a high probability (≥0.86), whereas the

probabilities of Centered and Displacedwere similar in the other clusters.
• Large basket cells were characterized as Translaminar (≥0.58) and Transcolumnar (≥0.63) cells. Clusters 1 and

3 defined them as mainly Centered (≥0.74), cluster 5 assigned a higher probability to Displaced (0.6), whereas in

the other clusters Centered and Displaced had more uniform probabilities.
• Arcade cells were frequently classified as Translaminar (≥0.65), Intracolumnar (≥0.55) and, when

Translaminar and Displacedwere selected, as Descending cells.
• Most of the neurons classified as Other were characterized as Translaminar (≥0.62). Intracolumnar was more

likely than Transcolumnar in all the clusters. Also, Displaced had a higher probability than Centered in all the

clusters, except for cluster 6. However, the differences between the probabilities of these values greatly varied from

cluster to cluster. Cluster 3 yielded a high probability for Both category inX5 (0.50),whereas cluster 1 assigned a greater

probability to Descending (0.38). The probabilities in X5 were more uniform in the other clusters.

Setting evidence in the other variables also highlighted some differences between groups of experts. For example, set-

ting Intralaminar as evidence in X2 yielded Common basket as the most likely value for X6 in all the Bayesian net-

works, except for the one corresponding to cluster 4, where Common type and Neurogliaform got higher probabilities.

Setting Translaminar as evidence in X2 yielded very different propagated probabilities in the clusters. When setting

Intracolumnar as evidence in X3, the most likely values in X6 were Common basket (clusters 1 and 2), Common type
(clusters 3 and 4) and Other (cluster 5).

The consensus Bayesian multinet was used to perform inferences taking into account all the representative Bayesian

networks at the same time. The probability of a given query was computed using the finite mixture of Bayesian networks

expression (Eq. (6)). Table 1 shows the conditional probabilities of each variable given the neuronal type in X6. We used

these conditional probabilities to infer a set of agreed definitions for some neuronal types:

• Martinotti cells were usually classified as Translaminar, Displaced and Ascending.
• Horse-tail cells were commonly defined as Translaminar, Intracolumnar, Displaced and Descending neu-

rons.
• A common feature of Chandelier neurons was that they were Intracolumnar.
• Neurogliaform cells were mainly Intralaminar, Intracolumnar and Centered cells.
• Common type cells were primarily Translaminar.
• Large basket neurons were characterized as Translaminar and Transcolumnar.
• Arcade neurons were usually classified as Translaminar.
• Neurons classified as Otherwere commonly classified as Translaminar and Intracolumnar cells.

4.5. Clustering visualization with PCA

The clusters obtained with K-means were visually inspected using a representation in a lower dimensional space. The

goal was to obtain a three-dimensional representation that approximates the 121-dimensional JPDs and check whether or

not the clusters were visually distinguishable. A principal component analysis (PCA) was performed, and the three prin-

cipal components which account for the highest proportion of variance (67.14%) were studied [65]. Fig. 9 plots the values

of the JPDs for each expert in the transformed three-dimensional space. Different symbols and colors were used to show

the cluster assigned by the K-means algorithm to each expert. Two-dimensional projections were also included for ease of

interpretation. Also, we studied the weights associated with each JPD value in each one of the principal components (PCs):

• The first PC, which accounted for 47.32% of the variance, distinguished the experts in cluster 1 from the other clusters.

In this PC, the value of the JPD with highest (absolute) weight was X1 = Uncharacterized, X2 = Dummy, X3 = Dummy,
X4 = Dummy, X5 = Dummy, X6 = Dummy (weight = 0.9828). The second weight with the largest absolute value had a

value equal to -0.06119. This PC primarily separated experts with different behaviors when classifying the neurons as

either Characterized or Uncharacterized in variable X1. Therefore, the three experts in cluster 1 (Fig. 7(a)), which

classified a lot of neurons as Uncharacterized, were easily distinguished using this PC.
• The secondPCdistinguished theoutlying expert in cluster 6 andaccounted for 10.74%of the variance. This PCyielded the

largest weight (in absolute terms) for the value of the JPD corresponding to X1 = Characterized, X2 = Intralaminar,
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Table 1

Conditional probabilities of each variable given the neuronal type (X6), computedwith the consensus Bayesianmultinet. The largest value for each conditional

probability distribution is highlighted in boldface.

Common Horse- Chandelier Martinotti Common Arcade Large Cajal- Neurogliaform Other Dummy

type tail basket basket Retzius

Conditional probabilities P(X1|X6)

Characterized 0.9989 0.9981 0.9962 0.9988 0.9992 0.9937 0.9988 0.9835 0.9983 0.9950 0.0115

Uncharacterized 0.0011 0.0019 0.0038 0.0012 0.0008 0.0063 0.0012 0.0165 0.0017 0.0050 0.9885

Conditional probabilities P(X2|X6)

Intralaminar 0.2847 0.0720 0.4270 0.0632 0.4477 0.2863 0.2642 0.2947 0.6806 0.2423 0.0072

Translaminar 0.7136 0.9254 0.5671 0.9350 0.5511 0.7057 0.7342 0.6817 0.3170 0.7491 0.0081

Dummy 0.0017 0.0026 0.0059 0.0018 0.0012 0.0080 0.0016 0.0236 0.0024 0.0086 0.9847

Conditional probabilities P(X3|X6)

Intracolumnar 0.6190 0.8639 0.7903 0.4001 0.6862 0.6365 0.1874 0.4687 0.8589 0.7242 0.0030

Transcolumnar 0.3802 0.1346 0.2065 0.5990 0.3132 0.3579 0.8117 0.5165 0.1398 0.2716 0.0030

Dummy 0.0008 0.0015 0.0032 0.0009 0.0006 0.0056 0.0009 0.0148 0.0013 0.0042 0.9940

Conditional probabilities P(X4|X6)

Centered 0.4293 0.1088 0.5292 0.1151 0.6075 0.4078 0.5126 0.3833 0.7524 0.3410 0.0052

Displaced 0.5696 0.8893 0.4668 0.8837 0.3917 0.5856 0.4862 0.5997 0.2459 0.6540 0.0055

Dummy 0.0011 0.0019 0.0040 0.0012 0.0008 0.0066 0.0012 0.0170 0.0017 0.0050 0.9893

Conditional probabilities P(X5|X6)

Ascending 0.1623 0.1244 0.0950 0.6479 0.1008 0.1290 0.1630 0.1852 0.0400 0.1859 0.0036

Descending 0.2169 0.6439 0.1961 0.1103 0.1270 0.2606 0.1762 0.2259 0.0369 0.2106 0.0036

Both 0.1296 0.1119 0.0754 0.1187 0.0790 0.1311 0.1096 0.1553 0.0302 0.2252 0.0036

Dummy 0.4912 0.1198 0.6335 0.1231 0.6932 0.4793 0.5512 0.4336 0.8929 0.3783 0.9892

X3 = Transcolumnar, X4 = Centered, X5 = Large basket, X6 = Dummy (weight = -0.7385). Fig. 7(f) shows that the

representativeBayesiannetworkof the outlying expert in cluster 6had a veryhighprobability (0.46) for Large Basket
cells. Therefore, this PC separated the expert in cluster 6 from the rest of the clusters.
• The third PC accounted for 9.08% of the variance and could not easily separate the rest of the clusters. However, this PC

seemed to be able to distinguish between experts in cluster 2 and experts in cluster 4. These two clusters contained

experts with two different behaviors. Fig. 7(d) shows that the experts in cluster 4 classified most of the neurons as

Common type (0.40), whereas the experts in cluster 2 (Fig. 7(b)) classified most of the neurons as Common basket
(0.30). Clusters 3 and 5 were less distinguishable because the probability was more uniformly distributed across the

values in X6 (Fig. 7(c) and (e)). Theweights in the third PCwere also harder to interpret. However, cluster 4 and cluster 2

could be distinguished. All the values of the JPD with X6 = Common type had weights smaller or equal than−0.02859,
whereas all the values with X6 = Common basket had weights greater or equal than−0.0102 (see Fig. 10). Therefore,

the set of values with X6 = Common type (cluster 4) and X6 = Common basket (cluster 2) were disjoint according to

the third PC.

We concluded that the behavior of experts in clusters 1 and 6 was remarkably different from the behavior of the rest of

the experts. The K-means algorithmwas able to identify those characterizing behaviors and generated two different clusters

for them. Additionally, differences between the experts in clusters 2 and 4 were also correctly identified. The differences

between clusters 3 and 5 were more subtle and it was difficult to find a three-dimensional representation of the JPDs which

separated these experts.

4.6. Geographical identification of the clusters

We studied possible correlations between the experts’ workplace and the cluster they were assigned to. The goal was to

try to identify different approaches or currents of opinion regarding interneuron classification in different regions, cities or

laboratories in the world. We studied the statistical significance of some of the groups of experts according to the country or

thecitywhere theyworked.Abootstrappingapproachwasused,whereasampleofexpertswasselectedwithout replacement

and we estimated the probability of some of them belonging to the same clusters. The sampling procedure was repeated

100,000 times for different sample sizes. We could not find any statistically significant result using a significance level of

α = 0.05. Therefore, we concluded that there is no geographical correlation between the experts and the cluster they were

assigned to.
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Fig. 9. Visualization of the clusters computed with K-means (K = 6) in three and two-dimensional spaces obtained with principal component analysis. The

three-dimensional coordinates of the experts correspond to the values of the three principal components with highest proportion of variance.
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5. Conclusions

Bayesian networks have been successfully applied to awide range of problems in very different domains. In this paper, we

have presented a methodology for building a consensus Bayesian multinet that represents the opinions of a set of experts.

Themethodology can be summarized in three steps. First, a Bayesian network is learned for each expert. Second, the Bayesian

networks corresponding to experts with similar behaviors are clustered. Third, a consensus Bayesianmultinet is built which
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models the behavior of all experts. To the best of our knowledge, the problem of clustering Bayesian networks had not been

studied in the literature before. Therefore, thiswork also addresses an interesting problem in Bayesian network research. Our

proposal consists of computing the JPD encoded by each Bayesian network and applying a partitional clustering approach to

find groups of similar JPDs. The K-means algorithm with logarithmic combination pool and Jensen–Shanon divergence was

used to cluster the JPDs. Then, a representative Bayesian network was induced for each cluster by proportional sampling

of the JPDs in the cluster and applying a Bayesian network learning algorithm on the generated dataset. The final model

is a consensus Bayesian multinet which encodes a finite mixture of Bayesian networks, where each component is the

representative Bayesian network for a cluster of experts.

We applied the proposed methodology to a problem of modeling experts’ opinions when classifying a set of cortical

GABAergic interneurons based on the morphological features of their reconstructions [22]. This is a difficult task because

neuroscientists do not have a set of commonly agreed definitions which clearly distinguish the different neuronal types

[3]. The consensus Bayesian multinet built in this work was analyzed to gain some insights into the problem of classifying

GABAergic interneurons. We managed to find some easily distinguishable clusters of experts, which behaved differently

from the rest of the clusters. By studying the marginal probabilities in the representative Bayesian networks, we were able

to identify different approaches to neuron classification. This highlighted the importance of clustering the experts before

building the consensus model. Directly combining experts with such differing behaviors would presumably hide some of

these opinions, and the final model would not represent all the experts thoughts. Additionally, we performed inference with

the model to provide agreed definitions of the neuronal types. We analyzed the representative Bayesian network structures

to identify common conditional independence relationships between the groups of experts, which had a direct biological

interpretation.

We discussed the different approaches that could be considered for performing each one of the tasks and motivated our

decisions in each step. One advantage of the proposedmethodology is that it is data independent, i.e., we only used experts’

data for learning the initial Bayesian networks, and the clustering algorithm and the construction of the consensus Bayesian

multinet are only based on these Bayesian networks. Therefore, the methodology can still be applied when experts’ data is

not available, e.g., when Bayesian networks are elicited from experts’ knowledge.

Future work includes the application of different techniques for clustering JPDs. In particular, model-based clustering

using finite mixtures of distributions was discarded because of the low number of observations (42 experts) and the high

dimensionality of the JPDs (121 values). We discussed the possible use of finite mixtures of Dirichlet distributions [44]

as the most straightforward model for clustering probability distributions. However, the Dirichlet distribution has some

constraints, e.g., its covariance matrix is strictly negative so it cannot model positive correlations between variables. Finite

mixtures of generalized Dirichlet distributions [66] overcome some of these constraints. However, the generalized Dirichlet

distribution hasmore parameters than the Dirichlet distribution, so the problem of high-dimensionality combinedwith few

data is even more challenging. L1-regularization approaches in finite mixture modeling [67,68] could be used to perform

feature subset selection and reduce data dimensionality. Another point for future research is the use of different techniques

for finding a representative Bayesian network for each cluster. Some of the possibilities for achieving this goalwere discussed

in Section 3.2.3. Finding a consensus Bayesian network from a set of Bayesian networks which represent different experts’

opinions has been a recurring interest in the field [52–56]. Combining thesemethodswith the proposed clustering approach

and studying the differences and similarities in the representative Bayesian networks obtained for each cluster in a real

problem could give some insights into the relative merits of each technique.

This paper serves as an example of the kind of synergies stemming frommultidisciplinary research when real problems

drive research in artificial intelligence. The strategy developed in this study could be useful for identifying and correlating

morphological parameters that are difficult, if not impossible, to obtain by visual inspection alone. Furthermore, including

other neuronal features, such as their molecular and physiological features, would result in a powerful tool for classifying

neuronswith amore functional significance. Indeed, we expect thesemodels to play amajor role in solving some of themost

challenging problems in biology andmedicine, such as the study of low-level interactions between neurons in the brain and

their relationships to perception, learning or brain diseases.
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[18] M. Meilă, M.I. Jordan, Learning with mixtures of trees, Journal of Machine Learning Research 1 (2000) 1–48.
[19] E. Santos, A. Hussein, Case-based Bayesian network classifiers, in: V. Barr, Z. Markov (Eds.), Proceedings of the Seventeenth International Florida Artificial

Intelligence Research Society Conference, AAAI Press, 2004, pp. 538–543.
[20] A. Hussein, E. Santos, Exploring case-based Bayesian networks and Bayesianmulti-nets for classification, in: A.Y. Tawfik, S.D. Goodwin (Eds.), Proceedings of

the Seventeenth Conference of the Canadian Society for Computational Studies of Intelligence (CSCSI-2004), Lecture Notes in Computer Science, vol. 3060,
Springer, 2004, pp. 485–492.

[21] J. Cheng, R. Greiner, Learning Bayesian belief network classifiers: algorithms and system, in: E. Stroulia, S. Matwin (Eds.), Proceedings of the Fourteenth

Biennial Conference of the Canadian Society for Computational Studies of Intelligence, Lecture Notes in Computer Science, vol. 2056, Springer, 2001, pp.
141–151.

[22] J. DeFelipe, P.L. López-Cruz, R. Benavides-Piccione, C. Bielza, P. Larrañaga, S. Anderson, A. Burkhalter, B. Cauli, A. Fairén, D. Feldmeyer, G. Fishell, D. Fitzpatrick,
T.F. Freund, G. González-Burgos, S. Hestrin, S. Hill, P.R. Hof, J. Huang, E.G. Jones, Y. Kawaguchi, Z. Kisvárday, Y. Kubota, D.A. Lewis, O. Marín, H. Markram, C.J.

McBain, H.S. Meyer, H. Monyer, S.B. Nelson, K. Rockland, J. Rossier, J.L.R. Rubenstein, B. Rudy, M. Scanziani, G.M. Shepherd, C.C. Sherwood, J.F. Staiger, G.
Tamás, A. Thomson, Y.Weng, R. Yuste, G.A. Ascoli, New insights into the classification and nomenclature of cortical GABAergic interneurons, Nature Reviews

Neuroscience 14 (2013) 202–216.
[23] A. Doan, R. Ramakrishnan, A.Y. Halevy, Crowdsourcing systems on the World-Wide Web, Communications of the ACM 54 (2011) 86–96.

[24] R. Cannon, D. Turner, G. Pyapali, H. Wheal, An on-line archive of reconstructed hippocampal neurons, Journal of Neuroscience Methods 84 (1998) 49–54.

[25] A. Peters, E.G. Jones, Cerebral Cortex, in: Cellular Components of the Cerebral Cortex, vol. 1, Plenum Press, 1984
[26] W. Buntine, A guide to the literature on learning probabilistic networks from data, IEEE Transactions on Knowledge and Data Engineering 8 (1996) 195–210.

[27] D. Heckerman, A tutorial on learning with Bayesian networks, Technical Report MSR-TR-95-06, Microsoft Corporation, 1996.
[28] R. Daly, Q. Shen, S. Aitken, Learning Bayesian networks: approaches and issues, The Knowledge Engineering Review 26 (2011) 99–157.

[29] D. Dash, G. Cooper, Model averaging for prediction with discrete Bayesian networks, Journal of Machine Learning Research 5 (2004) 1177–1203.
[30] G. Cooper, E. Herskovits, A Bayesian method for the induction of probabilistic networks from data, Machine Learning 9 (1992) 309–347.

[31] P. Larrañaga, C.M.H. Kuijpers, R.H. Murga, Y. Yurramendi, Learning Bayesian network structures by searching for the best ordering with genetic algorithms,

IEEE Transactions on System, Man and Cybernetics, Part A: Systems and Humans 26 (1996) 487–493.
[32] N. Friedman, D. Koller, Being Bayesian about network structure: a Bayesian approach to structure discovery in Bayesian networks, Machine Learning 50

(2003) 95–125.
[33] J.M. Peña, J.A. Lozano, P. Larrañaga, I. Inza, Dimensionality reduction in unsupervised learning of conditional Gaussian networks, IEEE Transactions on Pattern

Analysis and Machine Intelligence 23 (2001) 590–603.
[34] D.T. Pham,G.A. Ruz, Unsupervised training of Bayesian networks for data clustering, Proceedings of the Royal SocietyA (Mathematical, Physical & Engineering

Sciences) 465 (2009) 2927–2948.

[35] S. Jung, K.H. Lee, D. Lee, Enabling large-scale Bayesian network learning by preserving intercluster directionality, IEICE Transactions on Information and
Systems E90-D (2007) 1018–1027.

[36] B. Chen, Q. Liao, Z. Tang, A clustering based Bayesian network classifier, in: Proceedings of the IEEE Fourth International Conference on Fuzzy Systems and
Knowledge Discovery, IEEE Computer Society, 2007, pp. 444–448.

[37] A. Robles-Kelly, E.R. Hancock, Graph edit distance from spectral seriation, IEEE Transactions on Pattern Analysis andMachine Intelligence 27 (2005) 365–378.
[38] X. Gao, B. Xiao, D. Tao, X. Li, A survey of graph edit distance, Pattern Analysis & Applications 13 (2010) 113–129.

[39] A. Gerasoulis, T. Yang, A comparison of clustering heuristics for scheduling directed acyclic graphs on multiprocessors, Journal of Parallel and Distributed

Computing 16 (1992) 276–291.
[40] T.V. Van, T. Pham-Gia, Clustering probability distributions, Journal of Applied Statistics 37 (2010) 1891–1910.

[41] A. Goh, R. Vidal, Unsupervised Riemannian clustering of probability density functions, in: W. Daelemans, B. Goethals, K. Morik (Eds.), Proceedings of the
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Springer, 2008, pp. 377–392.

[42] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, second ed., Wiley, 2001.
[43] G.J. McLachlan, D. Peel, Finite Mixture Models, Wiley, 2000.

[44] N. Bouguila, D. Ziou, J. Vaillancourt, Unsupervised learning of a finitemixturemodel based on the Dirichlet distribution and its application, IEEE Transactions

on Image Processing 13 (2004) 1533–1543.
[45] J.B. MacQueen, Somemethods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkeley Symposium onMathematical

Statistics and Probability, University of California Press, 1967, pp. 281–297.
[46] S. Kullback, R.A. Leibler, On information and sufficiency, Annals of Mathematical Statistics 22 (1951) 79–86.

[47] J. Lin, Divergence measures based on the Shannon entropy, IEEE Transactions on Information Theory 37 (1991) 145–151.
[48] C. Genest, J.V. Zideck, Combining probability distributions: a critique and an annotated bibliography, Statistical Science 1 (1986) 114–135.

[49] R. Bordley, A multiplicative formula for aggregating probability assessments, Management Science 28 (1982) 1137–1148.
[50] G.U. Yule, Notes on the theory of association of attributes in statistics, Biometrika 2 (1903) 121–134.

[51] T. Heskes, Selectingweighting factors in logarithmic opinion pools, in: Advances inNeural Information Processing Systems, TheMIT Press, 1998, pp. 266–272.

[52] D.M. Pennock, M.P. Wellman, Graphical representations of consensus belief, in: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelli-
gence, Morgan Kaufman, 1999, pp. 531–540.

[53] J. Sagrado, S. Moral, Qualitative combination of Bayesian networks, International Journal of Intelligent Systems 18 (2003) 237–249.
[54] Y. Zhang, K. Yue, M. Yue, W. Liu, An approach for fusing Bayesian networks, Journal of Information & Computational Science 8 (2011) 194–201.

[55] J.M. Peńa, Finding consensus Bayesian network structures, Journal of Artificial Intelligence Research 42 (2011) 661–687.
[56] I. Matzkevich, B. Abramson, The topological fusion of Bayes nets, in: D. Dubois, M.P. Wellman (Eds.), Proceedings of the Eight Conference on Uncertainty in

Artificial Intelligence, Morgan Kaufman, 1992, pp. 191–198.



22 P.L. López-Cruz et al. / International Journal of Approximate Reasoning 55 (2014) 3–22

[57] I. Matzkevich, B. Abramson, Deriving a minimal I-map of a belief network relative to a target ordering of its nodes, in: D. Heckerman, E.H. Mamdani (Eds.),
Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufman, 1993, pp. 159–165.

[58] P. Maynard-Reich II, U. Chajewska, Aggregating learned probabilistic beliefs, in: J.S. Breese, D. Koller (Eds.), Proceedings of the Seventeenth Conference on
Uncertainty in Artificial Intelligence, Morgan Kaufman, 2001, pp. 354–361.

[59] R. Chen, K. Sivakumar, H. Kargupta, Collective mining of Bayesian networks from distributed heterogeneous data, Knowledge and Information Systems 6

(2004) 164–187.
[60] M. Scutari, Learning Bayesian networks with the bnlearn R package, Journal of Statistical Software 35 (2010) 1–22.

[61] R Development Core Team, R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2011. ISBN
3-900051-07-0.

[62] G.E. Schwarz, Estimating the dimension of a model, Annals of Statistics 6 (1978) 461–464.
[63] S.L. Lauritzen, D.J. Spiegelhalter, Local computations with probabilities on graphical structures and their application to expert systems (with discussion),

Journal of the Royal Statistical Society, Series B (Methological) 50 (1988) 157–224.

[64] F.V. Jensen, S.L. Lauritzen, K.G. Olsen, Bayesian updating in causal probabilistic networks by local computations, Computational Statistics Quarterly 4 (1990)
269–282.

[65] K. Pearson, On lines and planes of closest fit to systems of points in space, Philosophical Magazine 2 (1901) 559–572.
[66] N. Bouguila, D. Ziou, High-dimensional unsupervised selection and estimation of a finite generalized Dirichlet mixture model based on minimummessage

length, IEEE Transactions on Pattern Analysis and Machine Intelligence 29 (2007) 1716–1731.
[67] W. Pan, X. Shen, Penalized model-based clustering with application to variable selection, Journal of Machine Learning Research 8 (2007) 1145–1164.

[68] B. Xie, W. Pan, X. Shen, Variable selection in penalized model-based clustering via regularization on grouped parameters, Biometrics 64 (2008) 921–930.


	Bayesian network modeling of the consensus between experts: An application to neuron classification
	1 Introduction
	2 Interneuron classification by a set of experts
	3 A methodology for inducing a consensus Bayesian multinet from a set of expert opinions
	3.1 Bayesian network modeling of each expert's behavior
	3.2 Clustering of Bayesian networks
	3.3 Building the consensus Bayesian network

	4 Results
	4.1 Validation of the Bayesian network structure learning algorithm
	4.2 Cluster labeling and analysis of the probability distributions
	4.3 Analysis of the Bayesian network structures
	4.4 Finding agreed definitions for neuronal types using inference in Bayesian networks
	4.5 Clustering visualization with PCA
	4.6 Geographical identification of the clusters

	5 Conclusions
	Acknowledgements
	References


