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Abstract Directional data are ubiquitous in science.

These data have some special properties that rule out the

use of classical statistics. Therefore, different distributions

and statistics, such as the univariate von Mises and the

multivariate von Mises–Fisher distributions, should be

used to deal with this kind of information. We extend the

naive Bayes classifier to the case where the conditional

probability distributions of the predictive variables follow

either of these distributions. We consider the simple sce-

nario, where only directional predictive variables are used,

and the hybrid case, where discrete, Gaussian and direc-

tional distributions are mixed. The classifier decision

functions and their decision surfaces are studied at length.

Artificial examples are used to illustrate the behavior of the

classifiers. The proposed classifiers are then evaluated over

eight datasets, showing competitive performances against

other naive Bayes classifiers that use Gaussian distributions

or discretization to manage directional data.

Keywords Supervised classification � Naive Bayes

classifier � Directional statistics � von Mises distribution �
von Mises–Fisher distribution

1 Introduction

Directional data can be found in almost every field of

science [24, 25]. Information measured as angles is

commonly used to capture the direction of some phenom-

enon of interest, e.g., biologists study the movement of

animals, meteorologists measure the direction of air cur-

rents, geologists observe the orientation of magnetic fields

in rocks, etc. Modern visualization techniques manifest

valuable three-dimensional information in a number of

domains, e.g., neuroscientists are interested in the direction

of neuronal axons and dendrites, microbiologists analyze

the angles formed by protein structures and astrologists

study the position and movement of celestial bodies.

Directional information can be captured using either

angles measured in radians (or compass degrees), or direc-

tional vectors in an n-dimensional Euclidean space. We will

use the terms ‘‘angular’’ and ‘‘circular’’ to specifically refer

to the first kind of representation. We should note that there

is a correspondence between the two representations by

transforming the Cartesian coordinates of a point to its

spherical coordinates. We will use the term ‘‘linear’’, as

opposed to ‘‘directional’’ or ‘‘angular’’, to refer to common

continuous information, e.g., wind speed measured in kilo-

meters per hour, mass measured in kilograms, etc.

Special techniques are necessary to work with direc-

tional information due to its distinctive properties [37, 50].

For instance, given the angles 1� and 359�, the classical

linear mean would be 180�, which points in exactly the

opposite direction. It is clear that the mean angle should be

0�. Also, different visualization tools are necessary to

convey directional information, e.g., rose diagrams are

used instead of regular histograms. The periodical behavior

that comes from having a directional domain makes linear

statistics unsuitable for this kind of data. Directional sta-

tistics provides the theoretical background and the tech-

niques to successfully work with this information.

Supervised classification [18] studies the problem of

assigning a class label to an object based on a set of features
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that characterize the object. A classifier is a model that uses

a function to assign a class to a new object based on the

values of its features, which are modeled as predictive

variables. Supervised learning algorithms are used to find

that function by analyzing a set of training objects with a

known class label. A large number of classification para-

digms have been proposed in the literature. Bayesian net-

works [42, 57] are a kind of probabilistic graphical model.

They have been used to solve a wide range of problems

because they can compactly represent the problem domain,

and factorization enables efficient computations that would

be intractable otherwise. Bayesian classifiers apply these

techniques to supervised classification.

Although directional data can be found in a lot of dif-

ferent domains, supervised classification problems includ-

ing directional information as predictive variables have not

been systematically studied by the machine learning

research community. In fact, only 5 out of the 135 datasets

for supervised classification available in the UCI Machine

Learning Repository [28] include some variable measured

in angles (see Sect. 4). To the best of our knowledge, the

directional variables in those problems have been treated as

linear continuous variables without taking into account the

characterizing properties of the data.

In this paper, we extend the naive Bayes (NB) classifier

[51] for use with directional predictive variables. We study

the decision functions of naive Bayes classifiers using von

Mises distributions or von Mises–Fisher distributions to

model directional data. We also consider hybrid scenarios

with directional, linear and discrete predictive variables.

The selective naive Bayes classifier [44] is adapted to work

with these hybrid domains. We evaluate the proposed

methods on a set of real problems and compare them with

other Bayesian classifiers that use Gaussian or discrete

probability distributions for modeling the angular vari-

ables. A thorough analysis of the results is performed.

Classification problems using directional probability

distributions have mainly been studied in the field of dis-

criminant analysis. Morris and Laycock [55] studied the

discriminant analysis of von Mises and Fisher distributions.

Eben [19] analyzed the discriminant analysis of two von

Mises distributions with unknown means and equal con-

centrations. Recently, discriminant analysis for von Mises–

Fisher distributions was studied in [22], and misclassifi-

cation probabilities for the von Mises distribution were

estimated in two scenarios, i.e., considering populations

with equal or different concentrations. Discriminant anal-

ysis has been studied for other directional distributions as

well, e.g., Watson’s, Selby’s and Arnold’s distributions in

the sphere [20, 23]. In a related paper, SenGupta and Roy

[64] proposed a classification rule based on the mean

chord-length between an observation and two different

populations of angular data belonging to two different class

labels. More recently, SenGupta and Ugwuowo [65] pro-

posed a likelihood ratio test based on a bootstrapping

approach to classify angular and linear data. These

approaches show several differences to the one studied in

this paper. First, discriminant analysis focuses on the

computation of misclassification probabilities. Here, we

derive the decision functions of the naive Bayes classifiers

and study them from a geometric point of view by ana-

lyzing the shape of the decision surfaces they induce.

Second, these works only consider one predictive variable

for classification. We study the decision functions for naive

Bayes classifiers with two angular variables modeled with

conditional (to the class) von Mises distributions. We also

study naive Bayes classifiers with conditional von Mises–

Fisher distributions. Additionally, we consider hybrid naive

Bayes classifiers including linear, angular and discrete

predictive variables at the same time. We also address the

feature subset selection problem by adapting the selective

naive Bayes classifier [44]. Finally, previous works only

show the application of the techniques to one problem or

dataset. In this paper, we perform an extensive evaluation

of the proposed models on a set of real problems. This

provides insights on the behavior of the directional naive

Bayes classifiers and more general conclusions can be

drawn.

In this work, we only consider maximum likelihood

estimators of the parameters for the (conditional) von

Mises and von Mises–Fisher probability densities. How-

ever, Bayesian parameter estimation for directional vari-

ables has received much interest, see e.g., [10, 32, 35, 49].

This paper is organized as follows. Section 2 reviews the

two most studied directional distributions: the von Mises

and the von Mises–Fisher distributions. Several extensions

of the NB classifier are introduced in Sect. 3, where their

behavior is studied from a theoretical point of view. Sec-

tion 4 includes the evaluation of these models using eight

datasets and the statistical comparisons with other classi-

fiers. Finally, conclusions and future research lines are

discussed in Sect. 5. Detailed derivations of the formulas

are included in the attached Appendices 1, 2, 3, 4 for

completeness.

2 Directional distributions

The most straightforward way to model directional data is

to adjust linear distributions by wrapping them around the

circle or the sphere. Several probability distributions have

been proposed using this approach, e.g., the wrapped nor-

mal distribution [11, 60] or the wrapped Cauchy distribu-

tion [45]. However, the interest in this kind of information

has led statisticians to propose special probability distri-

butions to model directional data [50]. In this section, we
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review the von Mises distribution and the von Mises–

Fisher distribution.

2.1 The Univariate von Mises distribution

The univariate von Mises distribution [52] is the best

known angular distribution, as it is the circular analogue of

the Gaussian distribution. A circular variable U which

follows the von Mises distribution on the unit circle is

denoted by U� vMðlU; jUÞ and its probability density

function for a given angle / is

f ð/; lU; jUÞ ¼
expðjU cosð/� lUÞÞ

2pI0ðjUÞ
; ð1Þ

where lU is the mean direction angle, jU� 0 is the con-

centration of the values around lU; and IvðjÞ is the mod-

ified Bessel function of the first kind of order m 2 R:

The distribution of the points in the circle becomes

uniform when jU ¼ 0; whereas high values of jU yield

points tightly clustered around lU: The von Mises distri-

bution is unimodal and symmetrical around the mean

direction. The mean direction is also the mode, and the

antimode is at lU � p: Figure 1 shows a random sample of

100 points from a von Mises distribution. We used the

functions provided in the Circular Statistics Toolbox for

Matlab [4] to sample the set of angles from the von Mises

distributions.

Given a set of m values {/(1), …, /(m)} randomly

sampled from U� vMðlU; jUÞ; the maximum likelihood

estimators of the parameters of the distribution are the

sample mean direction

blU ¼ arctan
C

S
;

where

C ¼ 1

m

X
m

i¼1

cos /ðiÞ and S ¼ 1

m

X
m

i¼1

sin /ðiÞ;

and the concentration parameter bjU ¼ A�1ðRÞ; where

AðbjUÞ ¼
I1ðbjUÞ
I0ðbjUÞ

¼ R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C
2 þ S

2

q

:

2.2 The multivariate von Mises–Fisher distribution

The unit hypersphere centered at the origin is defined by the

set of n-dimensional points S
n�1 ¼ X 2 R

nf jXTX ¼ 1g: A

directional variable X ¼ ðX1;X2; :::;XnÞ which follows a

multivariate von Mises–Fisher distribution on the unit

hypersphere is denoted by X� tMFðlX; jXÞ; and its prob-

ability density function for a given unit n-dimensional

vector X is

f ðX; lX; jXÞ ¼
j

n
2
�1

X
ffiffiffiffiffiffiffiffiffiffiffi

ð2pÞn
p

In
2
�1ðjXÞ

expðjXlT
XXÞ; ð2Þ

where lX is the population mean direction vector satisfying

lT
XlX ¼ 1 (i.e., lXk k ¼ 1), and jX� 0 is the concentration

parameter around lX:

The von Mises–Fisher distribution reduces to the von

Mises distribution when n = 2 and to the Fisher distribu-

tion [27] when n = 3. Like the von Mises distribution, the

von Mises–Fisher distribution is also unimodal and sym-

metric around lX; having the mode at lX and the antimode

at �lX: Figure 2 shows a set of 100 points from the dis-

tribution vMF((0, 0, 1)T, 5) defined in S
2: To generate a

sample from a von Mises–Fisher distribution, we use

Jung’s implementation1 of the algorithm proposed in [69].

The maximum likelihood estimators for the parameters

of the distribution vMFðlX; jXÞ given a sample of unit

vectors Xð1Þ; . . .;XðmÞ
� �

are the sample mean direction

blX ¼
Pm

i¼1 XðiÞ
Pm

i¼1 XðiÞ
�

�

�

�

;

and the concentration parameter bjX ¼ A�1
n ðRÞ; where

0

π/2

±π

−π/2Φ

Fig. 1 Sample of 100 points from a von Mises distribution vM(p/2, 5).

The black line shows the sample mean direction blU and its length is

the mean resultant length R

−1

0

1

−1

0

1
−1

−0.5

0

0.5

1

X
1

X
2

X
3

Fig. 2 Sample of 100 points from a von Mises–Fisher distribution

vMFðð0; 0; 1ÞT; 5Þ: The black arrow shows the sample mean direction

blX

1 The source code is available at: http://www.unc.edu/sungkyu.
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AnðbjXÞ ¼
In

2
ðbjXÞ

In
2
�1ðbjXÞ

¼ R ¼ R

m
¼

Pm
i¼1 XðiÞ

�

�

�

�

m
:

Unfortunately, bjX cannot be found analytically, and

approximations have to be computed numerically [68].

3 Naive Bayes classifiers with directional predictive

variables

In this section the von Mises naive Bayes (vMNB) clas-

sifier is introduced, which uses univariate von Mises dis-

tributions to model the conditional probability density

functions of the angular variables. Next, the von Mises–

Fisher naive Bayes (vMFNB) classifier is presented, where

the conditional density functions of directional variables

are modeled using multivariate von Mises–Fisher distri-

butions. We derive the decision functions for each case and

study the decision surfaces. Derivations of the decision

functions and the surfaces that they induce are detailed in

the Appendices 1 and 2. Hybrid scenarios with continuous

and discrete predictive variables modeled using different

probability distributions are a frequent occurrence in

supervised classification. Therefore, we investigate the

hybrid NB classifier in Sects. 3.4 and 3.5, where the pre-

dictive variables are modeled using directional distribu-

tions and discrete or Gaussian distributions. Finally, the

selective naive Bayes (SelNB) classifier is adapted to work

with directional distributions in Sect. 3.6.

3.1 The naive Bayes classifier

One of the simplest models for supervised classification is

the naive Bayes [18, 51]. A NB classifier has two types of

variables: the class variable C and a set of predictive

variables X ¼ X1; . . .;Xd;Xdþ1; . . .;Xnf g: The class vari-

able C is discrete and takes values in the set XðCÞ: The

predictive variables can be divided into two sets: the set of

discrete variables X1; . . .;Xdf g and the set of continuous

variables Xdþ1; . . .;Xnf g: NB assumes that all the predic-

tive variables are conditionally independent given the class

variable:

pðC ¼ cjX ¼ XÞ

/ pðC ¼ cÞ
Y

d

i¼1

pðXi ¼ xijC ¼ cÞ
Y

n

i¼dþ1

fXijC¼cðxiÞ:

Although conditional independence is a strong

assumption, the NB classifier has shown competitive

accuracies and surprisingly good results in a lot of real

world problems [14]. NB uses the maximum a posteriori

decision rule to assign a class value c* to a new instance

X : c� ¼ arg maxc2XðCÞ pðC ¼ cjX ¼ XÞ; and

pðC¼ 1jX¼XÞ¼ pðC¼ 2jX¼XÞ;
rðXÞ¼ pðC¼ 1jX¼XÞ�pðC¼ 2jX¼XÞ

¼ pðC¼ 1Þ
Y

d

i¼1

pðXi¼ xijC¼ 1Þ
Y

n

i¼dþ1

fXijC¼1ðxiÞ

�pðC¼ 2Þ
Y

d

i¼1

pðXi¼ xijC¼ 2Þ
Y

n

i¼dþ1

fXijC¼2ðxiÞ ð3Þ

is the decision function.

If the class has more than two values, a decision surface

is considered for each pair of values, and the subregions

defined by all the surfaces are labeled accordingly. The

decision surfaces of a NB classifier with binary predictive

variables are hyperplanes [51]. Later on, the same result

was shown for general discrete variables [58]. Duda and

Hart [17] found polynomial decision surfaces when the NB

has ordinal predictive variables.

Duda et al. [18] showed that the decision surface is also

a hyperplane when the conditional joint probability distri-

butions of the predictive variables is modeled with a

multivariate Gaussian with class-independent covariance

matrices, i.e., the covariance matrices are the same for each

class value. On the other hand, the decision surfaces are

hyperquadrics when the covariance matrices are different

for each class value.

3.2 The von Mises naive Bayes

In this section, we derive the decision surfaces of the

vMNB, where the conditional probability densities of the

predictive variables are modeled using von Mises distri-

butions. First, in Sect. 3.2.1 we study the simplest approach

where one predictive variable is considered. Then, we

extend our analysis to the scenario where two predictive

variables are used (Sect. 3.2.2).

3.2.1 vMNB with one predictive angular variable

We start with the simplest scenario, where vMNB has a

binary class and only one predictive angular variable U [46].

Theorem 1 Let C be a binary class variable with values

XðCÞ ¼ f1; 2g: Let U be one predictive angular variable

defined in the domain XðUÞ ¼ ð�p; p�; with conditional

probability density functions modeled as von Mises distri-

butions vMðlUjc; jUjcÞ for each class value c 2 XðCÞ:
Then, vMNB finds the two following decision angles that

separate the class subregions

/0 ¼ aþ arccosðD=TÞ;
/00 ¼ a� arccosðD=TÞ;

ð4Þ

with the constants
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D ¼ � ln
pðC ¼ 1ÞI0ðjUj2Þ
pðC ¼ 2ÞI0ðjUj1Þ

;

cos a ¼ a=T ;

sin a ¼ b=T;

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

;

a ¼ jUj1 cos lUj1 � jUj2 cos lUj2;

b ¼ jUj2 sin lUj1 � jUj2 sin lUj2:

Proof See Appendix 1, vMNB with one predictive

variable.

Corollary 1 The vMNB classifier with a binary class and

one predictive angular variable U is a linear classifier

using the decision line

rðx; yÞ ¼ ðjUj1 cos lUj1 � jUj2 cos lUj2Þx
þ ðjUj2 sin lUj1 � jUj2 sin lUj2Þy� D ¼ 0;

where ðx; yÞ ¼ ðcos /; sin /Þ are the Cartesian coordinates

in R
2 of the point defined by the angle / on the unit circle.

Proof The proof is straightforward from Theorem 1 (see

Appendix 1, vMNB with one predictive variable.).

The vMNB classifier with one predictive circular vari-

able modeled using von Mises conditional distributions

divides the circle into two regions using two angles. Also,

we can see vMNB as a linear classifier finding the line that

goes through the points on the circumference defined by /0

and /00. Angle a in (4) can be interpreted as a weighted

mean of the mean directions lUjc for each class, using the

values of the concentration parameters as weights. On the

other hand, the length of the arc between the two angles

(the distance that defines the size of the regions) is given by

arccosðD=TÞ; which depends on the concentrations, the

mean directions and the prior probabilities of the class

values. These prior probabilities are used in the logarithm

in D. They influence the ‘‘size’’ of the class regions,

moving the decision bounds so that more likely classes are

given a larger subregion.

Figure 3a shows an example of a set of 100 points

sampled from the conditional probability density distribu-

tions UjC ¼ 1� tMðp=2; 2Þ and UjC ¼ 2� tMðp; 5Þ: The

classes are considered equiprobable, i.e., p(C = 1) =

p(C = 2) = 0.5. Figure 3b shows the class assigned to

each angle by vMNB and the angles (/0 = 2.43 and

/00 = -1.67 rad) that define the class regions.

Particular cases To gain a thorough understanding of the

classifier, we now study how these decision surfaces are

defined for different values of parameters lUjc and jUjc: To

study the decision bounds we consider that the classes are

equiprobable, i.e., p(C = 1) = p(C = 2) = 0.5. This erases

the influence of the prior probabilities of the class values.

• Case 1: jUj1 ¼ jUj2 and lUj1 6¼ lUj2: When the two

distributions share the same concentration value but

have different mean directions, the decision angles are

(see Appendix 1, vMNB with one predictive variable,

Particular cases)

/0 ¼ 1

2
ðlUj1 þ lUj2Þ;

/00 ¼ 1

2
ðlUj1 þ lUj2Þ þ p:

In this scenario, the decision surface is an axis that

divides the circle into two semicircles (the angles are p
rad apart). The axis goes through the center of the

circle and is the bisector of the angle defined by the two

mean directions. Figure 4a shows an example with a

sample of 100 points drawn from the distributions

UjC ¼ 1� vMð0; 5Þ and UjC ¼ 2� vMðp=2; 5Þ: The

classes are equiprobable a priori. vMNB finds an axis

that forms an angle of p/4 with the horizontal axis and

yields a semicircle for each class value (Fig. 4b).

0

π/2

±π

−π/2Φ

0

π/2

±π

−π/2Φ

(a) (b)

Fig. 3 True and predicted class for a sample of 100 angles. Dark blue

circles represent points for class C = 1 and light blue circles

represent angles for class C = 2. The solid lines in b show the angles

defining the bounds of each class region. The dashed line is the

decision line induced by vMNB (color figure online)

0

π/2

±π

−π/2Φ

0

π/2

±π

−π/2Φ

(a) (b)

Fig. 4 True and predicted class for a sample of 100 angles where the

conditional densities share the same concentration (Case 1). Dark

blue circles represent points for class C = 1 and light blue circles

represent angles for class C = 2. The green axis separates each class

region in b (color figure online)
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• Case 2: jUj1 6¼ jUj2 and lUj1 ¼ lUj2 ¼ lU: vMNB finds

the following angles when the mean directions are equal

but the concentrations of the conditional distributions are

different (see Appendix 1, vMNB with one predictive

variable, Particular cases)

/0 ¼ lU þ arccos
D

jUj1 � jUj2
;

/00 ¼ lU � arccos
D

jUj1 � jUj2
:

The two angles are defined according to the shared

mean direction lU; and the ‘‘spread’’ of the arc that they

form is determined by the difference in the

concentration parameters. The region including the

mean direction always corresponds to the class with a

larger concentration. Figure 5a shows a set of 100

points sampled from the distributions vM(p/2,2) and

vM(p/2,10). The two classes are equiprobable a priori.

Figure 5b shows the classification provided by vMNB

and the decision angles, which are both 0.47 rad away

from the mean direction lU ¼ p=2 (2.04 and 1.10 rad).

The decision line is orthogonal to the mean direction lU

and its position depends on the difference of the

concentration values.

3.2.2 vMNB with two predictive angular variables

We now study the more complex scenario where two

angular predictive variables U and W are used in vMNB.

The domain defined by the predictive variables is a torus

(-p, p] 9 (-p, p].

Theorem 2 Let C be a binary class with values in

XðCÞ ¼ f1; 2g: Let U and W be two angular variables

defined in the domain (-p, p]. Let the conditional proba-

bility density functions of the variables U and W be von

Mises distributions vMðlUjc; jUjcÞ and vMðlWjc; jWjcÞ:
Then, the decision surface induced by the von Mises naive

Bayes classifier is given by the 2-degree multivariate

polynomials

clxþ dly� az2 þ bz
ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � z2
p

þ bLz

þ ðaLþ DlÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � z2
p

þ al2 þ DLl ¼ 0;

clxþ dly� az2 � bz
ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � z2
p

þ bLz

� ðaLþ DlÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � z2
p

þ al2 þ DLl ¼ 0;

ð5Þ

where (x, y, z) are the Cartesian coordinates in R
3 of the

points lying on the surface of the torus, and

a, b, c, d, l, L and D are constants (see Appendix 1,

vMNB with two predictive variables).

The decision surfaces in (5) are quadratic in z, so vMNB

is not a linear classifier when two predictive angular vari-

ables are used. The complexity of the classifier increases

from the base scenario with one predictive variable

(Sect. 3.2.1). This behavior differs from the NB classifier

with discrete variables, where the decision surfaces are

always linear no matter the number of predictive variables.

We illustrate this scenario with an artificial example. Fig-

ure 6a shows a set of 1,000 points sampled from the distri-

butions UjC ¼ 1� vMðp; 2Þ and WjC ¼ 1� vMð�2p=3; 6Þ
(shown in dark blue) and UjC ¼ 2� vMðp=2; 5Þ and WjC ¼
2� vMðp; 3Þ (shown in light blue), and mapped into a torus.

The two classes are equiprobable a priori. Figure 6b shows the

classification provided by vMNB and the complex decision

bounds induced by it, where we can see the non-linear

behavior of the classifier.

3.3 The von Mises–Fisher naive Bayes

The same approach can be used when the data in our

problem are directional unit vectors in R
n: These direc-

tional vectors can also be represented as points in the unit

hypersphere S
n�1 ¼ fX 2 R

nj Xk k ¼ 1g and modeled

using the von Mises–Fisher distribution. Then, the classi-

fier has only one n-dimensional predictive variable X:

0

π/2

±π

−π/2Φ

0

π/2

±π

−π/2Φ

(a) (b)

Fig. 5 True and predicted class for a sample of 100 angles when the

conditional densities share the same mean direction (Case 2). Dark

blue circles represent points for class C = 1 and light blue circles

represent angles for class C = 2. The solid lines in b show the angles

defining each class region. The dashed line is the decision line

induced by vMNB (color figure online)

−1
0

1

−1
0

1

−0.2

0

0.2

XY

Z

−1
0

1

−1
0

1

−0.2

0

0.2

XY

Z

(a) (b)

Fig. 6 True class and class predicted using vMNB for a sample of

1,000 points. Points with C = 1 are shown in dark blue, whereas

points with C = 2 are shaded light blue. The decision boundaries are

drawn in green (color figure online)

230 Pattern Anal Applic (2015) 18:225–246

123



Theorem 3 Let C be a binary class variable with values

XðCÞ ¼ f1; 2g: Let X be a n-dimensional variable defined

in the unit hypersphere S
n�1 ¼ fX 2 R

nj Xk k ¼ 1g: Let the

conditional probability densities XjC ¼ c follow a von

Mises–Fisher distribution vMFðlXjc; jXjcÞ: Then, the von

Mises–Fisher naive Bayes is a linear classifier yielding the

decision hyperplane

ðjXj1lXj1 � jXj2lXj2Þ
TX

þ ln
pðC ¼ 1ÞðjXj1Þ

n
2
�1

In
2
�1ðjXj2Þ

pðC ¼ 2ÞðjXj2Þ
n
2
�1

In
2
�1ðjXj1Þ

¼ 0: ð6Þ

Proof See Appendix 2.

Therefore, the decision surface in (6) is a hyperplane in

R
n that divides the space into the two regions for classifi-

cation. The intersection of the hyperplane and the hyper-

sphere is a circumference with the points that have the

same posterior probability of being assigned to either class.

The hyperplane can also be characterized by a non-zero

normal vector and a point X0 belonging to the hyperplane.

That characterization is easier to interpret. The hyperplane

found by vMFNB is given by

ðjXj1lXj1 � jXj2lXj2Þ
TðX� X0Þ ¼ 0: ð7Þ

Figure 7a shows an example in S
2 of a set with 1,000

points from XjC ¼ 1� vMFðð�1; 0;�0:2ÞT; 10Þ (dark

blue) and XjC ¼ 2� vMFðð�0:5;�0:5; 1ÞT; 20Þ (light

blue). The classes are considered equiprobable a priori. If

we replace the values of the parameters in the hyperplane

expression (6), we get the plane 10x2 -22x3 = -9.3069.

Alternatively, if we use the equation with the normal vector

and the point (7), the plane that we get has the normal

vector (0, 10, -22)T and contains the point X0 ¼
ð0; 0; 0:4230ÞT: Figure 7b shows the classification given

by vMFNB, the decision hyperplane and the circumference

that bounds the class regions.

Figueiredo [22] also derived the decision function in (6).

However, as far as we know, it is the first time that the

geometric interpretation of the induced decision surface is

studied at length, and the following special scenarios are

analyzed.

3.3.1 Particular cases

We study the shape of the decision hyperplanes for some

special cases when the conditional probability distributions

share the value of one parameter. Like the analysis for the

vMNB (Sect. 3.2.1), the classes are assumed to be equi-

probable a priori.

• Case 1: jXj1 ¼ jXj2 and lXj1 6¼ lXj2: When the con-

centration parameter values are the same but the mean

directions are different, the hyperplane equation sim-

plifies to (see Appendix 2, Particular cases)

ðlXj1 � lXj2Þ
TX ¼ 0: ð8Þ

Equation (8) defines a hyperplane that goes through the

origin (center of the sphere), dividing it into two

hemispheres. The plane goes through the ‘‘middle

point’’ of the segment that contains the points in the

hypersphere corresponding to the mean directions, like

the bisector in vMNB. In fact, we can write the

hyperplane equation as ðlXj1 � lXj2Þ
TðX� 0Þ ¼ 0:

Accordingly, vMFNB finds a hyperplane with the nor-

mal vector ðlXj1 � lXj2Þ
T; which is the vector con-

necting the points in the hypersphere defined by the two

mean directions. Additionally, the hyperplane contains

the origin point (0). In this case, since the plane goes

through the center of the sphere, the intersection is a

great circle (a.k.a. Riemannian circle), that is, one of the

circles with the same radius as the sphere. The great

circle and the hypersphere share the same center. Fig-

ure 8a shows a set of 1,000 points from the distributions

XjC ¼ 1� vMFðð0; 0; 1ÞT; 7Þ (dark blue) and XjC ¼
2� vMFðð0; 1; 0ÞT; 7Þ (light blue). The classes have the

same probability a priori. The classification provided by
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for a sample of 1,000 points. Class C = 1 points are shown in dark
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online)
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vMFNB can be seen in Fig. 8b, where the decision

hyperplane is given by the equation -x2 ? x3 = 0.

• Case 2: jXj1 6¼ jXj2; lXj1 ¼ lXj2 ¼ lX: In the scenario

where the concentration parameters have different

values but the mean directions are the same, vMFNB

finds the hyperplane (see Appendix 2, Particular cases)

lT
XðX� X0Þ ¼ 0

with X0 ¼ lX

1

jXj1 � jXj2
ln
ðjXj1Þ

n
2
�1

In
2
�1ðjXj2Þ

ðjXj2Þ
n
2
�1

In
2
�1ðjXj1Þ

:

Therefore, vMFNB finds a hyperplane perpendicular to

the mean direction and containing point X0: Point X0 is

also located in the direction of the mean and its exact

position depends on the values of the concentration

parameters jXj1 and jXj2: Figure 9a shows 1,000 points

sampled from the distributions XjC ¼ 1� vMF

ðð�1; 0; 0ÞT; 20Þ (dark blue) and XjC ¼ 2� vMF

ðð�1; 0; 0ÞT; 5Þ (light blue). The two class values are

equiprobable a priori. If we replace the values of the

parameters in the hyperplane expression, we get the

plane x1 = -0.9076. Alternatively, if we use the

equation with the normal vector and the point, the

plane that we get has the normal vector (-1, 0, 0)T and

contains the point X0 ¼ ð�0:9076; 0; 0ÞT: Figure 9b

shows the classification given by the vMFNB classifier,

the decision hyperplane and the circumference that

bounds the class regions.

3.4 Hybrid Gaussian–von Mises–Fisher naive Bayes

A very interesting scenario arises when combining direc-

tional and non-directional data. This is a frequent situation

when we can measure both the magnitude and the direction

of a given phenomenon, e.g., the direction and the velocity

of wind currents or the strength and orientation of a mag-

netic field. We study the hybrid NB classifier where the

directional variable X is modeled using von Mises–Fisher

distributions and the linear variable Y is modeled using

multivariate Gaussian distributions. The conditional prob-

ability distributions of the predictive variables given the

class value c are XjC ¼ c� vMFðlXjc; jXjcÞ and

YjC ¼ c�NðlYjc;RYjcÞ:
The multivariate Gaussian distribution Nðl;RÞ is

defined by its two parameters: the mean l and the

covariance matrix R: The decision function rðYÞ of a

Gaussian NB [59] found by substituting this probability

density function in (3) is:

rðYÞ ¼ � 1

2
ðY� lYj1Þ

TðRYj1Þ�1ðY� lYj1Þ

þ 1

2
ðY� lYj2Þ

TðRYj2Þ�1ðY� lYj2Þ

þ ln
pðC ¼ 1Þ RYj2

�

�

�

�

1=2

pðC ¼ 2Þ RYj1
�

�

�

�

1=2
: ð9Þ

Duda et al. [19] show that the surfaces induced by that

function are hyperplanes when RYj1 ¼ RYj2 and general

hyperquadrics when RYj1 6¼ RYj2:

To compute the decision function for the hybrid Gauss-

ian–von Mises–Fisher NB, we have to substitute the von

Mises–Fisher (2) and the Gaussian probability density

functions in the decision function expression (3). Assuming

conditional independence between X and Y given the class

C, the decision function obtained after operating is the sum

of two decision functions rðX;YÞ ¼ rðXÞ þ rðYÞ; obtained

in (6) and (9), but considering the prior probabilities

p(C = c) in only one of the components. The shape of the

surface induced by the function rðX;YÞ is determined by

the most complex of the two components in the sum. We

have shown that the decision surfaces defined by rðXÞ are

hyperplanes. Therefore, if the conditional probability dis-

tributions of the linear variable Y have the same covariance

matrices, we have that the hybrid Gaussian–von Mises–

Fisher NB finds a hyperplane to bound the class regions. On

the other hand, if the covariance matrices are different, the

decision surface is a general hyperquadric, ranging from

simple hyperplanes to complex hyperhyperboloids [18]. We

use an artificial example to illustrate this behavior.

The simplest model of this hybrid NB includes one cir-

cular variable X ¼ ðX1;X2Þ defined in the unit circumference

S
1 ¼ ðx1; x2Þ 2 R

2jx2
1 þ x2

2 ¼ 1
� �

and one linear variable

Y defined in R: The domain of the problem is the Cartesian

product S1 	 R;which defines a cylinder with unit radius. In

this example the variable Y is 1-dimensional, so the covari-

ance matrix is just the variance RYjc ¼ r2
Yjc; c 2 f1; 2g:

3.4.1 Particular cases

We analyzed the two cases described above for this model.
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Fig. 9 True class and class predicted when the conditional densities

share the same mean direction (Case 2). Dark blue circles refer to

class C = 1 points and class C = 2 data are drawn in light blue (color

figure online)
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• Case 1: rY|1
2 = rY|2

2 = r2. Substituting the probability

density functions of the von Mises–Fisher and Gaussian

distributions in the decision function (3) and arranging

all the terms, we get the following expression defining a

hyperplane:

rðx1; x2; yÞ ¼ ðjXj1lX1j1 � jXj2lX1j2Þx1

þ ðjXj1lX2j1 � jXj2lX2j2Þx2

þ
lY j1 � lY j2

r2
yþ

l2
Y j2 � l2

Y j1
2r2

þ ln
pðC ¼ 1ÞI0ðjXj2Þ
pðC ¼ 2ÞI0ðjXj1Þ

:

Figure 10a shows the true classification for 1,000 points

sampled using the distributions XjC ¼ 1� vMF

ðð0:2;�0:8ÞT; 5Þ and YjC ¼ 1�Nð0; 1Þ for points

in class 1, and the distributions XjC ¼ 2� vMF

ðð�0:8;�0:5ÞT; 10Þ and YjC ¼ 2�Nð2; 1Þ for points

with C = 2. Figure 10b shows the classes predicted by

the hybrid Gaussian–von Mises–Fisher NB classifier

and the hyperplane that separates the two class regions.

• Case 2: rY|1
2

= rY|2
2 . In this scenario, the decision

function obtained by the hybrid Gaussian–von Mises–

Fisher NB is given by the following expression, which

is quadratic for y:

rðx1; x2; yÞ ¼ ðjXj1lX1j1 � jXj2lX1j2Þx1

þ ðjXj1lX2j1 � jXj2lX2j2Þx2

þ
r2

Y j1 � r2
Y j2

2r2
Y j1r

2
Y j2

y2 þ
r2

Y j2lY j1 � r2
Y j1lY j2

r2
Y j1r

2
Y j2

y

�
l2

Y j1

2r2
Y j1
þ

l2
Y j2

2r2
Y j2

þ ln
pðC ¼ 1ÞI0ðjXj2ÞrY j2
pðC ¼ 2ÞI0ðjXj1ÞrY j1

:

Figure 11a shows a sample of 1,000 points using the

distributions XjC ¼ 1� vMFðð0:2;�0:8ÞT; 5Þ and

Y jC ¼ 1�Nð0; 0:25Þ for points in class 1, and the

distributions XjC ¼ 2� vMFðð�0:8;�0:5ÞT; 10Þ and

Y jC ¼ 2�Nð2; 4Þ for the points in the class 2. The

classes are considered equiprobable a priori. The

classification provided by the hybrid NB and the

hyperquadratic decision surface that bounds the class

regions are shown in Fig. 11b.

3.5 Hybrid discrete Gaussian–von Mises–Fisher naive

Bayes

Categorical data is also commonly found in different fields

of science [1]. For example, binary variables can be used to

indicate the presence or absence of a given trait in the

phenomenon whose direction we are measuring. Discrete

variables coding some qualitative aspect of the phenome-

non can also be interesting for classification. Additionally,

continuous variables with arbitrary distributions are usually

discretized to make their analysis easier.

The NB classifiers presented above can be directly

extended to the case including categorical predictive vari-

ables. Assuming that there are d discrete predictive vari-

ables {X1, ..., Xd}, the classifier induces a set of decision

surfaces, one for each possible combination of the values of

the discrete variables. When analyzing a new instance z;

we first have to check the values of the discrete values to

select the corresponding decision surface and use the val-

ues of the continuous variables for classification purposes.

Adding discrete predictive variables would modify the

independent term of the equation that specifies the decision

surface, i.e., the probabilities of the discrete conditional

distributions change the position of the decision surface but

not its shape. Therefore, in the case of linear classifiers

(vMNB, vMFNB and hybrid NB with equal covariance

matrices), the decision hyperplanes found for every

−1 −0.5 0 0.5 1−101

−2

0

2

4

X
1

X
2

Y

−1 −0.5 0 0.5 1−101

−2

0

2

4

X
1

X
2

Y

(a) (b)

Fig. 10 True class and class predicted using the hybrid Gaussian–von

Mises–Fisher NB classifier for a sample of 1,000 points when the

conditional Gaussian distributions share the same variance. Dark blue

circles refer to class C = 1 points, whereas class C = 2 data are

drawn in light blue (color figure online)
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combination of values for the discrete predictors are all

parallel to each other.

We use a simple artificial example of a NB classifier with

two predictive variables to illustrate this point. We have a

circular variable X ¼ ðX1;X2Þ defined in the unit circum-

ference S
1 ¼ ðx1; x2Þ 2 R

2jx2
1 þ x2

2 ¼ 1
� �

and one cate-

gorical variable Y that takes two values, e.g., Y [ {1,2}.

The class variable C is binary and its values are considered

equiprobable. The conditional probability distributions

of the predictive variables for class C = 1 are: XjC ¼
1� vMFðð0:2;�0:8ÞT; 5Þ and p(Y = 1 | C = 1) = 0.15.

The conditional probability distributions for points with

C = 2 are XjC ¼ 2� vMFðð�0:8;�0:5ÞT; 10Þ and p(Y =

1 | C = 2) = 0.6.

A set of 50 points are drawn from those distributions and

the true and predicted classifications are shown in Fig. 12a,

b, respectively. Figure 12c shows the points where Y = 1

and the decision line that bounds the class regions, whereas

Fig. 12d shows the same information for points Y = 2. The

decision lines are clearly parallel. Note that the above

analysis is also valid including linear multivariate Gaussian

distributions, although they have not been included in the

artificial example for simplicity’s sake.

3.6 Selective von Mises naive Bayes

Naive Bayes classifiers are affected by redundant variables

[44]. Finding good predictive variables can significantly

increase the accuracy of NB. Langley and Sage [44] pro-

posed the selective naive Bayes (SelNB) algorithm. SelNB

finds the variables inducing the most accurate NB structure

in a wrapper fashion. Pérez et al. [59] proposed a filter-

wrapper approach to induce SelNB classifiers. First, the

filter algorithm ranks the predictive variables using the

mutual information (MI) between each variable and the

class. Then each step of the wrapper algorithm induces a

new classifier including the next predictive variable in the

ranking. The algorithm uses classification accuracy (com-

puted with an inner tenfold cross-validation procedure) to

evaluate the models and selects the best classifier.

SelNB computes MIðXi;CÞ between each predictive

variable Xi and the class variable C. MI(Xi, C) is the

reduction of the entropy of the class given that we know the

value of Xi. This measure represents the information that

variable Xi gives about C. Therefore, higher values of MI

relate to more informative variables. Appendix 3 details the

computation of MIðXi;CÞ:
The classifier learned by SelNB is a NB classifier which

does not include all the predictive variables. This algorithm

can discard irrelevant variables but still suffers from

redundant variables. On the other hand, the wrapper algo-

rithm proposed in [44] can discard both irrelevant and

redundant variables. On the downside, however, it is less

computationally efficient, since n2 combinations of n pre-

dictive variables have to be tested in the worst-case sce-

nario. The filter-wrapper algorithm uses a greedy heuristic

to rank the variables according to the information they

provide about the class. Accordingly, it has to test at most

n classifiers. If the number of variables n is very large, we

can limit the number of variables by setting nmax \ n in the

wrapper step, and only nmax subsets of variables are tested.

The complexity of the decision surfaces induced by

SelNB depends on the number and the type of the variables

selected in the final NB structure, as discussed in the pre-

vious sections.

4 Experimental results

This section reports the results of the experimental evalu-

ation of the classifiers presented in this paper. Eight
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Fig. 12 True class and class predicted by the hybrid discrete von

Mises–Fisher NB classifier. Class C = 1 data are highlighted in dark

blue, whereas class C = 2 data are highlighted in light blue. Circles

are used to represent data with Y = 1 and crosses refer to data with

Y = 2 (color figure online)
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datasets were considered for evaluation (see Appendix 4

for a detailed description). The performance of the differ-

ent algorithms and the statistical comparison of the results

are included in Sect. 4.1. Section 4.2 illustrates the dif-

ferences between using Gaussian and von Mises distribu-

tions to model angular data.

4.1 Comparison of classifiers

In this section we evaluate the performance of vMNB

against other NB classifiers which ignore the angular nat-

ure of the data. We compared the following algorithms:

• vMNB: NB classifier using Gaussian distributions for

linear continuous variables and von Mises distributions

for angular variables.

• SelvMNB: Selective NB classifier, where the linear

variables are modeled using Gaussian distributions and

the angular variables are modeled using von Mises

distributions.

• GNB: Gaussian NB classifier where the probability

density functions of all the continuous variables given

the class values are modeled using Gaussian distributions.

• SelGNB: Selective Gaussian NB classifier that uses

Gaussian distributions for all the continuous predictive

variables.

• dNB: Discrete NB classifier where all the continuous

variables are discretized using Fayyad and Irani’s

algorithm [21]. This classifier was run in Weka [34].

We use a stratified tenfold cross-validation technique to

estimate the accuracy of the classifiers. The cross-valida-

tion procedure was run ten times independently. Therefore,

100 accuracy values are obtained. Table 1 shows the mean

accuracy and the standard deviation for each dataset and

each method. Table 2 shows the complexity of the final

Bayesian classifiers induced by the methods in the com-

plete datasets averaged over ten independent runs, i.e., the

number of parameters in the models, the number of pre-

dictive variables, the percentage of angular variables in the

final classifier, and the elapsed time needed to learn the

Bayesian classifiers. We find that the performance of

classifiers using von Mises distributions for the angular

predictive variables (vMNB and SelvMNB) is similar to or

better than when Gaussian conditional probability distri-

butions are used for those variables (GNB and SelGNB).

dNB using supervised discretization achieves competitive

results against SelvMNB and SelGNB and yields the best

results in four datasets (Protein10, MAGIC,

Arrhythmia and Covertype). Note that the discreti-

zation algorithm can inherently perform some sort of fea-

ture selection by discretizing a variable in only one value.

This could explain why dNB achieves such good results.

Note also that dNB needs to estimate more parameters than

SelvMNB and SelGNB in all the datasets but two

(Megaspores and Temperature). For Covertype,

SelvMNB and SelGNB achieved the same accuracy in all

the folds. Neither algorithm selected either of the two

angular variables (see Table 2), so SelvMNB and SelGNB

induce exactly the same classifier for this problem and no

significant differences can be found between them. The

number of parameters in vMNB and GNB are the same

because both Gaussian and von Mises distributions have

two parameters and no feature subset selection is per-

formed. However, GNB is slightly faster than vMNB

because estimating the concentration of a von Mises den-

sity involves more operations than variance estimation for

Gaussian densities. SelvMNB is also slower than SelGNB

even when the number of selected variables is the same.

Apart from having slower parameter estimation equations,

the method used for sampling a von Mises density is

computationally less efficient than the sampling algorithms

for Gaussian densities. These sampling methods are used

when computing the mutual information between each

predictive variable and the class (see Appendix 3). vMNB

frequently outperforms GNB in those datasets with a higher

percentage of angular variables, e.g., Protein1, Pro-

tein10 or Auslan. This highlights the importance of

using von Mises distributions for modeling angular data.

SelvMNB and SelGNB included a similar percentage of

angular variables in the final Bayesian classifiers. In most

Table 1 Mean accuracy and standard deviation of the classifiers evaluated on different datasets using ten runs of a stratified tenfold cross-

validation

Algorithm vMNB SelvMNB GNB SelGNB dNB

Megaspores 76.50 ± 3.56 76.50 ± 3.56 76.60 ± 3.58 76.60 ± 3.58 75.22 ± 3.37

Protein1 98.04 ± 0.16 98.39 ± 0.15 97.63 ± 0.18 97.96 ± 0.17 97.78 ± 0.21

Protein10 83.98 ± 0.55 86.14 ± 0.54 80.77 ± 0.60 82.11 ± 0.48 86.91 ± 0.50

Temperature 74.08 ± 1.40 74.07 ± 1.38 72.47 ± 1.26 72.47 ± 1.26 72.80 ± 1.33

Auslan 64.47 ± 3.01 81.72 ± 2.80 64.39 ± 3.03 82.24 ± 2.44 78.24 ± 2.81

MAGIC 72.75 ± 0.92 75.26 ± 0.82 72.68 ± 0.92 74.92 ± 0.88 77.73 ± 0.81

Arrhythmia 76.52 ± 6.63 78.19 ± 6.09 76.47 ± 6.56 78.17 ± 6.16 78.93 ± 6.30

Covertype 65.43 ± 0.46 67.07 ± 0.41 65.56 ± 0.45 67.07 ± 0.41 68.49 ± 0.44
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scenarios, the same variables were selected by both Sel-

vMNB and SelGNB. Therefore, when SelvMNB yields

better results than SelGNB, it means that von Mises den-

sities model the data in a better way than Gaussian densi-

ties (see Sect. 4.2).

Table 3 shows how each algorithm ranked on average

across all datasets. SelvMNB is the highest-ranking algo-

rithm, and we find that both vMNB and SelvMNB rank

higher than their linear counterparts, GNB and SelGNB,

respectively.

Statistical methods for comparing algorithms over a set

of problems were proposed in [12, 31] to find statistical

differences in the performance of all pairs of algorithms.

Table 4 shows the adjusted p values reported by these

Table 2 Complexity analysis of the Bayesian classifiers

Megaspores Protein1 Protein10 Temperature Auslan MAGIC Arrhythmia Covertype

vMNB

# params 5 9 243 23 22,894 41 685 454

# vars 1 2 30 3 120 10 174 54

% ang vars 100 100 100 33.33 50 10 2.30 3.70

Time 0.0006 0.0103 0.1494 0.0074 0.7274 0.0089 0.0496 0.8598

SelvMNB

# params 5 5 71 23 6,687 13 363.40 20

# vars 1 1 8.50 3 34.70 3 90.60 1

% ang vars 100 100 100 33.33 58.98 33.33 1.60 0

Time 0.1009 0.2375 9.4965 0.1113 159.7019 0.2860 8.8707 61.9942

GNB

# params 5 9 243 23 22,894 41 685 454

# vars 1 2 30 3 120 10 174 54

% ang vars 100 100 100 33.33 50 10 2.30 3.70

Time 0.0004 0.0052 0.0618 0.0029 0.4881 0.0075 0.0493 0.8449

SelGNB

# params 5 5 51.80 23 5,832 13.40 469.20 20

# vars 1 1 6.10 3 30.20 3.10 117.10 1

% ang vars 100 100 100 33.33 60.26 32.50 2.57 0

Time 0.0031 0.0300 4.3668 0.0206 127.4423 0.1692 8.3954 61.6814

dNB

# params 5 9 243 23 22,894 41 685 454

# vars 1 2 31 3 120 10 174 54

% ang vars 100 100 96.77 33.33 50 10 2.30 3.70

For each dataset and each Bayesian classifier, the table shows the number of parameters of the classifier (# params), the number of predictive

variables (# vars), the percentage of angular variables out of the total number (# vars) of variables (% ang vars) and the elapsed time in seconds

(time) used to learn the Bayesian classifier. The results are averaged over ten runs. The complete datasets were used to learn the Bayesian

classifiers. We used Weka sofware to learn dNB, so the learning times are not comparable and have not been included

Table 3 Average ranking of the algorithms computed over all the

datasets

Algorithm Average ranking

SelvMNB 2.125

dNB 2.375

SelGNB 2.8125

vMNB 3.3125

GNB 4.375

Table 4 Adjusted p values of post hoc tests when performing all

pairwise comparisons between classifiers

H1 pNeme pHolm pShaf pBerg

SelvMNB = GNB 0.0443 0.0443 0.0443 0.0443

GNB = dNB 0.1141 0.1027 0.0685 0.0685

GNB = SelGNB 0.4811 0.3849 0.2886 0.1924

vMNB = SelvMNB 1.0000 0.9315 0.7985 0.7985

vMNB = GNB 1.0000 1.0000 1.0000 0.7985

vMNB = dNB 1.0000 1.0000 1.0000 0.7985

SelvMNB = SelGNB 1.0000 1.0000 1.0000 1.0000

vMNB = SelGNB 1.0000 1.0000 1.0000 1.0000

SelGNB = dNB 1.0000 1.0000 1.0000 1.0000

SelvMNB = dNB 1.0000 1.0000 1.0000 1.0000

Statistically significant results at a = 0.05 are highlighted in bold
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methods. Considering all the datasets, only the differences

between the performance of GNB and SelvMNB are sta-

tistically significant (significance level a = 0.05).

Some datasets (see Table 6 in Appendix 4) include few

angular variables (Covertype, Arrhythmia, MAGIC).

Modeling these variables with a von Mises distribution or a

Gaussian distribution is likely to have little impact on

classifier accuracy. Therefore, it is worthwhile comparing

algorithm performance on each dataset individually. Bou-

ckaert [9] recommends using a t test with a sorted runs

sampling scheme to evaluate replicability of classifier

learning experiments. He also states that this procedure

yields an acceptable type I error and good power. We used

a non-parametric alternative and applied a Wilcoxon sign-

rank test with the sorted runs sampling scheme. Table 5

shows the p values of the Wilcoxon sign-rank test over the

sorted difference of accuracies for a tenfold cross-valida-

tion averaged over 10 runs. The null hypothesis is that the

median of the averaged differences is zero, i.e., both

algorithms perform similarly. The alternative hypotheses

(H1) were selected according to the results reported in

Table 1. Statistically significant results at a significance

level a = 0.05 are highlighted with an asterisk (*). vMNB

significantly outperformed GNB in four datasets (Pro-

tein1, Protein10, Temperature and MAGIC),

whereas GNB only outperformed vMNB in the Cover-

type problem. We found no statistical differences

between the two classifiers for the Megaspores, Au-

slan and Arrhythmia datasets. Similar results were

found when comparing SelvMNB and SelGNB. However,

SelGNB did not significantly outperform SelvMNB in any

dataset, whereas SelvMNB outperformed SelGNB in four

datasets. These two algorithms induce the same classifier

for the Covertype dataset, so there were no statistical

differences between the two methods for that dataset

(p value = 1.0 in Table 5). The dNB classifier with dis-

cretized predictive variables yields very good results. dNB

significantly outperforms vMNB in four datasets, whereas

vMNB significantly outperforms dNB in three datasets. On

the other hand, SelvMNB significantly outperforms dNB in

Table 5 Results of a Wilcoxon sign-rank test using the sorted difference in a tenfold cross-validation averaged over 10 runs

vMNB vs. GNB vMNB vs. dNB GNB vs. dNB

H1 p value H1 p value H1 p value

Megaspores \ 0.2734 [* 0.0420 [* 0.0244

Protein1 [* 0.0010 [* 0.0010 \* 0.0068

Protein10 [* 0.0010 \* 0.0010 \* 0.0010

Temperature [* 0.0020 [* 0.0098 \ 0.1875

Auslan [ 0.3125 \* 0.0010 \* 0.0010

MAGIC [* 0.0195 \* 0.0010 \* 0.0010

Arrhythmia [ 0.4375 \ 0.1611 \ 0.1377

Covertype \* 0.0186 \* 0.0010 \* 0.0010

SelvMNB vs. SelGNB SelvMNB vs. dNB SelGNB vs. dNB

H1 p value H1 p value H1 p value

Megaspores \ 0.2734 [* 0.0420 [* 0.0244

Protein1 [* 0.0010 [* 0.0010 [* 0.0098

Protein10 [* 0.0010 \* 0.0020 \* 0.0010

Temperature [* 0.0020 [* 0.0098 \ 0.1875

Auslan \ 0.2461 [* 0.0020 [* 0.0020

MAGIC [* 0.0098 \* 0.0010 \* 0.0010

Arrhythmia [ 0.5098 \ 0.4229 \ 0.3477

Covertype = 1.0000 \* 0.0010 \* 0.0010

Table 6 Datasets used in this study

Dataset #

angular

vars

#

linear

vars

#

discrete

vars

#

class

values

#

instances

Megaspores 1 0 0 2 960

Protein1 2 0 0 2 49,676

Protein10 30 0 0 4 49,314

Temperature 1 1 1 3 8,753

Auslan 60 60 0 95 2,565

MAGIC 1 10 0 2 19,020

Arrhythmia 5 175 73 2 430

Covertype 2 8 44 7 100,000
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four datasets, whereas dNB significantly outperforms Sel-

vMNB in three datasets. vMNB and SelvMNB perform

better against dNB than their linear counterparts, GNB and

SelGNB, respectively.

4.2 Goodness-of-fit analysis

To understand why vMNB performs better, we illustrate

the differences between using linear and angular distribu-

tions to model directional data. We took variable 11 in the

Protein10 dataset, which was selected by both Sel-

vMNB and SelGNB as an important predictive variable for

classification. Protein10 has four class values. NB fits

one conditional probability density for each class value

c. Figure 13 plots the Gaussian (dashed lines) and the von

Mises (solid lines) conditional distributions fitted from the

data. We can see important mismatches for class values

C = 2 and C = 3. Figure 13b shows how the Gaussian

distribution ignores the periodicity of the data and yields a

density of 3.97�10-5 for an angle of -180�, and a density

of 0.2049 for 180�. Therefore, Gaussian distributions yield

two different densities for the same angle. On the other

hand, the von Mises distribution in Fig. 13c is more peaked

and yields higher densities than the Gaussian distribution

for values close to the mean.

The legends in Fig. 13 include the log-likelihood of the

models given the data: LL ¼
P

i log fUjcð/ðiÞÞ: von Mises

distributions always yield higher LL than Gaussian distri-

butions. In fact, the highest differences in the log-likeli-

hood between von Mises and Gaussian distributions can be

found for class values 2 and 3.

Gaussian and von Mises distributions are very similar

when the concentration of the values is high. However,

using Gaussian distributions to model angles can negatively

affect NB’s behavior. We use an artificial example to

illustrate this point. We generate a dataset with one angular

predictive variable and a binary class with values XðCÞ ¼
f1; 2g: The classes are equiprobable a priori. Instances from

class C = 1 follow the distribution UjC ¼ 1� vMðp; 2:5Þ;
whereas instances from class C = 2 follow the distribution

UjC ¼ 2� vMðp=2; 2:5Þ: Figure 14 shows the conditional

density functions of the von Mises and the Gaussian dis-

tributions fitted to a sample of 2,000 instances. Figure 14a

shows that the Gaussian distribution ignores the periodicity

of the data, overestimates the variance and incorrectly

estimates the mean direction. This yields errors in NB’s

classification. For example, GNB classifies angle / = p
with class C = 2, whereas it should apparently belong to

class C = 1 because the mean direction of the distribution

that generates class C = 1 is lUj1 ¼ p: On the other hand,

GNB labels the angle / = 0 with the class C = 1. The

angle / = 0 is closer to the mean direction of the distri-

bution with class C = 2 (lUj2 ¼ p=2), so it should be

classified with C = 2.

5 Conclusion

Directional data can be found everywhere in science.

Directional information has a number of properties that

make it necessary to develop and use different techniques

than the ones used with linear information.

In this paper, we extended one of the simplest and best

known models for classification, the naive Bayes classifier,

to the case where directional data are used as predictive

variables. First, we reviewed the most common distribu-

tions in directional statistics: the von Mises distribution and

the von Mises–Fisher distribution. Understanding the

implications of the naive Bayes assumption and the theo-

retical properties of the classifier is the key to interpreting
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Fig. 13 von Mises (solid) and Gaussian (dashed) conditional distributions fitted for variable 11 in Protein10 dataset
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butions fitted for the artificial dataset
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its behavior and establishing its problem-solving potential

[58]. Therefore, we analyzed the decision functions of the

NB classifiers using directional predictive variables and

studied the surfaces induced by those decision functions at

length for different values of the parameters. We also

studied the more general scenarios where a hybrid NB

classifier accounts for discrete, linear (Gaussian) and

directional predictive variables.

We showed that the NB classifier with one directional

predictive variable, using either the univariate von Mises or

the multivariate von Mises–Fisher distribution, is a linear

classifier. The decision surface induced by the classifier is a

hyperplane (or a set of hyperplanes if more than two class

values are considered) that separates the class regions.

Therefore, it should be especially well suited for solving

problems with linearly separable classes. When two

angular predictive variables are considered, the vMNB

classifier induces more complex quadratic decision sur-

faces. In the hybrid setting where von Mises–Fisher and

Gaussian distributions are used to model the predictive

variables, we showed that the complexity of the decision

surfaces depends on the parameters of the Gaussian dis-

tribution. Thus, the decision surfaces are hyperplanes when

the covariance matrices of the conditional predictive dis-

tributions are equal and hyperquadrics when they are not

[18]. Artificial examples were used to illustrate the

behavior of the different classifiers and to show the deci-

sion surfaces they induce. NB performance is reduced

when irrelevant or redundant predictive variables are used

[44]. Therefore, we adapted the selective NB algorithm to

the use of directional distributions.

We evaluated the vMNB classifier over 8 datasets and

compared it against the corresponding NB classifiers that

use Gaussian distributions or discretization for modeling

angular variables. SelvMNB was the best ranking algo-

rithm. Statistical tests were performed to find significant

differences in the performance of the classifiers. vMNB

and SelvMNB performed similarly or better than the

classifiers using linear distributions in all but one dataset.

The naive Bayes classifier’s conditional independence

assumption is quite restrictive and clearly limits the kind of

problems that these models can solve. Several Bayesian

classifiers that relax the conditional independence

assumption have been proposed in the literature, e.g., the

tree-augmented naive Bayes [30], the seminaive Bayes

[56], the k-dependence Bayesian classifier [63] or the

general Bayesian network classifier. Extending these

models to the use of directional variables is by no means

trivial, since it has been shown that both marginal and

conditional distributions cannot be von Mises distributions

[47, 49]. Therefore, this is an open and interesting research

field.

Directional data can be found in other machine learning

scenarios, e.g., clustering and regression problems. Clus-

tering with directional data has been extensively studied in

recent papers, see e.g., [2, 3, 53]. Also, many works are

available on regression models where the target variable to

predict is angular and the predictive variables are either

angular [41] or linear [16, 26]. Regression models with

spherical target and predictive variables have also been

studied in [15, 61]. Recently, circular ordinal regression,

where the target variable is discrete, but defined in a cir-

cular ordered domain has been approached in [13] using

support vector machines. Directional information has also

been used in neural networks, where Zemel et al. [70]

proposed an extension of the Boltzmann machine with

angular units.

On the other hand, Bayesian networks have also been

applied to classical regression problems [29, 54]. Hybrid

models that include different types of probability distri-

butions have attracted much interest, and different

approaches have been proposed [8, 36, 62, 66]. Directional

distributions add yet another possibility to the range of

distributions that can be considered in hybrid Bayesian

networks. Hybrid probability distributions for modeling the

joint density of angular and linear variables [38] could be

used in hybrid Bayesian networks for regression. When

several angular variables are included in the Bayesian

network, the fact that we cannot model both marginal and

conditional distributions as von Mises distributions is again

a crucial problem in these models.

Directional statistics opens a number of interesting

challenges and opportunities within machine learning

research, particularly for probabilistic graphical models.

We hope that further research in this area and the imple-

mentation of more complex models will provide an

excellent tool for solving difficult problems in a wide range

of fields.

Appendix 1: von Mises NB classifier decision function

vMNB with one predictive variable

We start by equaling the posterior probability of each class

value using the probability density function of the von

Mises distribution (1):

pðC ¼ 1Þ 1

2pI0ðjUj1Þ
expðjUj1 cos ð/� lUj1ÞÞ

¼ pðC ¼ 2Þ 1

2pI0ðjUj2Þ
expðjUj2 cos ð/� lUj2ÞÞ:

Simplify the constant 2p, take logarithms and arrange all

terms on the same side of the equation:
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jUj1 cosð/� lUj1Þ � jUj2 cosð/� lUj2Þ

þ ln
pðC ¼ 1Þ
I0ðjUj1Þ

� ln
pðC ¼ 2Þ
I0ðjUj2Þ

¼ 0:

Substitute cosðb� cÞ ¼ cosðbÞ cosðcÞ þ sinðbÞ sinðcÞ and

operate the logarithms:

jUj1 cos / cos lUj1 þ sin / sin lUj1

h i

� jUj2 cos / cos lUj2 þ sin / sin lUj2

h i

þ ln
pðC ¼ 1ÞI0ðjUj2Þ
pðC ¼ 2ÞI0ðjUj1Þ

¼ 0:

Arrange using cos/ and sin / as common terms:

ðjUj1 cos lUj1 � jUj2 cos lUj2Þ cos /

þ ðjUj1 sin lUj1 � jUj2 sin lUj2Þ sin /

þ ln
pðC ¼ 1ÞI0ðjUj2Þ
pðC ¼ 2ÞI0ðjUj1Þ

¼ 0:

Substitute

a ¼ jUj1 cos lUj1 � jUj2 cos lUj2;

b ¼ jUj1 sin lUj1 � jUj2 sin lUj2;

D ¼ � ln
pðC ¼ 1ÞI0ðjUj2Þ
pðC ¼ 2ÞI0ðjUj1Þ

;

and get:

a cos /þ b sin / ¼ D:

Trigonometrically, this is equivalent to:

T cosð/� aÞ ¼ D;

where T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

; cos a ¼ a=T ; sin a ¼ b=T ; tan a ¼
b=a: Isolating / from the equation, we get:

/0 ¼ aþ arccosðD=TÞ;
/00 ¼ a� arccosðD=TÞ:

The NB classifier finds two angles that bound the class

regions.

Particular cases

We have also derived these angles when the conditional

probability distributions share one of the parameters. We

consider that the classes are equiprobable. If they are not

equiprobable, the prior probabilities of the class values

influence the value of D, modifying the class subregions so

that more likely classes have larger subregions.

• Case 1: jUj1 ¼ jUj2 ¼ jU and lUj1 6¼ lUj2: When the

concentration parameter is the same in the two

distributions, we have the following values for the

constants:

a ¼ jUðcos lUj1 � cos lUj2Þ;
b ¼ jUðsin lUj1 � sin lUj1Þ;

D ¼ � ln
pðC ¼ 1ÞI0ðjUj2Þ
pðC ¼ 2ÞI0ðjUj1Þ

¼ � ln 1 ¼ 0:

Substituting in the expression of the arccosine, we get:

arccosðD=TÞ ¼ arccos 0 ¼ p=2:

To compute a, we take the trigonometric identities:

cos b� cos c ¼ �2 sin
1

2
ðbþ cÞ

� �

sin
1

2
ðb� cÞ

� �

;

sin b� sin c ¼ 2 sin
1

2
ðb� cÞ

� �

cos
1

2
ðbþ cÞ

� �

;

which we substitute in the following expression:

tan a ¼ b

a
¼

jUðsin lUj1 � sin lUj2Þ
jUðcos lUj1 � cos lUj2Þ

¼
2 sinð1

2
ðlUj1 � lUj2ÞÞ cosð1

2
ðlUj1 þ lUj2ÞÞ

�2 sinð1
2
ðlUj1 þ lUj2ÞÞ sinð1

2
ðlUj1 � lUj2ÞÞ

¼ �
cosð1

2
ðlUj1 þ lUj2ÞÞ

sinð1
2
ðlUj1 þ lUj2ÞÞ

¼ � cot
1

2
ðlUj1 þ lUj2Þ

� �

¼ tan
1

2
ðlUj1 þ lUj2Þ þ

p
2

� �

;

a ¼ 1

2
ðlUj1 þ lUj2Þ þ

p
2
:

Now we can compute the decision angles found by the

classifier:

/ ¼ a� arccosðD=TÞ ¼ 1

2
ðlUj1 þ lUj2Þ þ

p
2
� p

2
:

The two decision angles are:

/0 ¼ 1

2
ðlUj1 þ lUj2Þ;

/00 ¼ 1

2
ðlUj1 þ lUj2Þ þ p:

These two angles correspond to the bisector angle of the

two mean directions.
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• Case 2: jUj1 6¼ jUj2 and lUj1 ¼ lUj2 ¼ lU: In this sce-

nario the mean directions are equal, so the constants

reduce to:

a ¼ ðjUj1 � jUj2Þ cos lU;

b ¼ ðjUj1 � jUj2Þ sin lU;

D ¼ � ln
pðC ¼ 1ÞI0ðjUj2Þ
pðC ¼ 2ÞI0ðjUj1Þ

¼ � ln
I0ðjUj2Þ
I0ðjUj1Þ

;

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðjUj1 � jUj2Þ2 cos2 lU þ ðjUj1 � jUj2Þ2 sin2 lU

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðjUj1 � jUj2Þ2ðcos2 lU þ sin2 lUÞ
q

¼ jUj1 � jUj2:

We compute a by substituting in the expression:

tan a ¼ b

a
¼
ðjUj1 � jUj2Þ sin lU

ðjUj1 � jUj2Þ cos lU
¼ tan lU;

a ¼ lU:

Therefore, the resulting decision angles are given by:

/ ¼ a� arccosðD=TÞ;

/0 ¼ lU þ arccos
D

jUj1 � jUj2
;

/00 ¼ lU � arccos
D

jUj1 � jUj2
:

Clearly, the two angles are defined with respect to the

common mean direction, and their distance to that mean

direction depends on the concentration parameter values.

vMNB with two predictive variables

In this scenario, we have two circular predictive variables

U and W: The domain defined by these variables is a torus

(-p, p] 9 (-p, p]. As in the simpler case above, we

compute the decision surfaces induced by the classifier by

equaling the posterior probability of the two class values

pðC ¼ 1jU ¼ /;W ¼ wÞ ¼ pðC ¼ 2jU ¼ /;W ¼ wÞ:

Using Bayes’ rule and the conditional independence

assumption, we get

pðC ¼ 1ÞfUjC¼1ð/; lUj1;jUj1ÞfWjC¼1ðw; lWj1; jWj1Þ
¼ pðC ¼ 2ÞfUjC¼2ð/; lUj2; jUj2ÞfWjC¼2ðw; lWj2; jWj2Þ:

We substitute the von Mises density (1) and get:

pðC ¼ 1Þ
expðjUj1 cosð/� lUj1ÞÞ

2pI0ðjUj1Þ
expðjWj1 cosðw� lWj1ÞÞ

2pI0ðjWj1Þ

¼ pðC ¼ 2Þ
expðjUj2 cosð/� lUj2ÞÞ

2pI0ðjUj2Þ
expðjWj2 cosðw� lWj2ÞÞ

2pI0ðjWj2Þ
:

We simplify the constant 2p, take logarithms and

arrange all the terms on the same side of the equation:

jUj1 cosð/� lUj1Þ þ jWj1 cosðw� lWj1Þ
� jUj2 cosð/� lUj2Þ � jWj2 cosðw� lWj2Þ

þ ln
pðC ¼ 1ÞI0ðjUj2ÞI0ðjWj2Þ
pðC ¼ 2ÞI0ðjUj1ÞI0ðjWj1Þ

¼ 0:

We substitute the trigonometric identity cosðb� cÞ ¼
cosðbÞ cosðcÞ þ sinðbÞ sinðcÞ and arrange the terms:

ðjUj1 cos lUj1 � jUj2 cos lUj2Þ cos /

þ ðjUj1 sin lUj1 � jUj2 sin lUj2Þ sin /

þ ðjWj1 cos lWj1 � jWj2 cos lWj2Þ cos w

þ ðjWj1 sin lWj1 � jWj2 sin lWj2Þ sin w

þ ln
pðC ¼ 1ÞI0ðjUj2ÞI0ðjWj2Þ
pðC ¼ 2ÞI0ðjUj1ÞI0ðjWj1Þ

¼ 0:

We define the following constants:

a ¼ jUj1 cos lUj1 � jUj2 cos lUj2;

b ¼ jUj1 sin lUj1 � jUj2 sin lUj2;

c ¼ jWj1 cos lWj1 � jWj2 cos lWj2;

d ¼ jWj1 sin lWj1 � jWj2 sin lWj2;

D ¼ � ln
pðC ¼ 1ÞI0ðjUj2ÞI0ðjWj2Þ
pðC ¼ 2ÞI0ðjUj1ÞI0ðjWj1Þ

;

and substitute them to get

a cos /þ b sin /þ c cos wþ d sin w ¼ D:

The Cartesian coordinates of the points defined by the

angles / and w on the surface of a torus are

x ¼ ðLþ l cos /Þ cos w;

y ¼ ðLþ l cos /Þ sin w;

z ¼ l sin /;

where L is the distance from the center of the torus to the

center of the revolving circumference that generates the

torus, and l is the radius of the revolving circumference.

We isolate the trigonometric functions and get

Pattern Anal Applic (2015) 18:225–246 241

123



sin / ¼ z=l;

cos / ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sin2 /
q

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z

l

	 
2
r

¼ � 1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � z2
p

;

sin w ¼ y

Lþ l cos /
;

cos w ¼ x

Lþ l cos /
:

Substituting these expressions, we get the two following

equations corresponding to the two signs of cos/:

a

l

ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � z2
p

þ b

l
zþ c

Lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � z2
p x

þ d

Lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � z2
p yþ D ¼ 0:

� a

l

ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � z2
p

þ b

l
zþ c

L�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � z2
p x

þ d

L�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � z2
p yþ D ¼ 0:

Operating and arranging the terms, we get

clxþ dly� az2 þ bz
ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � z2
p

þ bLz

þ ðaLþ DlÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � z2
p

þ al2 þ DLl ¼ 0;

clxþ dly� az2 � bz
ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � z2
p

þ bLz

� ðaLþ DlÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � z2
p

þ al2 þ DLl ¼ 0:

These expressions are quadratic in z. Therefore, we

conclude that von Mises NB with two predictive variables

is a much more complex and flexible classifier than von

Mises NB with one predictive variable.

Appendix 2: von Mises–Fisher NB classifier decision

function

To study the decision function for the von Mises–Fisher

NB classifier we proceed as in Appendix 1. We equal the

posterior probabilities of the class values using the proba-

bility density function in Eq. (1):

rðXÞ ¼ 0, pðC ¼ 1Þ
ðjXj1Þ

n
2
�1

ffiffiffiffiffiffiffiffiffiffiffi

ð2pÞn
p

In
2
�1ðjXj1Þ

expðjXj1l
T
Xj1XÞ

¼ pðC ¼ 2Þ
ðjXj2Þ

n
2
�1

ffiffiffiffiffiffiffiffiffiffiffi

ð2pÞn
p

In
2
�1ðjXj2Þ

expðjXj2l
T
Xj2XÞ:

Simplify the constants and take logarithms:

ln
pðC ¼ 1ÞðjXj1Þ

n
2
�1

In
2
�1ðjXj1Þ

þ jXj1l
T
Xj1X

¼ ln
pðC ¼ 2ÞðjXj2Þ

n
2
�1

In
2
�1ðjXj2Þ

þ jXj2l
T
Xj2X:

Arrange all the terms on the same side of the equation and

operate the logarithms to get the following hyperplane

equation:

ðjXj1lXj1 � jXj2lXj2Þ
TX

þ ln
pðC ¼ 1ÞðjXj1Þ

n
2
�1

In
2
�1ðjXj2Þ

pðC ¼ 2ÞðjXj2Þ
n
2
�1

In
2
�1ðjXj1Þ

¼ 0:

Particular cases

Considering that both class values have the same prior

probability and that one of the parameters has the same

value in both distributions, Case 1 and Case 2 can be

simplified as follows. When the prior probabilities are

different, the hyperplanes move away from the mean

direction of the most likely class value, making their sub-

regions larger.

• Case 1: jXj1 ¼ jXj2 ¼ jX and lXj1 6¼ lXj2: When the

distributions share the concentration parameter, we get

the expression:

ðjXlXj1 � jXlXj2Þ
TXþ ln

pðC ¼ 1Þj
n
2
�1

X In
2
�1ðjXÞ

pðC ¼ 2Þj
n
2
�1

X In
2�1ðjXÞ

¼ 0:

The logarithm reduces to 0 and we can take jX as

common term:

jXðlXj1 � lXj2Þ
TX ¼ 0:

Therefore, given that j[ 0 (otherwise the distributions

are uniform), the hyperplane equation reduces to:

ðlXj1 � lXj2Þ
TX ¼ 0:

That equation specifies a hyperplane that contains the

origin point (0) and goes through the middle point of the

sector that connects the points of the hypersphere

defined by the mean directions lXj1 and lXj2:

• Case 2: jXj1 6¼ jXj2 and lXj1 ¼ lXj2 ¼ lX: In the case

where the mean directions have the same value, we can

derive the following equation:
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ðjXj1l
T
X � jXj2l

T
XÞX

þ ln
pðC ¼ 1ÞðjXj1Þ

n
2
�1

In
2
�1ðjXj2Þ

pðC ¼ 2ÞðjXj2Þ
n
2
�1

In
2
�1ðjXj1Þ

¼ 0:

We can take lT
X as a common term:

ðjXj1 � jXj2ÞlT
XXþ ln

ðjXj1Þ
n
2
�1

In
2
�1ðjXj2Þ

ðjXj2Þ
n
2
�1

In
2
�1ðjXj1Þ

¼ 0:

Dividing by (jXj1 � jXj2), we get:

lT
XXþ 1

jXj1 � jXj2
ln
ðjXj1Þ

n
2�1

In
2
�1ðjXj2Þ

ðjXj2Þ
n
2
�1

In
2
�1ðjXj1Þ

¼ 0:

The hyperplane defined by that equation is perpendicular

to the shared mean direction vector lX; and its position is

given by the relationships between the concentration

parameters.

Appendix 3: Mutual information computation

The mutual information between two variables X and Y is

defined as

MIðX; YÞ ¼
Z

X

Z

Y

qðx; yÞ log
qðx; yÞ

qðxÞqðyÞdxdy

¼ EðX;YÞ log
qðx; yÞ

qðxÞqðyÞ

� �

;

ð10Þ

where q is a generalized probability function.

In supervised classification problems, we have to esti-

mate MIðXi;CÞ from a set of data pairs x
ðjÞ
i ; c

ðjÞ
	 


; j ¼
1; . . .;m: When Xi is a discrete variable, an estimator of the

mutual information in (10) is given by

MIðXi;CÞ ¼
1

m

X
m

j¼1

log
bp x

ðjÞ
i ; c

ðjÞ
	 


bp x
ðjÞ
i

	 


bp cðjÞ

 �

; ð11Þ

where bp are the probabilities estimated from the counts in

the dataset.

When the predictive variable Xi is continuous, we take

an approach consistent with conditional independence

assumptions and we model the conditional probability

densities of Xi|C = c as Gaussian or von Mises distribu-

tions, depending on the nature of the variable, i.e., linear or

angular. Therefore, the marginal density of Xi is a mixture

of Gaussian or von Mises distributions, respectively.

Algorithm 1 shows the process for computing MIðXi;CÞ:

Appendix 4: Dataset analysis and preprocessing

A thorough inspection of the datasets for supervised clas-

sification available in the UCI Machine Learning Reposi-

tory [28] reported only 5 out of 135 datasets containing

some variable measured in angles (bottom half of Table 6).

We found no reference to these directional data having be

given special treatment. For this reason, we assume that

they have been studied as linear continuous variables

without taking into account their special properties. We

omitted the Breast Tissue dataset [39, 67] from the study

because it was not clear whether the ‘‘PhaseAngle’’ vari-

able really represents an angle and how it was measured.

Additionally, another four datasets not included in the UCI

repository were considered for evaluation (top half of
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Table 6). A description of the datasets used in this study

follows:

UCI datasets

• Australian Sign Language (Auslan): Identification

of 95 Australian Sign Language signs using position

(x, y, z) and orientation angles (roll, pitch, yaw) of both

hands [40]. Therefore, 12 measurements are studied.

According to [40], the bending measurements are not

very reliable, and they were omitted as predictive

variables. This is a time series classification problem.

The position and orientation of the hands are measured

at different times, yielding approximately 54 data

frames for each sign. We resampled a set of 10 evenly

distributed frames and used them as predictive vari-

ables. According to the description, there are 95

different signs (class values), and each sign is repeated

27 times. However, the her sign only appears three

times, whereas the his-hers sign appears 24 times.

Therefore, we have assumed that they are the same sign

and have considered them all as his-hers signs.

• MAGIC Gamma Telescope (MAGIC): Discrimination

of the images of hadronic showers initiated by primary

gammas from those caused by cosmic rays in the upper

atmosphere [7]. The images of the hadronic showers

captured by the telescope are preprocessed and mod-

eled as ellipses. The predictive variables describe the

shape of the ellipses. The dataset includes one angular

variable that captures the angle of the major axis in the

ellipse with the vector that connects the center of the

ellipse with the center of the camera.

• Arrhythmia: Identification of the presence and

absence of cardiac arrhythmia from electrocardiograms

(ECG). The original dataset has 16 class values: one for

healthy items, 14 types of cardiac arrhythmias and one

class value for unclassified items [33]. We erased the

unclassified items and built a binary class (normal vs.

arrhythmia). The predictive variables describe clinical

measurements, patient data and ECG recordings. The

angular variables describe the vector angles from the

front plane of four ECG waves. We removed variable

14, which had more than 83% missing values, and used

Weka’s ReplaceMissingValues filter [22] to fill

in the missing values of variables 11–13 and 15 with

the mode. We also removed some non-informative

discrete and continuous variables.

• Covertype: Prediction of the kind of trees that grow

in a specific area given some attributes describing the

geography of the land [6]. The two angular variables

describe the aspect (orientation) of the land from the

true north and the slope of the ground. The original

dataset has 581,012 samples and we used a Weka-

supervised resampling method (without replacement) to

reduce the dimensionality of the dataset to 100,000

samples.

Other datasets

• Megaspores: Classification of megaspores into two

classes (their group in the biological taxonomy)

according to the angle of their wall elements [43].

The dataset is an example included in Oriana software.2

• Protein1: Prediction of secondary structure includ-

ing one aminoacid, using the dihedral angles (/, w) of

the residue as predictive information. We only consid-

ered a-helix and b-sheet structures, making the class

binary. The data were retrieved from the protein

geometry database [5].

• Protein10: Prediction of secondary structure includ-

ing one aminoacid, using the dihedral angles (/, w) and

the planarity angle (x). We considered the three angles

in ten consecutive residues. We classified the four most

common structures: a-helices, b-sheets, bends and

turns. The data were retrieved from the protein

geometry database [5].

• Temperature: Prediction of the outdoor temperature

from the season, wind speed and wind direction. We

used hourly measurements from a weather station

located in the city of Houston. Data for the year 2010

were retrieved, and we removed the hours with missing

values for any of the four variables. The information

was collected from the Texas Commission on Envi-

ronmental Quality website.3 The class variable (outdoor

temperature) was measured in degrees Fahrenheit and

discretized into the following three values: low

(T B 50), medium (50 \ T \ 70) and high (T C 70).
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