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Abstract A common information representation task in research as well as educa-
tional and statistical practice is to comprehensively and intuitively express data in
two-dimensional tables. Examples include tables in scientific papers, as well as re-
ports and the popular press.

Data is often simple enough for users to reorder. In many other cases though,
there are complex data patterns that make finding the best re-arrangement of rows
and columns for optimum readability a tough problem.

We propose that row and column ordering should be regarded as a combinatorial
optimization problem and solved using evolutionary computation techniques. The use
of genetic algorithms has already been proposed in the literature. This paper proposes
for the first time the use of estimation of distribution algorithms for table ordering.
We also propose alternative ways of representing the problem in order to reduce its
dimensionality. By learning a selective naive Bayes classifier, we can find out how
to jointly combine the parameters of these algorithms to get good table orderings.
Experimental examples in this paper are on 2D tables.
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1 Introduction

The way rows and columns are ordered in a table is a very sensitive issue that af-
fects the readability of the information. The literature shows that this problem has
been a cause of concern in statistics for a long time (Walker and Durost 1936), but is
still an important issue nowadays (Koschat 2005). Examples of applications include
tables with statistical data for education, practice and research (Koschat 2005), corre-
lation matrices to display microarray data (Friendly 2002), customer satisfaction vs.
automobile branches (Niermann 2005) and molecular viewing (Liu et al. 2005).

Rearranging the rows and columns of a table when their ordering is irrelevant
reveals interesting patterns that make the table easier to read and interpret. For exam-
ple, Fig. 1(a) shows a 36 × 32 table, constructed by augmenting 8 times the original
9 × 16 table introduced by Bertin (1981). The columns of this table are townships,
while rows are characteristics of these townships, that are either present (coded as 1)
or absent (0). The cells with 0s are shaded grey and the cells with 1s are left blank.
The row and column order in Figs. 1(a) to (c) varies, showing that the examples with
a reduced stress value (Niermann 2005)—see Sect. 2.1—result in a more intuitive
readability of the information.

The complexity of the table ordering problem is fully dependent on the size (di-
mensions) and nature of the information in the table. The decision on how best to
order rows and columns is a time-consuming task if tables are big and contain pat-
terns that humans find hard to make out. Indeed, this problem is equivalent to the
product of two TSPs (travelling salesman problem). The TSP is known to be an
NP-complete problem. As a result of this inherent complexity, metaheuristics should
be applied.

Due to the many applications of the table ordering problem, the literature contains
many examples of papers applying standard multivariate techniques, such as princi-
pal component analysis (Friendly 2002), cluster analysis (Banfield and Raferty 1992)
and minimum spanning tree-based algorithms (Friedman and Rafsky 1979), to pro-
vide an overall solution for users that need to order rows and columns in the most

Fig. 1 Different row and column orderings for the same table, illustrating different patterns. Each table
ordering is measured according to the stress value defined in Niermann (2005)
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comprehensive way. All these methods analyse row permutations and column per-
mutations separately, i.e. considering R! + C! configurations, where R is the number
of rows and C is the number of columns. This approach is suboptimal since R! · C!
configurations should be considered. The Linear Ordering Problem (LOP) is a re-
lated combinatorial optimization problem with R = C—where the same permutation
of rows and columns is sought such that the sum of the matrix elements above its
main diagonal is maximized—which is solved in Garcia et al. (2006) using a variable
neighborhood metaheuristic.

Genetic algorithms (GAs) have also been proposed to solve this problem using
rather simple crossover and mutation operators (Niermann 2005) or a plethora of op-
erators beyond crossover and mutation (Bielza et al. 2009). In the case of very com-
plex problems, the literature shows that, as the complexity of a problem increases,
estimation of distribution algorithms (EDAs), another evolutionary computation par-
adigm, usually perform better than GAs because they can identify complex patterns
within the data (Cesar et al. 2005).

The main contribution of this paper is to propose the use of EDAs and to test
their results, firstly through a univariate exploratory data analysis and then using a
multivariate approach based on a selective naive Bayes classifier (Langley and Sage
1994). Whereas the first analysis has been routinely applied in the literature (Gómez
and Bielza 2004; Larrañaga et al. 1996), the use of a selective naive Bayes approach
is another contribution of this paper.

An additional contribution of this paper is to propose new individual representa-
tions designed specifically for the table ordering problem. These new representations
complement other approaches presented in the literature, such as Niermann (2005)
and Bielza et al. (2009), which allow different individuals to have the same fitness
value making the optimization algorithms to be confused. This new proposal is de-
signed to better guide the search process when having problems with complex and
big tables.

The outline of the paper is as follows. Section 2 illustrates the table ordering prob-
lem. It shows how to formalize table ordering as a combinatorial optimization prob-
lem. Section 3 is a review of the EDA approach. Section 4 describes the experiments
run, the comparative analysis, and the results of applying uni- and multivariate analy-
sis (Sects. 4.3 and 4.4, respectively). Finally, Sect. 5 outlines conclusions and future
work.

2 Optimal ordering of tables

When displaying a table, rows and columns have to be arranged in the manner that is
easiest for the reader to interpret the information provided. Entries that the user wants
to compare should ideally be displayed close together, preferably in the same rows or
columns. Other arrangements such as sorting rows according to the values of the first
column is a good choice for improving table readability (Koschat 2005). However,
people’s ability to interpret the information in a table is known to be limited by their
numerical memory span. This is known to be around seven different digits for most
of the population (Miller 1956).
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This section formalizes the ordering of rows and columns in a table as a combi-
natorial optimization problem. This way heuristics such as evolutionary computation
can be applied. Two aspects need to be defined: a fitness function of each possible
solution and a representation of individuals.

2.1 Definition of the fitness function

Since we aim to improve the readability of the tables in order to visually identify
definite patterns, the fitness function has to be defined in a way that assigns a better
value to more interpretable orderings. Therefore, the clarity of tables has to be eval-
uated according to conciseness. A way to quantify inconciseness is by computing
the distance of each table cell value to its neighboring values, as proposed in Nier-
mann (2005), where a Moore neighborhood is applied. This neighborhood considers
the eight neighboring entries of each cell. The resulting stress measure is an overall
dissimilarity measure for the whole table.

More formally, given a table with R rows and C columns, for each table entry
tπr (i),πc(j) and a definite table ordering with row order πr = (πr(1), . . . , πr (R)) and
column order πc = (πc(1), . . . , πc(C)), the Moore neighborhood approach considers
that the stress generated by the cell in the ith row and j th column, s(πr(i),πc(j)),
is equal to

min(R,i+1)∑

l=max(1,i−1)

min(C,j+1)∑

m=max(1,j−1)

(tπr (i),πc(j) − tπr (l),πc(m))
2. (1)

The total table stress, which is the fitness function, can be computed by adding up
the stress of each cell:

S =
R∑

i=1

C∑

j=1

s(πr(i),πc(j)). (2)

Therefore, the table with the minimum stress will be the one with the optimal table
ordering, as illustrated in Fig. 1.

2.2 Representation of individuals

This section reviews different possibilities for representing the solutions for the table
ordering problem.

2.2.1 IR1: Double path representation

Niermann (2005) proposes an individual representation for GAs defined as a defi-
nite order number for each of the rows and columns, formed by two concatenated
arrays. Similar path-based representations have been applied in the literature to other
permutation problems, including the widely known TSP (Larrañaga et al. 1999).

We can formalize this double path-based individual representation as follows.
Considering an original reference order for the table with R rows and C columns,
an individual is defined as x = (x1, . . . , xR+C), where xi = k means that the order
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Fig. 2 (a) IR1 individual representation showing the double path representation. (b) Example of different
orderings with the same optimum stress value (20) together with the corresponding individuals

of the original ith row is k (i, k ∈ {1, . . . ,R}), and xR+j = l means that the order for
the j th column is l (j, l ∈ {1, . . . ,C}). This was used in Bielza et al. (2009) and is
illustrated in Fig. 2(a).

This individual representation has the advantage of being very intuitive for hu-
mans, although its simplicity has a drawback: redundancy. Different orderings reflect-
ing table symmetries and rotations will have the same fitness, although they would
be represented by very different individuals. For instance, a solution and its transpose
would result in the same fitness value. This redundancy confuses the heuristics-based
search mechanism (Bengoetxea et al. 2002), since it increases search space dimen-
sionality. Figure 2(b) illustrates this redundancy.

2.2.2 IR2: Single-path representation

We propose a new representation, specifically designed for the table ordering prob-
lem. The aim os to get rid of redundant individuals such as the ones generated in
IR1.

This new individual representation is a single-path representation in which we
define only one permutation of the row ordering. The corresponding column ordering
is automatically calculated using an encoding which is unique for each individual.
The idea is to use a procedure to infer this column ordering from the row ordering
and translate from an IR2 to an IR1 representation. The individual will therefore be
evaluated using the same fitness function applicable to IR1.

The procedure for inferring the column ordering and transforming an IR2 indi-
vidual into IR1 form is described next. An example is shown in Fig. 3. The IR1-
type solution is built by adding rows one by one in the order described in the
individual x = (x1, . . . , xR), that is, by processing the xl th row sequentially for
l = 1,2,3, . . . ,R. We will also define a Boolean vector B = {B1, . . . ,BC−1}, ini-
tializing Bb = 0, b = 1, . . . ,C − 1, to assign borders to column orderings. As shown
in Fig. 3, initially we will take the xl th row (the second row in the original table)
and rearrange columns to place all 1s on the left leaving all 0s on the right. This will
activate a border between the columns separating the two types of values (B2 will be
1) for the consequent rows, although column orders could vary in the following iter-
ations. With the first row processed, and respecting border B2 for column orderings
which divides columns orders in subsets (3,6) and (1,2,4,5,7), we will move all 1s
as far to the left as possible (see Row 2 in Fig. 3). This could create new column or-
dering borders (B5 in the example in Fig. 3). For Row 3, borders B2 and B5 should be
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Fig. 3 Example of translating an individual x = (2,4,1,3) from its IR2 representation into its IR1-type
counterpart x = (2,4,1,3,3,6,5,7,2,4,1), given the original table ordering

Fig. 4 (a) Table obtained using
the representation of individuals
IR2; (b) using IR3

respected, and therefore only permutations within column subsets (3,6), (2,5,7) and
(1,4) would be allowed—only columns within the same borders—resulting in new
borders activated once 1s and 0s have been rearranged. This procedure will continue
until all borders have been activated or until all rows have been processed, resulting in
an IR1-type solution for which the stress measure defined in Sect. 2.1 can be applied.

Figure 4(a) shows an example of the type of solution that can be obtained using
the IR2 individual representation. Note that, whenever possible, individuals always
tend to place the 1s in the top-left position.

Figure 2(b) allows us to compare the type of solutions that can be represented by
IR1 and IR2, where there is an example of three different orderings that are repre-
senting in essence the same solution—they all have the same fitness—even if the row
and column orderings taken on a variable by variable basis are quite different. With
IR1 all the three can be returned as different individuals, which for EDAs these three
individuals are considerably different. In the case of IR2 only the first one could be re-
turned, the other two cannot be obtained with this representation since the automatic
column ordering procedure ensures that all 1s will be placed on the top-left corner.
In other words, IR2 allows to represent any solution for the table ordering problem
(including the optimum one), although it removes the redundancy as to allow a single
individual to represent this solution—the only row and column orderings that IR2
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does not allow to represent are the ones that do not place the main blocks of 1s in the
top-left corner.

The individual representation IR2 ensures that the optimum solution can always be
expressed. The only restriction of IR2 over IR1 is that the column order is determined
by grouping the 1s in the top-left corner. Since by definition the grouping of 1s is the
aim of the optimization problem, all optimum solutions can be represented using IR2.

Regarding the ordering to non-binary tables, the IR2 procedure can also be adapted
to these by computing the difference between all values above and below 0.5 and
treating them like 1s or 0s in the binary example respectively, which have been nor-
malized previously following the procedure proposed in Niermann (2005).

2.2.3 IR3: Local optimization applied to IR2

The use of local optimization techniques in evolutionary computation is very use-
ful for overcoming the particularities of an optimization problem that could not be
properly represented through the fitness function.

Figure 4(a) shows that iteratively placing all 1s to the left is not necessarily the
ideal arrangement in some cases, and generic local optimizations could easily im-
prove this aspect. For instance, Fig. 4(b) was obtained by applying local optimization
to the IR2-type individual in Fig. 4(a). Note that the only difference between (a) and
(b) is a small modification in the row ordering. But this results in a significant stress
improvement. Local optimization is applied to improve these situations.

Local optimization can be applied to any type of individual representation, with-
out meriting the consideration of different individual representation. In this paper,
though, IR3 denotes the application of local optimization by swapping pairs of val-
ues to IR2 in order to efficiently describe the experimental results. Every time a new
individual is generated, the procedure analyzes all the possible swapping of rows of
the IR2-type individual one by one and chooses the best one to replace the original
individual.

3 Estimation of distribution algorithms

3.1 Overview of EDAs

EDAs (Larrañaga and Lozano 2001) are non-deterministic, stochastic heuristic search
strategies that form part of the evolutionary computation approaches. In EDAs a num-
ber of solutions or individuals are created every generation and evolve repeatedly
until a satisfactory solution is achieved. The characteristic that most differentiates
EDAs from other evolutionary search strategies such as GAs is that they evolve from
one generation to the next by estimating the probability distribution of the fittest in-
dividuals and then sampling the induced model. This avoids the use of crossover or
mutation operators.

In EDAs the underlying interdependencies among the encoded variables are ex-
pressed explicitly through the joint probability distribution associated with the indi-
viduals selected at each iteration.
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More formally, let X = (X1, . . . ,Xn) be a set of random variables, and let xi be a
value of Xi . Then, a probabilistic graphical model for X is a graphical factorization
of the joint generalized probability distribution, ρ(X = x) (or simply ρ(x)). This
can be discrete, p, or continuous, f . This model is represented by two components:
a structure and a set of local generalized probability distributions.

EDAs have four main steps:

1. Generate the first population D0 of N individuals, usually by assuming a uniform
distribution (either discrete or continuous) on each variable, and evaluating each
of the individuals.

2. Select a number Se (Se ≤ N ) of individuals (usually the fittest).
3. Induce the n-dimensional probabilistic model that best expresses the interdepen-

dencies between the n variables.
4. Generate the new population of N new individuals by simulating the probability

distribution learned in the previous step.

Steps 2, 3 and 4 are repeated until a stopping condition is verified. The most important
step of this paradigm is to find the interdependencies between the variables (step 3),
since methods of learning models from data developed in the domain of probabilistic
graphical models need to be adapted to estimate the joint probability distribution
associated with the database of the individuals selected from the previous generation.

The model induced in step 3 takes the form of a directed acyclic graph (DAG)
that describes a set of conditional interdependencies between the variables on X. If
P ai represents the set of parents—variables that are the source of an arrow in the
DAG—of variable Xi in the probabilistic graphical model, the factorization of the
joint distribution could be written as

ρ(x) = ρ(x1, . . . , xn) =
n∏

i=1

ρ(xi | pai ). (3)

In the particular case where every variable Xi ∈ X is discrete, the probabilistic
graphical model is called Bayesian network (Pearl 1988). EDAs in continuous do-
mains assume the joint density function to be a multivariate Gaussian density. The
local density function for the ith variable is computed as the linear-regression model

f (xi | pai ) ≡ N
(

xi;mi +
∑

xj ∈pai

bji(xj − mj), vi

)
, (4)

where N (x;μ,σ 2) is a univariate normal distribution with mean μ and variance σ 2.
A probabilistic graphical model built from these local density functions is known as
a Gaussian network (Shachter and Kenley 1989).

3.2 Categorization of EDAs by complexity

EDAs are classified depending on the maximum number of dependencies between
variables that they consider (maximum number of parents that a variable Xi can have
in the probabilistic graphical model). Typically, both discrete and continuous EDAs
are divided into three categories (Larrañaga and Lozano 2001).
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The Univariate Marginal Distribution Algorithm (UMDA) (Mühlenbein 1998) is
a representative example of discrete univariate EDAs, that is, all variables are con-
sidered to be independent. This can be written as pl(x) = ∏n

i=1 pl(xi), where pl(xi)

is recalculated every generation l by its maximum likelihood estimation.
In continuous EDAs, the joint density function in this univariate category is as-

sumed to follow a n-dimensional normal distribution, factorized as a product of n

independent normal densities. An example of continuous EDAs in this category is
UMDAc (Larrañaga et al. 2000).

In the second category, we have EDAs that can take into account bivariate condi-
tional dependencies, that is, each variable can have a maximum of one parent variable.
An example of this second category is the greedy algorithm called MIMIC (Mutual
Information Maximization for Input Clustering) (de Bonet et al. 1997). The main idea
in MIMIC is to describe the true mass joint probability as closely as possible by using
only one univariate marginal probability and n − 1 pairwise conditional probability
functions. MIMICG

c (Larrañaga et al. 2000) is an adaptation of the MIMIC algorithm
to the continuous domain.

The third category is multivariate EDAs, where variables can have multiple par-
ent variables, that is, they are able to take into consideration multiple interdepen-
dencies between variables. A representative of this category is EBNA (Estimation
of Bayesian Network Algorithm) (Etxeberria and Larrañaga 1999). EBNA uses the
Bayesian Information Criterion (BIC) (Schwarz 1978) as the score to evaluate the
goodness of each structure found during the search. EGNA (Estimation of Gaussian
Network Algorithm) (Larrañaga et al. 2000) is an example of a continuous EDA for
this third multivariate category. It takes a score + search approach to find Gaussian
network structure using a Bayesian score and a local search to find good structures.

3.3 Simulation in Bayesian and Gaussian networks

In EDAs, the Bayesian and Gaussian networks are simulated merely as a tool to
generate new individuals for the next population based on the previously learned
structure. The method usually applied in EDAs is Probabilistic Logic Sampling (PLS)
proposed in Henrion (1988), where variables are instantiated one at a time in such a
way that a variable is sampled after all its parents.

In the case of discrete EDAs, a simple PLS algorithm will not take into account
any constraint on individuals set by a particular problem. In the individual represen-
tations proposed in the previous section, all representations of a correct individual
must contain a permutation of values if they are to represent a solution. That is why
we apply the method proposed in Bengoetxea et al. (2002) to obtain only correct
individuals that satisfy the particular constraints of our problem.

This method allows using permutation-based representations in EDAs with both
discrete and continuous EDAs, although (Bengoetxea et al. 2002) concludes that usu-
ally continuous EDAs perform than discrete ones in complex problems. When using
continuous EDAs, we propose a strategy based on translating the individual into the
continuous domain to a correct permutation in the discrete domain and then applying
the same technique as in Bengoetxea et al. (2002). According to this, we propose or-
dering the continuous values of the individual and setting its corresponding discrete
values as the respective order in the continuous individual.
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3.4 Adapting EDA to solve the table ordering problem

Our proposal is to apply the general EDA approach with no modifications in the
learning or simulation phases, and to guide the search for the optimum table ordering
using the different individual representations described in Sect. 2.2.

When applying any evolutionary computation technique the main problem of rep-
resentations such as IR1 is that the redundancy of individuals—having different in-
dividuals representing a same solution with the same fitness value—can confuse the
search process. This is because the convergence strategy of these algorithms relies
on variable values of the most promising individuals, and thus having different and
equally promising individuals might confuse the algorithms. This is for instance the
reason why evolutionary computation does not perform well in some traditional op-
timization problems such as 3-SAT ones.

The proposal of IR2 and IR3 as alternatives to the IR1 representation aims at re-
moving this redundancy and at guiding better the search process. However, it must be
noted that these two individual representations are based on permutations. Individu-
als in the form of permutations can be applied in EDAs by adapting their simulation
phase if necessary to ensure that all values of the permutation will appear in the final
individual (Bengoetxea et al. 2002). As concluded in Bengoetxea et al. (2002).

4 Experiments

We describe in this section the experiments performed to test the validity of the EDA
approach for improving the readability of two dimensional tables following the fitness
function and combining the different choices of individual representations. These
experiments also analyse the effect of the different generic EDA parameters on the
final result for each of the individual representations. The aim is to suggest a best
choice for users not familiar with EDAs.

As previously mentioned, the use of EDAs over other alternatives such as GAs is
motivated by the proved ability of EDAs to better identify complex patterns within
the data in complex problems (Cesar et al. 2005). The size of the tables chosen for
our experiments justifies the use of EDAs due to the added difficulty of identifying
patterns. Moreover, these experiments complement the study presented in Bielza et al.
(2009) on the analysis of GAs applied to the table ordering problem on the one hand
because this time the study is performed for EDAs, and on the other hand because
this new study analyses the validity of the new individual representations IR2 and
IR3 applied to EDAs.

4.1 Description of tables

Of the different examples of tables proposed in the literature for the table ordering
problem, we have chosen a typical and simple case given in Bertin (1981). This ta-
ble, called Bertin, was applied in further studies to prove different algorithms and
assures results comparability (Niermann 2005). It is illustrated in Fig. 5(a). The table
contains arbitrarily ordered characteristics (rows) and townships (columns) with a
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(a) Bertin table

Characteristics A B C D E F G H I J K L M N O P

High School 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
Agricult. Coop. 0 1 1 1 0 0 1 0 0 0 0 1 0 0 1 0
Railway Station 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
One-Room-School 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1
Veterinary 0 1 1 1 0 0 1 0 0 0 0 1 0 0 1 0
No Doctor 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1
No Water Supply 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0
Police Station 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
Land Reallocation 0 1 1 1 0 0 1 0 0 0 0 1 0 0 1 0

(b) Hospitals table

ID BEDS RBEDS OUTV ADM SIR H95 K95 TR H96 K96 FEM

1 220 26 0 5954 9500 793 617 0 768 590 146
2 493 0 44542 12345 8910 80 47 0 65 49 52
3 962 28 721546 37662 23860 69 155 0 107 219 109
4 788 32 209145 22316 7772 108 49 1 97 44 138
5 726 0 58263 26029 20128 132 76 0 150 77 104
6 1048 0 181245 37126 22203 80 0 1 75 0 179
7 565 0 0 18653 13468 62 19 0 67 24 37
8 192 0 0 6333 6314 1421 840 0 1373 727 149
9 634 0 133578 28164 15022 178 68 0 173 77 154

10 788 0 0 26215 2363 126 45 0 133 48 237
11 1071 36 284564 39630 28659 245 68 0 233 70 191
12 1314 41 0 41493 22314 239 155 0 232 119 212
13 212 0 9275 7803 10523 102 284 0 0 0 0
14 829 0 13250 29832 25346 136 62 0 168 53 125
15 103 0 130767 5441 17736 0 0 1 0 0 0
16 543 35 307372 7538 3300 14 13 0 22 20 10
17 1232 52 357425 24875 6295 28 12 1 27 10 85
18 152 152 0 1050 0 0 0 0 0 0 0
19 236 0 0 4938 2998 7 10 0 10 3 33
20 575 20 289584 14645 4338 16 8 0 21 3 18
21 678 30 544529 16071 3722 3 0 1 12 0 52
22 213 0 14855 8526 7215 29 3 0 22 3 56
23 250 60 0 549 0 0 0 0 0 0 0
24 417 120 0 728 0 0 0 0 0 0 0

Fig. 5 Original tables used in the experimental section. The Bertin table has been augmented several
times in our experiments.

binary response (present or absent). With the aim of gaining insights into the scal-
ability of EDAs, the Bertin table was augmented several times in our experi-
ments. These larger tables are denoted as Bertin4, Bertin8, Bertin32 and
Bertin128. Additionally, as a non-binary example we chose the Hospitals ta-
ble proposed in Niermann (2005) to test the table ordering problem. This is a simplifi-
cation of the original table introduced in Cabrera and McDougall (2002). This table is
shown in Fig. 5(b) and contains information on hospitals (rows) versus characteristics
(columns) that are discrete (number of beds, visits, operations . . .), continuous (ad-
ministrative cost) and binary (trauma unit). All the different scales measuring these
variables are rescaled to the unit interval (see Niermann (2005) for further details).
The new rescaled table entries are used to compute the stress of any individual de-
rived during the EDA evolution. Table 1 shows the dimension of the examples we
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Table 1 Dimensions and
characteristics of the tables Table R × C Initial S Our best S

Bertin4 18 × 32 1936 330

Bertin8 36 × 32 3952 474

Bertin32 72 × 64 16096 978

Bertin128 144 × 128 64960 1986

Hospitals 24 × 11 529 299.27

Table 2 EDA parameters and
their possible values Parameter Possible values

EDA type discrete,continuous

EDA complexity univariate, bivariate,

multivariate

Individual representation IR1, IR2, IR3

Elitism yes, no

Population size αRC, 2αRC

Selection size PopulationSize/2,

PopulationSize/4

will work with and their corresponding original stress value. Column 4 lists the best
results of our experiments.

Note that GAs have been applied in the recent literature for the Bertin and Hos-
pitals examples (Niermann 2005). After being run the same number of times as
EDAs on each of the Bertin4, Bertin8, Bertin32, Bertin128 and Hos-
pitals tables, the best stress results for the GA in Niermann (2005) were 346,
550, 2010, 15704, and 342, respectively. Notice that EDAs are able to improve these
results for all the example tables.

4.2 Parameterization of EDAs

Table 2 shows a summary of the 6 EDA parameters that are applied in the experi-
ments. This results in a total of 2 · 3 · 3 · 2 · 2 · 2 = 144 possible combinations. The
Elitism parameter refers to how the individuals that are to form the next-generation
population are chosen: when activated, the chosen individuals will be the best of the
newly simulated and the current population of individuals. In the Population size pa-
rameter, R and C are the number of table rows and columns, and α serves to adapt the
population size to obtain reasonable execution times; in our case, α = 1 for examples
Bertin4, Bertin8 and Hospitals; α = 0.5 for Bertin32; and α = 0.25 for
Bertin128.

Due to the stochasticity of EDAs, an experiment will consist of 10 executions of
each of the 144 combinations of parameters, that is, for each of the 5 examples in
Table 1, 1,440 executions altogether.
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4.3 Univariate analysis of experiments

The summary of the EDA results for the table examples described previously is il-
lustrated in Table 3. Results have been divided into 6 sub-tables, one per parameter.
Table 3 includes the mean fitness and standard deviation of the best evaluations found
in the executions for each fixed parameter. In each case, the best result for each table
ordering example is underlined in bold.

Some interesting conclusions can be drawn from this table. In the case of EDA
type, it is clear that the best stress is obtained using continuous EDAs. The only ex-
ception is the Hospitals example, where discrete EDAs performed better. These
results confirm the findings comparing discrete and continuous EDAs described in
Bengoetxea et al. (2002) when applying individual representations based on permu-
tations to other optimization problems.

Regarding the EDA complexity parameter, the best mean results were obtained
with bivariate and multivariate algorithms, although multivariate algorithms do not
manage to get the optimum value obtained using other EDAs for the Bertin128
and Hospitals examples.

The results for the different individual representation types show that IR2 does
not provide good results, although the results are comparable to the classical IR1
representation if local optimization—IR3—is added. A more detailed analysis of the
executions shows that IR1 gets the best results more times than IR3 in all the exam-
ples, although IR3 arrives at solutions with the better mean stress after the 10 runs.
The only exceptions to this are the Bertin128 example (in which IR3 gets the best
results) and the Hospitals example (where IR1 appears to behave better, suggest-
ing that IR3 needs some improvement for non-binary tables).

For the Elitism parameter, results are very close for the small examples. As the ta-
ble size increases, however, the non-elitist approach achieves better mean and best re-
sults. Results for the Hospitals example are similar in both cases, although mean
stress results are more positive for the elitist approach (however, this result could vary
for bigger non-binary tables).

Finally, the final outcomes of the different combinations of population and selec-
tion sizes are quite similar, although the best mean result is obtained in all cases when
the selection size is a quarter of the population size.

In the light of these univariate results, the recommendation for the best EDA pa-
rameters for Bertin8 or bigger binary table ordering problems, is to choose a con-
tinuous EDA with IR3 or IR1 and use a non-elitist approach and a selection size of a
quarter of the population size, preferably with a population size of 2αRC. In the case
of non-binary tables, experimental results suggest that the best combination would
be to use continuous EDAs and IR1 individual representation, with population and
selection sizes of 2αRC and a population size/4, respectively.

To get a clearer picture of the effect of some specific EDA parameter choices,
we present three sets of histograms. They focus on the choice of the best individual
representation and EDA algorithm (according to EDA type and complexity). Figure 6
shows the performance of the three possible individual representation types for the
four binary examples proposed in this paper. Figure 6 clearly confirms that the IR2 in-
dividual representation does not perform well. Results of comparing IR1 and IR3 are
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(a) Bertin4

(b) Bertin8

Fig. 6 Histograms of the stress measure for the four Bertin examples using the Individual representation
parameter

more ambiguous, although the results for IR1 appear to be more disperse than IR3 as
problem complexity increases, as detailed numerically in Table 3. On the other hand,
Fig. 7 confirms that continuous EDAs perform much better than discrete ones, but
differences among EDA complexity types are inconclusive (only the Bertin128
example is shown).

4.4 Multivariate analysis of experiments

The previous section described a study univariately analysing the effect and influence
of each parameter in order to measure the contribution of each parameter to the best
fitness value. However, a multivariate study can reveal how each parameter influences
the final result taking into account joint parameter variations.

The study in this section was applied to the toughest example, the Bertin128
table. Performance differences for this table were high in all the experiments. The
results ranged from the fittest stress value of 1986 to the worst of 53930.

We propose the use of a Bayesian classification model that is capable of analysing
and illustrating how different combinations of parameter values can influence the
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(c) Bertin32

(d) Bertin128

Fig. 6 (Continued)

overall performance of an EDA execution. This Bayesian classification model, called
selective naive Bayes (Langley and Sage 1994), is described in the next section.

Bayesian classifiers are characterized by applying supervised classification ap-
proaches to concrete problems. The main goal of any supervised classification al-
gorithm is to build a classification model using a data set. Our particular data set is
the database of all the mean stress executions for the different parameter settings de-
scribed in the previous sections. All these database parameters are considered predic-
tor features. On the other hand, it is necessary in supervised classification to separate
the cases into different classes. For the table ordering problem, we decided to order
all the mean stress results for each combination of EDA parameters, considering the
best 20% to be part of the class of best values (in Bertin128 this is any execution
having obtained a mean stress value S̄ ≤ 2555), and the rest to be part of the class
of worst values. The Bayesian classifier learning algorithm will analyse and illustrate
which are the parameters (predictors) that influence the final result—by removing
irrelevant or redundant parameters—to determine when an execution will finish the
search within the range of the best 20% runs. More formally, this is expressed by
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(a) EDA type

(b) EDA complexity

Fig. 7 Histograms of the stress measure for the Bertin128 example using the different EDA type and
EDA complexity parameters

a new variable added to the model, the class variable, which will take two possible
values: 1 for the class of best runs, and 0 for the class of worst runs.

4.4.1 The selective naive Bayes classifier

The naive Bayes classifier (Minsky 1961) is the simplest possible Bayesian classifier
characterized by assuming that all predictor variables are conditionally independent
given the class variable. This classifier is robust with respect to irrelevant variables,
but is very sensitive to redundant variables (Inza et al. 2000). As a result, redundant
variables decrease the accuracy of naive Bayes classifiers (Langley and Sage 1994).
For this reason, a feature subset selection process (FSS) (Kohavi and John 1997) is
usually a good option for removing those variables and obtaining a new subset of
predictor variables to induce a more efficient classifier.

The selective naive Bayes classifier (Langley and Sage 1994) is a combination of
FSS and the naive Bayes classifier. The main difference between the selective naive
Bayes approach and naive Bayes is that selective naive Bayes can discard some of
the predictor variables. Furthermore, the need to build a structure for the Bayesian
classifier is an additional step not present in the naive Bayes model. This can be
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Fig. 8 Selective naive Bayes classifier learned using the database of executions for Bertin128

done in two standard ways: (a) forwards, starting with an empty set of variables and
adding variables one by one, or (b) backwards, by removing one of the variables to
be discarded at each iteration.

4.4.2 Applying the selective naive Bayes model to the EDA executions database

We learned the selective naive Bayes model structure in order to illustrate which
parameters are relevant for providing a more efficient execution according to all the
variations of EDA parameter settings. The model was learned from the database of
all the mean stress results for all the parameter combinations described in Table 2,
assigning for each case its class label (i.e. 1 or 0 as explained above). The learning
algorithm applied was a greedy forward selective wrapper (Kohavi and John 1997)
where probabilities are estimated using the maximum likelihood principle and Elvira
software (Consortium 2002).

Figure 8 (top bars) shows the marginal probability distribution of each predictor
for obtaining a stress result between 1986 and 2555, which corresponds to class 1.
Only three of the six parameters are retained as relevant predictors: EDA type (dis-
crete or continuous), Individual Representation (IR1, IR2 or IR3), and Elitism (yes
or no). On the basis of the probability distributions learned by the classifier, it is pos-
sible to determine changes in the a posteriori probabilities for each predictor (EDA
parameter) by propagating some evidence to the other classifier structure nodes. If
we introduce evidence that they belong to class 1, our model gives probability 1 that
the EDA type is continuous, and probability 0.52 that the Individual Representation
is IR3 and 0.48 for IR1, see Fig. 8 (second bars). IR2 representation is never chosen.
Regarding the Elitism parameter, the best results are obtained without elitism with a
probability of 0.66.

An abduction study could perhaps extract more powerful information from this
model. Abduction is the process of arriving at the most plausible explanations for a
sequence of observed facts (evidence).

Within probabilistic systems such as Bayesian classifiers, abduction focuses on a
search for the joint configuration of the non-observed variable values that yields the
highest probability (Pearl 1988). The best explanation is the one that maximizes the
joint conditional probability of the unobserved variables given the evidence. In this
study, abductive inference is used to determine which are the K most plausible expla-
nations for obtaining a stress value within the range 1986 to 2555 in Bertin128.
The results for the abduction process are shown in Table 4 (K = 3). The fourth col-
umn reflects the joint probability distribution for each explanation.
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Fig. 9 (a) An image of a table
of similar size to Bertin128;
(b) output provided by the EDA
using parameters suggested by
the selective naive Bayes model
for Bertin128

Table 4 Most probable configurations of EDA parameters for Bertin128 for obtaining a stress value
between 1986 and 2555. The other configurations have a probability very close to 0

Explanation Results

EDA type Indiv. represent. Elitism Probability S̄ ± sd Best stress (times)

Continuous IR3 no 0.023288 2633.58 ± 428.95 1988 (2)

Continuous IR1 no 0.020293 2135.68 ± 122.42 1986 (38)

Continuous IR3 yes 0.006449 2779.33 ± 768.80 1988 (4)

The best results are obtained with continuous EDAs combined with a non-elitist
approach, as already underlined in the univariate study. Regarding the individual rep-
resentation, although both IR1 and IR3 are present, the results show that the highest
probability of obtaining a result within the best 20% executions is when IR3 is ap-
plied. These results complement the outcomes described in Table 3. In Table 3 IR3
and the elitist approach appeared to be the best combination, whereas this multivari-
ate study shows that the best combination is IR3 without elitism. Also, IR1 obtained
worse mean results than IR3 in the univariate study, but this multivariate study shows
that IR1 can also get good results if combined with continuous EDAs and a non-elitist
approach.

Taking advantage of the selective naive Bayes study, we can determine good joint
configurations of EDA parameters without having to run all the possible parameter
configurations (thus, saving a lot of computational time). This is applicable to ta-
bles of similar characteristics to Bertin128, using the selective naive Bayes model
to decide how to parameterize an EDA to get good solutions. For instance, let us
consider a table of the same size as Bertin128 illustrated in Fig. 9(a) with stress
S = 40842. Figure 9(b) illustrates the image resulting from applying EDAs parame-
terized with the second configuration in Table 4. Stress is now S = 2114. Note that
this is a satisfactory solution that is readily obtained without having to run all the
possible configurations of EDA parameters as we did for Bertin128. The value
for the EDA complexity, Population size and Selection size parameters were chosen
at random.1

1The program can be freely downloaded from http://www.sc.ehu.es/acwbecae/OrderingOfTables having
by default the best combination of parameters according to Table 4.

http://www.sc.ehu.es/acwbecae/OrderingOfTables
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5 Conclusions and future work

This paper proposes the application of EDAs to the table ordering problem, analyzing
the effect of their different parameters. For this purpose, three individual representa-
tions have been studied, two of them proposed in this paper for the first time. The
study was performed with tables used in earlier similar studies in the literature to test
the behavior of GAs on the table ordering problem, and the results of EDAs for both
best and mean executions obtained here improve those published results.

Two studies were conducted: a univariate and a multivariate based on a selec-
tive naive Bayes model that reduced the number of relevant parameters from six to
only three. These studies proved that EDAs in continuous domains are the most ap-
propriate for this problem. Also, the validity of the newly proposed IR3 individual
representation approach has been proved experimentally. From the selective naive
Bayes model we found out that a continuous EDA with the IR3 representation is a
good EDA parametrization regardless of the value of the Elitism parameter, which
also becomes irrelevant. However, if a continuous EDA is combined with IR1, then
non-elitism is the required choice.

For the future, this study should be extended using bigger non-binary tables that
could better show how IR3 behaves. Preliminary results are not as good as for IR1,
and further work is required to analyze the reasons for this. In addition, other individ-
ual representations not based on path representations could be formulated and tested
for non-binary tables.

Finally, other metaheuristics (tabu search, scatter search, ant colony . . .) rather
than EDAs could be tried.
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