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Abstract
This paper presents a new class of Bayesian networks called hybrid semiparametric
Bayesian networks, which can model hybrid data (discrete and continuous data) by
mixing parametric and nonparametric estimation models. The parametric estimation
models can represent a conditional linear Gaussian relationship between variables,
while the nonparametric estimation model can represent other types of relationships,
such as non-Gaussian andnonlinear relationships. This newclass ofBayesian networks
generalizes the conditional linear Gaussian Bayesian networks, including them as a
special case. In addition, we describe a learning procedure for the structure and the
parameters of our proposed type of Bayesian network. This learning procedure finds
the best combination of parametric and nonparametricmodels automatically fromdata.
This requires the definition of a cross-validated score. We also detail how new data
can be sampled from a hybrid semiparametric Bayesian network, which in turn can
be useful to solve other related tasks, such as inference. Furthermore, we intuitively
relate our proposal with adaptive kernel density estimation models. The experimental
results show that hybrid semiparametric Bayesian networks are a valuable contribution
when dealing with data that do not meet the parametric assumptions that are expected
for other models, such as conditional linear Gaussian Bayesian networks. We include
experiments with synthetic data and real-world data from the UCI repository which
demonstrate the good performance and the ability to extract useful information about
the relationship between the variables in the model.
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1 Introduction

Nowadays, the large availability of real-world data in multiple fields has driven
the attention to extract useful information using machine learning. Bayesian net-
works (Pearl 1988; Koller and Friedman 2009; Maathuis et al. 2018) are probabilistic
graphical models that can represent a multivariate probability distribution in an
efficient way by factorizing the probability distribution, taking advantage of the
conditional independences of the distribution. Furthermore, these conditional inde-
pendences of the distribution can be represented using a directed acyclic graph.

Bayesian networks have been applied in many different domains: Bielza and Lar-
rañaga (2014b), Mascaro et al. (2014), and Codetta-Raiteri and Portinale (2015).
Bayesian networks are a convenientmodelwhen there is uncertainty in the data because
they are grounded on the sound framework of probability theory. Bayesian networks
are very expressive models since they provide both quantitative and qualitative infor-
mation. The quantitative information is related to the ability of Bayesian networks
to answer different types of queries about the probability of occurrence of a given
event. The qualitative information can be extracted reading the graph of the Bayesian
network, so useful information about the real-world domain can be recovered. For this
reason, many different Bayesian network learning algorithms have been developed
in the literature (Scutari et al. 2019). Also, many different types of machine learning
problems have been addressed using Bayesian networks: classification (Bielza and
Larrañaga 2014a), clustering (Luengo-Sanchez et al. 2019), anomaly detection (Mas-
caro et al. 2014), etc.

Tomodel the uncertainty, Bayesian networks usuallymake parametric assumptions,
i.e., they assume that the data come from a specific distribution or class of distribu-
tions. We call this type of Bayesian networks as parametric Bayesian networks. The
parametric assumptions have some advantages: the number of parameters is fixed and
the estimation of those parameters is usually faster. Also, if the data truly meet the
assumptions, there is usually a minimum variance unbiased estimator for the param-
eters which exhibits good performance (even though it is not guaranteed to be the
estimator with minimum error). However, if the assumptions in the data are not met,
the model may have an inherent bias that cannot be reduced even in the case of a large
amount of available data. In that case, it is better to use a nonparametric estimation
model that does not make assumptions about the data distribution. Nevertheless, a
nonparametric estimation model can be computationally more expensive and usually
offers worse error convergence results when the parametric assumption is met (Scott
2015). A Bayesian network constructed using nonparametric estimation models will
be called nonparametric Bayesian network.

In the present paper, we propose a new class of Bayesian networks that mixes
parametric and nonparametric estimation models to combine the advantages of both
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Bayesian network types. We call this type semiparametric Bayesian networks. In
addition, we include a learning algorithm that automatically detects which parts of the
Bayesian networks are best represented with a parametric or nonparametric estimation
model. This information can also be read in the graph, so more qualitative information
can be extracted about the type of relation between the variables. Also, this type of
Bayesian networks can model hybrid probability distributions, i.e., probability dis-
tributions that combine discrete and continuous random variables, which are the two
most common data types in real applications.

The contributions of the paper are as follows: (1) a new class of Bayesian networks
that models hybrid data and mixes parametric and nonparametric estimation models,
(2) the adaptation of standard learning techniques to learn the structure and the param-
eters of hybrid semiparametric Bayesian networks, (3) a procedure to sample new data
from this new class of Bayesian network, (4) an intuitive connection between hybrid
semiparametric Bayesian networks and the adaptive kernel density estimation models,
and (5) the availability of the source code of the proposed framework.

The paper is organized as follows. Section 2 introduces the needed concepts about
Bayesian networks and nonparametric models by also reviewing previous works in the
literature. In Sect. 3, the hybrid semiparametric Bayesian network class is described,
along with a learning algorithm for the structure and parameters of the network.
Section 4 provides experimental results obtained by testing hybrid semiparametric
Bayesian networks in synthetic and real-world data. Section 5 concludes the paper
and provides future work proposals.

2 Background

We denote with capital letters, e.g., X , a random variable, while using the boldface
version to represent random variable vectors, e.g., X. A subscript is used to index an
element or set of elements, e.g., Xi is the i-th element ofX andXS ,with S ⊂ {1, . . . , n},
selects the set S of indices from a vectorX of n variables. The instantiation of random
variables is denoted using lowercase letters, e.g., x , xi or xS . The vector of continuous
random variables are denoted usingY. The vector of discrete random variables will be
denoted using Z. The number of discrete variables is d and the number of continuous
variables is c, so n = d + c. The domain of the discrete variable Zi is denoted �i , and
the domain of the discrete variable ZS is �S = Ś

i∈S �i . The union of continuous
and discrete random variables is denoted with X = (Y,Z). A dataset is denoted with
D, which can also be indexed by indices,Di , and sets of indices,DS , to select a subset
of D with only the indexed variables. Also, a subset of the data with the instances
having a discrete configuration z for the variables Z is denoted D↓z.

2.1 Kernel density estimation

Kernel density estimation (KDE) (Scott 2015) is a nonparametric technique that
estimates the underlying probability density function of some continuous data. The
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multivariate kernel density estimation is defined as:

f̂KDE(y) = 1

N |H|1/2
N∑

i=1

K
(
H−1/2(y − yi )

)
= 1

N

N∑

i=1

KH

(
y − yi

)
, (1)

where yi = (yi1, . . . , y
i
c) is the i-th instance of the training datasetDY = {y1, . . . , yN },

which contains N instances. H is a c × c symmetric positive-definite matrix called
bandwidth matrix, and |H| is its determinant. K : Rc �→ R is a kernel function whose
integral is 1. KH(x) = |H|−1/2 K (H−1/2x) is the scaled version of the kernel function
by the bandwidth matrix.

Usually, a Gaussian kernel, K (x) = (2π)−c/2 exp
(− 1

2x
T x

)
, is used because it is a

distribution with good theoretical properties and some interesting derived results for
KDEs. The scaled version of the kernel is equal to the multivariate Gaussian density
with covariance matrix H and mean yi :

KH(y − yi ) = 1

(2π)c/2 |H|1/2 exp
[
(y − yi )TH−1(y − yi )

]
.

Thus, a KDE model with a Gaussian kernel is equivalent to a Gaussian mixture
model with equiprobable components where each component is located on each train-
ing instance. From this perspective, it is easy to understand the effect of H on the
resulting density estimation f̂KDE(y). If |H| is small, the space near the training
instances has a high probability density and the space away from any training instance
will have probability density close to 0. Conversely, if |H| is large, the probability
density is spread over the entire space, resulting in a smooth density estimate.

The bandwidth matrix has an important impact in the performance of the KDE. For
this reason, multiple techniques have been developed to select the bandwidth matrix
automatically. Most of the research was dedicated to the bandwidth selection in the
univariate case (Cao et al. 1994). In the multivariate case, bandwidth selection can
be more challenging, although many univariate bandwidth selection techniques have
been adapted to it (Chacón and Duong 2018). The bandwidth matrix can be con-
strained to have a specific structure, e.g., a diagonal bandwidth matrix. However, in
this manuscript we will work with unconstrained bandwidth matrices. Many band-
width selection techniques are based on minimizing the mean integrated squared error
(MISE):

MISE{ f̂KDE} = E

∫

Rc

[
f (y) − f̂KDE(y)

]2
dy, (2)

where f is the underlying probability density function that we are estimating, and the
expectation is carried out with respect to the different training datasets that can be used
to create the estimator f̂KDE. Usually, the MISE cannot be calculated directly because
function f is unknown. The normal reference rule is a bandwidth selection technique
that assumes that f is the Gaussian distribution. Then, the bandwidth selection that
optimizes the MISE is:

Ĥ =
(

4

N (c + 2)

)2/(c+4)

�̂, (3)
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where �̂ is the sample covariance. The normal reference rule is known to oversmooth
when the data distribution is not Gaussian. That is, the normal reference rule has an
inherent bias toward larger bandwidth matrices when f is not Gaussian. An alterna-
tive is the unbiased cross-validation (UCV) criterion (Rudemo 1982; Bowman 1984),
which performs a cross-validation on the data to estimate the MISE. Although UCV
is an unbiased estimator, it exhibits a considerable variance in most cases. The plug-in
selection method (Duong and Hazelton 2003) is based on minimizing the asymptotic
MISE (AMISE), which is asymptotically equal to MISE (when N → ∞). The plug-
in method requires the estimation of some derivatives of f , which can be calculated
taking the derivative of K in Eq. (1).

The bandwidth matrix is constant in f̂KDE, so the same amount of smoothing is
applied for all the training instances. If the distribution of the data differs in different
parts of the space, this could be suboptimal. For this reason, someworks have proposed
to use different bandwidth matrices in different parts of the space. This type of density
estimator has been called adaptive kernel density estimator (AKDE). This idea has
been implemented in two different ways. The bandwidth matrix could depend on a
function of y (Loftsgaarden and Quesenberry 1965), and then:

f̂adaptive1(y) = 1

N

N∑

i=1

KH(y)

(
y − yi

)
, (4)

whereH(y) is a function that returns a bandwidth matrix. Alternatively, each training
instance can have a different bandwidth matrix (Breiman et al. 1977):

f̂adaptive2(y) = 1

N

N∑

i=1

KH(yi )

(
y − yi

)
. (5)

where H(yi ) is a function that returns a bandwidth matrix for each training instance.

2.2 Bayesian networks

Formally, a Bayesian network is a tuple B = (G, θ), where G = (V , A) is a directed
acyclic graph (DAG) with a set of nodes V = {1, . . . , n} and a set of arcs A ⊆
V × V , and θ = {P (

xi | xPa(i)
)
, i = 1, . . . , n} is a set of parameters that contains

a conditional probability distribution (CPD) for each random variable. A Bayesian
network factorizes a joint probability distribution P(x) of a vector of random variables
X = (X1, . . . , Xn). The set of nodes V indexes the vector of random variables, so
XV = X. The form in which the joint probability distribution is factorized depends
on the set of arcs A of G:

P(x) =
n∏

i=1

P(xi | xPa(i)), (6)

where Pa(i) are the parent indices of node i in the graph G. P(xi | xPa(i)) is the CPD
of the random variable Xi given the random variables XPa(i) contained in θ .

123



304 D. Atienza et al.

The number of parameters of an unfactorized distribution P(x) is usually larger
than O(n), e.g., it is quadratic, O(n2), for a multivariate Gaussian distribution, or
exponential,

∏n
i=1|�i |, for a conditional probability table (CPT) of a categorical dis-

tribution. Since usually |Pa(i)| 	 n, the set θ contains n CPDs with a very small
number of parameters. Thus, the number of parameters needed to define a Bayesian
network is usually much lower than the unfactorized representation of P(x).

Moreover, the set of conditional independences defined by the Bayesian network
can be directly read from the graph G using the d-separation criterion (Koller and
Friedman 2009).

2.2.1 Parametric Bayesian networks

Most of the Bayesian networks defined in the literature are parametric, i.e., they are
defined using parametric CPDs with a fixed number of parameters. The most common
type of Bayesian networks are discrete Bayesian networks, that only can be used to
model discrete domains. Usually, discrete Bayesian networks are defined using a CPT
that specifies a conditional probability for each configuration of Xi and XPa(i). Other
types of CPDs are available such as tree-structured CPDs (Friedman and Goldszmidt
1996), which can take advantage of the conditional independences in the CPD to
reduce the needed number of parameters.

Gaussian Bayesian networks are a specific continuous Bayesian network type. A
Gaussian Bayesian network uses a linear Gaussian (LG) CPD for each node of the
Bayesian network. The LGCPD assumes that there is a linear relationship between Xi

and XPa(i), and there is a Gaussian conditional distribution given xPa(i). A Gaussian
Bayesian network assumes that the random variables are distributed according to
a multivariate Gaussian distribution. Indeed, a Gaussian Bayesian network can be
considered an alternative representation of a multivariate Gaussian distribution. Since
the normality assumption canbe inadequate tomodel non-Gaussian distributions, other
types of Bayesian networks have been developed. Mixtures of Gaussian DAG models
(MGDAG) (Thiesson et al. 1998) are analogous to the Gaussian mixture model but
they use Gaussian Bayesian networks to represent the base components of themixture.
Tweedie Bayesian networks (TDB) (Masmoudi and Masmoudi 2019), restrict the
CPDs to be a special class of distributions from the exponential family. The Tweedie
class of distributions include the Gaussian, the inverse-Gaussian, the gamma, and the
Poisson distributions.

The Bayesian networks that can model domains with discrete and continuous vari-
ables are called hybrid Bayesian networks. A conditional linear Gaussian Bayesian
network (CLGBN), Lauritzen and Wermuth (1989), is a hybrid Bayesian network
that assumes that the discrete random variables can be represented with a CPT, and
the continuous random variables are assumed to be conditionally distributed with an
LG CPD or a set of LG CPDs. A CLGBN restricts the structure of the network, so
arcs from continuous random variables to discrete random variables are not allowed.
Also, the assumption of an LG CPD implies, for each possible configuration of the
discrete parents, a Gaussian conditional distribution. Some efforts have been made to
increase the flexibility of the CLGBN model. The augmented CLGBN (Lerner et al.
2001) addresses the restriction on the continuous parents for discrete variables using a
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softmax function as CPD for the discrete variables. Mixture of truncated exponentials
(MTE) networks (Moral et al. 2001) describe piecewise-defined exponential func-
tions that are used as CPD. The MTE networks overcome the normality assumption
by dividing the domain in multiple hypercubes and assigning a different exponential
function to each domain partition. This idea inspired themixture of polynomials (MoP)
networks (Shenoy and West 2011) and mixture of truncated basis functions (MoTBF)
networks (Langseth et al. 2012), which use polynomials and basis functions, respec-
tively, in each domain partition.

2.2.2 Nonparametric Bayesian networks

When the parametric assumptions are not met, the performance of parametric models
may be greatly reduced. An alternative is the use of nonparametric models that do not
make assumptions about the data distribution. A nonparametric model does not have
a fixed number of parameters and usually the complexity of its representation grows
with the amount of data available.

A nonparametric Bayesian network is a Bayesian network where all the CPDs of
a Bayesian network are estimated with nonparametric methods. Hofmann and Tresp
(1995) define a type of nonparametric Bayesian network where the CPDs are defined
as the ratio of two KDE models. The use of KDE models was extended to create
flexible Bayesian network classifiers. A flexible naive Bayes is described in John and
Langley (1995), and other flexible Bayesian networks with fewer structure constraints
are proposed in Pérez et al. (2009). Gonzalez et al. (2015) apply a flexible Bayesian
network to detect anomalies in an industrial context.

FriedmanandNachman (2000) defineBayesiannetworks usingGaussianprocesses,
which are also nonparametric methods. These type of Bayesian networks are designed
to detect functional dependencies between the variables. Ickstadt et al. (2012) introduce
a continuous nonparametric Bayesian network that uses an infinite mixture model to
avoid the normality assumption. This Bayesian network is learned taking into account
the uncertainty of the parameters and the graph of a Gaussian network and using
Bayesian priors over the parameters.

2.2.3 Semiparametric Bayesian networks

A semiparametric model combines parametric and nonparametric components. They
try to get the advantages of both types of models. Not much work has been done on
semiparametric Bayesian networks. Boukabour and Masmoudi (2020) define a con-
tinuous semiparametric Bayesian network that rely on semiparametric regression. The
semiparametric regression combines a linear regression component with a Nadaraya–
Watson estimator (Nadaraya 1964; Watson 1964), that uses a diagonal bandwidth
matrix for the nonparametric component. In this work, all the CPDs are semiparamet-
ric regressions. The graph structure of these networks is learnedusing a novel algorithm
based on statistical hypothesis tests of conditional independence that requires to know
the correct ancestral ordering for the nodes.

Atienza et al. (2022) proposed continuous semiparametric Bayesian networks,
where a CPD can be parametric or nonparametric. The parametric CPDs are LG
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CPDs and the nonparametric CPDs are the ratio of two KDE joint distributions using
unconstrained bandwidth matrices. The learning algorithm automatically detects the
type of CPD suitable for each node. These networks can be learned using any of the
score-and-search and constraint-based algorithms already developed in the state of the
art, such as greedy hill-climbing and PC (Spirtes et al. 2001).

To the best of our knowledge, no previous approach supported hybrid data using
nonparametric/semiparametric Bayesian networks.

3 Hybrid semiparametric Bayesian networks

This section proposes the class of hybrid semiparametricBayesian networks (HSPBN).
First, we describe their representation in Sect. 3.1, which describes the CPDs of
HSPBNs. In Section 3.2,we propose a learning process ofHSPBNs. Then,we present a
procedure to sample new data from an HSPBN in Sect. 3.3. Finally, Sect. 3.4 discusses
the relation between HSPBNs and the adaptive KDE models [Eqs. (4) and (5)].

3.1 Representation

An HSPBN is a class of Bayesian network that can model discrete and continuous
variables. The discrete variables are conditionally distributed as a categorical distri-
bution. This distribution is usually represented by a CPT. Like CLGBNs, the graph is
restricted so that a discrete variable cannot have a continuous variable as parent. The
continuous variables can be represented using parametric or nonparametric CPDs. The
parametric CPDs make the assumptions that, for each possible configuration of the
discrete parents, the continuous variables are conditionally distributed as a Gaussian
distribution and have a linear relationship with their continuous parents. When this
parametric assumption is not met, the HSPBN model can have more flexibility by
using a nonparametric CPD, which does not make any parametric assumption.

The HSPBNmodel includes the CLGBNs as a special case when all the continuous
variables CPDs are parametric. However, the HSPBNs have the possibility of more
flexible models when nonparametric CPDs are used for some variables.

Figure 1presents an example ofHSPBN.Discrete nodes canonly haveother discrete
nodes as parents. For the continuous nodes, any combination of parent node types is
allowed.

3.1.1 Parametric conditional probability distribution

The parametric CPDs in HSPBNs are conditional linear Gaussian (CLG) CPDs, which
are also used by CLGBNs. The CLGCPD is composed of an LGCPD for each discrete
configuration of its evidence.

Definition 1 Linear Gaussian CPD. Let Xi be a continuous random variable and Y =
(Y1, . . . ,Yr ) a vector of continuous random variables. The conditional distribution of
Xi given Y is said to be linear Gaussian if there are parameters β0, . . . , βr and σ 2

i
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Fig. 1 Example representing the
structure of an HSPBN. Discrete
variable nodes are represented
with rectangles and continuous
variable nodes with ellipses.
Parametric CPD nodes are
represented with white nodes
and nonparametric CPDs nodes
are represented with gray shaded
nodes

X1 X2

X3X4 X5

X6 X7

X8 X9

such that:

fLG(xi | y) = N
⎛

⎝β0 +
r∑

j=1

β j y j , σ
2
i

⎞

⎠ , (7)

where the mean of the Gaussian distribution is computed as a linear regression, β0 is
the intercept of the linear regression, β j ( j = 1, . . . , r) is the regression coefficient
corresponding to Y j , and σ 2

i is the variance of the conditional distribution. The LG
CPD is derived from the assumption of a linear relationship between Xi and Y j :

Xi = β0 +
r∑

j=1

β j Y j + ε, with ε ∼ N (0, σ 2
i ),

where Y1, . . . ,Yr are independent of ε.

Note that if all the CPDs of a Bayesian network are LG, as in Gaussian Bayesian
networks, the marginal and conditional distributions of each random variable in the
Bayesian network are Gaussian. Also, the joint distribution is multivariate Gaussian.

Definition 2 Conditional Linear Gaussian CPD. Let Xi be a continuous random
variable, Y = (Y1, . . . ,Yr ) a vector of continuous random variables, and Z =
(Z1, . . . , Z p) a vector of discrete random variables. The conditional distribution of
Xi given Y and Z is said to be conditional linear Gaussian if there are parameters
βz,0, . . . , βz,r and σ 2

z,i for each discrete configuration z ∈ �{1,...,p} such that:

fCLG(xi | y, z) = N
⎛

⎝βz,0 +
r∑

j=1

βz, j y j , σ
2
z,i

⎞

⎠ , (8)
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where the mean of the Gaussian distribution of each discrete configuration z is com-
puted as a linear regression, βz,0 is the intercept for the discrete configuration z,
βz, j ( j = 1, . . . , r) is the regression coefficient corresponding to Y j for the discrete
configuration z, and σ 2

z,i is the variance of the conditional distribution for discrete
configuration z.

If all the CPDs of a Bayesian network are CLGs, as in CLGBNs, the conditional
distribution of each random variable given their parents (Y and Z) is Gaussian, but its
marginal distribution f (xi ) may be non-Gaussian. Indeed, the marginal distribution
of each variable can be represented using a Gaussian mixture where each component
of the mixture is constructed from each discrete configuration of Z. Thus, the CLG
CPDs allow to relax the normality assumptions, so only the conditional (and not the
marginal) distribution given the discrete parents needs to be Gaussian.

Note that the LG CPD is a particular case of the CLG CPD, where there are no
discrete conditioning parents.

3.1.2 Nonparametric conditional probability distribution

The nonparametric CPDs of an HSPBN are based on the conditional kernel density
estimation (CKDE) described in Hofmann and Tresp (1995) and Atienza et al. (2022).
The CKDE is defined as the ratio of two joint distributions estimated with KDE

Definition 3 Conditional Kernel Density Estimation. Let Xi be a continuous random
variable and Y = (Y1, . . . ,Yr ) a vector of continuous random variables. Then, the
conditional distribution of Xi givenY is said to be conditional kernel density estimation
if it is calculated from two KDE models [Eq. (1)] f̂KDE(xi , y) and f̂KDE(y) such that:

f̂CKDE(xi | y) = f̂KDE(xi , y)

f̂KDE(y)
=

∑N
j=1 KH

([
xi
y

]
−

[
x j
i
y j

])

∑N
j=1 KH−i

(
y − y j

) , (9)

where x j
i and y j are the values in the j-th training instance for the variables Xi andY,

respectively. H and H−i are the bandwidth matrices for the KDE models f̂KDE(xi , y)
and f̂KDE(y), respectively.

The CKDE CPD does not assume the marginal or conditional distribution of Xi .
However, the CKDE CPD only supports continuous evidence. The hybrid conditional
kernel density estimation (HCKDE) supports also discrete evidence by defining a
CKDE for each discrete evidence configuration, inspired by the CLG CPD approach.

Definition 4 Hybrid Conditional Kernel Density Estimation. Let Xi be a continuous
random variable, Y = (Y1, . . . ,Yr ) a vector of continuous random variables, and
Z = (Z1, . . . , Z p) a vector of discrete random variables. The conditional distribution
of Xi given Y and Z is said to be hybrid conditional kernel density estimation if for
every discrete configuration z ∈ �{1,...,p}, its conditional distribution is modeled by a
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different CKDE CPD f̂CKDE,z(xi | y) such that:

f̂HCKDE(xi | y, z) = f̂CKDE,z(xi | y) =
∑N

j=1:z j=z KH(z)

([
xi
y

]
−

[
x j
i
y j

])

∑N
j=1:z j=z KH−i (z)

(
y − y j

) , (10)

where f̂CKDE,z is a CKDE constructed with the instances with the discrete evidence
z, H(z) and H−i (z) are bandwidth matrices that depend on the discrete evidence
configuration z.

An HCKDE CPD does not require assumptions about the marginal or conditional
distribution of Xi . Note that this is a difference with respect to CLG, which assumes
a conditional Gaussian distribution.

3.2 Learning

ABayesian network canbe constructed by taking advantage of knowledge fromexperts
of the domain or automatically from data. In this work, we focus our attention on
learning automatically from data because in several application fields large amount of
data are available.

There are two parts on the learning process of a Bayesian network: parameter learn-
ing and structure learning. The parameter learning estimates the parameters of the set
of CPDs, θ , for a given structure. The structure learning estimates the graph, G, of the
Bayesian network. For most Bayesian networks, the structure learning involves learn-
ing the arcs in the graph. In addition, HSPBNs contain extra information specifying
the type of CPD for each node.

Usually, the learning process involves first performing structure learning to find
the best Bayesian network structure. Then, parameter learning is applied on the best
found structure.

3.2.1 Parameter learning

The parameter learning requires knowing the type of CPD and the parents of each node
to estimate the parameters of each CPD, P(xi | xPa(i)). In this section, we describe
the parameter learning process for each CPD type.

For many parametric CPDs a well-known parameter learning criterion is maximum
likelihood criterion. The maximum likelihood estimate (MLE) selects the parameter
that maximizes the likelihood of the data. For convenience, usually the log of the like-
lihood, log-likelihood, is used as the criterion because it returns the same estimations
as the likelihood. The log-likelihood of some data D given a graph structure G and
parameters θ is:

L(G, θ : D) =
n∑

i=1

N∑

j=1

log P
(
x j
i | x j

Pa(i)

)
, (11)

123



310 D. Atienza et al.

which is derived from Eq. (6). Then, the MLE is:

θ̂ = argmaxθ∈� L(G, θ : D), (12)

where � is the parameter space, namely, the set of allowable parameters.
A categorical CPD is usually represented with a CPT where each conditional prob-

ability is defined by parameters P(xi | xPa(i)) = θxi |xPa(i) , with
∑

k∈�i
θk|xPa(i) = 1.

For a categorical CPD, the MLE are the observed frequency estimates of the discrete
configurations in the data:

θ̂MLE
xi |xPa(i) = N [xi , xPa(i)]

N [xPa(i)] , (13)

where N [xi , xPa(i)] is the number of instances in the data where Xi = xi andXPa(i) =
xPa(i). N [xPa(i)] is defined similarly.

In practice, the MLE may be inconvenient for short samples, specially when
N [xi , xPa(i)] = 0, if the ground truth probability P(xi | xPa(i)) is not 0. In that case,
the probability of an instance with Xi = xi and XPa(i) = xPa(i) is equal to 0 and the
log-likelihood is not defined. Moreover, the MLE is not defined when N [xPa(i)] = 0.
This problem can be addressed using a Bayesian prior for the categorical CPD. In
this paper, we use a uniform Bayesian Dirichlet equivalent (BDeu) prior (Heckerman
et al. 1995), which assigns a uniform Dirichlet prior distribution (which is the conju-
gate prior of the categorical distribution) to each categorical variable in the Bayesian
network:

θ̂BDeuxi |xPa(i) = α/
∣∣�{i}∪Pa(i)

∣∣ + N [xi , xPa(i)]
α/

∣∣�Pa(i)
∣∣ + N [xPa(i)] . (14)

where α > 0 is the equivalent sample size of the prior. In the limiting case α = 0 the
BDeu prior is not defined, but when α is close to 0 the BDeu estimation is close to the
MLE. In this paper, we use α = 1.

The CLG CPD for Xi given XPa(i) requires computing the set of coefficients
and variances, θ Xi |XPa(i) = {βz, σ

2
z,i | z ∈ �PaZ(i)}, where the vector βz =

(βz,0, βz,1, . . . , βz,r ) combines the intercept and the linear regression coefficients for
discrete configuration z, and PaZ(i) are the discrete parent indices (similarly, we will
use PaY(i) to denote the continuous parent indices). The MLE for the CLG is com-
puted calculating the MLE of each LG CPD. The MLE of an LG CPD can be found
using ordinary least squares under the assumptions in Definition 1 (Fox 1997). Thus,
the parameters of a CLG can be found applying ordinary least squares for each discrete
configuration z ∈ �PaZ(i) on the subset of data D↓z.

The HCKDE CPD for Xi given XPa(i) needs to estimate a CKDE model, f̂CKDE,z,
for each discrete parent configuration z ∈ �PaZ(i). A CKDE CPD is composed of two
KDE models f̂KDE(xi , xPa(i)) and f̂KDE(xPa(i)). These two KDE models are closely
related because the CKDE models need to integrate to 1:

∫ ∞

−∞
f̂CKDE(xi | xPa(i))dxi = 1, ∀xPa(i),
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which implies from Eq. (9) that:

∫ ∞

−∞

N∑

j=1

KH

([
xi

xPa(i)

]
−

[
x j
i

x j
Pa(i)

])
dxi =

N∑

j=1

KH−i

(
xPa(i) − x j

Pa(i)

)
.

Using Fubini’s theorem to switch the integral and the summation we have:

N∑

j=1

∫ ∞

−∞
KH

([
xi

xPa(i)

]
−

[
x j
i

x j
Pa(i)

])
dxi =

N∑

j=1

KH−i

(
xPa(i) − x j

Pa(i)

)
.

If KH is a Gaussian multivariate kernel, the integral can be easily computed. If the H
matrix is defined by blocks:

H =
[
a bT

b C

]
, (15)

the integral of KH is a kernel KC verifying:

N∑

j=1

KC

(
xPa(i) − x j

Pa(i)

)
=

N∑

j=1

KH−i

(
xPa(i) − x j

Pa(i)

)
. (16)

The expression in Eq. (16) is true for any dataset D if and only if H−i = C. Thus,
to select the bandwidths of the CKDE, we only need to selectH and assignH−i = C.
The bandwidth H can be selected with any of the bandwidth selection methods of
Sect. 2.1.

Algorithm1 summarizes the learningprocess of anHCKDECPD.For everydiscrete
configuration of the parent variables z, a new CKDE must be learned, which also
requires learning two KDE models. The HCKDE CPD is the combination of all the
trained CKDE CPDs.

Algorithm 1 HCKDE parameter learning
Require: Training data D, variable Xi , evidence variables XPa(i)
1: for z in �PaZ(i) do

2: Estimate bandwidth Ĥ from D{i}∪PaY(i),↓z
3: Ĥ−i ← Ĉ
4: f̂KDE,z

(
xi , xPaY(i)

) ← KDE constructed with Ĥ and D{i}∪PaY(i),↓z
5: f̂KDE,z

(
xPaY(i)

) ← KDE constructed with Ĥ−i and DPaY(i),↓z
6: f̂CKDE,z

(
xi | xPaY(i)

) ← CKDE constructed with f̂KDE,z
(
xi , xPaY(i)

)

and f̂KDE,z
(
xPaY(i)

)

7: end for
8: return f̂HCKDE

(
xi | xPa(i)

)
created with all the f̂CKDE,z

(
xi | xPaY(i)

)
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3.2.2 Structure learning

The structure learning of an HSPBN is based on the learning process described
in Atienza et al. (2022). In this work, we will use a greedy hill-climbing algorithm to
learn the structure of the HSPBN. The greedy hill-climbing algorithm consists of a
score function and a set of operators. The score function can evaluate the goodness of
a given graph structure. The set of operators is a set of small, local changes that mod-
ify a given structure and returns a new structure. The greedy hill-climbing algorithm
successively applies the operator that most improves the score of the structure until
a local minimum is found. Thus, the set of operators determines the possible search
paths for the best structures.

Formost Bayesian network types, the set of operators used in a greedy hill-climbing
algorithm is composed of the possible changes in a single arc: an arc addition, an arc
removal, or an arc reversal. In an HSPBN, some arc operators (some arc additions
and arc reversals) are forbidden, since a discrete variable cannot have a continuous
variable as parent. Furthermore, an HSPBN also requires estimating the type of CPD
for each node. The type of CPD for the nodes can be added as additional information
in the graph, where a node type is assigned to each node. To learn the node types
automatically, we include a set of operators that can change the node type of a single
node.Wedenote a node type change for variable Xi asType- Change(i). For example,
if the node type of Xi is a CLG node type, the Type- Change(i) operator changes
the node type of Xi to HCKDE. Conversely, if the node type of Xi is an HCKDE,
then the node type is changed to CLG. For a discrete variable, the node type is not
mutable, so the operators Type- Change(i) are not included for this type of variables.
The Type- Change(i) operator allows to explore structures with different node types,
which in turn enables the detection of the best node type for each node.

The score function is an important component of the greedy hill-climbing algorithm.
The score function should return higher values for structures that improve their fit to
the data. Usually, the score function is used to evaluate the delta score of each operator,
i.e., the increase or reduction in score when an operator is applied. A valid scoring
function is the maximum log-likelihood function, maxL(G, θ : D), which is usually

calculated as the log-likelihood function with the MLE parameters, L(G, θ̂
MLE : D).

However, the use of the maximum log-likelihood score is not recommended because
an arc addition never reduces the score (Koller and Friedman 2009), which usually
leads to completely connected networks. A common alternative is the use of the BIC
(Bayesian Information Criterion) score, that includes a penalization to the complexity
of the network in the maximum log-likelihood function:

SBIC(D,G) = L(G, θ̂
MLE : D) − log N

2
Dim(G), (17)

where Dim(G) counts the number of free parameters in the Bayesian network. Neither
the maximum log-likelihood nor the BIC score functions are valid candidates to learn
an HSPBN because the calculation of the log-likelihood function when the network
contains KDE models overestimates the goodness of the Bayesian network. This is
because a KDE model stores the data D to fit the KDE models. Then, when the log-
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likelihood of an instance is being calculated, it is guaranteed that this same instance
is also a training instance in Eq. (1). This causes an overestimation in the goodness
of the model because there would be N KH(0) terms in the log-likelihood calculation
(the maximum of KH is assumed to be at KH(0)).

From these observations, it is reasonable that the data used to fit the CPDs must
be different than the data to evaluate the goodness of the model. Applying a k-fold
cross-validation to the data can split the data to achieve this objective, while ensuring
all the data are used. A k-fold cross-validation splits the data into k disjoint subsets.We
will denote I i the instance indices for the i-th fold, so D↓Ii is the i-th fold data. The

indices not in the i-th fold will be denoted I−i = ⋃k
m=1:m �=i Im . The set of indices is

represented as I = {I1, . . . , Ik}. A k-fold cross-validated likelihood score is then:

Sk
CV(D,G) =

k∑

m=1

L(G, θI−m : D↓Im ), (18)

where θI−m
are the parameters trained with the data D↓I−m using the parameter

learning procedure described in Sect. 3.2.1. The Sk
CV is a valid score to train HSPBNs

because the log-likelihood is calculated over data that were not seen while estimating
the parameters. In addition, the score Sk

CV can decrease by the addition of some arcs.
This event takes place when the arc addition does not improve the model performance
in unseen data, thus avoiding the overfitting. Therefore, the score can control the
complexity of the model automatically. Sk

CV can be understood as an estimator of the
expected log-likelihood of the model, i.e., the expected log-likelihood for the new and
unseen data.

During the progress of the greedy hill-climbing algorithm, several candidate struc-
tures need to be evaluated. For this reason, to accomplish a fast execution of the
algorithm we need to reduce as much as possible the number of evaluations of the
score function. The score function may have a property called decomposability that
notably reduces the number of needed score evaluations. A decomposable score can
be calculated as the sum of local score terms for each node:

Sdecomposable =
n∑

i=1

Slocal(Xi | XPa(i)). (19)

A decomposable score reduces the number of evaluations because the operators
change the local score of a node (arc addition, arc removal, node type change) or two
nodes (arc reversal). This ensures that after applying an operator, it is only necessary
to update the delta score for the operators of the affected nodes. The delta score of
the other operators can be cached to avoid calling the score function. The maximum
log-likelihood and the BIC scores are known to be decomposable [see Eq. (19), which
sums a term for each node].

The Sk
CV score is also decomposable. This is obvious because Sk

CV is the sum of k
log-likelihood functions, which are in turn also decomposable. However, to keep the
delta scores cached it is important to fix a set of k-fold cross-validation indices I in
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advance and never change it. Otherwise, the data used to estimate the parameters of
each fold, θI−m

, and the data fold, D↓Im , would change. Therefore, the score Sk
CV

with two different sets of indices I and I ′ will be slightly different, thus breaking the
capability to take advantage of the decomposability of the score.

Using the Sk
CV score with a fixed set of indices I makes it decomposable and allows

to cache the scores. However, fixing a set of indices I introduces a bias on the score,
because the final structure will be optimized only for the set of indices I, but it may
be suboptimal for other sets of indices I ′. This is especially relevant when evaluating
operators with small positive delta scores. This is because, for the chosen I, the delta
score can be a low positive number, while for other set of indices I ′ the delta score can
be a negative number. This effect can be understood as overfitting the set of indices I.
To solve this problem, we randomly split the data into two disjoint subsets: a training
dataset and a validation dataset, D = Dtrain ∪ Dval. The operators will be evaluated
using the Sk

CV score with the training dataset Dtrain. The validation dataset, Dval, is
used to control if the score Sk

CV is overfitting I using a validated log-likelihood:

Svalidation(Dtrain,Dval,G) = L(G, θ train : Dval). (20)

where θ train are the parameters learned using the dataset Dtrain.
If the structure overfits I with a given operator, the Sk

CV delta score will be positive,
but the Svalidation delta score will be negative because the operator deteriorates the
generalization ability of the model. However, if the delta of both scores is positive, the
operator is clearly useful to increase the performance of themodel. The split of the data
into train and validation data is a technique called early-stopping criterion (Prechelt
2012) or engineering criterion (Heckerman and Chickering 1997), and has also been
used to train other types of machine learning models.

The greedy hill-climbing algorithm selects and applies the best operator found on
each iteration until no operator provides an improvement. The greedy hill-climbing
usually ends up finding a local optimum. By definition, the local optimum structure
does not contain in the neighborhood of the search space a better structure, i.e., there is
no operator that improves the current structure. In our greedy hill-climbing implemen-
tation, we try to relax this restriction. Therefore, we allow the structure not to improve
the score for a maximum of λ iterations. If λ iterations have been executed without
improving the score, the best structure found so far is returned. λ is a parameter of
the algorithm called patience. If λ is greater than 0, we allow exploration beyond the
local neighborhood trying to escape the local optimum. To improve the exploration,
we implemented a tabu search (Glover and Laguna 1993) that is executed while trying
to escape from local optimum. The tabu search forbids applying operators that reverse
recently applied ones, e.g., an arc addition is not allowed if the same arc removal
was executed recently. If the algorithm manages to escape the local optimum, the tabu
search is disabled. Thus, when exploration of the search space is not needed, the search
is dedicated to finding the optimum as fast as possible.

Algorithm 2 details the implementation of our greedy hill-climbing strategy com-
bined with tabu search. The algorithm starts by doing some basic initializations (lines
1–4), splitting the data into training and validation sets (line 5), and assigning a set
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of k-fold cross-validation indices I (lines 6–7). Then, the algorithm starts optimiz-
ing the structure in the main loop (lines 8–28). First, the algorithm finds the best
available operator (lines 10–18). We include the requirement that the delta score
Sk
CV(Dtrain,Gcandidate) − Sk

CV(Dtrain,G) must be greater than a threshold ε ≥ 0. In
this work, we always use ε = 0 because it guarantees that the selected operator
improves the Sk

CV score. Then, the algorithm checks that the best operator improves
the validation score Svalidation (line 19). If it improves the validation score (lines 20–
22), the best structure so far has been found, the tabu search is disabled and the patience
counter, p, is reset to 0. Otherwise, the tabu search set is updated and the patience
counter is increased (lines 24–25). At the end of each iteration, the cached scores are
updated taking into account the applied operator onew, so only the delta score of the
affected nodes is updated.

Algorithm 2 Greedy hill-climbing for HSPBNs
Require: Training data D, starting structure G0, the set of operators O, patience λ ∈ N, the number of

folds k ≥ 2 (and k < N ), minimum delta ε ≥ 0
1: Gbest ← G0
2: Gnew ← G0
3: p ← 0
4: Tabu ← ∅
5: Dtrain,Dval ← Split(D)

6: I ← Generate k sets of disjoint indices for Dtrain

7: Assign I to Sk
CV

8: do
9: G ← Gnew
10: for o in O do
11: if o does not reverse o′ ∈ Tabu then
12: Gcandidate ← o(G)

13: if Sk
CV(Dtrain,Gcandidate) > Sk

CV(Dtrain,Gnew) and

Sk
CV(Dtrain,Gcandidate) − Sk

CV(Dtrain,G) > ε then
14: onew ← o
15: Gnew ← Gcandidate
16: end if
17: end if
18: end for
19: if Svalidation(Dtrain,Dval,Gnew) > Svalidation(Dtrain,Dval,Gbest) then
20: Gbest ← Gnew
21: Tabu ← ∅
22: p ← 0
23: else
24: Tabu ← Tabu ∪ onew
25: p ← p + 1
26: end if
27: Update_Score_Cache(G, onew)

28: while p < λ

29: return Gbest
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3.3 Sampling from nonparametric conditional probability distribution

Bayesian networks are known to be generative models, which model a probability
distribution P(x). One of the advantages of a generative model is the ability to sample
new data from the model. In the case of Bayesian networks, there are also some
inference algorithms that are based on sampling, such as likelihood weighting and
Markov chain Monte Carlo techniques (Darwiche 2009), e.g., Gibbs sampling. In this
section, we detail how new data can be sampled from the CKDE and HCKDE CPDs.

Let Xi be an HCKDE node, and f̂HCKDE(xi | xPa(i)) be its conditional distribu-
tion given its parents. By definition, Eq. (10), its conditional distribution is equal to
f̂CKDE,xPaZ(i) (xi | xPaY(i)). Thus, sampling from an HCKDE requires sampling from
the corresponding CKDE CPD.

Assuming K is the Gaussian multivariate kernel, the CKDE CPD can be expressed
in the following way:

f̂CKDE(xi | y) =
∑N

j=1N
([

xi
y

]
;
[
x j
i
y j

]
,H

)

∑N
j=1N

(
y; y j ,H−i

)

=
∑N

j=1N
(
y; y j ;H−i

)N (xi ;μ
cond, j
i , hcondi )

∑N
j=1N

(
y; y j ,H−i

)

=
N∑

j=1

w jN
(
xi ;μ

cond, j
i , hcondi

)
,

(21)

with

w j = N (
y; y j ;H−i

)
∑N

k=1N
(
y; yk,H−i

) , (22)

where N (x;μ,�) is the Gaussian probability density function with mean μ and
covariance �, evaluated at x. The second equality holds because the joint distribution
f (xi , y) is expressed as f (xi | y) f (y). For the Gaussian distribution, the marginal,
f (y), and the conditional, f (xi | y), distributions are easy to find. The parameters
μ
cond, j
i and hcond, ji are:

μ
cond, j
i = x j

i + bTC−1(y − y j )

hcondi = a − bTC−1b,
(23)

where a, b and C are the bandwidth matrix blocks defined in Eq. (15).
Sampling from a CKDE is easier from the expression in Eq. (21). Algorithm 3

details the sampling procedure from a CKDE. First, the weights w = (w1, . . . , wN )

are calculated (line 1). Then, a sample is generated from a categorical distribution
with the weights w as parameters (line 2). Finally, the μ

cond, j
i and hcondi parameters

are calculated (line 3), and a new sample it is obtained sampling a Gaussian with mean
μ
cond, j
i and variance hcondi (line 4).
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Algorithm 3 Sampling new data from a CKDE CPD

Require: CKDE CPD f̂ (xi | y), evidence instantiation y
1: w ← Compute vector of w j (Eq. (22))
2: j ∼ Categorical(w) // Sample from a categorical distribution with parameters w

3: μ
cond, j
i , hcondi ← Compute conditional mean and variance (Eq. (23))

4: x ∼ N (μ
cond, j
i , hcondi ) // Sample Gaussian with mean μ

cond, j
i and variance hcondi

5: return x

3.4 Relation with adaptive KDE

In the HCKDE CPD [Eq. (10)], the bandwidth matrix depends on the discrete config-
uration z. This bandwidth matrix expression is similar to the bandwidth matrices used
in adaptive KDEs [Eqs. (4) and (5)]. Furthermore, we can consider an HCKDE CPD
to be a type of adaptive KDE. The main difference with the adaptive KDEs defined
in the state of the art is that in an HCKDE the bandwidth matrix depends on discrete
variables instead of continuous variables. In addition, since the HCKDE CPD is part
of a Bayesian network, it can automatically learn which discrete variables are most
useful for splitting the data and apply a different amount of smoothing at each split.
When the Bayesian network does not select any discrete variable as a parent of the
HCKDE, the resulting CPD is a CKDE, which is not adaptive. Thus, the HSPBN
learning algorithm automatically chooses between using standard KDEs or adaptive
KDEs.

3.5 Asymptotic analysis

In this section, we analyze the asymptotic time and space complexity of the proposed
approach. Let J = N − N/k be the number of train instances in the cross-validation
performed by Sk

CV. Atienza et al. (2022) show that the asymptotic time complexity
of Sk

CV for a variable Xi represented with a CKDE CPD is O(N J |Pa(i)|2), or more
loosely expressed O(N 2|Pa(i)|2). Furthermore, it is shown that the asymptotic time
complexity of Sk

CV for an LG CPD is O(k J |Pa(i)|2). Therefore, the time complexity
of the nonparametric models scales much faster with respect to the sample size. Note,
however, that a CLG or a HCKDE CPD is composed of an LG or CKDE CPD for
each discrete configuration of its parents, so the data is partitioned. This makes the
asymptotic time complexity of a CLG or HCKDECPD always less than or equal to the
asymptotic time complexity of an LG or CKDE CPD with the same set of continuous
parents, respectively. Since the CKDE time complexity scales worse than that of the
LG, the relative time complexity gains can be much larger by using discrete parents
in the HCKDE case.

In terms of spatial complexity, the LG CPD requires storing the β• coefficients and
the variance σ 2

i . This has a spatial complexity of O(|Pa(i)| + 2). The CKDE CPD
requires storing the data and a bandwidth matrix. Therefore, the spatial complexity of
a CKDE CPD is O(N (|Pa(i)| + 1) + (|Pa(i)| + 1)2). This shows that, as expected, a
parametric model is much more concise than a nonparametric one. Let Z =|�PaZ(i)|
be the number of discrete configurations for the discrete variables of a CLGorHCKDE
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CPD. Then, the spatial complexity of CLG is equal to O(Z(|PaY(i)| + 2)) since it
is necessary to store the parameters of each LG. In the case of HCKDE, the data is
partitioned into multiple CKDE models, and a different bandwidth matrix is needed
for each CKDE. Therefore, the spatial complexity of a HCDKE CPD is equal to
O(N (|PaY(i)| + 1) + Z(|PaY(i)| + 1)2). Most of the time, since N � Z(|PaY(i)| +
1) the spatial complexity is dominated by the N (|PaY(i)| + 1) term, so there is no
major difference between the spatial complexity of CKDE and HCKDE CPDs. Note,
however, that Z increases exponentially with the number of discrete parents |PaZ(i)|,
so this may change for HCKDE CPDs with large number of discrete parents.

4 Experiments

In this section, we experimentally check the capabilities of HSPBNs to obtain a good
fit to the data. We will perform two types of experiments: experiments with synthetic
data, where we know the data distribution and the expected HSPBN model, and real-
world data from the UCI repository, where the underlying model that generated the
data is unknown.

The experiments were conducted using our PyBNesian library https://github.
com/davenza/PyBNesian.git, and the source code is available at https://github.com/
davenza/HSPBN-Experiments.git

4.1 Synthetic data

In this section, we compare the results of CLGBNmodels and HSPBNmodels learned
with the procedure described in Algorithm 2. To test the ability of the HSPBNs to cap-
ture conditional linear relationships (with a CLG CPD) and also conditional nonlinear
relationships (with an HCKDE CPD), we will generate synthetic data. The synthetic
data are sampled from synthetic Bayesian networks, whose structure and parameters
are randomly created with the following procedure:

1. Generate random structure.

(a) Add an arc between each pair of variables with probability 0.25.
(b) Select a node type (CLG or HCKDE) for each continuous node with equal

probability.

2. Generate random parameters. Sample a new CPD for each variable Xi .

(a) For discrete nodes. P(xi | xPa(i)) ∼ Dir(3 ·1|�i |), where 1p is a vector of ones
with p dimensions and Dir(·) is the Dirichlet distribution.

(b) ForCLGnodes. Sample theLGCPDparameters for eachdiscrete configuration
of their discrete parents.

(c) For HCKDE nodes. Assign a mixture of LG CPDs to each discrete configura-
tion of their discrete parents with the following procedure:
i. Choose the number of components of the mixture k, i.e., the number of

LG CPDs, so k ∼ Categorical([2, 3, 4]; [0.4, 0.3, 0.3])
ii. Sample the prior probability of the mixture from Dir(3 · 1k).
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iii. Sample the LG CPD parameters for each component of the mixture.

Note thatwe assignmixtures ofLGCPDs to eachHCKDEnode insteadof a standard
HCKDE CPD as described in Definition 4. The purpose of using mixtures of LG
CPDs is to sample conditional non-Gaussian data. Therefore, we expect our learning
process to detect that data sampled from mixtures of LG CPDs are best represented
using HCKDEs. Furthermore, this decision is motivated because the construction of
HCKDECPDs requires the generation of training data to be assigned to the HCKDEs,
which is the problem we are solving in the first place.

The above procedure also requires computing the parameters of LG CPDs. The
parameters are sampled with the following approach:

– The intercept β0 ∼ N (0, 4).
– Each coefficient β j ( j > 0) ∼ Categorical([1,−1]; [0.5, 0.5]) · Unif([1, 5]),
where Unif([a, b]) is the continuous uniform distribution with support in the range
[a, b]. This ensures that the coefficients are positive or negative with equal proba-
bility.Moreover, the absolute value is always greater than 1, preventing conditional
independences in the parameters (if β j = 0).

– The variance σ 2 ∼ 0.1 + χ2
1 , where χ2

l is the chi-squared distribution with l
degrees of freedom. The sum of 0.1 ensures that the variance is sufficiently greater
than 0, so there are no precision errors.

To compare the performance of the models, we generated 100 different synthetic
Bayesiannetworkswith 4discrete variables and4 continuous variables. The cardinality
of the discrete variables is fixed, so there are two variables with cardinality 2, one
variable with cardinality 3 and one variable with cardinality 4. For each Bayesian
network, we sampled training datasets with different numbers of instances: 200, 2000,
and 10,000. Then, for each dataset,we learned the followingmodels: CLGBNswith the
BIC (CLGBN-BIC) and the cross-validated score (CLGBN-VL) in Eq. (18), HSPBNs
where the initial node type for all nodes is parametric (HSPBN-CLG), i.e., the CPDs
for the continuous nodes of the starting model are CLGs, and HSPBNs where the
initial node type for all nodes is nonparametric (HSPBN-HCKDE), i.e., the CPDs for
the continuous nodes of the starting model are HCKDEs. In all cases, the starting
graph (G0 in Algorithm 2) had no arcs. We used λ = 0 and λ = 15 for all the learned
models. During the structure learning, the scores in Eqs. (18) and (20) of the HCKDE
CPDs are calculated estimating the bandwidth matrix using the normal reference rule
because is the fastest criterion available. Then, when the final structure is learned, we
tried the normal reference rule, the UCV criterion, and the plug-in estimation method
to estimate the bandwidth matrices.

To evaluate the performance of the models, we sampled another test dataset of
1000 instances from each synthetic Bayesian network that was not previously seen by
the learned models, i.e., a new dataset different to Dtrain and Dval. This test dataset
can estimate the expected performance of the models on the new and unseen data
by calculating the log-likelihood of the test dataset. In addition, we also compare
the structural accuracy of the graphs (how good the learned graph compares to the
synthetic Bayesian network graph). The structural accuracy can be measured using
the Hamming distance (HMD), which measures the number of arcs (ignoring the arc
directions) present in one graph but not in the other. The HMD scores equally for
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arcs that have the same or different orientations in both graphs. An alternative is the
structural Hamming distance (SHD) (Tsamardinos et al. 2006), which measures the
number of arcs additions, removals, or reversals required to transform a graph into
the other. In addition, to evaluate the ability of the learning algorithm to find the best
node type for each node, we include a type Hamming distance (THMD). The THMD
measures the number of nodes with different node types in both graphs. For all the
structural accuracy criteria, the lower the value, the better. Moreover, we measured
the runtime needed to learn each model.

The results of this comparison are shown in Table 1. The log-likelihood, HMD,
SHD, and THMD values are the mean value of the 100 datasets sampled from each
synthetic Bayesian network. Table 1 shows the results when the bandwidth matrices
are estimated using the normal reference rule. In general, the table shows that HSPBNs
have better log-likelihood results as well as structural accuracy (except for the training
datasets of 200 instances) than CLGBNs. As expected, the log-likelihood improves
with the increase in the training dataset instances. This is most noticeable in the case
of the HSPBNs. For small datasets, the difference between CLGBNs and HSPBNs is
small, but for larger datasets, the difference is so significant that an HSPBN trained
with 2000 instances can be as good or even better than a CLGBN trained with 10,000
instances. In the case of theTHMD,we can see that the accuracy improves significantly
when the number of instances increases. With respect to the runtimes, the CLGBNs
exhibitmuchbetter result. This is causedby thegreater complexity of the score function
for HSPBNs, since the evaluation of KDE models is needed. Also, it seems that the
runtimes scales much faster for HSPBNs.

We also tested the UCV and the plug-in estimation methods. We found experi-
mentally that these two estimation methods are especially sensitive to the existence
of outliers in the data. This caused bad results for the small datasets (especially for
200 instances) because some instances that are sampled with low probabilities can
be seen as outliers in small datasets. The small datasets only contain a few instances
in the low-probability space zones. Although we do not include these results in the
manuscript,we highlight that the plug-in estimationmethod returned better results than
UCV. Thus, for the large dataset of 10,000 instances, the plug-in estimation method
returned a log-likelihood of −9622.92, −9624.18, −9626.71 and −9624.95 for the
HSPBN-CLG with λ = 0, the HSPBN-CLG with λ = 15, the HSPBN-HCKDE with
λ = 0 and the HSPBN-HCKDE with λ = 15, respectively. These results are even
better than the results obtained by the normal reference rule in Table 1. In addition, the
plug-in estimation method for the models trained with 2000 instances returned a log-
likelihood of −9790.38, −9786.88, −9783.01 and −9764.87 for the HSPBN-CLG
with λ = 0, the HSPBN-CLG with λ = 15, the HSPBN-HCKDE with λ = 0 and the
HSPBN-HCKDE with λ = 15, respectively. These values are similar to the reported
results with the normal reference rule with 10,000 instances. With these results, we
can conclude that the UCV and plug-in estimation methods are only useful if there is
a large amount of data.
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Table 2 Datasets from the UCI
repository

Dataset N n c d

Abalone 4177 9 8 1

Adult 45,222 14 5 9

Australian Statlog 690 15 6 9

Cover Type 11,340 55 10 45

Credit Approval 653 16 6 10

German Statlog 1000 21 7 14

KDD Cup 1999 10,000 29 23 6

Liver Disorders 341 7 6 1

Thyroid-Hypothyroid 2000 25 6 19

Thyroid-Sick 1947 30 7 23

4.2 UCI Data

In this section, we test the ability of the HSPBNs to fit to real-world data analyzing
datasets from the UCI repository (Dua and Graff 2017). The characteristics of all the
UCI datasets are shown in Table 2. For the KDDCup 1999, we selected a subset of the
data because it is a very large dataset (almost 5 million instances) and the experiments
would have been too time-consuming. Thus, we selected the first 10,000 instances
of the dataset. For all the datasets, we removed the constant columns (as they are not
interesting to be analyzed with a Bayesian network). The number of columns indicated
in Table 2 is the result obtained after this preprocessing step.

For the UCI datasets, we do not know the data distribution or the model that gen-
erated the data, as these datasets are usually extracted from the real world. For this
reason, we cannot estimate the log-likelihood using a new test dataset and we cannot
calculate the structural accuracy. To estimate the goodness of our model, we perform
a tenfold cross-validation. On each fold, we learn a model on the training subset and
we estimate the goodness of the model calculating the log-likelihood of the test subset
on the learned model. We tested the same configurations of models as in the synthetic
experiments with λ = 0, λ = 5 and λ = 15. In this case, we found that the UCV
and the plug-in estimation methods are again sensitive to outliers. For this reason,
in some datasets they returned very poor results, while in other datasets they offered
competitive results. Therefore, we omit the presentation of results with these band-
width selection techniques and we focus our attention on the results using the normal
reference rule.

We calculated the mean log-likelihood of the test subset in the tenfold cross-
validation. Then, to find statistically significant differences between all the algorithms,
we performed a Friedman test with α = 0.05 and a Bergmann–Hommel post hoc pro-
cedure to detect the pairwise significant differences (García and Herrera 2008). The
results are shown in Fig. 2 using a critical difference diagram (Demšar 2006). The
critical difference diagram shows the mean rank of each model over all the datasets.
The black horizontal bars indicate the groups of models whose mean rank difference
is not statistically significant. Therefore, we can conclude that there is no statisti-
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1 2 3 4 5 6 7 8 9 10 11 12

HSPBN-HCKDE λ = 5

HSPBN-HCKDE λ = 15

HSPBN-CLG λ = 5

HSPBN-CLG λ = 15

HSPBN-HCKDE λ = 0

HSPBN-CLG λ = 0 CLGBN-VL λ = 15

CLGBN-BIC λ = 5

CLGBN-BIC λ = 15

CLGBN-BIC λ = 0

CLGBN-VL λ = 5

CLGBN-VL λ = 0

Fig. 2 Critical difference diagram for the mean rank of each algorithm in the UCI datasets

cally significant difference between all the HSPBNs configurations and CLGBN-VL
λ = 15. However, the statistical test shows that there is a statistically significant
mean rank difference between HSPBN-HCKDE λ = 5, HSPBN-HCKDE λ = 15,
HSPBN-CLG λ = 5 and the remaining CLGBN models. Furthermore, we found
that a patience greater than 0 is positive because the models trained with λ = 5 and
λ = 15 obtain better results than the λ = 0 ones. This is reasonable because the
algorithm takes more time to optimize the model trying to escape from local optima.
These results demonstrate the usefulness and applicability of the HSPBN models to
real-world data. Therefore, this result is not surprising because real-world data may
contain non-Gaussian and nonlinear relationships between the variables. HSPBNs
models can adapt better to this kind of relationships, obtaining a better fit to the data.

It is noticeable that HSPBN-CLG λ = 5 obtains a better ranking thanHSPBN-CLG
λ = 15. This may seem unreasonable, so we performed a careful manual review on
the differences between these models.We found that this effect is caused by a very low
log-likelihood for a small set of test instances. These test instances are given a low log-
likelihood in the continuous variables because they have rare discrete configurations
for their discrete parents, so their respective LG or CKDE model is learned with just a
few training instances (we found examples with less than 5 training instances) and do
not have a goodfit to the data. This effect does not happen so often forλ = 5because the
learning process ends earlier, so the conParametersKDEtinuous variables have fewer
discrete parents and their respective LGs and CKDEs are trained with a significant
training set. In this sense, it would be interesting to research new regularization terms
that alleviate this phenomenon.

5 Conclusion

This paper presented a new class of Bayesian networks called hybrid semiparametric
Bayesian networks. To the best of our knowledge, this is thefirst type of semiparametric
Bayesian network with the ability to model hybrid data containing both discrete and
continuous data. In addition, for the continuous data the type of relationships between
variables are explicitly represented in the graph. If there is a conditional linearGaussian
relationship, it canbedefinedusing aparametricmodel (aCLGCPD). If the conditional
distribution is non-Gaussian or there are nonlinear relationships, usually this can be
better represented using a nonparametric model (an HCKDE CPD).
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We described a learning procedure that estimates the parameters and the structure
of HSPBN. This procedure is based on other standard techniques in the state of the
art. Following this work, we would like to adapt other standard types of algorithms to
learn HSPBNs in the future, such as constraint-based learning (e.g., the PC algorithm,
Spirtes et al. 2001). In addition, we introduced a procedure to sample new data from
an HSPBN and showed its relation with the adaptive KDE models.

The experimental work showed that the HSPBN model can improve the results of
the CLGBN models. This is not surprising because the class of CLGBNs is included
in the class of HSPBNs.

In the future, we would like to work on semiparametric Bayesian network classi-
fiers. Also, other types of CPDs can be incorporated. Note that learning an HSPBN
only requires to be able to compute a cross-validated log-likelihood. Therefore, other
parametric CPDs can be used, e.g., other exponential family distributions or mixtures
models. In addition, the discrete variables could be modeled using a softmax function
as in the augmented CLGBNs (Lerner et al. 2001), so the arcs between continuous
variables and discrete variables can be allowed. Moreover, other types of nonpara-
metric models can be investigated to create HSPBNs. An interesting instance is the
ratio density estimation (Sugiyama et al. 2012), which may improve the results even
further. Furthermore, tools like BUGS (Lunn et al. 2009) and Stan (Carpenter et al.
2017) could be used to perform inference using Markov chain Monte Carlo. Finally,
we probably could include a regularization term into the score function to deal with
rare discrete configurations of the discrete parents of continuous variables.
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