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Abstract
Multi-dimensional classification is a cutting-edge problem, in which the values of multiple 
class variables have to be simultaneously assigned to a given example. It is an extension 
of the well known multi-label subproblem, in which the class variables are all binary. In 
this article, we review and expand the set of performance evaluation measures suitable for 
assessing multi-dimensional classifiers. We focus on multi-dimensional Bayesian network 
classifiers, which directly cope with multi-dimensional classification and consider depend-
encies among class variables. A comprehensive survey of this state-of-the-art classification 
model is offered by covering aspects related to their learning and inference process com-
plexities. We also describe algorithms for structural learning, provide real-world applica-
tions where they have been used, and compile a collection of related software.

Keywords Multi-dimensional classification · Multi-label classification · Bayesian 
networks · Performance evaluation measures · Structural learning · Bayesian network 
inference complexity

1 Introduction

The multi-dimensional (supervised) classification problem refers to an extension of the tra-
ditional one-dimensional classification problem, in which one deals with multiple (usually 
related) class variables instead of a single one. Multi-dimensional classification can also be 
seen as a generalization of the better-known multi-label classification problem (Tsoumakas 
and Katakis 2007; Zhang and Zhou 2014), where all the class variables (called labels) are 
binary and can be present or absent for any example. Multi-label classification problems 
come about in numerous application domains, e.g., a person can simultaneously feel multi-
ple emotions (a given emotion is felt, present, or not, absent), a film may belong to multiple 

 * Santiago Gil-Begue 
 sgil@fi.upm.es

 Concha Bielza 
 mcbielza@fi.upm.es

 Pedro Larrañaga 
 pedro.larranaga@fi.upm.es

1 Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Campus de 
Montegancedo, Boadilla del Monte, 28660 Madrid, Spain

http://orcid.org/0000-0002-6506-7033
http://orcid.org/0000-0001-7109-2668
http://orcid.org/0000-0003-0652-9872
http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-020-09858-x&domain=pdf


520 S. Gil-Begue et al.

1 3

genres, a drug may have multiple biological actions, a customer can be the target of multi-
ple related products, music may be performed by multiple instruments (Gibaja and Ventura 
2015). However, there are many others real-world problems that need to be approached 
with multi-dimensional classification, since the class variables may represent other non-
binary information, such as:

• the grade of presence of a label, e.g., a patient presents no problems, some problems or 
severe problems (Borchani et al. 2012);

• the score on a discrete scale, e.g., a customer post is negative, neutral or positive 
(Ortigosa-Hernández et al. 2012); or

• the type of a category set, e.g., the species of a neuron (Fernandez-Gonzalez et  al. 
2015).

Multi-dimensional classification is a more difficult problem than its one-dimensional 
and multi-label counterparts (Bielza et al. 2011). A large number of possible class configu-
rations, |I| , and a usual sparseness of available data are the main problems in this multi-
dimensional context. In quantitative terms, for d class variables of K possible values each1, 
it holds that |I| = Kd in the multi-dimensional problem, compared to |I| = 2d in the multi-
label case, and |I| = K in the one-dimensional scenario. Besides the problem of high car-
dinality, it is also hard to estimate the required parameters to model the joint probability 
distribution from a (sparse) data set in the d-dimensional space I (Bielza et al. 2011). In 
addition, multi-dimensional (and multi-label) classification usually involve dependencies 
between class variables (Read et al. 2013).

According to the popular taxonomy presented by Tsoumakas et  al. (2009), there are 
two main strategies for solving multi-label classification problems: problem transforma-
tion methods and algorithm adaptation methods. We argue that this taxonomy can be also 
extrapolated to more general multi-dimensional classification problems. The former trans-
form a multi-dimensional problem into one or more one-dimensional problems, whereas 
the latter extend a one-dimensional algorithm to directly handle multi-dimensional data 
(e.g., Zhang and Zhou 2007 proposed a multi-label extension of the traditional k-nearest 
neighbor algorithm). Binary relevance and label powerset (Boutell et  al. 2004) are two 
simple, well known problem transformation methods that construct, respectively, one inde-
pendent classifier per class variable and a single classifier with a compound class variable 
that models all possible joint configurations of the class variables. Binary relevance meth-
ods do not capture interactions among the class variables, and may not return the most 
likely configuration of class values, but return the most likely class value for each inde-
pendent classifier. Label powerset methods can implicitly model interclass correlations, 
although the compound class variable these methods generate usually has too many val-
ues, with extremely few training examples for some of them. Moreover, these methods are 
unable to generalize to any compound class configurations that do not appear in the train-
ing set. Both methods have been extended to more sophisticated (but less interpretable) 
algorithms that overcame some of those limitations, such as chain classifiers (Read et al. 
2011), which extended binary relevance, random k-labelsets (Tsoumakas and Vlahavas 
2007) and (ensembles of) pruned sets (Read 2008), both of which adapted label powerset, 
among other algorithms.

1 This is a simplification taken from Read et al. (2013) to facilitate discussion of the problem complexity. 
Actually, we will see later that each class variable can take a different number of values.
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Nowadays, interpretable machine learning is in high demand (Rudin 2019). Standard (one-
class) Bayesian network classifiers (Friedman et al. 1997; Bielza and Larrañaga 2014) offer 
an explicit, graphical, and interpretable representation of uncertain knowledge supported by 
probability theory, and have shown competitive results in traditional classification problems. 
However, they cannot deal with multi-dimensional problems in a straightforward manner. On 
the one hand, they could be used (as base classifiers) together with any of the aforementioned 
problem transformation methods as this approach is algorithm-independent, but the interpret-
ability of the model would be reduced. For example, they have been used together with chain 
classifiers (Zaragoza et al. 2011b; Sucar et al. 2014; Rivas et al. 2018). On the other hand, 
an algorithm adaptation method of standard Bayesian networks classifiers has been proposed 
to directly solve multi-dimensional classification problems. The so-called multi-dimensional 
Bayesian network classifier (MBC) (van der Gaag and de Waal 2006; Bielza et al. 2011): (1) 
allows reduction of the number of required parameters that multi-dimensional classification 
entails by means of a factorization of the joint probability distribution by exploiting condi-
tional independences among variables, (2) takes into account the relationships between the 
class variables by joining all of them in the same classification task, and (3) offers an inher-
ently interpretable model and many other advantages inherited from standard Bayesian net-
work classifiers (Bielza and Larrañaga 2014).

MBCs have received increasing attention, and several contributions can be found in the 
literature, in which they have shown competitive results for multi-dimensional classifica-
tion. This current article offers two main contributions: (1) a comprehensive survey on the 
family of MBCs including their learning, inference, applications and software, and (2) the 
extension of three multi-dimensional performance measures, to provide other complemen-
tary forms of evaluation of multi-dimensional classification problems.

The remainder of this article is organized as follows. In Sect. 2, formal definitions of the 
multi-dimensional classification problem and a description of the fundamentals of MBCs 
are provided. In Sect. 3, some aspects related to the complexity of MBCs in both model 
learning and inference problems are covered and extended. In Sect. 4, reviews of existing 
performance evaluation measures suitable for assessing multi-dimensional classifiers are 
given, along with a proposal for a new set of measures. In Sect. 5, the approaches proposed 
in the literature for structural learning are presented, while in Sect. 6 real-world applica-
tions where MBCs have been used are described, together with a collection of software 
for learning MBCs and benchmark data sets that are found in the literature to deal with the 
multi-dimensional problem. Finally, in Sect. 7 a discussion and future work are provided.

2  Fundamentals

2.1  Multi‑dimensional classification

A one-dimensional supervised classification problem consists of finding a function h1 that 
assigns a single value c to each example given by a vector value � = (x1,… , xm) of m fea-
ture variables:

We assume that C is a discrete class variable, where ΩC denotes its sample space. Anal-
ogously, ΩXi

 is the sample space of the discrete feature variable Xi for all i ∈ {1,… ,m} 

h1 ∶ ΩX1
×⋯ × ΩXm

→ ΩC

(x1,… , xm) ↦ c
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(Bielza et  al. 2011). These problems are classically binary, i.e., ||ΩC
|| = 2 . When each 

example is assigned to a single value within a larger sample space, i.e., ||ΩC
|| ≥ 2 , the prob-

lem is called multi-class classification.
In a multi-dimensional classification problem one deals with multiple class variables 

C1,… ,Cd , such that a vector � = (c1,… , cd) of d class values is assigned to each example 
by a function hd (Bielza et al. 2011):

We assume that Cj is a discrete class variable, for all j ∈ {1,… , d} , where ΩCj
 denotes 

its sample space and I = ΩC1
×⋯ × ΩCd

 is the space of joint configurations of the class 
variables (Bielza et al. 2011). When all the class variables are binary, i.e., |ΩCj

| = 2 for all 
j ∈ {1,… , d} , where each one represents a label that may be assigned or not to a given 
example, the problem is called multi-label classification (Zhang and Zhou 2014). The posi-
tive and negative values of these binary variables represent, respectively, what in the litera-
ture is said as ≪ a label is relevant≫ or ≪irrelevant≫ for a given example. We hereby sug-
gest not to use this terminology, as it may be confused with that in the feature subset 
selection context, in which a feature variable is said to be relevant or irrelevant with respect 
to a given class variable. Instead, the terms ≪the label is present≫ or ≪absent≫ will be 
used, respectively. Multi-label classification is actually a better-known problem, and con-
siderable contributions can be found in the literature. For example, the two recent reviews 
by Zhang and Zhou (2014) and Gibaja and Ventura (2015) present the main aspects of the 
multi-label paradigm that have been developed during recent years.

With the aim of avoiding possible confusion, we would like to remark that multi-label 
classification is usually defined in the literature with other notation, as follows:

such that a labelset Y (i.e., a subset of labels) that comes from a set of d possible labels 
�1,… , �d is assigned to each example. A (binary) class variable Cj is viewed as the pres-
ence/absence of a label �j , for all j ∈ {1,… , d} . Nevertheless, this is simply another nota-
tion, and multi-label classification can still be reformulated from a multi-dimensional clas-
sification point of view as in Eq. (1).

Note that a binary classification problem is a particular setting of multi-class classifi-
cation with ||ΩC

|| = 2 , and multi-label classification with d = 1 . Also, note that these two 
paradigms, multi-class and multi-label classification, give rise to the more general multi-
dimensional classification problem (Fig. 1).

(1)
hd ∶ ΩX1

×⋯ × ΩXm
→ ΩC1

×⋯ × ΩCd

(x1,… , xm) ↦ (c1,… , cd)

hd ∶ ΩX1
×⋯ × ΩXm

→ Y ⊆ {𝜆1,… , 𝜆d},

Fig. 1  Relationships between the 
different paradigms of classifica-
tion problems
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2.2  Multi‑dimensional Bayesian network classifiers

A Bayesian network (Pearl 1988; Koller and Friedman 2009) over a set of discrete ran-
dom variables {Z1,… , Zn} , n ≥ 1 , is a pair B = (G,�) . G = (V ,A) is a directed acyclic 
graph (DAG) whose vertices V correspond to variables Zi and whose arcs A represent 
direct probabilistic dependencies between the variables. � is a vector of parameters such 
that �zi|��G(zi) = p(zi|��G(zi)) defines the conditional probability of each possible value zi 
of Zi given a vector value ��G(zi) of the parents of Zi in G. B represents the joint prob-
ability distribution pB over all random variables factorized according to its structure, G:

 Bayesian network classifiers (Friedman et  al. 1997; Bielza and Larrañaga 2014) are 
Bayesian networks of restricted topology tailored to solve one-dimensional classification 
problems. The finite set of vertices V of a Bayesian network classifier is partitioned into a 
set, VX = {X1,… ,Xm} , m ≥ 1 , of feature variables, and a singleton set VC = {C} that cor-
responds to the class variable (i.e., n = m + 1).

An MBC is a Bayesian network especially designed to solve multi-dimensional clas-
sification problems. The graph G = (V ,A) of an MBC has a set V of vertices also parti-
tioned into two sets VC = {C1,… ,Cd} , d ≥ 1 , of class variables, and VX = {X1,… ,Xm} , 
m ≥ 1 , of feature variables (i.e., n = m + d ). Note that Bayesian network classifiers are a 
particular setting ( d = 1 ) of MBCs (Bielza et al. 2011). The graph has also a restricted 
topology in which the set of arcs A is partitioned into three sets: AC , AX and ACX . The 
first time MBCs were proposed by van der Gaag and de Waal (2006), the three sets of 
arcs were defined as: 

1. The set AC ⊆ VC × VC is composed of the arcs between the class variables, that form a 
subgraph GC = (VC,AC) , called the class subgraph, of G induced by VC;

2. The set AX ⊆ VX × VX is composed of the arcs between the feature variables, that form 
a subgraph GX = (VX ,AX) , called the feature subgraph, of G induced by VX;

3. The set ACX ⊆ VC × VX is composed of the arcs from the class variables to the feature 
variables, that form a subgraph GCX = (V ,ACX) , called the feature selection subgraph, of 
G induced by V, such that for each Xi ∈ VX , there is a Cj ∈ VC with the arc (Cj,Xi) ∈ ACX 
and for each Cj ∈ VC , there is an Xi ∈ VX with the arc (Cj,Xi) ∈ ACX.

MBCs were later extended by Bielza et al. (2011) such that the two conditions of the set 
of arcs ACX were removed, and the resulting subgraph was renamed using another term: 

3. The set ACX ⊆ VC × VX is composed of the arcs from the class variables to the fea-
ture variables, that form a subgraph GCX = (V ,ACX) , called the bridge subgraph, of G 
induced by V.

This last definition has been more widely adopted in the literature. Figure 2 shows 
an example of an MBC structure and its three subgraphs. Note that the initial defini-
tion of van der Gaag and de Waal (2006) does not recognize this structure as an MBC 
because for X4 ∈ VX , there is no Cj ∈ VC with (Cj,X4) ∈ ACX . The extension of Bielza 
et al. (2011) can be seen as a more general definition.

pB(z1,… , zn) =

n∏
i=1

p(zi|��G(zi)).
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This introduction subsection to MBCs has been mostly reproduced from the subsection 
with same name of Gil-Begue et al. (2018).

2.3  Families of MBCs

As van der Gaag and de Waal (2006) detailed, different families of MBCs can be distin-
guished if one looks at their graphical structures. Later, Bielza et  al. (2011) proposed a 
complete conventional notation based on the fact that, in general, class and feature sub-
graphs may be empty, trees, forests of trees, polytrees, and general DAGs. Thus, the dif-
ferent families of MBCs in these two subgraphs are named as {class subgraph 
structure}-{feature subgraph structure} MBC, which can possess any of 
the five, aforementioned structures. As an example, if both the class and feature subgraphs 
of an MBC are trees, then it belongs to the tree-tree MBCs family. Other examples of 
MBC families are shown in Fig. 3.

Bielza et al. (2011) stated that well known Bayesian network classifiers such that naïve 
Bayes (Minsky 1961), selective naïve Bayes (Langley and Sage 1994), tree-augmented 
naïve Bayes (Friedman et  al. 1997), selective tree-augmented naïve Bayes (Blanco et  al. 
2005) and k-dependence Bayesian classifiers (Sahami 1996) are special cases of MBCs 
where d = 1 . Some of them have been extended to the multi-dimensional context: multi-
dimensional naïve Bayes and tree-augmented naïve Bayes (van  der Gaag and de  Waal 

Fig. 2  An example of an MBC structure with its three subgraphs

(a) (b) (c)

Fig. 3  Examples of graphical structures belonging to different families of MBCs
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2006) and multi-dimensional k-dependence Bayesian classifiers (Rodríguez and Lozano 
2008).

2.4  CB‑decomposable MBCs

Bielza et al. (2011) defined class-bridge decomposable MBCs (CB-MBCs for short) such 
that: 

1. GC ∪ GCX can be decomposed as GC ∪ GCX =
⋃r

i=1
(GCcompi

∪ G(CX)compi
) , r ∈ {2,… , d} , 

where GCcompi

∪ G(CX)compi
 , with i ∈ {1,… , r} , are its r maximal connected components2.

2. ��(VCcompi

) ∩ ��(VCcompj

) = � , with i, j ∈ {1,… , r} and i ≠ j , where ��(VCcompi

) denotes 
the children of all the variables in VCcompi

 , i.e., the subset of class variables in GCcompi

 (non-
shared children property).

An example of a CB-MBC structure is found in Fig. 4a, which has r = 3 maximal connected 
components as shown in Fig. 4b. The subgraph to the left of the first dashed vertical line is 
GCcomp1

∪ G(CX)comp1
 , i.e., the first maximal connected component, such that VCcomp1

= {C1,C2} 
and ��(VCcomp1

) = {X1,X2} . Analogously, the subgraph between the dashed lines is the second 
maximal connected component GCcomp2

∪ G(CX)comp2
 , with VCcomp2

= {C3} and 
��(VCcomp2

) = {X3,X4} . Finally, the subgraph to the right-hand side is the third maximal con-
nected component GCcomp3

∪ G(CX)comp3
 , such that VCcomp3

= {C4,C5} and ��(VCcomp3

) = {X5,X6} . 
It holds that ��({C1,C2}) ∩ ��({C3}) = � , ��({C1,C2}) ∩ ��({C4,C5}) = � and 
��({C3}) ∩ ��({C4,C5}) = � as required. Note that the class subgraph of a CB-decomposa-
ble MBC is always a forest structure, but not all MBCs with a forest class subgraph structure are 
CB-decomposable (i.e., the MBC shown in Fig.  3c is not a CB-MBC as 
��({C1,C2}) ∩ ��({C3,C4}) = {X3} ≠ �).

We will see later that an inference process over a CB-MBC can be computed indepen-
dently in each maximal connected component with the implied computational savings.

(a) (b)

Fig. 4  An example of a CB-MBC structure with its three maximal connected subgraphs

2 A graph is said to be maximal connected if there is a path between every pair of vertices in its undirected 
version (Bielza et al. 2011).
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3  Complexity in MBCs

3.1  Learning problem: the cardinality of an MBC structure space

Bielza et  al. (2011) stated that knowledge about the cardinality of an MBC structure 
space can help us infer the complexity of the learning problem, as many algorithms for 
learning MBCs from data move within this space (see Sect. 5). Thus, they calculated the 
number of all possible MBC structures, and highlighted two cases. The first is the gen-
eral MBC defined by Bielza et al. (2011), while the other is the initial definition of an 
MBC by van der Gaag and de Waal (2006), which places two constraints on the MBC 
bridge subgraph: (a) for each Xi ∈ VX , there is a Cj ∈ VC with the arc (Cj,Xi) ∈ ACX , and 
(b) for each Cj ∈ VC , there is an Xi ∈ VX with the arc (Cj,Xi) ∈ ACX . 

1. The number of all possible MBC structures with d class variables and m feature vari-
ables, MBC(d,m) , is (Bielza et al. 2011, Theorem 6): 

where 

is Robinson’s formula (Robinson 1973) that counts the number of possible DAG struc-
tures of n nodes, which is initialized as S(0) = S(1) = 1 . Therefore, S(d) and S(m) count 
the possible number of DAG structures in the class subgraph and feature subgraph, 
respectively. 2dm is the number of possible bridge subgraphs.

2. The number of all possible MBC structures with d class variables and m feature vari-
ables, m ≥ d , that satisfy conditions (a) and (b), MBCab(d,m) , is (Bielza et al. 2011, The-
orems 7, 8): 

where BRS(d,m) counts the number of all possible bridge subgraphs of the MBCs that 
satisfy the two previous conditions: 

which is in turn calculated from all bridge subgraphs with k arcs, BRS(d,m, k) , with 
k ≥ m so that there is no feature variable with no connection and k ≤ dm is the maxi-
mum possible number of arcs in a bridge subgraph: 

Any invalid subgraph that does not satisfy the two required conditions is subtracted 
from all possible bridge subgraphs with k arcs, 

(
dm

k

)
 , knowing that k=dm−d+1 is the 

MBC(d,m) = S(d) ⋅ 2dm ⋅ S(m),

S(n) =

n∑
i=1

(−1)i+1
(
n

i

)
2i(n−i)S(n − i)

MBCab(d,m) = S(d) ⋅ BRS(d,m) ⋅ S(m),

BRS(d,m) =

dm∑
k=m

BRS(d,m, k),

BRS(d,m, k) =

(
dm

k

)
−

∑
x ≤ d, y ≤ m

k ≤ xy ≤ dm − d

(
d

x

)(
m

y

)
BRS(x, y, k).
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minimum number of arcs required for a bridge subgraph to be always valid. The recur-
sion is initialized as BRS(1, 1, 1) = BRS(1, 2, 2) = BRS(2, 1, 2) = 1.

Bielza et al. (2011) showed that:

Thus, it holds that BRS(d,m) < 2dm , for all d ≥ 1 and m ≥ 1 , because the bridge sub-
graphs that do not satisfy the two required conditions are subtracted from the number of 
all possible bridge subgraphs, i.e., 2dm . Therefore, it holds that MBCab(d,m) < MBC(d,m) , 
for all d≥1 and m≥1 . Knowing that the complexity of Robison’s formula (Robinson 1973) 
was shown to be super-exponential, i.e., O(S(n)) = n2

O(n) , then the complexity of the MBC 
structure space is (Bielza et al. 2011, Corollary 4):

In this work, we extend the existing knowledge about the cardinality of the MBC struc-
ture space by computing the number of all possible CB-MBC structures with d class 
variables, m feature variables and r maximal connected components that satisfy both con-
straints, (a) and (b), on the MBC bridge subgraph, CB-MBCab(d,m, r) , which thus require 
r ≤ min{d,m}:

This recursive formula computes for the first maximal connected component all possible 
combinations that include x class variables, 

(
d

x

)
 , and y feature variables, 

(
m

y

)
 , up to a maximum 

of d−r+1 and m−r+1 , respectively, so that the following components have also at least one 
class and feature variable in order to satisfy conditions (a) and (b). Next, all possible non-
decomposable structures, i.e., those with just one maximal connected component, are com-
puted for each previous combination of variables. The recursion continues for each combina-
tion with the count of structures having r−1 components over the remaining d−x class 
variables and m−y feature variables, and ends with the count of structures for the last maximal 
connected component. For this, a single component must be forced to be non-decomposable:

which is achieved by subtracting all structures with multiple components from all possible 
MBC structures. Division by r! is required of all computed structures in order to remove 
all identical structures because of having to account for the order of the components (note 
that Eq. (2) only shows a division by r because the factorial is automatically done through 
the recursion).

Table 1 and Fig. 5 offer a better visualization of this super-exponential complexity by 
computing the cardinality of the MBC structure space for different numbers of variables 
and maximal connected components. It is clearly observed that a huge growth in the num-
ber of structures occurs when more variables are added to the classification problem, which 

BRS(d,m) = 2dm −

m−1∑
k=0

(
dm

k

)
−

dm∑
k=m

∑
x ≤ d, y ≤ m

k ≤ xy ≤ dm − d

(
d

x

)(
m

y

)
BRS(x, y, k).

O(MBC(d,m)) = O(MBCab(d,m)) = 2dm(max{d,m})2
O(max{d,m})

.

(2)

CB-MBCab(d,m, r) =
1

r

d−r+1∑
x=1

(
d

x

) m−r+1∑
y=1

(
m

y

)
CB-MBCab(x, y, 1) CB-MBCab(d − x,m − y, r − 1).

CB-MBCab(d,m, 1) = MBCab(d,m) −

min{d,m}∑
r=2

CB-MBCab(d,m, r),
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makes evident the need for learning algorithms that search efficiently within this structure 
space. We can also observe that the MBC definition of Bielza et al. (2011) is more gen-
eral and accepts a greater number of valid structures compared to the definition of van der 
Gaag and de Waal (2006), although this does not make much difference and both remain 
in the same order of magnitude. The number of all possible DAG structures of a standard 
Bayesian network over all variables, S(d+m) , is larger by a few more orders of magnitude, 
which is explained by the restriction of arcs from the feature variables to the class vari-
ables. Finally, the dimension of the CB-MBC structure space is several orders of magni-
tude smaller than the general MBC structure space, and it can be further reduced for more 
maximal connected components.

Table 1  Number of DAG and MBC structures for different numbers of d class variables, m feature variables 
and r maximal connected components

d m r CB−MBC
ab(d,m, r) MBC

ab(d,m) MBC(d, m) S(d+m)

2 3 2 18 1875 4800 29,281
3 4 2 28,278 2.96 × 107 5.56 × 107 1.14 × 109

3 108
6 2 4.07 × 108 1.09 × 1013 2.48 × 1013 1.21 × 1015

3 7.83 × 104

4 6 2 2.96 × 1011 2.24 × 1016 3.44 × 1016 4.18 × 1018

3 3.08 × 107

4 2.17 × 104

9 2 4.07 × 1021 2.52 × 1028 4.53 × 1028 1.87 × 1031

3 3.31 × 1015

4 9.98 × 109

Fig. 5  Number of DAG and MBC structures for different numbers of variables (i.e., n) in a classification 
problem. The shadowed area is plotted for MBCs instead of a single line because different cardinalities are 
obtained for different numbers of m feature and d class variables ( n = m + d , with m ≥ 1, d ≥ 1 ). The larg-
est structure space is obtained for d = 1 or m = 1 , and the smallest for d = ⌊ n

2
⌋ or d = ⌈ n

2
⌉ . CB-MBC

ab(d,m) 

is the number of structures with multiple maximal connected components, i.e., 
∑min{d,m}

r=2
CB-MBC

ab(d,m, r)
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3.2  Inference problem: The tractability of multi‑dimensional classification in MBCs

In this section, we review the existing literature about the complexity of the inference pro-
cess in MBCs. Multi-dimensional classification needs a loss function �(��, �) for each pair 
of vectors ��, � ∈ I that represents the cost of classifying an example as �′ when its true 
value is � . Two loss functions have been studied in the literature. The first is the standard 
0-1 loss function that assigns a unit loss to any error, i.e., whenever �′ ≠ � , and no loss to a 
correct classification, i.e., when �� = � (Bielza et al. 2011). The second is the additive CB-
decomposable loss function that fits CB-MBC structures.

3.2.1  0‑1 loss functions

Let

be the expected loss or conditional risk of classifying a vector of feature values � as the 
class configuration �′ . Then, under a 0-1 loss function, the Bayes decision rule that mini-
mizes the expected loss R(��|�) is equivalent to selecting the class configuration �g that 
maximizes the posterior probability p(�g|�) (Bielza et al. 2011, Theorem 1):

In this way, performing multi-dimensional classification with a 0-1 loss function and 
assuming that all the feature variables are observed is equivalent to computing the most 
probable explanation (MPE) of the class variables (Bielza et  al. 2011). This problem is 
a type of maximum a posteriori, i.e., a more general concept where there is no need to 
observe all the feature variables.

It has been shown that computing the MPE in Bayesian networks is an NP-hard prob-
lem (Shimony 1994), likewise approximating it with a constant ratio bound (Abdelbar and 
Hedetniemi 1998). As Bielza et al. (2011) summarized, algorithms that solve this problem 
in an exact way include approaches that use junction trees (Dawid 1992; Dechter 1999), 
variable elimination (Li and D’Ambrosio 1993) and branch-and-bound searches (Kask 
and Dechter 2001; Marinescu and Dechter 2009). Approximate algorithms cover the use 
of genetic algorithms (Gelsema 1995; Rojas-Guzman and Kramer 1993), stochastic local 
search algorithms (Kask and Dechter 1999; Hutter et al. 2005), variable elimination (Dech-
ter and Rish 1997), best-first searches (Shimony and Charniak 1990) and linear program-
ming (Santos 1991).

In order to obtain the MPE, it is necessary to compute the posterior probabilities of all 
the class configurations in I. Bielza et al. (2011) followed a special ordering when enumerat-
ing this I space, which was motivated by the similarity between the posterior probability of 
two class configurations that have the same class values in all variables but one. For this, the 
authors proposed an extension of the Gray code adaptation presented by Guan (1998), such 
that it allows enumerating joint configurations of class variables with different numbers of 
possible values, where each pair of adjacent configurations differs in a single variable with a 
difference of just 1 or – 1. The authors showed in their Theorem 2 the savings and an upper 

R
(
��|�) =

|I|∑
g=1

�
(
��, �g

)
p
(
�g|�

)

min
��∈I

R
(
��|�) ⇔ max

�g∈I
p
(
�g|�

)
.
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bound when comparing the number of factors needed in the posterior probability computa-
tions with Gray codes and with standard brute-force.

The same authors exploited the special structure of CB-MBCs and showed in their Theo-
rem 3 that the maximization problem of obtaining the MPE can be decomposed into r-inde-
pendent maximization problems over smaller spaces, i.e., over each space of joint configura-
tions Ij of the class variables belonging to the j-th maximal connected component:

where

Bielza et al. (2011) showed that it holds:

The same idea of enumerating all class configurations with an extension of the Gray 
code was applied in Bielza et al. (2011, Theorem 4) on each maximal connected compo-
nent of a CB-MBC, which leads to even greater gains in the number of factors needed to 
calculate the posterior probabilities of all the class configurations in the computation of the 
MPE.

The remainder of this subsection was reviewed by Benjumeda et al. (2018). Although the 
problem of obtaining the MPE in a Bayesian network B is usually NP-hard, it can be computed 
in polynomial time in B if the treewidth, treewidth(G), of its structure G is bounded (Sy 1992). 
The treewidth of a directed graph is the width of its moralized graph, i.e., the undirected graph 
that results from connecting the parents of each variable and subsequently eliminating the 
directions of the arcs (Fig. 6b). Given MBC structural constraints, de Waal and van der Gaag 
(2007) showed in their Theorem 1 that the MPE can be computed in polynomial time if the 
treewidth of its feature subgraph GX and the number of class variables d are restricted as:

which implies that the connectivity of the class subgraph is not relevant for the tractability 
of the classification (Bielza et al. 2011). Kwisthout (2011) applied the same idea to CB-
MBC structures:

(3)max
�g∈I

p
(
�g|�

)
∝

r∏
j=1

max

�
↓VCcompj
g ∈Ij

∅�
j

(
�g

↓VCcompj

)
,

∅�
j

(
�
↓VCcompj

g

)
=

∏
Ck∈VCcompj

p
(
Ck = cgk|��

(
cgk

)) ∏

Xi∈��

(
VCcompj

)
p
(
Xi = xi|��VC

(
xi
)
, ��VX

(
xi
))
.

∅�
j

(
�
↓VCcompj

g

)
∝ p

(
�

↓VCcompj = �
↓VCcompj

g |�
)
.

(4)treewidth(G) ≤ treewidth(GX) + d,

(a) (c)(b)

Fig. 6  Example of the moralization and pruning of an MBC structure
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where ||dmax|| is the number of class variables of the component with the maximum num-
ber of class variables. Thus, multi-dimensional classification over a CB-MBC can be per-
formed in polynomial time if the treewidth of its feature subgraph GX and the number of 
class variables of each component are bounded.

Pastink and van der Gaag (2015) found further bounds on MBCs with an empty feature 
subgraph:

where GF̄ is the structure of an MBC with an empty feature subgraph and G′ is its pruned 
graph, i.e., the undirected graph that results from moralizing the structure of an MBC and 
then removing all the feature variables (Fig. 6c).

Finally, Benjumeda et al. (2018) extended this bound to more general DAG-DAG MBCs 
motivated by the dependence between a query on a Bayesian network and its inference 
complexity, as the parameters of the network can be updated with the values of the evi-
dence variables before performing the inference. In this way, the authors showed in their 
Theorem  1 that an MBC can compute MPEs in polynomial time if the treewidth of its 
pruned graph and the number of parents of each evidence variable, i.e., of each feature 
variable in VX , are bounded.

Although the computational cost of calculating the treewidth of a pruned graph is less 
than calculating the treewidth of a complete structure, it is still an NP-complete problem 
(Arnborg et al. 1987). Since

Benjumeda et al. (2018) concluded that an MPE can be computed in polynomial time if the 
number of class variables d and the number of parents of each feature variable are bounded. 
The same reasoning was extrapolated to CB-MBCs, such that the number of class variables 
of each component should be restricted in order to perform multi-dimensional classifica-
tion in polynomial time.

3.2.2  Additive CB‑decomposable loss functions

Bielza et al. (2011) defined the additive CB-decomposable loss functions according to a 
CB-MBC such that:

where �j is a non-negative loss function defined on Ij . The authors used the Hamming dis-
tance as an example of the behaviour of these loss functions.

In their Theorem  5, the authors showed that obtaining the class configuration �′ that 
minimizes the expected loss can be decomposed, in a similar way as in Eq. (3), into r-inde-
pendent minimization problems over smaller spaces, i.e., over each space of joint configu-
rations Ij of the class variables that belong to the j-th maximal connected component:

treewidth(G) ≤ treewidth(GX) +
||dmax||,

(5)treewidth(GF̄) < treewidth(G�),

(6)treewidth(G�) ≤ d,

�(��, �) =

r∑
j=1

�j

(
��

↓VCcompj , �
↓VCcompj

)
,
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where

This sum, which is to be minimized, is the expected loss over the maximal connected com-
ponent compj (Bielza et al. 2011).

4  Performance evaluation measures for multi‑dimensional classifiers

The evaluation of models in a multi-dimensional context should take into account the 
simultaneous performance of all class variables. Several performance evaluation meas-
ures have been extended to the particular multi-label setting, but only few extensions to 
the more general multi-dimensional classification problem can be found in the literature. In 
this work, we also contribute to the extension of some multi-label performance evaluation 
measures to the multi-dimensional paradigm.

It is well known that all the following measures should be estimated in an honest way, 
i.e., without testing those examples that have already been used for training a classifier. A 
special issue arises when using a stratified approach in this multi-dimensional classification 
scenario, both with holdout and cross-validation methods. In a one-dimensional problem, 
there is only one class variable to guarantee the same distribution of its values over the 
data subsets; but here, there are multiple conflicting class variables to assure their strati-
fied distribution. Sechidis et al. (2011) proposed two different stratification perspectives for 
multi-label data with the goal of maintaining in each sampled data subset the proportion 
of (1) examples of each joint class configuration and (2) positive valued examples of each 
binary class variable. For this second perspective, an iterative algorithm was proposed that 
greedily distributed the examples of the class variable with the fewest remaining examples 
with a positive value. One can easily think that the first perspective implies the second 
one; but if we look closely, this does not happen for data sets with large ratios of distinct 
class configurations to the number of examples (which may happen with a small sample of 
examples or a large number of class variables), as most class configurations will just have 
one example. Therefore, the authors surmised that these two stratification methods were 
better suited, respectively, for (1) small and (2) large ratio scenarios, while both were con-
sistently better than the typical random sampling found in the literature. Further research is 
hence necessary in the multi-dimensional context.

4.1  Multi‑label measures

The most frequently used performance measures for multi-label classification were summa-
rized by Gibaja and Ventura (2015), and compiled here in the column named Multi-label 
measures in Table 2 following an adaptation of the taxonomy proposed by Tsoumakas et al. 
(2009), which differentiated between measures to evaluate non-probabilistic classifications 
(we also add measures for probabilistic classifications) and measures to evaluate rankings. 

argmin ��∈IR(�
�|�) =

(
�
∗↓VCcomp1 ,… , �

∗↓VCcompr

)
,

�
∗↓VCcompj = argmin

��
↓VCcompj ∈Ij

∑

�
↓VCcompj ∈Ij

�j

(
��

↓VCcompj , �
↓VCcompj

)
⋅∅�

j

(
�
↓VCcompj

)
.
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Performance measures that have a multi-dimensional extension are described below, but for 
some measures we argue that they cannot be extended to the multi-dimensional scenario.

4.1.1  Measures to evaluate classifications

This set of measures compares the predictions made by a classification model with the cor-
responding true class values. In the multi-label literature, they may be referred to as meas-
ures to evaluate the bipartitions of labels into ‘present’ and ‘absent’ for a given example. 
Measures to evaluate classifications can be categorized into two groups: example-based 
(also known as instance-based) and label-based (Tsoumakas et al. 2009). “The former are 
calculated for each test example and then averaged across the test set, while the latter are 
calculated for each label and then they are averaged across all labels” (Gibaja and Ventura 
2015).

• EXAMPLE-BASED. The 0/1 subset accuracy (Zhu et  al. 2005), also called the clas-
sification accuracy or exact match ratio, computes the fraction of correctly classified 
examples, i.e., those whose predicted label set is exactly the same as their correspond-
ing set of true labels. This measure can be seen as an extension of the traditional accu-
racy to the multi-label problem. It is a very strict evaluation measure, especially when 
the size of the label space, 2d , is large. Completely incorrect and partially correct pre-
dictions are both considered as classification errors.

  The Hamming loss (Schapire and Singer 1999) evaluates the fraction of misclassified 
example–label pairs. This measure considers both prediction errors (i.e., absent labels 
are predicted), and omission errors (i.e., present labels are missed).

  Finally, the set of measures adopted from the information retrieval (IR) area pro-
posed by Godbole and Sarawagi (2004) are also commonly used. However, we argue 
that these measures are specific to the multi-label paradigm and cannot be extended to 
the (more general) multi-dimensional problem, since the recovery performance of these 
labels is measured by their presence or absence. In contrast, a class variable in a multi-
dimensional domain will be always present, with either one value or another. The only 
possible extension would be if each class variable had a not present semantic value in 
relation to the negative value of a binary class variable or absence of a label. In such 
a case, the operation of this set of measures on a multi-dimensional problem would be 
the same as in a multi-label context.

• LABEL-BASED. Given a confusion matrix, a measure B is computed based on the 
number of true positives, tp, false positives, fp, true negatives, tn, and false negatives, 
fn. Commonly, B is the accuracy = tp+tn

tp+fp+tn+fn
 , precision = tp

tp+fp
 , recall = tp

tp+fn
 or 

F� = (1+�)
precision⋅recall

�⋅precision+recall
 . Note that they are different from those measures with the 

same name in the IR area. A 2×2-dimensional confusion matrix is obtained for each 
label, so an average value extended over all labels has to be computed, which can be 
done in two possible ways: macro and micro.

– The macro approach computes one measure Bj for each label and then the values 
are averaged: 

(7)Bmacro =
1

d

d∑
j=1

Bj =
1

d

d∑
j=1

B
(
tpj, fpj, tnj, fnj

)
.
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– The micro approach aggregates the counters of the confusion matrices of all  
labels, and then calculates the average measure with the aggregated confusion 
matrix: 

In this multi-label domain, it holds that accuracymacro = accuracymicro = 1 − Hamming loss . 
Gibaja and Ventura (2015) stated that “these two types of averaging are informative 

and there is no general agreement about using a macro or micro approach”. An equal 
weight is given by macro-averaged scores to each label, regardless of its frequency (i.e., 
per-label averaging). This leads to a stronger influence of rare label performance. How-
ever, micro-averaged scores give equal weights to each example (i.e., per-example aver-
aging) and tend to be dominated by the performance of the most frequent labels (Yang 
1999; Yang and Liu 1999).

4.1.2  Measures to evaluate probabilistic classifications

The aforementioned measures evaluate model performance by only considering the final 
classification. Probabilistic models such as Bayesian classifiers give us more information, 
i.e., the estimated a posteriori probability (joint and marginals) of each class value, in addi-
tion to the classification itself, which can be derived as the class configuration that maxi-
mizes the estimated joint probability under a standard 0-1 loss function. Other classifiers, 
such as random k-labelsets (Tsoumakas and Vlahavas 2007), also provide a marginal confi-
dence score to each label after its voting scheme. With the aim of generalization, we denote 
both the probability and these scoring functions with the letter p for the remainder of this 
section.

Zhang and Zhou (2014) extended the traditional area under the ROC curve (AUC) 
measure to the multi-label setting in the two averaging ways, i.e., macro and micro.

– The macro approach computes one measure AUCj for each label and then the values are 
averaged: 

where Dj = {�i | cij = cj, i ∈ {1,… ,N}} and Dj = {�i | cij = cj, i ∈ {1,… ,N}} corre-
spond, respectively, to the data subsets of the test examples with and without the j-th 
label from a test set of N examples, i.e., the true value of the binary class variable Cj for 
the example i, cij , is positive (present), cj , and negative (absent), cj.

(8)Bmicro = B

(
d∑
j=1

tpj,

d∑
j=1

fpj,

d∑
j=1

tnj,

d∑
j=1

fnj

)
.

(9)

AUCmacro =
1

d

d∑
j=1

AUCj =
1

d

d∑
j=1

|{(�, �) | p(Cj = cj|�) ≥ p(Cj = cj|�), � ∈ Dj, � ∈ Dj}|
|Dj||Dj|

,
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– The micro approach considers the probabilistic predictions from all example–label pairs 
together: 

where D = {(�i, j) | cij = cj, i ∈ {1,… ,N}} and D = {(�i, k) | cik = ck, i ∈ {1,… ,N}} , 
for all j, k ∈ {1,… , d} , correspond to the data subsets of the present and absent exam-
ple–label pairs, respectively.

All the above multi-label measures lie between 0 and 1. For all of them but the Ham-
ming loss, the larger the measure value, the better the performance.

4.1.3  Measures to evaluate rankings

There are multi-label classification models, like the pairwise methods proposed by Hül-
lermeier et al. (2008) and Fürnkranz et al. (2008), which output a ranking of presence 
among all the possible labels for a given example. Several measures have been proposed 
in the multi-label context (see Table  2) that compare the predicted ranking of pres-
ence with the corresponding set of true labels. We argue again that this set of measures 
is specific to the multi-label paradigm and has no extension to the multi-dimensional 
problem, since ranking the values of all class variables altogether makes no sense. The 
multi-label meaning of presence or absence of the labels is no longer used. Instead, a 
ranking among all the multi-dimensional class configurations could be derived, as pro-
posed in Sect. 4.3.

4.2  Multi‑dimensional measures found in the literature

4.2.1  Measures to evaluate classifications

The following performance measures proposed by Bielza et  al. (2011) extend the two 
aforementioned multi-label measures.

– The global or joint accuracy of a d-dimensional class variable extends the multi-label 
0/1 subset accuracy by computing the fraction of correctly classified examples, i.e., 
those whose every predicted class value is exactly the same as its corresponding true 
value. Again, it is a very strict evaluation measure, especially when the size of the class 
space, |I| , is large. Let �′

i
 be the d-dimensional binary prediction for the example i, �i its 

corresponding true value, and � the Kronecker’s delta function, such that �(��
i
, �i) = 1 if 

��
i
= �i , and �(��

i
, �i) = 0 if �′

i
≠ �i . Then, the global accuracy is defined as: 

– The mean or average accuracy over the d class variables evaluates the fraction of cor-
rectly classified example–class pairs. Let c′

ij
 be the Cj class value predicted by the model 

(10)AUCmicro =
|{(�, �, j, k) | p(Cj = cj|�) ≥ p(Ck = ck|�), (�, j) ∈ D, (�, k) ∈ D}|

|D||D|
,

(11)Acc =
1

N

N∑
i=1

�
(
��
i
, �i

)
.



538 S. Gil-Begue et al.

1 3

for the example i in the test data set, cij its corresponding true value, �(c�
ij
, cij) = 1 if 

c�
ij
= cij , and �(c�

ij
, cij) = 0 if c′

ij
≠ cij . Then, the mean accuracy is: 

This measure is the complementary to the multi-label Hamming loss measure, i.e., 
the mean accuracy + Hamming loss = 1, but is extended to the multi-dimensional clas-
sification problem.

– Bielza et  al. (2011) also extended a similar concept to CB-decomposable MBCs by 
means of the mean accuracy over the r maximal connected components: 

where �
↓VCj

i
 represents the projection of vector �i to the coordinates found in VCj

.
It holds that Acc ≤ Accr ≤ Accd , since counting correct predictions in a vector of com-
ponents as a whole is stricter than in a component-wise fashion (Bielza et al. 2011).

This subsection has been mostly reproduced from Gil-Begue et al. (2018).

4.2.2  Measures to evaluate probabilistic classifications

As for the classification measures, the set of probabilistic measures can be categorized into 
the same two groups: example- and label-based.

• EXAMPLE-BASED. The Brier score (Brier 1950) measures the calibration of probabil-
istic models by taking into account the estimated a posteriori probabilities, such that 
the classifiers that are almost sure when making correct predictions will have lower 
(better) Brier measures. In a one-dimensional problem where a single class variable C 
is classified as one of ||ΩC

|| possible values, ck is the k-th class value, ci the true value 
for example i with feature values �i in the test data set, and the rest of the symbols are 
defined as before; the corresponding Brier score takes the form: 

 The Brier score was generalized by Fernandes et  al. (2013) to the multi-dimen-
sional problem (including the one-dimensional and multi-label problems) in the three 
variants outlined below.

– Global or joint Brier score: 

where � = (C1,… ,Cd) is the d-dimensional class variable, �g is the g-th configura-
tion of I and �i is the true value of � for �i.

– Mean or average Brier score: 
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where cjk is the k-th class value of the j-th class variable, Cj , and cij is the true value 
of Cj for �i.

   Both Brier score generalizations are in the range [0, 2], as for the one-dimensional 
version. In the same way, the lower the score, the more calibrated the model, such that 
a score of zero is obtained when the model predicts the true value with total certainty 
for all class variables and examples in the test data set. A score of two occurs when the 
model predicts a class configuration that differs from the true values of all the class 
variables with total certainty and for all examples in the test data set.

  Although both measures consider the estimated probability assigned to each class, 
the global Brier score rewards only the estimated probability of the class configura-
tion that matches exactly with the true value, and the mean Brier score rewards the 
class variables separately. For this reason, a third measure was proposed to reward the 
number of classes correctly classified for each configuration of � , such that the score is 
lower when higher probabilities are assigned to configurations closer to the true value.

  – Multi-dimensional calibrated Brier score3: 

 where cgj is the Cj class value of the g-th configuration, �g.

• LABEL-BASED. Although no formal definitions were given, Benjumeda et al. (2018) 
proposed a combination of the multi-class AUC measure defined by Provost and 
Domingos (2000) with the aforementioned multi-label macro and micro averages (Eqs. 
(9) and (10), respectively) presented by Zhang and Zhou (2014) in order to extend the 
AUC measure to the multi-dimensional classification context.

– The macro approach: 

 where 

Djk = {�i | cij = cjk, i ∈ {1,… ,N}} and Djk = {�i | cij ≠ cjk, i ∈ {1,… ,N}} corre-
spond to the data subsets of test examples whose j-th class variable, Cj , takes its k-th 
class value, cjk , and a different value of its k-th class value, respectively.

– The micro approach, when at least one class variable Cj is not binary, i.e., |ΩCj
| > 2 , is: 
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� of Fernandes et al. (2013) by d in the denominator of 
the equation in order to correctly normalize the score to lie between 0 and 1.
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where  is the space of joint configurations of the non-
binary class variables, and Dg = {(�i, j) | cij = cgj, i ∈ {1,… ,N}} and 
Dg = {(�i, k) | cik ≠ cgk, i ∈ {1,… ,N}} , for all j, k ∈ {1,… , d} , correspond to the 
data subsets of example–class pairs with the same (positive values of binary class 
variables as well) and different (negative values of binary class variables as well) 
class values as a given class configuration �g ∈ I>2 , respectively. For a binary class 
variable Cj , we make cgj = cj , i.e., its positive class value. When all class variables 
are binary, Eq. (10) should be used.

4.3  Multi‑dimensional measures extended in this work

From the previous section and when compared to those measures of the multi-label set-
ting, we can observe that the set of multi-dimensional measures found in the literature 
is very limited. In this section, we make three contributions to the performance evalu-
ation measures for models that solve multi-dimensional classification problems. In this 
way, a better understanding and from different perspectives (i.e., classification, proba-
bilistic and ranking) can be derived from the performance of a given multi-dimensional 
classifier.

1) The first one follows the same idea as in Eq. (13), but applied to the Brier score of Eq. 
(16). Let  be the space of joint configurations of the class variables 
that belong to the j-th maximal connected component, compj , and �jg the g-th configura-
tion of Ij . Then, the Brier score over the r maximal connected components is defined as:

This measure also lies in the range [0, 2] and, in contrast to the accuracy mea- 
sures, it may not hold that Bs ≥ Bsr ≥ Bsd (note that the inequality relations are 
reversed because, unlike the accuracy measures, the lower the Brier score, the better 
the performance).

2) The second contribution extends the label-based measures that evaluate classifications 
in the multi-dimensional paradigm. Following the same idea, a |ΩCj

|×|ΩCj
|-dimensional 

confusion matrix is obtained for each class variable Cj , and an average value is computed 
in two possible ways.

– The macro approach computes one measure for each class variable value, and then 
all the outputs are averaged. If a class variable Cj is binary, i.e., |ΩCj

| = 2 , only a 
measure for one of the two classes is computed in order to avoid redundancy (the 
true positives of a class will be the true negatives of the other one, and the same 
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happens with the false positives and false negatives). Let tpjk be the true positives of 
the k-th value of the j-th class variable, Cj , and analogously for the rest of the coun-
ters, then: 

– The micro approach follows the idea of aggregating the counters of all the confusion 
matrices. However, a normalization is performed within each class variable so that 
variables with many possible values do not have more influence on the final output. 
Again, the aforementioned redundancy is avoided. Thus: 

where 

  In this multi-dimensional scenario, it also holds that the accuracymacro = accuracymicro , 
but in this case it is not equal to the mean accuracy. In addition, the same remarks made 
in the multi-label domain by Yang (1999) and Yang and Liu (1999) can be also extrapo-
lated to this multi-dimensional paradigm, such that macro-averaged scores will lead to 
a stronger influence of rare class value performances, whereas micro-averaged scores 
tend to be dominated by the performance of the most frequent class values.

  For all the above multi-dimensional measures except the Brier score generalizations, 
the larger the measure value, the better the performance, where the optimal value is 1.

3) The third contribution offers a different approach to the multi-label measures to evalu-
ate rankings. Here, we do not rank the grade of presence among the different labels, but 
instead the grade of confidence among the class values cjk of the same class variable 
Cj (or among the joint class values �g of a vector of class variables � ). We denote their 
rank in a given example �i based on the descending order induced from the probability 
or any other scoring function p as rankp

(
Cj = cjk|�i

)
 and rankp

(
� = �g|�i

)
 , respectively. 

A rank of 1 means the most confident (joint) class value. Then, we define the following 
measures:

– The global or joint posterior rank confidence over the d-dimensional class variable: 
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– The mean or average posterior rank confidence over the d class variables: 

– The mean or average posterior rank confidence over the r maximal connected com-
ponents: 

  These three measures lie between 0 and 1, such that the lower they are, the better the 
performance. They measure the average percentile of the true (joint) class values in the 
confidence ranking. For example, a global posterior rank confidence that takes a value 
of 0 means that the true value always corresponds to the most confident joint class value 
for all examples. Conversely, a value of 1 implies the least confident one. Again, it may 
not hold that Prc ≥ Prcr ≥ Prcd.

  Note that Prcd = Hamming loss becomes true in a multi-label setting, and 
Prcd ≤ 1 − Accd in a more general multi-dimensional scenario, when classification is 
derived as the class value that maximizes the probability, or other scoring function, 
of each (binary) class variable separately. Similarly, it holds that Prc ≤ 1 − Acc when 
classification is derived as the class configuration that maximizes the estimated joint 
probability under a standard 0-1 loss function.

5  Learning MBCs from data

Several methods have been proposed in the literature to learn MBC structure from a given 
data set (Table 3). However, none of them have addressed the problem of estimating model 
parameters, as it is done in standard Bayesian networks (e.g., maximum likelihood or 
Bayesian estimation of parameters).

There are two main approaches to learn a Bayesian network structure from data (Koller 
and Friedman 2009, Chapter 18): score-based (also known as score and search methods), 
which try to find the structure that maximizes a given score (e.g., the likelihood of the data 
given the structure itself), and constraint-based methods, which try to find a structure that 
represents all the conditional independencies between triplets of variables.

5.1  Score‑based algorithms

5.1.1  MBCs with simple class subgraph structures

The first approach found in the literature for learning MBCs from data was proposed by 
van der Gaag and de Waal (2006). The authors focused on efficiently learning tree-tree 
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MBC structures such that the class and feature subgraphs can be learned in an optimal and 
independent way given a bridge subgraph, both in polynomial time, by using a score-and-
search learning strategy based on the minimum description length score (Rissanen 1978). 
The maximum weighted undirected spanning tree (Kruskal 1956) is initially searched to 
construct the class subgraph, where the weight of an edge that connects two class vari-
ables is the mutual information shared between them, and then it is transformed into a 
directed tree by selecting an arbitrary root node (Chow and Liu 1968). Similarly and for a 
fixed bridge subgraph, the maximum weighted directed spanning tree (Chu and Liu 1965) 
is built for the feature subgraph, where the weight of an arc from a feature variable to 
another is the conditional mutual information between them given the parents (classes) 

Table 3  Compilation of the methods proposed in the literature to learn MBCs from data

*The authors were not aware of the formal definition of MBCs in the literature

Reference Learning strategy Model learned Tractable?

Score-based algorithms
van der Gaag and de Waal (2006) Hybrid score-based Tree-tree No
de Waal and van der Gaag (2007) Filter score-based Polytree-polytree No
Zaragoza et al. (2011a) Hybrid score-based Polytree-polytree No
Rodríguez and Lozano (2008) Wrapper score-based Special DAG-DAG No
Bielza et al. (2011)

Filter

Wrapper

Hybrid

⎫
⎪⎬⎪⎭
score-based

DAG-DAG No

Hernández-González et al. (2015) Filter score-based DAG-DAG No
Antonucci et al. (2013) Filter score-based Ensemble of tree-empty No
Gil-Begue et al. (2018) Wrapper score-based MBCTree No
Constraint-based algorithms
Borchani et al. (2012) Constraint-based DAG-DAG No
Ortigosa-Hernández et al. (2012) Constraint-based DAG-DAG No
Zhu et al. (2016) Filter score-based and 

constraint-based
Special DAG-DAG No

Feature subset selection algorithms
Zhang et al. (2009)* – Empty-empty No
Fernandes et al. (2013) – Empty-empty No
Qazi et al. (2007)* – DAG-empty No
Algorithms that address the problem of inference complexity
Corani et al. (2014) Filter score-based Forest-empty No
Borchani et al. (2010) Wrapper score-based CB-MBC No
Fernandez-Gonzalez et al. (2015) Wrapper score-based CB-MBC No
Pastink and van der Gaag (2015) Filter score-based Forest-{empty,forest} Yes
Benjumeda et al. (2018) Filter score-based DAG-DAG, CB-MBC Yes
Learning from multi-dimensional concept-drifting data streams
Borchani et al. (2016) Constraint-based DAG-DAG No
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of the second feature. Any initial bridge subgraph may be chosen, but the authors stated 
that two popular approaches are to start with a fully empty or a complete bridge subgraph. 
The global algorithm results in a hybrid approach (of filter and wrapper strategies), as the 
bridge subgraph is greedily changed by a wrapper strategy that tries to improve the global 
accuracy.

The same authors theoretically extended this study to the optimal recovery of pol-
ytree-polytree MBC structures (de  Waal and van  der Gaag 2007). The class and 
feature polytrees are separately learned by following the algorithm proposed by Rebane 
and Pearl (1987), which adds a directionality decision step over the undirected tree that is 
learned with the aforementioned method of Chow and Liu (1968). However, no informa-
tion about the learning process of the bridge subgraph is given.

Zaragoza et al. (2011a) presented a hybrid score-based algorithm that consists of a first 
filter phase that very quickly learns the initial structure with the strongest dependencies, 
which is then refined in a second wrapper phase with greater computational intensity. Dur-
ing the first phase, the previous method of de Waal and van der Gaag (2007) is adopted 
such that polytree structures are independently learned for both class and feature subgraphs. 
Then, the arcs from the class to the feature variables with greater mutual information than 
a fixed threshold are included in the bridge subgraph. The second phase iteratively includes 
all arcs of the bridge subgraph that achieve an accuracy improvement.

5.1.2  MBCs with more complex class subgraph structures

Rodríguez and Lozano (2008) proposed a novel algorithm for learning MBCs with kDB 
structures in both class and feature subgraphs (a special case of DAG-DAG MBCs). The 
authors used an evolutionary algorithm, where an individual corresponds to an MBC 
structure coded as a binary vector in relation to the presence/absence of each possible 
arc. In particular, a multi-objective approach is used by means of the NSGA-II algo-
rithm (Deb et al. 2002), such that the objective functions are the individual accuracies 
Accj (Eq. (12)) of each class variable Cj . The proposed algorithm returns the Pareto set 
of efficient structures and their individual accuracies over all the class variables; hence, 
it is necessary to choose the one that best suits the particular problem.

Bielza et al. (2011) proposed three different methods for learning general DAG-DAG 
MBCs: 

1. A pure wrapper algorithm that greedily tries to add or delete an arc in any position 
whenever the global accuracy, or any other performance measure, is improved, provided 
that the MBC constraints are respected. The algorithm stops when no improvement can 
be obtained with the addition or deletion of any arc to the current structure.

2. A pure filter algorithm that solves the learning problem as two separate problems, analo-
gously to the method proposed by van der Gaag and de Waal (2006), by first search-
ing the best structure for the class subgraph, and then learning the feature subgraph 
constrained by fixed class parents given in a candidate bridge subgraph. This method 
assumes an ancestral order among the variables when learning both subgraphs in order 
to reduce the computation time. The authors used the K2 algorithm of Cooper and 
Herskovits (1992) as an example to take into account the given order, and also to allow 
the learning of more general DAG structures. The bridge subgraph is learned by using 
a best-first search algorithm. A single arc is added at each iteration, which allows the 
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computational burden to be reduced when using a decomposable score by only carrying 
out local computations over the terms involving the new arc.

3. A hybrid algorithm like the previous one, but the learning of the bridge subgraph is 
guided by the global accuracy, or any other performance measure, rather than by a filter 
strategy.

In the work of Hernández-González et al. (2015), a method for learning MBCs from 
a crowd of non-expert annotators was proposed. Their method estimates a set of reliabil-
ity weights that determine the degree of expertise of each annotator, and consequently 
the contribution of their annotated labels to the learning process. First, the weights are 
initialized as the grade of agreement of each annotator with the others (consensus), 
and an initial MBC structure is learned in a similar greedy way as the pure wrapper 
algorithm proposed by Bielza et  al. (2011), but using the K2 score. Then, the param-
eters of the MBC and the reliability weights are iteratively updated until convergence 
is attained, based on the EM algorithm (Dempster et al. 1977). For this, the weights of 
each annotator are updated based on their accuracy performance with respect to the cur-
rent fitted MBC. An external structural learning loop is added based on the structural 
EM algorithm (Friedman 1997), such that once the parameter learning of the current 
structure has converged, the inclusion/deletion of the arc that most improves the K2 
score is chosen.

5.1.3  Meta‑classifiers

An ensemble-based model of MBCs was proposed by Antonucci et al. (2013). In particu-
lar, there are as many tree-empty MBCs in the ensemble as class variables (i.e., d). 
Each individual classifier adopts a different class variable as the root of its tree feature 
subgraph structure, such that it is the unique parent of all the other class variables (i.e., 
a superparent node), and no more arcs are present. In this way, all class and feature sub-
graphs of the ensemble are fixed and only the bridge subgraphs must be learned. In fact, 
the authors showed that all models of the ensemble have the same bridge subgraph given 
these structural constraints, which can be computed by maximizing the Bayesian Dirichlet 
equivalent uniform (BDEu) score (Buntine 1991) on each feature variable independently. 
The joint distributions encoded by each MBCj of the ensemble are combined via a geomet-
ric average for the multi-dimensional classification task:

The multi-dimensional meta-classifier proposed by Gil-Begue et  al. (2018) places 
general MBCs in the leaf nodes of a classification tree. An internal node of the so-called 
MBCTree is a feature variable, and it has as many children nodes as the possible values of 
the associated feature. New examples are classified with the corresponding MBC leaf in 
relation to the values of the feature variables that make up the internal nodes. The authors 
also proposed an algorithm for learning MBCTrees from data in a wrapper-like way by 
greedily choosing internal nodes from top to bottom of the tree as the feature variables 
that best split the data (i.e., that maximize the global accuracy), until splitting no longer 
achieves a sufficient accuracy improvement when compared to an MBC learned with all 
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the data reaching the current node. In such a case, this MBC is placed as a leaf node. The 
wrapper strategy of Bielza et al. (2011) is used for learning general DAG-DAG MBCs.

Arias et  al. (2016) presented a meta-classifier for multi-dimensional classification, 
although its relationship with MBCs is frail and we do not include it in Table 3. In the 
first stage, a base classifier is learned for each pair of class variables (encoding their joint 
distribution, in contrast to base classifiers of the multi-label pairwise methods proposed 
by Hüllermeier et  al. (2008) and Fürnkranz et  al. (2008) which encode the preference 
between them). Concretely, the authors used naïve Bayes classifiers to this end. In the sec-
ond stage, inference is performed in a pairwise Markov random field induced by the out-
puts of the base classifiers. The authors state that this final classifier plays the role of the 
class subgraph in the MBC, and the feature and bridge subgraphs are captured by the base 
classifiers.

5.2  Constraint‑based algorithms

Borchani et  al. (2012) were motivated by the fact that the classification performance of 
a class variable is only affected by parts of the structure that lie inside its Markov blan-
ket (MB), i.e., its parents, children and spouses (the parents of its children) in the graph 
structure. Therefore, the authors extended the HITON algorithm (Aliferis et al. 2010a, b) 
to a multi-dimensional context to first determine the MB around each class variable, and 
then easily deduce the subgraphs of the MBC. Unlike the aforementioned methods, this 
approach is scalable with respect to the data set dimensionality (Borchani et  al. 2012), 
since the MB of each class variable can be learned separately. The proposed algorithm was 
later extended by Borchani et al. (2016) to deal with the potential concept drifts of multi-
dimensional data streams (see more details in Sect. ).

A method that uses independence tests, rather than mutual information, to search for 
strong dependencies between variables was proposed by Ortigosa-Hernández et al. (2012), 
as they realized that mutual information is not normalized for different cardinalities of the 
variables. Knowing that 2N ⋅MI(Zi, Zj) asymptotically follows a �2 distribution with 
(|ΩZi

| − 1)(|ΩZj
| − 1) degrees of freedom if the variables Zi and Zj are independent (Kull-

back 1997), where MI(Zi, Zj) is the mutual information between both variables, the pro-
posed method evaluates the independence between each pair of class variables and each 
pair of a class and a feature variable in order to build the class and bridge subgraphs, 
respectively. Any arc with a strong enough dependence is iteratively added to the structure 
as long as the topology of the MBC is respected, such that the arc inclusion follows a spe-
cial order based on the p-value result of the independence tests. The same idea is used to 
learn the feature subgraph by knowing that 2N ⋅MI(Zi, Zj|�) asymptotically follows a �2 
distribution with (|ΩZi

| − 1)(|ΩZj
| − 1)|�| degrees of freedom if the variables Zi and Zj are 

conditionally independent given the set of variables � (Kullback 1997), where MI(Zi, Zj|�) 
is the conditional mutual information between the variables Zi and Zj given the set of vari-
ables � . Additionally, the authors extended the learning of MBCs to a semi-supervised 
framework with an adaptation of the EM algorithm that performs a search in the joint 
space of structures and parameters, in a similar way to the Bayesian structural EM algo-
rithm proposed by Friedman (1998).

Zhu et  al. (2016) suggested that an independence test only affirms whether the vari-
ables are (in)dependent, rather than quantifying their degree of dependence. Therefore, the 
authors defined a dependence coefficient between any two variables Zi and Zj as:
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where ��,l is the critical value of a �2 distribution with l = (|ΩZi
| − 1)(|ΩZj

| − 1)|ΩZk
| 

degrees of freedom at the significance level � . If cij𝛼 > 0 , then the two variables Zi and Zj 
present a statistically significant dependence regardless of the variable Zk involved. If 
cij𝛼 < 0 , then this dependence does not appear for at least one way of conditioning a varia-
ble Zk . In this way, the authors proposed a learning algorithm that combines both con-
straint-based, by using these dependence factors, and score-based strategies, with the goal 
of maximizing the scoring function

in a feasible set of structures that maintain the restricted topology of an MBC, where aij = 1 
if there is an arc between the variables Zi and Zj , and 0 otherwise. Further restrictions are 
added to the maximization problem in order to obtain MBCs with kDB structures in both 
the class and feature subgraphs. We argue that they could be simply removed to learn more 
general DAG-DAG MBCs.

5.3  Feature subset selection algorithms

The next algorithms do not perform any structural learning process, but instead they 
conduct feature subset selection. Simply, class and feature subgraphs are empty struc-
tures, and a bridge subgraph connects each class variable with all selected feature vari-
ables. Note that performing classification over an MBC with an empty class subgraph 
does not imply the independent classification of each class variable, as they may have 
other class variables as part of their MB (i.e., in the form of spouses, since multiple 
class variables may share the same feature variable). Only CB-MBCs with r = d maxi-
mal connected components assume complete independence between the class variables.

Zhang et  al. (2009) incorporated a two-stage feature selection strategy in a multi-
label setting. In the first stage, feature-extraction techniques based on a principal com-
ponent analysis (PCA) are employed. In the second stage, subset-selection techniques 
based on a genetic algorithm (on the space of PCAs) are used to choose the most appro-
priate subset of features for classification. In particular, the performance of each feature 
subset (i.e., the fitness function of the genetic algorithm) is evaluated with the arithme-
tic mean of the Hamming loss and the ranking loss measures. Individuals in the popu-
lation are coded as binary vectors in relation to the selection/rejection of each feature 
variable. The proposed multi-label empty-empty MBC allows one to work with con-
tinuous feature variables by assuming Gaussianity, such that the density of any feature 
variable given the class values follows a Gaussian density.

Fernandes et  al. (2013) developed a correlation-based feature subset selection 
method (Hall 2000) in order to obtain the relevant subset of feature variables for classi-
fication, and then build a bridge subgraph of an empty-empty MBC. The one-dimen-
sional version of this method scores each feature subset, rewarding the correlation of 
each feature variable in the subset with the class variable, and penalizing the correla-
tion between pairs of feature variables in the subset. The authors extended this selection 
method to the multi-dimensional scenario in tree approaches, such that the relevant fea-
ture subset for multi-dimensional classification may be: 

cij� = min
k≠i,j

{2N ⋅MI(Zi, Zj|Zk) − ��,l},

n∑
i=1

n∑
j=1,j≠i

cij�aij,
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1. The union of the highest-scoring feature subsets of each class variable separately;
2. The highest-scoring feature subset of the compound class variable that models all pos-

sible joint configurations of the class variables;
3. The highest-scoring feature subset of a modified scoring function, such that it rewards 

the correlation of each feature variable in the subset with each class variable.

The non-parametric Kolmogorov-Smirnov test was used by Qazi et al. (2007) to rank 
feature variables according to their relevance with each class variable. Unlike the two 
previous methods that connected each class variable with all the selected feature vari-
ables, this approach builds a bridge subgraph by connecting each class variable with its 
particular top-ranked feature variables. In addition, a DAG structure is learned for the 
class subgraph, although no further information about the learning process is given.

5.4  Algorithms that address the problem of inference complexity

In contrast to all the aforementioned methods, only a few have been proposed in the 
literature that consider the inference complexity of an MBC during its learning process 
(Benjumeda et al. 2018).

5.4.1  Algorithms that do not provide theoretical guarantees on the tractability 
of the learned MBCs

Corani et al. (2014) extended their previous method (Antonucci et al. 2013) to learn a sin-
gle forest-empty MBC, also guided by the BDEu score. Despite this arc sparsity in the 
learned model, the treewidth of the structure may be large enough, which is only bounded by 
the number of class variables (Eq. (4)). Note that the same happens with the empty-empty 
MBCs defined in the previous section, since their bridge subgraphs are completely connected.

Borchani et al. (2010) proposed the first method for learning CB-MBCs, based on a 
wrapper strategy. First, a selective naïve Bayes (Langley and Sage 1994) is learned for 
each class variable, and all shared children between them are eliminated afterwards. 
In this way, a first bridge subgraph with as many maximal connected components as 
class variables is obtained. Second, the feature subgraph is learned by iteratively add-
ing all arcs that achieve an accuracy improvement. This phase can take advantage of 
the decomposable aspect of the CB-MBC, since the addition of an arc to certain feature 
variable will only change the local accuracy of the component it belongs to. Finally, 
the components are iteratively merged in a third phase by adding any arc between 
class variables that belongs to different components that achieve the highest accuracy 
improvements, until there is no arc whose inclusion improves the accuracy or there are 
no more components to merge. After each iteration, the bridge and feature subgraphs of 
the merged component are updated by the iterative addition of arcs that also improve 
the accuracy. Fernandez-Gonzalez et al. (2015) adapted this algorithm to handle feature 
variables with a continuous nature following a Gaussian distribution, so that there is no 
need to discretize the data.
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5.4.2  Algorithms that provide theoretical guarantees on the tractability of the learned 
MBCs

Although the aforementioned learning algorithms address the problem of inference 
complexity, neither provides guarantees regarding the tractability of multi-dimensional 
classification in the learned models (Benjumeda et al. 2018). Pastink and van der Gaag 
(2015) proposed a method that allows one to perform classification in polynomial time 
because it searches for a forest-empty MBC that does not exceed a fixed treewidth. 
First, a forest structure is learned for the class subgraph, which does not change anymore 
in the learning process. Second, the bridge subgraph is built in a filter way based on the 
BDEu score, and which follows a branch-and-bound approach in order to not exceed the 
fixed treewidth. For this, the treewidth of each new candidate structure is computed, and 
those that exceed the fixed value are rejected. The treewidth is calculated on the pruned 
graph to reduce the computation time (Eq. (5)). Optionally, in a third phase it is possible 
to obtain a forest feature subgraph structure by adding arcs that improve the BDEu score 
but do not exceed the treewidth of the structure.

Finally, Benjumeda et al. (2018) learned more general DAG-DAG MBCs with an adapta-
tion of the order-based search (Bouckaert 1992), such that only those orderings in which 
the class variables precede the feature variables are considered, thus avoiding any arcs 
from feature to class variables. A greedy strategy with local changes among the orderings 
(Teyssier and Koller 2005) is applied along with a tabu list and random restarts to avoid 
local optima. The Bayesian information criterion (Schwarz 1978) is used as the scoring 
function to maximize, although any other decomposable score could be used. The authors 
proposed two strategies to guarantee the tractability of the learned MBCs. The first one, 
which is more computationally expensive but has greater predictive precision, is also based 
on rejecting any structures whose pruned graph treewidth exceeds a fixed bound. This 
differs to the previous method because it does not require an empty feature subgraph (as 
explained in Sect. 3.2.1). The second strategy, which is much more computationally effi-
cient, is based on learning CB-MBCs that do not have any maximal connected component 
with more class variables than a fixed size (extrapolation of Eq. (6) to CB-MBCs).

5.5  Learning from multi‑dimensional concept‑drifting data streams

There are progressively more online applications that, contrary to traditional stationary sce-
narios, continuously produce data at very high speeds. Such data, known as data streams, usu-
ally present a concept-drifting aspect (Widmer and Kubat 1996). Concept drift mainly refers 
to an online supervised learning scenario where the relationships between the feature variables 
and the class variable(s) evolve over time (Gama et al. 2014). A data-stream environment has 
additional requirements related to memory resources (i.e., the stream cannot be fully stored in 
memory), and time (i.e., the stream should be continuously processed, and the learned classifi-
cation model should be available at any time to be used for prediction) (Borchani et al. 2016).

Data stream classification problems have been extensively studied in the literature. The 
main objective of all the proposed approaches consists of coping with the concept drift by 
following an active learning approach, i.e., by maintaining the classification model up-to-
date along the continuous flow of data. A detection method is normally used to monitor 
the concept drift, and an adaptation method is used to update the classification model over 
time. However, most of the work within this field has only focused on mining data streams, 
where each input example has to be assigned to a single class variable. A survey of the 
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concept drift adaptation of such data can be found in the work of Gama et al. (2014). The 
problem of mining multi-dimensional data streams, where each example has to be simulta-
neously associated with multiple class variables, remains largely unexplored and only few 
multi-dimensional streaming methods have been introduced (paragraph mostly reproduced 
from Borchani et al. (2016)).

In addition, all the proposed methods in the literature are based on a multi-label set-
ting (Qu et al. 2009; Xioufis et al. 2011; Kong and Philip 2011; Read et al. 2012; Wang 
et al. 2012; Song and Ye 2014; Wang et al. 2017), except the adaptive method based on 
MBCs proposed by Borchani et al. (2016), who place no constraints on the cardinali-
ties of the class variables. This method extends the stationary learning algorithm of 
Borchani et al. (2012) to deal with the concept-drifting aspect of data streams. Unlike 
most of the proposed methods that use ensemble learning4 to cope with concept drift, 
this algorithm monitors concept drift over time with a single base classifier (an MBC) 
using the likelihood of the most recent data to the current model and the Page-Hinkley 
test (Page 1954; Hinkley 1971). Then, if the algorithm detects a concept drift, the cur-
rent MBC is locally adapted around each changed class variable by again extending 
the HITON algorithm, with no need to re-learn the whole network from scratch. A 
global adaptation can be also employed, such that the whole network is re-learned to 
represent the new concept, which may be interesting in the cases of abrupt (Gama and 
Castillo 2006) or severe (Minku et al. 2010) concept drift.

Table 4  Summary of the applications in which an MBC has been used

*The number of feature variables m is computed after performing a feature subset selection

Reference Classification problem Model used Problem dimension

m d |I|
Medical problems
Qazi et al. (2007) Coronary heart disease DAG-empty *96 16 65,536
Borchani et al. (2012) Quality of life in

Parkinson’s disease
DAG-empty, CB-MBC 39 5 243

Rodríguez et al. (2012) Multiple sclerosis Special DAG-DAG *21 2 16
Borchani et al. (2013)

HIV-1 inhibitors 
{

RTIs

PIs

DAG-DAG 38 10 1024
DAG-DAG 74 8 256

Fernandez-Gonzalez et al. 
(2015)

Neuroanatomy CB-MBC 185 6 5376

Bolt and van der Gaag (2017) Classical swine fever Tree-empty 10 5 32
Other applications
Ortigosa-Hernández et al. 

(2012)
Sentiment analysis Special DAG-DAG 14 3 40

Fernandes et al. (2013) Fish recruitment Empty-empty *15-138 3 27

4 The popular approach to handle concept drifts named ensemble learning consists of combining the pre-
dictions of a set of individual classifiers, the so-called ensemble, in order to predict new incoming exam-
ples. A comprehensive review of ensemble approaches for data stream analysis was conducted by Krawczyk 
et al. (2017).
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6  Applications, benchmark data sets and software

To the best of our knowledge, the first application that used an MBC was a medi-
cal problem by Qazi et al. (2007), although the authors were not concerned about the 
existence of a formal definition in the literature of the model they were using (van der 
Gaag and de  Waal 2006). Later a few other applications arose, most of them also 
related to medical problems. A summary of all the applications of MBCs found in the 
literature is described below and compiled in Table 4. Also, a collection of data sets 
that are used in the literature to deal with the multi-dimensional problem is given, 
together with a collection of public domain MBC software.

6.1  Medical problems

The following applications can be listed:

• Coronary heart disease diagnosis by the prediction of wall-motion abnormalities for 
the 16 segments of the left ventricle of the heart (Qazi et al. 2007). Each binary class 
variable, i.e., each one of the segments, can be predicted as normal or abnormal (a 
multi-label setting). Actually, the data set was labelled with up to four different types of 
abnormalities that the authors simplified by indiscriminately pairing them with a single 
true class value. Contour-detection techniques were used to extract feature variables 
that characterize cardiac motion from ultrasound images.

• Estimation of the health-related quality of life of Parkinson’s patients (Borchani et al. 
2012). Five class variables, namely mobility, self-care, usual activities, pain/discom-
fort, and anxiety/depression, have three options of response: no problems, some prob-
lems and severe problems. A questionnaire of 39 health-related questions, each being 
scored on a five-point scale (never, occasionally, sometimes, often and always), defined 
the set of feature variables.

• Assistance in the treatment of multiple sclerosis by predicting the disease out of four 
possible subtypes, and the expected time to reach a severity level indicated whether 
assistance for walking was required (Rodríguez et al. 2012), which was discretized into 
four time intervals. The feature variables were composed of DNA and clinical informa-
tion.

• Prediction of human immunodeficiency virus type 1 (HIV-1) inhibitors, both with 
reverse transcriptase (RTIs) and protease inhibitors (PIs) (Borchani et  al. 2013). Ten 
and eight drugs were considered, respectively. This is a multi-label problem that 
attempted to determine whether a patient was resistant or not to a specific drug. The 
feature variables were a set of resistance mutations.

• Classification of neurons (Fernandez-Gonzalez et al. 2015). The aim was to determine 
the neuron species (rat, human, mouse or elephant), gender (male or female), cell type 
level one (principal cell or interneuron), cell type level two out of six possible values, 
development stage (neonate, young, adult or old), and brain region where it was located 
out of fourteen possible locations. Morphological measures of the neurons made up the 
set of feature variables.

• Early detection of classical swine fever in pigs (Bolt and van der Gaag 2017). The 
class variables denoted the five phases commonly distinguished in the progression of 
an infection, where each was either present or absent (a multi-label setting). This is 
a typical medical problem where the feature variables correspond to a set of clinical 
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symptoms. A particularity of this application is that the MBC was built by hand with 
the help of veterinary experts.

6.2  Other applications

Other fields of applications where MBCs have been used are:

• Sentiment analysis by characterising the attitude of a customer when writing a post 
by three related class variables: subjectivity (objective or subjective), sentiment polar-
ity (very negative, negative, neutral, positive or very positive) and will to influence 
(declarative text, soft, medium or high) (Ortigosa-Hernández et al. 2012). A morpho-
logical analyser was used to extract the feature variables from the words and phrases of 
the posts (e.g., number of verbs in the first person).

• Fish recruitment forecast (Fernandes et al. 2013). In particular, three (class) species of 
commercial interest in the Bay of Biscay were studied: anchovy, sardine and hake. The 
authors divided recruitment into low, medium and high for each species. In order to 
predict recruitment, environmental and climatic information were used as feature vari-
ables.

6.3  Benchmark data sets

Surprisingly, there is a lack in the literature of benchmark data repositories for multi-
dimensional classification. Three different approaches have been followed to evaluate and 
compare the algorithms reviewed in Table 3 for learning an MBC:

• A popular benchmark multi-label data repository5 (e.g., see Bielza and Larrañaga 
(2014) and Corani et  al. (2014)). On a positive note, these real-world data sets have 
been well-studied and allow to compare a multi-dimensional model with other multi-
label algorithms. On a negative note, they only represent multi-label settings, so the 
power of MBCs on more general multi-dimensional scenarios cannot be measured.

• Sampled synthetic data from a randomly generated MBC (e.g., see Borchani et  al. 
(2010), Ortigosa-Hernández et al. (2012) and Gil-Begue et al. (2018)). Both the struc-
ture and parameters are chosen at random, and a data set is simulated by using proba-
bilistic logic sampling (Henrion 1988). This approach allows customization of the car-
dinality of a multi-dimensional classification problem and the size of the simulated data 
set, so the algorithm can be consequently evaluated at different scenarios. However, no 
real-world problem is tackled, and the results lose reproducibility.

• Sampled synthetic data from an existing Bayesian network, such that a subset of its vari-
ables are selected as class variables (see van der Gaag and de Waal (2006) and Benjum-
eda et al. (2018)). Similar comments to those of the previous approach can be derived.

5 http://mulan .sourc eforg e.net/datas ets-mlc.html.

http://mulan.sourceforge.net/datasets-mlc.html
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6.4  Software

Similarly, public domain software in relation to both multi-dimensional classification and 
MBCs is limited. There is no standardized library that proposes a general multi-dimen-
sional classification framework and integrates multiple methods for learning MBCs. 
Instead, a few individual contributions can be found, which could benefit from further 
extensions and integration:

• Zhang et  al. (2009) shared a Matlab implementation6 regarding their work of multi-
label naïve Bayes classifier.

• The Java implementation7 of the methods proposed by Fernandes et al. (2013) is based 
on adapting the well-known general purpose platform Weka.

• Arias et al. (2016) published an implementation8 of their multi-dimensional classifica-
tion method, which is mainly written in Java and Matlab.

• Benjumeda et  al. (2018) offered an extensive Python repository9 for their proposed 
tractable MBCs learning methods.

• The hybrid method of Gil-Begue et al. (2018) is available in R code10.

Multi-label classification, on the contrary, offers a variety of popular software packages, 
e.g., the Java platforms Mulan (Tsoumakas et al. 2011) and Meka (Read et al. 2016), the R 
packages mldr (Charte and Charte 2015) and utiml (Rivolli and de Carvalho 2018), and the 
Python library scikit-multilearn (Szymanski and Kajdanowicz 2019).

7  Discussion

The objective of this survey has been twofold: 

1. First, we have dealt with classification problems from the multi-dimensional perspective. 
A formal definition of the multi-dimensional classification problem has been provided, 
such that it was differentiated from the more popular multi-label subproblem, with which 
it is usually confused. We have also compiled a list of performance evaluation measures 
suitable for assessing multi-dimensional classifiers, including existing measures in the 
literature and a new set of proposed measures.

2. Second, we have offered a comprehensive survey of the state-of-the-art MBC, which 
is an inherently interpretable model for multi-dimensional classification problems that 
allows intrinsic contemplation of the dependencies among the class variables and deals 
with the complexity entailed by this kind of problem. Unlike other pattern recognition 
classifiers, MBCs can be clearly organized based on their graphical structure from the 
simplest empty-empty to the most complex DAG-DAG. These probabilistic classifiers 
offer high model expressiveness, but at the expense of suffering from a super-exponential 

6 http://palm.seu.edu.cn/zhang ml/files /MLNB.rar.
7 http://www.sc.ehu.es/ccwba yes/membe rs/jafer nande s/files /Multi -dimen siona l_Pre-proce ssing .zip.
8 https ://githu b.com/jacin toAri as/acade mic-FMC.
9 https ://githu b.com/marco bb8/tr_bn.
10 https ://githu b.com/Compu tatio nalIn telli gence Group /MBCTr ee.

http://palm.seu.edu.cn/zhangml/files/MLNB.rar
http://www.sc.ehu.es/ccwbayes/members/jafernandes/files/Multi-dimensional_Pre-processing.zip
https://github.com/jacintoArias/academic-FMC
https://github.com/marcobb8/tr_bn
https://github.com/ComputationalIntelligenceGroup/MBCTree
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structure space in the number of variables. A plethora of structural learning algorithms 
have been proposed motivated by this fact, some of which also deal with the general 
NP-hardness of multi-dimensional classification in MBCs. Finally, MBCs have shown 
competitive results for multi-dimensional classification, and they have been successfully 
used in several real-world applications.

Given increased attention to multi-dimensional classification with Bayesian networks, it 
would be interesting to extend other models, such as dynamic (Dean and Kanazawa 1989) 
or continuous time (Nodelman et al. 2002; Stella and Amer 2012) Bayesian networks, to 
the multi-dimensional classification problem. Other machine-learning paradigms, such as 
ordinal classification (Frank and Hall 2001) or label ranking (Cheng et  al. 2009), could 
also benefit from a multi-dimensional point of view (which could be approached with 
MBCs as well).

In addition, there is still room for research on MBCs. Other alternative approaches for 
handling continuous feature variables rather than a discretization or a Gaussian assumption 
could be derived, such as kernel density estimation (John and Langley 1995; Pérez et al. 
2009). Simple unsupervised discretization methods have been used at most for the experi-
ments with benchmark data sets and real-world problems, and only the work of Fernandes 
et al. (2013) has proposed a multi-dimensional extension of the state-of-the-art supervised 
discretization method of Fayyad and Irani (1993). The study of sensitivity functions for 
tuning MBCs is already ongoing (Bolt and van der Gaag 2017), and could benefit from 
further attention. Feature subset selection and stratified performance evaluation for multi-
dimensional classifiers are still open problems. Feature weighting methods proposed in the 
multi-label setting (Yang and Ding 2019) could be extended to the multi-dimensional clas-
sification problem, and specially to MBCs. Also, the application of MBCs to more real-
world problems would be interesting, especially if they show more challenging settings, 
such as data-streaming situations or cost-sensitive classification.

To this end, research addressing the current lack of public domain software related to 
multi-dimensional classification, and concretely to MBCs, is needed. A good starting point 
could be to extend the prominent software regarding multi-label classification. Similarly, 
no benchmark multi-dimensional data repositories were found in the literature. Among 
the strategies followed to evaluate and compare the proposed algorithms for learning an 
MBC, a benchmark multi-label data repository has been mostly used. Other approaches are 
based on using sampled synthetic data from a randomly generated MBC, or from an exist-
ing Bayesian network with class variables selected at random. As they are functional, but 
not sufficient, strategies to evaluate and compare multi-dimensional classifiers, we expect 
and encourage the creation of a benchmark multi-dimensional data repository. Again, the 
progress made in the multi-label scenario (Charte et al. 2018) could provide a useful start-
ing point.
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