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Abstract. Within the regression framework, we show how different lev-
els of nonlinearity influence the instantaneous firing rate prediction of
single neurons. Nonlinearity can be achieved in several ways. In partic-
ular, we can enrich the predictor set with basis expansions of the input
variables (enlarging the number of inputs) or train a simple but different
model for each area of the data domain. Spline-based models are popular
within the first category. Kernel smoothing methods fall into the second
category. Whereas the first choice is useful for globally characterizing
complex functions, the second is very handy for temporal data and is
able to include inner-state subject variations. Also, interactions among
stimuli are considered. We compare state-of-the-art firing rate prediction
methods with some more sophisticated spline-based nonlinear methods:
multivariate adaptive regression splines and sparse additive models. We
also study the impact of kernel smoothing. Our goal is to demonstrate
that appropriate nonlinearity treatment can greatly improve the results.
We test our hypothesis on both synthetic data and real neuronal record-
ings in cat primary visual cortex, giving a plausible explanation of the
results from a biological perspective.

1 Introduction

In neuroscience, encoding is the task of studying the spike firing rate of a neuron
or ensemble of neurons in response to some stimuli. The prediction of neural firing
patterns from external, dynamic stimuli is an important task for understanding
neuronal behavior (Brown et al, 2004; Kass et al, 2005). It is well known that
pure linear models often fail to infer spiking responses (Machens et al, 2004).
In general, this may depend on the type of stimulus, the specific physiology of
the observed neurons and the species under study. However, some amount of
nonlinearity (often high) is always to be expected.

We consider models where the response is the spike firing rate of a sin-
gle neuron at each time point, and the input variables or predictors are the
previous stimuli within a certain time window. Typically, nonlinearity can be
introduced after (over) a linear temporal filter on the time-varying stimulus,
like the linear-nonlinear Poisson model (Brenner et al, 2000; Paninski, 2004;
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Pillow and Simoncelli, 2006), or before the linear temporal filter (Ahrens et al,
2008). In the regression framework, this linear temporal filter is equivalent to
the vector of regression coefficients. By establishing a static nonlinear transfor-
mation on some linear combination of the inputs, the first approach can capture
the particular nonlinearity of the actual spike generation for example. These
models are of no concern to this paper. We focus on the second approach, which
builds nonlinearity separately on each input before applying the linear tempo-
ral filter, thus dealing with nonlinear dendritic behavior and other preliminary
nonlinear neuron processes. Both approaches consider only an additive (linear)
contribution of the inputs, i.e., they do not include interactions among different
inputs.

Our starting points are the models introduced by Ahrens et al (2008): the
bilinear model and the fullrank model. Both models make use of a basis expan-
sion of the predictors (Schumaker, 2007) to achieve nonlinearity, ignoring any
possible interactions among different stimuli. Therefore, these models address
the preliminary neuron processes of the second approach mentioned above.

We intend to reach more complex nonlinear relations, which will presumably
help to deal with the complex within-neuron processes. The techniques used in
this paper, whose building blocks are well known to the statistics community,
generalize the linear regression setting to accommodate nonlinearity by expand-
ing the original set of variables, much like the bilinear and fullrank models.

On the other hand, many of the methods in the literature ignore the internal
variation of the subject. Once a model (parameterized by a set of parameters)
is obtained, it will remain unchanged for all future inferences. However, some
studies reveal that several neural systems can vary the spiking pattern; see for
example (Bezdudnaya et al, 2006; Haider et al, 2007). Here, we also study how
to generate ad-hoc, adaptive model parameters for each time point and what
impact it has on the model performance. We make use of kernel smoothing
(Loader, 1999), a technique supported by a solid theoretical background.

The proposed local models are to some extent related to models that include
spike-history terms, which also consider the internal variation of the subject
by making the current response to be dependent on previous responses. Local
models include internal variation in a more general manner, without expressing
variation just by means of previous responses. Escola et al (2011) recently pro-
pose to model multistate neurons by hidden Markov models, where each state
corresponds to a different generalized linear model. Although this is a successful
idea, local models are easier to obtain and, since subject variation is in this paper
defined on a continuum, we do not need to beforehand fix the number of states.

The rest of the paper is organized as follows. In Section 2, we set out the
notation, formalize the basic concepts and revisit the bilinear and the fullrank
models. In Section 3, we briefly survey some important concepts about nonlinear
models and describe the models to be used in the experimental part. In Section
4, we present the results on several synthetic data sets. In Section 5, we describe
the results on a real data set of neuronal recordings in cat primary visual cortex.
Finally, in Section 6, we discuss the results and outline some final conclusions.
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2 Setting and preliminary methods

We consider that, at each time point t ∈ {1, ..., T}, we have a d-dimensional stim-
ulus s(t)T

t=1 and a single-neuron response r(t)T
t=1 to these stimuli. The objective

is to predict each response r(t) from previous consecutive stimuli s(t − i)p
i=1

Let r(t) represent the number of spikes in a time slice centered at t, i.e., the
firing rate at t. This is the well-known peristimulus time histogram (PSTH)
(Gerstein and Perkel, 1969). In this paper, r(t) is measured as the average spike
count at time point t over B trials,

r(t) = B−1
B

∑

b=1

rb(t), (1)

where rb(t) is the measured spike count at time t for trial b. This way, the model
omits membrane-memory effects and erratic bursting. Hence, we can model r(t)
as a function only of previous stimuli plus some noise:

r(t) = g(s(t − i)p
i=1) + ǫ(t), (2)

where g(·) : R
p → R is some nonlinear function, p is a parameter indicating

the number of past stimuli influencing the current response and ǫ(t) is the noise
term. We model the noise as

ǫ(t) ∼ N(0, σ2(t)). (3)

Noise stands for variability in the response that is not explained by the stim-
uli, and may either be given by internal processes or be purely random. Pro-
vided that r(t)T

t=1 is trial-averaged, the Gaussian noise assumption is reasonable
(Averbeck et al, 2006; Ahrens et al, 2008).

The basis for our comparisons is two basic nonlinear models devised by
Ahrens et al (2008) that lean on the linear regression framework. These are
the bilinear model and the fullrank model. The bilinear model computes the
estimated response r̂(t) as

r̂(t) = µ̂ +

p
∑

i=1

d
∑

j=1

βijf(sj(t − i)), (4)

where sj(t− i) is the j-th component of s(t− i) and µ̂ is the baseline firing rate,

which we can estimate by the mean of the response,
∑T

t=1 r(t)/T . We denote as
β the vector of coefficients (β11, ..., β1d, ..., βp1, ..., βpd).

The nonlinear function f(·) : R → R is defined as a linear combination of
a fixed set of basis functions fk(·) : R → R, k ∈ {1, ..., q}. Each basis function
fk(·) has a single input. Such functions are defined as piecewise linear functions
determined by a predefined set of equidistant nodes {δ1, ..., δq} that covers the
entire range of the stimulus. Figure 1(a) shows a representation of these functions
for q = 10.

Therefore, given a second vector of coefficients α = (α1, ..., αq) and some
univariate stimulus sj , f(·) is defined as
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Fig. 1. (a) Piecewise linear functions used by the bilinear and fullrank models (q = 10).
(b) A cubic smoothing spline fit to a univariate input, with knots {δ1, ..., δ10}. The red
line is the fitting curve and the blue line is the true function.

f(sj) =

q
∑

k=1

αkfk(sj), (5)

where

fk(sj) =







(sj − δk−1)/(δk − δk−1) if k > 1 and δk−1 ≤ sj < δk

(δk+1 − sj)/(δk+1 − δk) if k < q and δk ≤ sj < δk+1

0 otherwise.
(6)

Thus, vectors β and α need to be estimated, resulting in a total of pd + q
parameters. This is done by updating β by ordinary least squares for a fixed α

and then updating α by ordinary least squares for a fixed β. Starting from an
arbitrary initial value for either β or α, this step is repeated until convergence.
This is known as alternating least squares (Young et al, 1976).

As noted by Ahrens et al (2008), the bilinear model is related to separable
receptive fields (DeAngelis et al, 1995). When the receptive field is separable,
the response cannot be expressed as a product of a function that only depends
on time and a function that only depends on space (here, on the basis expansion
instead).

On the other hand, the fullrank model is determined by qpd instead of q+pd
parameters. The fullrank model is defined as:

r̂(t) = µ̂ +

p
∑

i=1

d
∑

j=1

q
∑

k=1

γijkfk(sj(t − i)), (7)

where functions fk(·) : R → R are defined as before.
Parameters γijk are estimated by least squares. In both the bilinear and the

fullrank schemes, the parameters are estimated from a fixed train data set with
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N response values and p stimuli values per response. These parameters will be
used to estimate future responses.

Both the bilinear model and the fullrank model have three shortcomings.
First, the basis functions are data-independently defined. Second, they do not
consider interactions between input variables, so the nonlinear power of the
models is limited. We discuss the basic details of nonlinear regression below.
Third, the learnt parameters are not time-varying, so that the response function
is always the same. A fixed noise standard deviation σ(t) = σ is also assumed.
In the following section, we propose the use of some nonlinear techniques to
overcome these limitations.

3 Basis expansions and kernel smoothing methods

In this section, we survey and discuss how to apply some nonlinear approaches
to spike train data to obtain better results. Whatever approach we follow, we
must somehow control the nonlinearity or complexity of the model. More com-
plex models are less biased in exchange for increased variance. In general terms,
we would choose simpler models for limited or ill-posed data and more com-
plex models for well-behaved data. The objective is a model that optimizes the
bias-variance trade-off, that is, that minimizes the expected prediction error.
Automatic, data-dependent methods are preferred to control the model com-
plexity. For example, techniques based on regularization (Hoerl and Kennard,
1970; Tibshirani, 1996), are useful for adjusting the complexity of the model
and restricting its variance by imposing some constraint on the model parame-
ters. Regularization can also achieve other goals, like variable selection.

There are two fundamental approaches for achieving nonlinearity. First, we
can seek a more complex model than the linear model by establishing a linear
combination of some basis expansions of the original terms (Schumaker, 2007).
This is the approach taken by the bilinear and fullrank models. Second, we can
fit simple (linear) models for different areas of the data domain (Loader, 1999),
accounting for time-varying subject states.

Regression splines (Schumaker, 2007) is a family of popular nonlinear models
that makes use of basis expansions of the original terms. In the univariate case,
the input domain is divided into contiguous intervals, separated by a fixed set
of knots. Whereas the placement of the knots can be data-driven, the number
of knots is often specified by the user. In each interval, a polynomial function of
order M is fitted, in such a way that the entire function is continuous, and has
continuous derivatives up to order M −2 to assure continuity. Figure 1(b) shows
a univariate cubic regression spline fit (M = 4) with q = 10 knots.

A more flexible, likewise spline-based, model is known as smoothing splines.
Here, a maximal set of knots is used, and complexity is controlled by penalizing
(regularizing) the curvature of the fitted function. These models can be extended
to the multivariate case, giving rise to very flexible models. In this paper, we
make use of two different spline methods, with a different degree of flexibility
(complexity).
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The first is known as multivariate adaptive regression splines (MARS), de-
vised by Friedman (1991), where the basis functions are linear splines. For sim-
plicity, we assume a unidimensional stimulus (d = 1). For each input variable,
indexed by i ∈ {1, ..., p}, and each instance in the training data set, indexed by n,
two piecewise linear functions are defined, f1

ni(·) : R
p → R and f2

ni(·) : R
p → R,

with one knot at s(n − i). For a given vector x ∈ Rp, these are defined as

f
1
ni(x) =



xi − s(n − i) if xi > s(n − i)
0 otherwise

f
2
ni(x) =



s(n − i) − xi if xi < s(n − i)
0 otherwise

The MARS algorithm performs a forward greedy search, sequentially adding
terms hi∗(·), which are a single piecewise linear function or a product of two (or
more) piecewise linear functions. To prevent overfitting, a backward deletion pro-
cedure is applied afterwards. Generalized cross-validation (Craven and Wahba,
1979) is used to decide how much the model should be pruned. Thus, MARS
considers interactions between the stimuli. The resulting model has the form

r̂(t) = µ̂ +

p∗

∑

i∗=1

βi∗hi∗(s(t − i)p
i=1), (8)

where p∗ is the number of terms included into the model, s(t − i)p
i=1 represents

a vector with the values of the stimulus from t − 1 to t − p and βi∗ are the
parameters for each term, which are estimated by least squares. The maximum
number of functional terms in such products can be considered as a parameter of
the algorithm. MARS produces continuous models with continuous derivatives.

On the other hand, we consider the sparse additive model (SpAM), devised by
Ravikumar et al (2009). SpAM employs regularization instead of greedy search-
ing to control the flexibility of the model. Like the additive model, proposed by
Hastie and Tibshirani (1999), SpAM considers an additive linear combination of
univariate functions and ignores interactions among the input variables:

r̂(t) = µ̂ +

p
∑

i=1

fi(s(t − i)), (9)

where each fi(·) : R → R is, e.g., a cubic regression spline (see Figure 1(b)).
To achieve sparseness, SpAM employs an L1-penalty (Tibshirani, 1996) im-

posed on the component L2-norms of the functions, given by (
∫ T

0
f2

i (t)dt)1/2,
so that the magnitude of the functional predictors is penalized. This leads to
a number of terms (depending on the value of some regularization parameter)
being effectively discarded. Unlike the classic additive model, regularization al-
lows SpAM to be used in high-dimensional settings, as it is more interpretable,
less sensitive to overfitting and also computationally efficient. The estimator is
obtained by formulating a convex optimization problem, which is solved with a
backfitting algorithm, described in (Hastie and Tibshirani, 1999).

Note that, whereas we need to manually setup the basis expansion configura-
tion for the bilinear and fullrank models beforehand, both MARS and SpAM can
automatically adjust model complexity during the training process. In addition,
MARS can account for interactions among the predictors.
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On the other hand, kernel smoothing models fit a simple model at each query
point. For example, linear local regression (Loader, 1999) fits a linear regression
model for each query point (for each spike count to be predicted), using some
weighted neighborhood composed of the closest data to the query item. Here we
apply this idea to the nonlinear methods described above.

Data (within the neighborhood) are typically weighted according to some
kernel function Kτ () and the distances to the target item. The distances are
measured either on the input variable space or can be supplied by the domain
itself. In our case, the time dimension perfectly suits for our purposes. Let n ∈
{t−N, ..., t−1}, so that the distances are computed as the number of time slices
between the target item and each previous data item, so that data items closer
in time will be given more importance than further data items. We compute the
weights wn with the well-known tricube kernel function:

wn = Kτ (t − n + 1) =

{

(1 − (t − n + 1)3)3 if (t − n + 1) ≤ τ
0 otherwise,

(10)

where τ is a smoothing parameter that indicates the width of the neighborhood.
We need to estimate τ , which can be unique for all predictions or adaptively
selected. For simplicity, we consider a unique smoothing parameter, τ = N , in
this paper, so that all data items in the built-in data set are used. Remember
that the neighborhood only includes past data items.

Note that this weighting scheme can be applied to any of the algorithms
presented above (bilinear, fullrank, MARS and SpAM), just by computing the
weights and weighting the data set accordingly. This would yield their corre-
sponding local versions. For an efficient model assessment, generalized cross-
validation (Hastie et al, 2008) is a very efficient approximation to leave-one-out
cross-validation for Gaussian data.

In summary, this paper investigates the effect of different types of nonlinearity
to improve spike firing rate prediction for averaged trials. Firstly, the use of
regression splines methods (MARS and SpAM) aims to deal the high complexity
of neurological processing. Besides, we consider combinations of different stimuli
instead of pure additive models by using MARS. Secondly, kernel smoothing can
incorporate the subject evolution into the model and suppress the assumption
of a stationary model by using only the recent subject states to build the model.
Also, it avoids the fixed noise variance assumption. The bilinear and fullrank
models, as suggested by Ahrens et al (2008), use the same model (obtained from
a separate training data set) to predict all future data items, thus ignoring the
internal evolution of the subject. The methods to be tested are:

Non spline-based Spline-based

Stationary Bilinear, fullrank MARS, SpAM
Local Local bilinear, local fullrank Local MARS, local SpAM
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4 Experiments on synthetic data

We first study the different nonlinear approaches on five different synthetic sce-
narios or spike generating processes, following a similar experiment design than
Ahrens et al.’s (2008). The first three scenarios are the same as the three data
models used by Ahrens et al (2008). The remaining two are proposed here so
as to reflect dynamic changes in the subject stimulus-response function. Results
are evaluated by their predictive power (Sahani and Linden, 2003).

In all experiments we generate a one-dimensional stimuli vector, s(t)T
t=1,

from a normal distribution N (0, 1), with T = 1000 time points. From this stim-
uli vector we obtain a firing probability P (t)T

t=1 for each scenario according to
one of the five generating processes described below (plus some uniform noise,
U(−0.1, 0.1)). All generating processes take into account the last η = 10 time
points (the previous η stimuli). The first η values of P (t)T

t=1 are set to zero by
convention. Each resulting vector P (t)T

t=1 is scaled to lie in [0, 1].

0.
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Fig. 2. (a) Stationary filter vectors ξ(1) and ξ(2). (b) Non-stationary filter vector ξ(1)(t)
at various time points. (c) Non-stationary filter vector ξ(2)(t) at various time points.

The five generating processes are:

– I. One stationary filter. P (t) =
∑η

i=1 ξ
(1)
i (s(t−i))2, where ξ

(1)
i = sin(vi)/2

and v is a vector containing η equidistant increasing values (in radians) be-
tween π/2 and π.

– II. Two stationary filters. P (t) =
∑η

i=1 ξ
(1)
i s(t− i)+

∑η
i=1 ξ

(2)
i (s(t− i))2,

where elements ξ
(1)
i are defined as in process I, and ξ

(2)
i = (sin(vi) + 1)/4.

Here, v is a vector containing η equidistant increasing values (in radians)

between π/4 and 3π/2. Figure 2(a) shows filter vectors ξ(1) and ξ(2).
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– III. Nonlinear feature selective process. P (t) =
∑η

i=1 I(|s(t−i)−vi| <
0.2(max(s(t)T

t=1)−min(s(t)T
t=1)), where I(·) equals 1 when its argument is

true and 0 otherwise, and v is a vector containing η equidistant increasing
values between min(s(t)T

t=1) and max(s(t)T
t=1).

– IV. One non-stationary filter. P (t) =
∑η

i=1 ξ
(1)
i (t)(s(t − i))2, where

ξ
(1)
i (t) = (T − t + 1)sin(vi)/2T , and v is a vector containing η equidis-

tant increasing values (in radians) between π/2 and π. Figure 2(b) shows

the non-stationary filter vector ξ(1)(t) for several time points.

– V. Two non-stationary filters. P (t) =
∑η

i=1 ξ
(1)
i (t)s(t−i)+

∑η
i=1 ξ

(2)
i (t)(s(t−

i))2, where elements ξ
(1)
i (t) are defined as in process IV, and ξ

(2)
i (t) =

(sin(vi)+1)/ut. Here, v is a vector containing η equidistant increasing values
(in radians) between π/4 and 3π/2 and u is a vector containing T equidistant
increasing values in the interval [4, 10]. Figure 2(c) shows the non-stationary

filter vector ξ(2)(t) for several time points.

At each time bin, the generating processes can produce up to twelve spikes.
Hence, for each generating process, we obtain five spike trains of length T from
a binomial distribution Binom(12, P (t)), t = 1, ..., T . By averaging such spike
trains over the five trials, we compute the observed firing rate r(t)T

t=1.
We have tested the bilinear and fullrank models, MARS and SpAM, and

their local counterparts (L.bilinear, L.fullrank, L.MARS and L.SpAM) on these
five experimental settings. For each generating process, we sampled ten pairs
(P (t)T

t=1, r(t)
T
t=1), corresponding to ten simulated neurons, from the same stimuli

vector s(t)T
t=1. All models have been trained taking p = 20 previous stimuli into

account. For the non-local methods, we built the models on the first half of
the data, using N = T/2 − p data items, and we tested them on the second
half. For the local methods, a different model is built for each data item in the
second half of the data, where in the training data set includes the N = 300
last responses. The bilinear and the fullrank models were trained using q = 5
piecewise functions.

An advantage of the bilinear and fullrank methods is that these models can
be graphically expressed, providing a compact description of the neuronal func-
tion. For instance, Ahrens et al (2008) show several plots. The MARS and SpAM
models, since they are non-parametric, are more complex to be graphically de-
scribed. However, one can still use simple graphs to ascertain the importance
of the predictors within the model. Figure 3 (top graphs) shows measures of
the importance of each predictor for MARS (left) and SpAM (right), for data
obtained from generating process II. Each line represents one neuron. In the
MARS case, this is the highest absolute coefficient βi∗ (Equation (8)) that in-
volves each predictor. In the SpAM case, this is the L2-norm of functions fi(·)
(Equation (9)) of each predictor. The eight bottom graphs of Figure 3 depict the
univariate functions for the eight most relevant predictors in the SPaM models,
giving an idea of the influence of these predictors on the response. Again, each
line represents one neuron.
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Fig. 3. Predictor importance for the stationary MARS (top left) and stationary SpAM
(top right) models, and the eight most relevant functional predictors in the stationary
SpAM models, for generating process II.

Figure 4 and Figure 5 illustrate the model fits for the local bilinear model
and local SpAM, respectively, at various time points (t = 501, 667, 834, 1000)
for generating process I. Within each figure, each pair of graphs is related to
a time point. Each line represents a different neuron. Local bilinear models are
represented by coefficients βi1 of Equation (4) (left graphs) and coefficients αk of
Equation (5) (right graphs). Local SpAM models are represented by the L2-norm
of functions fi(·). Figure 6 and Figure 7 show the same for generating process
IV.

Note that the models that correspond to generating process I (stationary)
vary less across the different time points (t = 501, 667, 834, 1000) than those of
generating process IV (non-stationary). This indicates to the practitioner that,
for generating process I, a global model is preferable, whereas, for generating
process IV, a local model is more adequate. Valuable biological insight about
the underlying biological process can be extracted from this fact.

Figures 8-12 depict the true firing rate (blue) superimposed on the esti-
mated firing rate (red), for some simulated neuron (the same for all figures) and
t = 901, ..., 1000. Focusing on the stationary models (left graphs), simple visual
inspection appears to indicate that the fullrank and bilinear models predict the
firing rate approximately as well as the more complex MARS and SpAM models
for all generating processes, although the performance of the bilinear model is
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Fig. 4. Local bilinear models for generating process I at various time points.
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Fig. 5. Predictor norms of the local SpAM fits for generating process I at various time
points.

slightly worse for generating process III, whose nonlinearity is more difficult to
capture. In the local models (right graphs), however, L.SpAM seems to do the
best job overall. L.SpAM is more accurate than L.MARS because L.MARS con-
siders interactions between the inputs, whereas L.SpAM focuses the nonlinear
strength separately at each input. Since the local models are built with fewer
training data items (lower N) than the stationary models and there is no input
interaction in any of the generating processes, MARS may slightly overfit the
data. As expected, all local models behave much better for generating processes
IV and V because they are non-stationary.

Figure 13 illustrates a quantitative comparison. It reports the predictive
power (Sahani and Linden, 2003) of the methods, comparing each non-local
method with its local counterpart. Each point represents a neuron simulated
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Fig. 6. Local bilinear models for generating process IV at various time points.
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Fig. 7. Predictor norms of the local SpAM fits for generating process IV at various
time points.

by each of the five generating processes. Generating processes are distinguished
by different kinds of symbols. In the left-hand graphs, if one point lies on the left
side of the dashed (diagonal) line, then the predictive power of the local method
is greater than that of the non-local method, and the opposite applies if the
point lies on the right side. The right-hand graphs (and horizontal histograms)
show the predictive power difference between each local and non-local method
as a function of the noise power (Sahani and Linden, 2003). It is clear that the
local methods excel for generating processes IV and V, whereas the non-local
methods are better for generating processes I, II and III. The biggest difference
is for generating process V, where the local methods are much better than the
non-local methods.
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some time range for one neuron.

Fi
rin

g 
ra

te

Bilinear

Fi
rin

g 
ra

te

Fullrank

Fi
rin

g 
ra

te

MARS

Time

Fi
rin

g 
ra

te

SpAM

L.Bilinear

L.Fullrank

L.MARS

Time

L.SpAM

Fig. 9. Predicted signal (red) and true firing rate (blue) for generating process II in
some time range for one neuron.
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Fig. 10. Predicted signal (red) and true firing rate (blue) for generating process III in
some time range for one neuron.
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Fig. 11. Predicted signal (red) and true firing rate (blue) for generating process IV in
some time range for one neuron.
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Fig. 12. Predicted signal (red) and true firing rate (blue) for generating process V in
some time range for one neuron.

Figure 14 illustrates a comparison of L.bilinear and L.fullrank against L.MARS
and L.SpAM. Interestingly, it now is clear that L.SpAM outperforms both L.bi-
linear and L.fullrank for all generating processes. L.MARS, however, only be-
haves much better for the generating process III, which is a nonlinear process
that the bilinear and fullrank methods cannot entirely capture.

From this experiment, we can conclude that, if there is no interaction between
the stimuli, SpAM is a handy algorithm for a broad spectrum of neural spike esti-
mation scenarios, since regularization can automatically adjust the complexity of
the model. Interactions between the stimuli are studied in the next section. Also,
locality should be taken into account when the encoding function is suspected
to vary over time. We believe that the use of stationary models to characterize
neuron responses can sometimes lead to inaccurate predictions and is based on
an often unrealistic assumption. In the next section, we check these hypotheses
on a real scenario.

5 Experiments on real data

We have also investigated the impact of nonlinearity on real data, in particular
large-scale neuronal recordings in cat primary visual cortex (area 17). The data
were collected by Tim Blanche at the laboratory of Nicholas Swindale, University
of British Columbia, and can be downloaded from the NSF-funded CRCNS Data
Sharing website1.

1 http://crcns.org

http://crcns.org
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Fig. 13. Comparison of the non-local methods against their local counterparts in terms
of predictive power (p.power). Red ©-dots correspond to generating process I, blue △-
dots correspond to generating process II, green +-dots correspond to generating process
III, magenta ×-dots correspond to generating process IV and grey ♦-dots correspond
to generating process V.
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Fig. 14. Comparison of the local bilinear and fullrank models against the local MARS
and local SpAM methods in terms of predictive power (p.power). Red ©-dots corre-
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Data corresponds to extracellular neural activity under several types of visual
stimuli. We work with the simplest kind of stimulus, consisting of an oriented
drifting bar moving on a screen. The drifting bar moves in 18 different directions.

The data set contains eight trials of spiking data for ten (simultaneously
recorded) neurons. At each trial, the 18 stimulus values are presented in random
order for approximately 4 seconds each. We have partitioned the time range in
bins of 100ms, counting the number of spikes at each bin. Therefore, there are
40 bins per stimulus value and T = 720 time bins in total.

Note that encoding the stimulus as the number of degrees or as a cate-
gorical variable is an incoherent representation. For example, if we represent
the bar orientation as the number of degrees, we are implying that the 0◦

orientation lies far away from the 340◦ orientation, whereas they are actually
only 20◦ apart. Instead, we use two variables to represent each orientation,
s1(t) = 0.5 sin(radians(t)) and s2(t) = 0.5 cos(radians(t)). These pairs are
Cartesian coordinates on the circumference of diameter 1.0. In this way, we have
the maximum Euclidean distance (1.0) between “opposite” stimuli.

Note also that we cannot directly average the spike counts across the trials,
because the stimulus values are presented in a different order at each trial. Noise
cannot be assumed to be Gaussian (Equation (3)) if trials are not averaged and,
hence, the aforementioned methods cannot be applied. Instead, we reorder each
trial’s spike counts so that the 40 bins of the 0◦ orientation are followed by
the 40 bins of the 20◦ orientation, and so on. We now average the spike counts
across the reordered trials. Figure 15 illustrates the (averaged) firing rate for two
neurons. The graphs on the left are not ordered, so each point in the series is
the mean of the spike counts at the same time point. The graphs on the right
are ordered, so each point in the series is the mean of spike counts at different
time points within the trials (with the same stimulus value, however).

It is obvious that we cannot use previous stimuli for firing rate prediction if
they correspond to different stimulus values. However, we hypothetize that the
response does not depend here on previous stimulus values, but on the current
stimulus value and the amount of time it has been held.

In Figure 15 (left graphs), the “non-reordered” firing rate does not appear
to follow a clear pattern. Firstly, the smoothed firing rate is less informative
for the non-reordered version. For example, the red curve is very flat for the
neuron on top, indicating that there is no substantial change across the entire
time range. Interestingly, the right graphs are more informative. The neurons
are clearly more active for certain ranges of the stimulus. For instance, the neu-
ron on top fires mostly for stimulus values around 80◦-140◦ and stimulus values
around 260◦-320◦, which are opposite orientations and same direction. Secondly,
if we observe the high-frequency scale, it is patent that, in the reordered spike
counts, the spiking pattern within each segment of 40 bins is roughly repeated in
neighboring segments (segments concerning close stimulus values). For instance,
the pattern highlighted in blue in Figure 15 (right, bottom graph) is almost iden-
tical, up to some scaling factor, to that in the neighboring segments. Although
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Fig. 15. Mean spike counts for one neuron (top) and another neuron (bottom) before
ordering (left) and after ordering the bins (right). Vertical dotted lines mark the change
of stimulus. The red curves are a smoothed version of the spike counts. A common
pattern is highlighted in blue.

not shown, the same applies for the other eight neurons. This encourages us to
consider each 40-bin segment separately from preceding segments.

The firing rate r(t) can thus be modeled as

r(t) = g(z(t − 1)) + ǫ(t) (11)

z(t − 1) = (s1(t − 1), s2(t − 1), θs(t − 1)),

where θs(t − 1) is the number of time points (up to t − 1) holding the same
stimulus value (s1(t − 1), s2(t − 1)). We scale θs(t − 1) so that it lies into the
interval (−1, 1) (like s1(t − 1) and s2(t − 1)).

Locality is now applied on the input space rather than on the time dimension.
The weights wn, defined in Equation (10), are now defined as

wn = Kτ (||z(t) − z(n)||2) =

{

(1 − ||z(t) − z(n)||32)
3 if ||z(t) − z(n)||2 ≤ τ

0 otherwise,
(12)

where τ is the bandwidth parameter and || · ||2 is the L2-norm operator.
The bilinear and fullrank models, MARS, SpAM, and their local versions can

be applied to a data set built according to Equation (11). However, stationary
models are difficult to use here. If we train a model on a fixed part of the averaged
spike counts data, only a subset of the possible stimulus values is used to build
the model. Since none of the stimulus values are the same in the testing part,
extrapolation is unlikely to work, and the prediction will be highly unstable.
Therefore, we only consider here non-stationary (local) models. We have used
the N = 120 closest responses (in the stimulus space) to build the models. Spikes
have been estimated for t = N + 1, ..., T .
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Fig. 16. Predicted signal (red) and true signal (blue) for neuron t18 from primary
visual cortex (area 17) data.
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Fig. 17. Predicted signal (red) and true signal (blue) for neuron t27 from primary
visual cortex (area 17) data.

Figure 16 and Figure 17 illustrate the estimated spike counts against the true
estimated spike counts for two neurons, t18 and t27, respectively. It appears
that L.MARS and L.fullrank models offer the best fit, whereas L.bilinear is
slightly worse and L.SpAM (run with minimal regularization) is smoother than
the others. L.MARS probably performs better than L.SpAM because it takes into
account interactions among the inputs. The mean and standard deviation of the
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Table 1. Quantiles of the p-values obtained from the Kolmogorov-Smirnov test based
on the time-rescaling theorem.

Quantile L.Bilinear L.Fullrank L.MARS L.SpAM

0% 1.11e-15 2.22e-16 1.11e-15 2.22e-16
25% 2.22e-07 3.46e-08 2.80e-07 4.11e-08
50% 0.145 0.071 0.167 0.104
75% 0.789 0.758 0.793 0.789
100% 0.819 0.800 0.889 0.816

predictive power for the L.bilinear and L.fullrank models, L.MARS and L.SpAM
are, respectively, 0.08(±0.41), 0.11(±0.26), 0.16(±0.43) and 0.06(±0.22).

To evaluate the models, we use the Kolmogorov-Smirnov test based on the
time-rescaling theorem (Brown et al, 2001). In short, we compute rescaled times

va = 1 − exp

[

−

∫ ua+1

ua

r̂(t)dt

]

, (13)

where u1 < ... < ua < ... < uA denote the set of individual spike times. It can be
shown that the va values are independent uniformly distributed random variables
if and only if the estimated response r̂(t) corresponds to the true conditional
distribution of the process. Hence, to perform a usual Kolmogorov-Smirnov test,
we just need to order the va values from the smallest one to the largest one and
check if they are uniformly distributed.

Table 1 shows quantiles for the p-values obtained from applying the test over
each model, each trial and each neuron. Hence, there are 8 × 10 p-values per
algorithm. Note that L.MARS obtains the highest p-values, which reveals better
fits. As observed, there are some cases where the estimated response is unlikely
to be correct (low p-values). There are specific neurons in the experiment, indeed,
that appear to be difficult to be modeled with the proposed models. We feel that
a model including the activity of related neurons (Truccolo et al, 2005) or spike
history terms (Paninski, 2004; Paninski et al, 2004; Truccolo et al, 2005) could
be more adequate in these cases. There are other neurons, like t18 and t27, that
are well modeled with these local models.

6 Discussion

In this paper, we have studied several nonlinear models on a number of different
cases of spike firing rate prediction. Although all spike generating processes are
intrinsically nonlinear in the synthetic scenarios, the source of their nonlinearity
is certainly different. Whereas the first two of the above generating processes
can be approximated by a simple extension of the linear model, more complex
models are required to describe the third generating process. The fourth and
fifth generating processes intend to simulate a response whose underlying model
varies across the time. This could account for the habituation of the subject
to the stimulus or any other internal change in the subject. In this case, local
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models that take into account this variation, even if they are relatively simple,
definitely outperform other more complex stationary models.

Due to the huge variability of neural processes, it is impossible to choose
a level of complexity, a kind of nonlinear approach or a family of models that
universally fit well for the neural firing rate prediction problem. Some preliminary
analysis is needed to ascertain the best model for a specific problem. For example,
we studied the response of some neurons in the cat primary visual cortex (area
17) to simple stimuli. The models presented above had to be refined somewhat
to tackle this problem. We finally found that the response of these neurons is to
some extent independent from previous stimuli, the current stimulus value and
the exposure time being the key inputs. In addition, the subject follows different
patterns of response for different stimulus values. These patterns, however, are
alike for close stimulus values. For this reason, locality plays a fundamental role
in the prediction.

Of the studied models, bilinear, fullrank and SpAM are additive, i.e., they do
not consider interactions among different stimuli. Therefore, they appear to deal
with nonlinearity only at the earliest (dendritic) stages of neuron processing.
Other models that apply nonlinearity on the output of a linear model intend to
capture the processes at the latest stage of the neural process (spike generation).
Models in the literature typically follow one of these approaches. However, to
fully understand the encoding properties of a neuron, it may be necessary to
consider interactions among different stimuli. We believe that they could be the
basis of the intermediate processing stages of the neuron. MARS does consider
interactions among stimuli and has output the best results in the real data
experiments.

There exist other models in the statistics field to deal with interactions among
the inputs. For example, the Component Selection and Smoothing Operator
(COSSO) (Lin and Zhang, 2006) is a method based on L1-regularization for si-
multaneous function selection and smoothing. COSSO is defined in the context
of smoothing spline ANOVA (Wahba, 1990), where the estimated function po-
tentially includes interactions of any order among the inputs. However, we have
found that COSSO does not perform well for the neural spike count prediction
task. Unlike MARS and SpAM, COSSO is not designed for high dimensional
problems. Although smoothing spline ANOVA can capture more complex rela-
tions, it tends, in this particular case, to overfit in spite of regularization, and
the resulting models are poorer than for MARS and SpAM.

Finally, note that local bilinear and local fullrank models can be adapted
to single trials, following the guidelines introduced by Ahrens et al (2008). The
extension of MARS and SpAM to this setting is a more complex issue.

Acknowledgments

This research was partially supported by the Spanish Ministry of Science and
Innovation, projects TIN2010-20900-C04-04, Consolider Ingenio 2010-CSD2007-
00018 and Cajal Blue Brain. We thank Pradeep Ravikumar and John Lafferty
for providing us the SpAM code.



Bibliography

Ahrens MB, Paninski L, Sahani M (2008) Inferring input nonlinearities in neural en-
coding models. Network: Computation in Neural Systems 19:35–67

Averbeck BB, Sohn JW, Lee D (2006) Activity in prefrontal cortex during dynamic
selection of action sequences. Nature Neuroscience 9:276–282

Bezdudnaya T, Cano M, Bereshpolova Y, Stoelzel CR, Alonso JM, Swadlow HA (2006)
Thalamic burst mode and inattention in the awake LGND. Neuron 49:421–432

Brenner N, Bialek W, de Ruyter van Steveninck R (2000) Adaptive rescaling maximizes
information transmission. Neuron 26:695–702

Brown EN, Barbieri R, Ventura V, Kass RE, Frank LM (2001) The time-rescaling
theorem and its application to neural spike train data analysis. Neural Computation
14:325–346

Brown EN, Kass R, Mitra PP (2004) Multiple neural spike train data analysis: State-
of-the-art and future challenges. Nature Neuroscience 7:456–461

Craven P, Wahba G (1979) Smoothing noise data with spline functions: Estimating
the correct degree of smoothing by the method of generalized cross-validation. Nu-
merische Mathematik 31:377–403

DeAngelis GC, Ohzawa I, Freeman RD (1995) Receptive-field dynamics in the central
visual pathways. Trends of Neuroscience 18:451–458

Escola S, Fontanini A, Katz D, Paninski L (2011) Hidden Markov models for the
stimulus-response relationships of multistate neural systems. Neural Computation
23:1071–1132

Friedman J (1991) Multivariate adaptive regression splines. Annals of Statistics 19:1–
141

Gerstein GL, Perkel DH (1969) Simultaneously recorded trains of action potentials:
Analysis and functional interpretation. Science 164:828–830

Haider B, Duque A, Hasenstaub AR, Yu Y, McCormick DA (2007) Enhancement
of visual responsiveness by spontaneous local network activity in vivo. Journal of
Neurophysiology 97:4186–4202

Hastie T, Tibshirani R (1999) Generalized Additive Models. Chapman and Hall
Hastie T, Tibshirani R, Friedman J (2008) The Elements of Statistical Learning: Data

Mining, Inference and Prediction, 2nd edn. Springer
Hoerl A, Kennard R (1970) Ridge regression: Biased estimates for nonorthogonal prob-

lems. Technometrics 12:55–67
Kass RE, Ventura V, Brown EN (2005) Statistical issues in the analysis of neuronal

data. Journal of Neurophysiology 94:8–25
Lin Y, Zhang HH (2006) Component selection and smoothing in multivariate nonpara-

metric regression. Annals of Statistics 34:2272–2297
Loader C (1999) Local Regression and Likelihood. Springer
Machens CK, Wehr MS, Zador AM (2004) Linearity of cortical receptive fields mea-

sured with natural sounds. Journal of Neuroscience 24:1089–1100
Paninski L (2004) Maximum likelihood estimation of cascade point-process neural en-

coding models. Network: Computation in Neural Systems 15:243–262
Paninski L, Pillow JW, Simoncelli EP (2004) Maximum likelihood estimation of a

stochastic integrate-and-fire neural encoding model. Neural Computation 16:2533–
2561



24 Diego Vidaurre, Concha Bielza and Pedro Larrañaga
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