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Abstract

In this work we approach by Bayesian classifiers the selection of human embryos from images. This problem consists of choosing the embryos
to be transferred in human-assisted reproduction treatments, which Bayesian classifiers address as a supervised classification problem. Different
Bayesian classifiers capable of taking into account diverse dependencies between variables of this problem are tested in order to analyse their
performance and validity for building a potential decision support system. The analysis by receiver operating characteristic (ROC) proves that
the Bayesian classifiers presented in this paper are an appropriated and robust approach for this aim. From the Bayesian classifiers tested, the
tree augmented naive Bayes, k-dependence Bayesian and naive Bayes classifiers showed to perform almost as well as the semi naive Bayes
and selective naive Bayes classifiers.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Developments in medical technology have led to a number of
methods designed for assisted human reproduction. Procedures
such as artificial insemination, in vitro fertilisation (IVF) and
embryo transfer increasingly provide new options in assisted
reproductive technology. Assisted human reproduction deals
with the social infertility problem. For various reasons, the
number of embryos developed through the assisted reproductive
techniques is usually greater than the number of the ones that
can be transferred. This is the case for instance in Spain, where
the law only permits three embryos to be transferred at most
in each treatment. As another example, Italian law also permits
up to three oocytes to be fertilised, although it is not allowed
to freeze them for a possible future treatment.

Many studies have shown that morphological structures in the
embryo can be used as bio-markers of embryonic quality [1–4],
and that embryo selection based on morphology assessment
is relevant to improve implantation and pregnancy rates [1,5].
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Most of the existing scoring systems are based on combinations
of several morphological parameters such as cleavage stage,
embryonic fragmentation and blastomere uniformity [1,2,6]. In
particular, the morphology of pronuclear oocyte has been linked
with implantation and development to the blastocyst stage [7].
Embryologists select the embryos on the basis of subjective
light microscopic morphological analysis.

Data mining techniques such as decision trees and the con-
struction of predictive statistical models have been used previ-
ously on IVF to assist on the selection of the most promising
oocyte for implantation. The literature contains a number of
such studies with this goal. Saith et al. [8] apply decision trees
to investigate the relationship of the features of the embryo,
oocyte and follicle to the successful outcome of the embryo
transfer. Trimarchi et al. [9] studied the models based on data
mining techniques, in particular applying the C5.0 algorithm for
inferring classification trees [10]. Jurisica et al. [11] presented
an application of the TA3 system as an intelligent decision
support system for IVF practitioners that, in some situations,
can suggest possible treatments to improve the success rate.
Patrizi et al. [12] presented a pattern recognition algorithm to
select embryos from images, which tries to classify the objects
given into a number of classes and to formulate from those
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a general rule. Manna et al. [13] compared the precision in the
recognition of viable embryos by a group of experts to that of
a machine recognition procedure.
The aim of this study is to apply for the first time Bayesian

classifiers to information extracted from embryo images in
order to predict their viability to succeed implantation on
woman’s uterus, as well as to overcome the unbalanced data
set problem that is so common in clinical databases of in-
fertility treatments. In other works in the literature Bayesian
classifiers are applied for identifying the most relevant mor-
phological and clinical variables that determine the outcome
of IVF treatments [14], but the use of Bayesian classifiers to
embryo images for classifying embryos according to the esti-
mation of their implantation probability has not been analysed
previously. The final objective is to develop a system able to
do it automatically which could be used as a decision support
system, based on non-invasive, precise and detailed analysis
of human embryo morphology. This decision support system
could at the same time be used as a training tool for novel em-
bryologists, and therefore to help on improving success rates
of infertility treatments.
The paper is organised as follows: the next section revises

the problem of selecting embryos for transfer on infertility
treatments as a supervised classification one. Section 3 de-
scribes digital acquisitions and provides a brief overview of
the Bayesian classifiers used in this work. Section 4 shows ex-
perimental results and their interpretation. Finally in Section 5
conclusions and some future work lines are presented.

2. The problem in selection of human embryos

Infertility is defined as the state that normal couples, not us-
ing any form of contraceptive measures, fail to become pregnant
over at least one year. Human-assisted reproduction methods
like IVF through insemination of oocyte and sperm and the pro-
cess called intracytoplasmic sperm injection (ICSI)—where the
sperm is injected into oocyte—have been widely used to treat
infertility. Oocyte and sperm are obtained separately in fertili-
sation treatment process. In order to obtain a sufficient number
of oocyte ovulatory stimulants are used. These stimulants make
pituitary to increase secretion of follicle stimulating hormones.
Later, the first days after the fertilisation embryos are devel-
oped in an embryo culture medium under a controlled atmo-
sphere. A few embryos, the ones deemed best by the clinician
and embryologist regarding the likelihood of bringing forth a
child, are chosen and transferred to the woman’s uterus within
12–72h from their formation.
An essential problem in human-ssisted reproduction is the

selection of the embryos suitable to be transferred in a patient.
Embryologists analyse the embryo by non-invasive techniques
by inverted microscopy with Hoffman contrast. In usual
practice the selection of human embryos—as well as their
morphological characterisation—is based on the subjective
judgement of the embryologist. Furthermore, the time is a
limiting factor when analysing the embryo, which makes it
difficult to investigate embryo morphology in detail for its
transfer. That is why, the training of embryologists and the

need to establish homologated criteria are essential to avoid as
much as possible the subjectivity of the evaluation and selec-
tion of embryos. At the same time, the objectives of the task
are more complex since we want to maximise implantation
rates while limiting the incidence of multiple pregnancies.

The aim of intelligent methods is to support the selection pro-
cess and to choose from the available embryos the few of them
which have a good quality and the greatest potential to implant
in the uterus. Even if the final objective is that the embryo will
later develop into a live child, on IVF treatments implantation
is regarded by itself as a success since later pregnancy follow
up is considered as a different gynaecological question.

In the present study we apply for the first time Bayesian clas-
sifiers to recognise potentially good embryos on the basis of a
training sample set of images, in order to predict for each new
embryo its outcome (if it will succeed on implanting or not).
The supervised classification decision is based on the feature
vector extracted from embryos morphology of a database of
previous treatments and their class (outcome). Bayesian clas-
sifiers have demonstrated good precision in complex medical
problems [15], which makes them likely to be applied on this
new complex domain. In particular, the use of Bayesian classi-
fiers able to consider higher degree dependencies is especially
suited for obtaining better classification results in this type of
complex problems in which the features are not conditionally
independent given the class.

2.1. Selection of embryos as a supervised classification
problem

In order to apply Bayesian classifiers, we regard the embryo
selection as a supervised classification problem in which, hav-
ing as a starting point an embryo image, the classifier has to
provide an estimate on its potential or suitability to achieve
successful implantation if it is transferred to the uterus.

In order to build the classifiers from a database of em-
bryo images selected on IVF treatments—i.e. with known
outcome—we propose to divide all images on two classes:
images of embryos that managed to implant to class 1, and to
class 0 otherwise. For each image a pattern vector of embryo
features is defined by regarding each image as an array of in-
tensities of grey-levels from which the frequency distribution
of the grey tones for each image was obtained.

A comprehensive procedure to extract embryo characteristics
from an image is defined in [12]. These authors propose to apply
to the embryo image a procedure that takes into account the
central moments or moment invariants which was first proposed
in [16] to extract the shape and texture features of an image.
These cental moments are invariant with respect to translation,
rotation and scaling of the pattern represented in an image,
and they can also be applied to binary or grey level images. In
Biomedical research the central moments have been applied to
obtain the characteristics of cell images [17] or medical images
[18,19].

Given the image of an embryo, the marginal distribution of
pixel values in the horizontal and vertical directions is deter-
mined and from each distribution the first six central moments
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(polynomial functions of central tendency and spread) were cal-
culated. This pixel-intensity profile indicates the homogeneity
of the image—whether it has many dark and light spots and
how they are distributed. The first moment was ignored, since
it is zero. These values were used to form the pattern vector
of each embryo that consists of eleven values: the ten central
moments (extracted from its image) and the embryo class (1 or
0, i.e. implanted or not implanted). This data acquisition is the
one proposed in the literature by Patrizi et al. [12].

More formally, the problem of predicting the outcome of a
human embryo by means of supervised classification can be
defined as follows. We denote by x= (x1, . . . , xn) the vector of
predictor variables—representing the characteristics of a con-
crete embryo—for the problem of classifying an embryo image
into one of the two classes of variableC . The true class—i.e. the
real outcome if we transfer this embryo—is denoted by c and it
takes values in the domain set {0, 1}: Each pattern vector repre-
sents the embryo morphological features, assigned to class 1 if
the embryo is suitable for transfer, and to class 0 otherwise. The
supervised classification problem consists on creating a model
that assigns any pattern vector x=(x1, . . . , xn) to one of the two
classes of variable C . Statistical classifiers such as Bayesian
classifiers provide an estimate of p(c|x), the probability that an
embryo image with predictor vector x= (x1, . . . , xn) belongs to
class c ∈ C . We can regard the classifier as a � : (x1, . . . , xn) →
{0, 1} function that assigns labels to observations. In supervised
classification the objective is to build a classifier that minimises
the total error cost by taking into account the joint probability
distribution p(x1, . . . , xn, c) = p(c|x1, . . . , xn)p(x1, . . . , xn) =
p(x1, . . . , xn|c)p(c) which is unknown a priori. According to
[20], for the particular case of a symmetric cost function, the
total error cost is minimised when assigning to the example
x = (x1, . . . , xn) the class �(x) with the highest a posteriori
probability:

�(x) = argmax
c

p(c|x1, . . . , xn) (1)

In the case of having different misclassification costs, the a
posteriori probability is compared to a threshold t to predict
the class of x. This threshold is usually chosen to minimise the
expected misclassification loss [21], resulting in the following
classification rule: classify x to class 1 if and only if p(C=1|x)
is greater or equal than threshold t .

3. Material and methods

3.1. Selection of embryos and recording of digital images

The embryo images in our experiments as well as their
characterisation by central moments are the ones obtained for
the study presented by Patrizi et al. [12] in which the data and
its validation are approached in a different way. The treatment
of artificial insemination was conducted at the Genesis Center
in Rome during the period January 1998 to December 2001,
whose database included 275 cycles of ICSI for 195 patients
[12]. Note that one of the limitations of our study is that
we could not fully ensure complete independence of samples

(i.e. some different embryo images correspond to a same
couple).

For this study 249 embryos were selected and photographed.
Embryo images at the 4-cell stage were taken 40–50h after
fertilisation and before transfer. Embryos were catalogued ac-
cording Mils’s score [22]. Fig. 1 shows examples of embryo
images obtained following this procedure which were used as
imported data on this study.

3.2. Bayesian classifiers

Bayesian classifiers have been chosen since they have already
demonstrated a good precision in other complex medical prob-
lems [15], and also because these models are transparent and
comprehensive for medical practitioners. Our concrete problem
of predicting the viability to succeed implantation of an embryo
is addressed as a supervised classification problem to allow the
use of these classifiers. Bayesian classifiers are able to provide
a concrete probability estimation of the capability of each em-
bryo to be implanted. The final aim is to have a system able to
support the selection of the most promising available embryos
in order to choose the few of them which have good quality
and the greatest potential for implantation based on the feature
vector of embryo morphology obtained from an embryo image.

We present next some of the classifiers in the form of
Bayesian networks [23] that have been proposed in the litera-
ture. Paradigms such as naive Bayes [24], selective naive Bayes
[25], semi naive Bayes [26], tree augmented naive Bayes (TAN)
[27] and the k-dependence Bayesian (kDB) classifier [28] are
thought specifically for supervised classification problems.

Bayesian classifiers need to be constructed using a score that
measures the goodness of each configuration—i.e. classifier’s
structure showing relationships between all the variables. One
of the main advantages of Bayesian classifiers is that their struc-
ture is an intuitive graphical representation, allowing to visu-
alise the underlying probabilistic classification process and to
provide a set of properties that can be appreciated by medi-
cal staff. Their graphical structure facilitates the interpretability
and understanding by clinicians, reflecting probabilistic rela-
tionships between domain variables. In our concrete problem,
the conditioned and marginal probabilities of the model can be
of interest to embryologist who want to better understand the
uncertainty of this medical domain.

A model hierarchy of increasing structural complexity can
be established for Bayesian classifiers, where the naive Bayes
is at the bottom and a general Bayesian network is at the top
of this hierarchy. Fig. 2 illustrates examples of some Bayesian
classifiers models due to dependencies that are used in this
paper.

The naive Bayes classifier [24] applies the Bayes theorem
to predict for each unseen instance x, the class c ∈ C for
which it has a higher a posteriori probability. This a posteriori
probability is computed as

p(c|x) ∝ p(c, x) = p(c)
n∏

i=1

p(xi |c) (2)
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Fig. 1. Real embryo images of the database of Genesis Center (Rome, Italy), catalogued following the Mills’s score [22] commonly accepted as an embryo
quality cataloguing standard.
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Fig. 2. Examples of the structure of different Bayesian classifiers for a
concrete problem with five predictor variables. (a) Naive Bayes, (b) selective
naive Bayes, (c) semi naive Bayes, (d) TAN, and (e) kDB.

where p(xi |c) represents the conditional probability of Xi =
xi given that C = c when all variables have discrete values.
As a result, the naive Bayes classifier follows the following
approach:

c∗ = argmax
c

p(c)
n∏

i=1

p(xi |c) (3)

This paradigm has always the same structure: all predictor vari-
ables are included in the model. A naive Bayes classifier struc-
ture example is shown in Fig. 2(a) for a problem with five
variables.
Despite the success of the naive Bayes classifier for some

problems, in many real problem domains the predictive accu-
racy of learning algorithms is degraded by irrelevant predictor
variables, where the information contribution is overlapped or
repeated. The selective naive Bayes classifier [25,29] is able to
detect irrelevant and redundant variables, even if similarly as
naive Bayes it cannot notice dependencies between predictive
variables.
The selective naive Bayes algorithm is the result of applying

feature subset selection (FSS) techniques to the naive Bayes
classifier. The final model of the selective naive Bayes approach
contains some of the predictive variables, allowing the rest of
predictor variables to be discarded and not be included in the
Bayesian classifier.

In the classical literature the selective naive Bayes clas-
sifier is built following one of the following two standard
ways: forwardly starting with an empty set of variables and
adding them one by one, or backwardly by removing in each
iteration one of the variables that is discarded. The forward
sequential selection wrapper algorithm is one of the former
possibilities, which stars with an empty set of variables. At
each step the model adds the most accurate variable calculated
by estimated accuracy [30] and stops when no improvement is
obtained.

As an example of applying the selective naive Bayes clas-
sifier, if we consider the selective naive Bayes classifier
illustrated in Fig. 2(b), the representation of an instance
x = (x1, x2, x3, x4, x5), would be assigned to the class

c∗ = argmax
c

p(c)p(x1|c)p(x2|c)p(x5|c) (4)

The selective naive Bayes algorithm is able to detect irrele-
vant and redundant variables, although no dependency between
the variables present in the structure are taken into account.
However, in most of real problems relationships between vari-
ables exist and need to be considered for a good classification
performance. For this reason, other Bayesian classifiers that
overcome the conditional independence assumption between
variables have been developed.

In semi naive Bayes [31] a new kind of variable—a joint
variable—is built via the cartesian product of a subset of
variables. The variable is represented as a single node in the
Bayesian network, allowing to surpass the assumption of con-
ditional independence required in the literature [26] between
the variables that are included in a same node. Each joint node
represent a new variable that considers all the dependencies
between the original variables that form it.

The semi naive Bayes classifier requires an algorithm to build
the Bayesian network structure. The forward sequential selec-
tion and joining (FSSJ) algorithm [26] is an example of tech-
niques that can be applied for this purpose. This starts with an
empty structure to which new nodes or new variables fused in
existing nodes are added iteratively until non-improvement of
the performance in terms of estimated accuracy is reached.

As an example, Fig. 2(c) shows a possible semi naive Bayes
model that could have been induced using this approach. Under
this classifier, the pattern x=(x1, x2, x3, x4, x5) will be assigned
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to the following class:

c∗ = argmax
c

p(c)p(x1|c)p(x2, x4|c)p(x5|c) (5)

The tree augmented naive Bayes (TAN) [27] is another
Bayesian network classifier that allows dependencies between
variables. The main restriction on the dependencies that this
Bayesian classifier can take into account is that each predictive
variable can have a maximum of two parents: the class variable
C and one of the other predictive variables X1, . . . , Xn .

In order to build the TAN Bayes classifier’s structure we
need previously to learn the dependencies between the different
variables X1, . . . , Xn . This algorithm applies a score based on
the information theory, and the weight of an arc (Xi , X j ) is
defined by the mutual information measure conditioned to the
class variable as

I (Xi , X j |C) =
∑

c

∑

xi

∑

x j

p(xi , x j , c) log
p(xi , x j |c)

p(xi |c)p(x j |c) (6)

Using the mutual information of each predictive variable
and the class—I (Xi ,C)—and the conditional mutual in-
formation of each pair of domain variables given the
class—I (Xi , X j |C)—the algorithm builds a tree structure.

Once having computed these values, the Bayesian net-
work structure of the TAN Bayesian classifier is built in two
phases, the first of which starts from an undirected complete
graph where the nodes correspond to the predictor variables
X1, . . . , Xn . The algorithm assigns the weight I (Xi , X j |C)
to the edge connecting variables Xi and X j . The tree is con-
structed by assigning the edge with the highest conditional
mutual information. This process is repeated adding higher
score edges unless a possible addition forms a loop, in which
case that edge is discarded and the next edge is analysed.
The procedure ends when n − 1 branches have been added.
Finally the undirected graph is transformed in a directed one
by choosing a random variable as the root.

In a second phase the structure is augmented to the naive
Bayes classifier by adding a node labelled as C , and adding one
arc from C to each of the predictor variables Xi (i = 1, . . . , n).
Fig. 2(d) shows an example of a TAN classifier structure that
could be induced using this approach, where an instance x =
(x1, x2, x3, x4) would be assigned to the class

c∗ = argmax
c

p(c)p(x1|c, x3)p(x2|c, x3)p(x3|c, x4)p(x4|c)
× p(x5|c, x4) (7)

The k-dependence Bayesian classifier (kDB) [28] tries to
avoid the restriction of TAN structure which limits the number
of parents that each predictive variable can have to a maxi-
mum of two (the class and another predictive variable). In this
approach, every predictive variable is allowed to have up to
k parents besides the class-node. The main characteristic of a
kDB structure is the fact that it is the user who fixes the restric-
tive condition of the value of k which represents the maximum
number of parents per variable.

The kDB structure is built using mutual information—
I (Xi ,C)—and conditional mutual information—I (Xi , X j |C)
—scores. The procedure starts uniquely with the class-node C

in the structure. Each iteration the algorithm selects the node
not included in the structure with highest I (Xi ,C), its corre-
sponding arc from C to Xi is added, and the value I (Xi , X j |C)
is computed for all the possible new arcs from the X j nodes
already inserted in the structure. All these arcs are ordered
from the highest to lowest, from which the highest k nodes are
added to the structure (or all of them if the structure contains
so far k or less nodes excluding C). Fig. 2(e) shows an example
of a kDB classifier structure induced using this approach.

As an example of the result of a kDB classifier structure that
could be obtained applying this procedure, if we consider the
selective naive Bayes classifier illustrated in Fig. 2(e) as the
representation of an instance x= (x1, x2, x3, x4, x5), this would
be assigned to the class

c∗ = argmax
c

p(c)p(x1|c, x3)p(x2|c, x1, x5)p(x3|c)
× p(x4|c, x1, x3)p(x5|c, x1, x4) (8)

The main difference between all these classifiers is the num-
ber of interdependencies between variables that they can take
into account, since higher order classifiers are able to con-
sider more interdependencies between the different variables
for each problem—i.e. TAN is able to consider up to 2 con-
ditional dependencies per variable while kDB can consider up
to k. Therefore, in complex problems in which the features
have relevant conditional dependencies—such as in our em-
bryo selection problem in which morphological variables are
conditionally dependent to each other given the class—the last
classifiers are more likely to perform better.

3.3. Unbalanced data sets

The unbalanced data set issue raises from the fact of having
an unbalanced class distribution, that is, when the original
data set from which the classifier is to be built has different
proportion of cases for each of the classes. This is the case
for the embryo selection problem, since clinical data contains
always many more embryos that did not manage to implant
than examples of successful ones, making databases highly
unbalanced. This affects directly the performance of classifiers
since they usually tend to avoid the less represented class,
sometimes to the extent of practically never considering it if
the unbalance is high.

Many research on how to handle highly unbalanced data sets
has been focused on modifying the class distribution of the
training set. Since our interest is to validate Bayesian classifiers
for their application to this particular problem, an alternative
for evaluating the performance of the classifier under these con-
ditions is to apply the receiver operating characteristic (ROC)
analysis [32] to measure the cost-benefit ratio of diagnostic de-
cision making. Furthermore, the ROC curve is proven to be a
better evaluation measure than accuracy in problem domains
with unbalanced class distributions [21,33,34].

3.4. Validation of classifiers

ROC curves are frequently used in biomedical informatics
research to evaluate computational models for decision support,
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diagnosis, and prognosis [34]. ROC curves were introduced in
machine learning by Spackman [35]. ROC curves have prop-
erties that make them especially useful as a tool for evaluating
and comparing supervised classification algorithms [36,37].
ROC curves are produced by varying the threshold t be-

tween 0 and 1. This threshold value t is usually chosen to
minimise the expected misclassification loss. The ROC curve
allows to view graphically the performance of a classifier by
plotting the sensitivity—which in our case is the proportion
of embryo images correctly classified as being suitable for
implantation—versus 1-specificity—the proportion of good
embryos images misclassified as no suitable. Different points
in the curve correspond to different values of the thresh-
old on the class probability model. Several different indices
can be calculated in order to summarise the accuracy of a
classifier.
In ROC analysis the full area under the ROC curve (AUC) is

the most commonly used ROC index [38]. AUC is computed by
non-parametric, parametric or re-sampling methods to evaluate
and compare the performance of different classifiers. The AUC
obtains some value between 0.5—associated to the diagonal
of the square—and 1—corresponding to the curve that follows
the top-left corner. In ROC curves, the accuracy of a classifier
is estimated by the fraction of cases correctly classified and is
determined by the appropriated chosen threshold. Recent years
have seen an increase in the use of ROC graphs on the machine
learning community. In addition to being a generally useful
performance graphical method, they have properties that make
them especially useful for domains with unbalanced data sets
and unequal classification error costs [21,34]. These character-
istics have become increasingly important as research into the
areas of cost-sensitive learning and learning in the presence of
unbalanced classes.
We evaluate the performance of Bayesian classifiers with

ROC analysis in order to show their performance and to get
the estimated accuracy of the classifier over seen instances. In
our case, the areas under ROC curves were calculated by the
trapezoidal rule [39] non-parametric method. This method is
equivalent to the Mann–Whitney U statistics.
A technique to estimate the accuracy of classifiers is the k-

fold stratified cross-validation [30]. In this method a data set
S is partitioned into k folds such that each class is uniformly
distributed among the k folds: As a result, the class distribution
in each fold is similar to such of the original data set S, and
each fold can be used as a test set. The test set serves the role
of providing new data and the rest of the folds are used for
training. This procedure is repeated k times. In our case, we
applied 10-fold cross-validation to get the estimated accuracy
of each Bayesian classifier.

4. Experimental results

For our study, we applied a database containing continuous
variables where each case corresponds to morphological em-
bryo features, and the categorical variable class. The Bayesian
classifiers introduced previously are implemented to manage
uniquely discrete data. Therefore, a pre-process step is applied

Table 1
Results the best accuracy for selection of human embryo classification by
Bayesian classifiers .

Classifier Accuracy ± SD

Naive Bayes 0.8549 ± 0.1757
Selective naive Bayes 0.8333 ± 0.1610
Semi naive Bayes 0.7848 ± 0.0262
TAN 0.8917 ± 0.1580
kDB 0.8833 ± 0.1285
TAN-wrapper 0.9125 ± 0.1186
kDB-wrapper 0.8763 ± 0.1124

to discretise the data, by means of the equal frequency
algorithm [40] into three intervals. The Elvira software
[41] is used in the implementation of the previously pre-
sented Bayesian classification models. In order to validate
the Bayesian classification models a k-fold stratified cross-
validation method is performed [30], and the estimated accu-
racy for each classifier is computed using this method.

We applied a cost sensitive learning by varying the decision
threshold values, in our case 1000 values have been taken into
account for Bayesian learning. This process is similar to vary
the prior probability of each class on the training set or the costs
of errors on each class [42]. Cost sensitivity learning by varying
the decision threshold allows the minimisation of the Bayes
error rate, defined by the overlap between the two distributions
of class values [43].

We performed our experiments with the same database used
in the literature in [12], which contains the information of the
six central moments extracted from a total of 249 embryo im-
ages. These are formed by a total of 35 successful—i.e. implan-
tation was obtained—and 214 unsuccessful cases of embryos
that were transferred.

We investigated the performance of different Bayesian clas-
sifier when applied to the problem of selecting the human em-
bryo for transfer to the uterus. Table 1 shows the results after
evaluating the estimated accuracy of seven Bayesian classifiers
by stratified 10-fold cross validation. In TAN and kDB algo-
rithms introduced in Section 3.2, the search of the best model
is guided by the mutual information criterion. Alternatively to
this, the algorithms TAN-wrapper and kDB-wrapper models
[15] have been implemented, in which the search in the space
of possible graph structures of TAN and kDB models, respec-
tively, is guided by another score based on an estimated clas-
sification goodness measure. Our experiments show that the
TAN-wrapper classifier obtained the best accuracy while semi
naive Bayes resulted in the worst classifier.

Fig. 3 shows the ROC analysis for evaluation of the pre-
viously defined Bayesian classifiers. The experiment was re-
peated ten times to calculate by k-fold cross-validation the AUC
at 95% of confidence. Each figure was plotted with one hundred
points and shows ten error bars at 95% confidence intervals.
Looking on Fig. 3 it must benoted that TAN-wrapper, kDB-
wrapper, TAN and kDB classifiers showed the highest AUC.
The kDB classifier reaches the best sensibility of 82% with a
specificity of 80%. The TAN-wrapper classifier reaches higher
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Fig. 3. Results on ROC curve for the different Bayesian classifiers at 95% confidence based on 10 runs. (a) Naive Bayes, (b) selective naive Bayes, (c) TAN,
(d) kDB, (e) TAN-wrapper, and (f) kDB-wrapper.

sensibility of 92% with specificity 60%, and the classifier with
highest specificity of 90% and the best sensitivity of 74% is
kDB-wrapper.

The fact that the two Bayesian classifiers performing best
are TAN and kDB is not a random. These two classifiers do
not assume predictor variables to be conditionally independent
to each other given the class variable, and are characterised by
the fact that the resultant Bayesian classifier structure is able to
represent conditional dependencies between variables. We can
conclude that this information is relevant for providing a better
classification result to predict the implantation outcome from
data extracted out of an embryo image. Table 2 shows the areas
under these curves and their confidence intervals at 95% confi-

dence bound. The TAN-wrapper, kDB, kDB-wrapper and TAN
have the highest AUC with 0.9994, 0.9991, 0.9819 and 0.9454
values, respectively. In the traditional Bayesian classifiers like
semi naive Bayes, selective naive Bayes and naive Bayes, their
AUCs takes values of 0.7008, 0.8483 and 0.8918, respectively.

Finally, in order to compare Bayesian classifiers to a base-
line method that has been applied widely in the literature for
the embryo selection problem, we performed the same experi-
ment with logistic regression [44–46]. Using the default param-
eters of the WEKA workbench we applied a logistic regression
model with a log-likelihood ridge estimator value of 1.0E−8 to
the same data. The accuracy obtained following the same val-
idation method as with Bayesian classifiers was 82.23%, and
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Table 2
Areas under ROC curves (AUC) at 95% confidence for each of the different
Bayesian classifiers when applied to the selection of human embryos .

Classifier AUC ± SD

Naive Bayes 0.8918 ± 0.0718
Selective naive Bayes 0.8483 ± 0.0175
Semi naive Bayes 0.7008 ± 0.0643
TAN 0.9454 ± 0.0785
kDB 0.9991 ± 0.0525
TAN-wrapper 0.9994 ± 0.0589
kDB-wrapper 0.9819 ± 0.0264

with 0.535 of AUC. Since the results obtained by Bayesian
classifiers improves these values—except from the accuracy of
semi naive Bayes) once again the validity of our approach is
confirmed.

5. Conclusions and future work

This paper constitutes the first Bayesian approach for the es-
timation of the implantation probability of embryos in artificial
insemination treatments as from embryo images, and we in-
vestigated here the ability of Bayesian classifiers to predict the
suitability of an embryo to succeed implantation if it is cho-
sen for being transferred. The final objective is to support the
selection of the most promising available embryos in order to
choose the few of them which have good quality and the great-
est potential for implantation. Bayesian classifiers could be used
to build decision support systems for embryologists to address
the problem of selection of embryos for transfer in human-
assisted reproduction treatments. Here different Bayesian clas-
sifiers have been evaluated and compared by ROC analysis to
overcome the unbalance data set problem.
Our results for Bayesian classifiers are positive enough as to

allow considering them satisfactorily for this problem. From all
the classifiers, the ones that performed best are TAN and kDB,
the only two which are able to take into account conditional
dependencies between variables to bring a conclusion, which
evidences the complexity of the problem and the relevance
to consider in order to be able to improve the classification
accuracy.
If we compare our results to the ones obtained in the lit-

erature for the embryo selection problem, we obtain a good
performance of Bayesian classifiers, in particular for TAN
with wrapper feature selection with 91% of accuracy. The
lowest accuracy with our Bayesian classifiers the 78% of
the semi naive Bayes classifier, which is still comparable to the
82.33% obtained for the same data using logistic regression,
and also to the 81.79% on the study in [12] with the original
data set using a different validation method. Regarding other
studies, Saith et al. [8] obtained a 74% of accuracy applying
the second rule into the classification tree algorithm. There-
fore, our work proves that Bayesian classifiers are a valid
approach for the problem of classifying embryos for posterior
transfer.

Additionally, we have studied here the expected and best
performance of the Bayesian classifiers, considering the un-
balance on the data set by analysing the ROC curves as well
as the threshold for the best accuracy of the ROC curve
solutions.

In our experiments, we have not yet considered other meth-
ods for extraction of characteristics from images. This has been
left for future work.

Other future work trends in this direction include the acqui-
sition of new data that includes morphological embryo features
from human embryo images and clinical data of the patient,
since increasing the number of predictor variables that may im-
prove the efficiency of Bayesian classifiers. Additional infor-
mation provided by these information sources has been shown
to be related to the outcome of IVF treatments in the literature
[14]. On the other hand, the use of Bayesian classifiers for con-
tinuous data [47] is an alternative to improve the best solutions
found on the analysis provided by ROC curves.
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