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Systems biology techniques are a topic of recent interest within the neurological field. Com-

putational intelligence (CI) addresses this holistic perspective by means of consensus or

ensemble techniques ultimately capable of uncovering new and relevant findings. In this

paper, we propose the application of a CI approach based on ensemble Bayesian network

classifiers and multivariate feature subset selection to induce probabilistic dependences that

could match or unveil biological relationships. The research focuses on the analysis of high-

throughput Alzheimer’s disease (AD) transcript profiling. The analysis is conducted from two

perspectives. First, we compare the expression profiles of hippocampus subregion entorhi-

nal cortex (EC) samples of AD patients and controls. Second, we use the ensemble approach

to  study four types of samples: EC and dentate gyrus (DG) samples from both patients and

controls. Results disclose transcript interaction networks with remarkable structures and

genes  not directly related to AD by previous studies. The ensemble is able to identify a vari-
ety  of transcripts that play key roles in other neurological pathologies. Classical statistical

assessment by means of non-parametric tests confirms the relevance of the majority of the

transcripts. The ensemble approach pinpoints key metabolic mechanisms that could lead

to  new findings in the pathogenesis and development of AD.

to produce corresponding probabilistic dependences within
1.  Introduction

Computational intelligence (CI) techniques have proven able
to help physicians to analyze gene activities within com-
plex diseases. Following this breakthrough research, CI-driven
systems biology has recently gained interest within the neuro-
logical community as a tool for unveiling new findings and/or
proposing new working hypotheses [1].  Up to now, one of the
biggest challenges in this field has been to look for key genetic
mechanisms and compounds in complex neurodegenerative

pathologies. In actual fact, tools to address biological rela-
tionships and interactions are currently at the cutting edge
[2].
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Many approaches have been put on trial [3] in order
to understand such complex relations, ranging from pure
Bayesian networks [4] to statistical validations by multiple
random simulation [5],  new graphical models to match gene
interactions [6] or biological validation of previously reported
interactions [7].  The main thrust of all this research is to
assume that a gene transcript behaves like a random variable
and that the behavior of the entire system can be represented
by a joint probability distribution. The regulatory interactions
between the transcripts across that distribution are expected
rranaga@fi.upm.es (P. Larrañaga), mcbielza@fi.upm.es (C. Bielza).

their expression levels [8].
Within this framework, most research looks for differen-

tially expressed genes to build models. However, fewer papers

erved.
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xplicitly focus on the statistical information provided by
omparing different sample types. In such a supervised-class
xperimental design, the phenotype statistical distribution
ay report interactions among genes based on their behav-

or across the different conditions [3].  It is possible to assign
onfidence levels to interactions based on the frequency of
heir appearance in an induced pool of Bayesian classifiers.
epending on the confidence level, the expert can set up dif-

erent interaction networks, ranging from very simple to dense
orest-like structures.

The techniques to produce this hierarchy of ensemble net-
orks are borrowed from the field of machine learning and

tatistics. First, Bayesian classifiers use no a priori biological
nformation and consider only the phenotype distribution.
econd, a feature subset selection procedure is used to reduce
he dimensionality from thousands to only hundreds of can-
idate genes [9].  And, third, results produced by non-parametric
ootstrap – dataset sampled with replacement – are conserva-
ive. In scenarios where the number of samples is very low,
t is crucial to aim for a low ratio of false positive findings.
ast, ensemble or consensus techniques reinforce the search
f robust and reliable gene interactions [10,11].

Throughout this paper, we use this ensemble approach to
nvestigate a gene expression dataset of Alzheimer’s disease
AD). The analysis focuses on gaining an understanding of dys-
egulation in the hippocampal entorhinal cortex (EC), as well
s on the multiple comparison of the hippocampal entorhinal
ortex and dentate gyrus (DG). The aim behind this research
s to formulate working hypotheses about why there is such

 big difference in the extent of the damage to the above hip-
ocampal structures between elderly AD patients and healthy
ontrols.

The paper is organized as follows. Section 2 presents
he dataset, the experimental design and the induction of
nsemble Bayesian networks, respectively. Section 3 shows
he experimental parameters and running results for both
nalytical comparisons. Section 4 gives an in-depth biologi-
al discussion of the most important findings, corroborating
revious knowledge and stating new hypotheses based on the
eported results. Lastly, Section 5 explains the conclusions and
deas for future work. Supplementary content is available with
xtended information on all the results and interaction net-
orks.

.  Materials  and  methods

.1.  Microarray  data

he available data contain gene expression profiles from six
D and six control brain samples. The samples were obtained
t autopsy, and there are two different cohorts: one from the
G region and another from the EC subregion of the hippocam-
us.

The microarray technology used to retrieve gene activity
as an Affymetrix HG-U133A genechip array. A single sample
s hybridized for each array, thereby outputting a total of 24
ybridized arrays. The acquired microarray dataset was scaled
o a value of 500, and probes with a 3′/5′ ratio in the GADPH and
ctin gene greater than 7 were excluded from the study. A total
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of 7610 probes that passed the last Affymetrix detection algo-
rithm filter were retained as valid probes for the subsequent
data analysis (MAS 5 and GeneSpring 5.0.3 were the tools used
for the process). For more  details on each of these steps and
the actual dataset, see the original paper [12].  Throughout this
paper, we  will use the term transcript as the product measured
by each probe of the microarray. Similarly, the term gene will
refer to the associated gene from which that transcript is syn-
thesized. The terms were matched by the Ensembl BioMart tool,
using the Ensembl Genes Release 62 dataset.

2.2.  Experimental  design

Experimental design refers to the way that the different gene
profiles are configured in a supervised classification problem.
To get all the possible options, we  considered a list of biological
facts supported by the original study:

• EC appears to be a prime target for AD, as it is highly vul-
nerable to the effects of ischemia and anoxia;

• DG is the neighboring subregion of the EC most resistant to
AD;

• differences in entorhinal function between controls and AD
patients are age and time independent.

All these statements reveal two different biologically
important scenarios: (a) the comparison of the EC gene pro-
files between AD patients and controls; and (b) a multiclass
study with other combinations of samples and individuals.

Therefore, two different data mining analyses were con-
ducted: EC-AD vs EC-Control (see Section 3.2.1) with 12
samples in a dichotomic supervised classification problem;
and EC-AD vs EC-Control vs DG-AD vs DG-Control (see Section
3.2.2) with all 24 samples in a four-class (or multiclass)
supervised classification problem. This experimental design
substantially differs from the design used by [12]. The analysis
pipelines were also different in terms of running scheme and
mathematical approaches. Therefore, final results showed a
limited degree of coincidence between both studies.

2.3.  Ensemble  Bayesian  networks  of  highly  reliable
dependences

The data analysis methodology combines a resampling
method with an inner feature selection technique and a
Bayesian k-dependence classifier to output a gene interac-
tion network formed by arcs above a set confidence level. This
chained process can be used as a tool to unveil or corroborate
biological hypotheses [13].

The method for building the ensemble Bayesian networks
was originally proposed in [10]. It is based on searching robust
arcs from the whole set of arcs configured by a pool of Bayesian
networks classifiers (BNC). Briefly, we can define the number
of occurrences oij as the number of times a given arc lij – where
Xi and Xj are head and tail nodes, respectively – has been

induced across B datasets. These B datasets correspond to the
B bootstrapped datasets from the original dataset. For each
resampled dataset an intermediate feature subset selection
process is also tackled to select the most relevant genes.

dx.doi.org/10.1016/j.cmpb.2011.11.011
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After the induction of all the BNCs, it is possible to define an
occurrence threshold t of reliability. Using that threshold, arcs
with occurrences equal to or greater than t are retained. This
set of retained arcs is denoted as Lt. By inspecting Lt, it is also
possible to state which set of variables or features is covered
by all arcs. This feature set comprises the relevant features
subset and is denoted by S(Lt).

Interestingly, by changing t, we can build a hierarchy of
models, ranging from a model with just one arc and hence
two features, to a model that includes almost all the detected
arcs or conditional dependences. Since the method looks for
BNCs, arcs that form cycles are removed. Cycles of more  than
two variables are unfeasible due to the formulation of the BNC
in use. Finally, given a t value, the expert is reported with the
correspondent network structure. It is therefore possible to
control the scope of the study and to isolate findings that could
constitute future working hypotheses.

2.4.  Differential  expression  measures

To supplement the results of the ensemble networks, two dif-
ferent definitions of fold-change (FC) were used to compare the
expressions of the identified relevant transcripts. These two
FCs are the classical expression ratio or FCr and the expression
difference or FCd. Thus, FCr is defined as the ratio between
the median value of the transcript expressions within the
disease and the control samples, whereas FCd compares the
same values but removing the median control expression from
the median disease expression. We here propose the use of
two different univariate hypothesis tests to check the signifi-
cance of the transcripts previously detected as relevant by the
ensemble of networks.

In dichotomic studies, it is common to assess significance
using p-values in a t-test. Unfortunately, this is not such a good
approach when there are few samples and normal distribution
assumptions cannot be guaranteed. The alternative proposed
here is to use a non-parametric test: the Wilcoxon rank sum
test for equal medians.

The Wilcoxon test is only applicable with two samples, but
we require a four-factor test to analyze the results of the mul-
ticlass experimental design. In this case, we used Friedman
test for multiple treatments of a series of subjects [14]. The
Friedman test is able to jointly compare the activity of each
transcript evaluated in the four different class configurations.
This is the best test for investigating the significance of the
differences between the four phenotypes in the multiclass
problem.

3.  Results

3.1.  Running  parameters

The data analysis method introduced in Section 2.3 includes
a set of running parameters to be fixed: the feature subset

selection, the BNC to be induced and the number of times that
the bootstrap loop is performed, B. Also, and especially in the
gene expression context, all these parameters are expected to
setup a scenario with an affordable runtime.
 b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 442–450

For the subset selection step, we used correlation-based
feature subset selection [9] or CFS. CFS finds low redundancy
feature subsets, which are also highly correlated to the super-
vised class variable. The CFS search strategy was configured
as a forward greedy hill-climbing search that starts from an
empty set of features. This search strategy guarantees that
the cardinality dimension of the output subsets is not high.

After reducing the dataset using CFS, a kDB classifier is
induced using a k value of 4 [15]. Thanks to this Bayesian classi-
fier and the fixed k value the graphical models are both flexible
(capable of inducing many  diverse structures) and not sparse
when inducing the dependence structures. Since the number
of available instances is particularly low, experiments had to
be as robust as possible. Therefore, the number of times the
main bootstrap loop is performed was set to B = 10,000 times
for both data mining analyses. In addition, this high sampling
rate prevents trapping in local optima.

Bayesian classifiers typically deal with discrete variables.
Hence, a process was run to discretize the original continuous
data. On the basis of its biological activity, we assume that a
gene does not have many  different activity states. A general
criterion in microarray analysis is that this number of states
is three: an up-regulated, a down-regulated and a baseline or
null activity. Taking up this idea, we  considered equal width
discretization [16] in three different bins to be the best method
for parsing the continuous values into discrete states. Any bias
included by the discretization is not expected to affect the real
gene profiling behavior [17,18].

3.2.  Ensemble  interaction  networks

As discussed in Section 2.3,  the practitioner must set an
occurrence threshold t to output both the list of interaction
networks and the associated list of highly relevant features.
The number of times two  variables are jointly selected and
included as head and tail of the same conditional depen-
dence is strongly influenced by the running parameters in
use. Hence, the empirical distribution of the computed values
is completely unknown. This distribution is formed by a X-
axis reflecting the number of occurrences an arc was included,
whereas Y-axis shows how many  arcs reach such threshold.
Experimentally, the distribution of the results is right-skewed
with extreme values on the right tail of the plot. These are pre-
cisely the most relevant values: a small set of arcs with very
high occurrence values. In order to retain only these extreme
links, we retrieve the 0.999 quantile from the empirical distri-
bution. The associated threshold levels for such quantile are
detailed for both tackled analyses (see Sections 3.2.1 and 3.2.2).
Both full transcript networks are available as supplementary
content.

3.2.1.  EC-AD  vs  EC-Control
The total number of different arcs was 135,880. The most fre-
quent dependence identified from the above arcs was between
probes 200099 s at and 201358 s at (transcripts RPS3A and
COPB1), with 2666 occurrences. Filtering these values to the

0.999 quantile, we  got a threshold level of 577 (t = 576.44). A
total number of 63 probes and 136 conditional dependences
were retained for this level (see Supplementary Tables 1 and 2
for the full probe/gene list).

dx.doi.org/10.1016/j.cmpb.2011.11.011
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Fig. 1 – Results for the EC comparison between controls and AD patients. The reliability threshold is set to 1000 out of
10,000 main iterations. The network includes 23 transcripts and 35 conditional dependences. Arc labels represent the
number of times the associated arc and nodes have been found together across the 10,000 models. Unfilled nodes map  root
nodes in the structure, whereas shaded nodes denote child nodes.
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The full interaction network described by the 136 arcs
s available as supplementary content. To illustrate the core
etwork and the most important transcripts, Fig. 1 shows

he subnetwork that corresponds to a t level of 1000 –
ith 35 conditional dependences and 23 probes. Notice that

ig. 1 illustrates two disconnected graphs for this threshold.
hese two  structures are connected in the original t = 577
etwork.

.2.2. EC-AD  vs  EC-Control  vs  DG-AD  vs  DG-Control
ore  than 500,000 arcs were configured. Of these, 28,355 arcs
ere repeatedly presented in more  than five runs. The depen-
ence between 200872 at and 201170 s at (transcripts S100A10
nd BHLHE40) was present in 1875 out of all 10,000 models.

ollowing the extreme quantile selection criterion (0.999), the
hreshold level was set into 703 (t = 702.87). This retrieved a
otal of 28 arcs comprising 22 probes (listed in Supplementary
able 3). Fig. 2 shows the most robust interaction
network structure. As in the previous analysis, the confidence
threshold for Fig. 2 has been raised to 1000, including 9
transcripts and 12 highly reliable conditional dependences.

4.  Discussion

Throughout this section we  will discuss the findings reported
by the ensemble approach for both analyses. The discussion
focuses on transcripts whose relevance within the neurode-
generative domain has been previously proven. Similarly, new
possibly relevant transcripts are also explored in search of new
working hypotheses.

4.1.  EC-AD  vs  EC-Control
This comparison focuses on checking how neuronal death in
the EC of AD patients changes the transcript profiling with
respect to control samples. To do this, we  firstly discuss the

dx.doi.org/10.1016/j.cmpb.2011.11.011
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Table 1 – Of the 63 probes reported by the ensemble in
the EC comparison, 17 map  disease-related genes and
10 out of the 17 are related to neurological pathologies
(upper part).

Gene Disease

BHLHE40 Bipolar disorder
ERCC1 Cerebral oculofacioskeletal syndrome 4
HUWE1 X-linked mental retardation
ATRX Alpha-thalassemia myelodysplasia syndrome
PARK7 Parkinson’s disease
RAB3GAP1 Warburg micro syndrome 1
VPS13B Cohen syndrome
HIP1R Huntington’s disease
COMT Panic disorder, susceptibility to schizophrenia
TPP1 Late-infantile neuronal ceroid lipofuscinosis

BIN1 Centronuclear myopathy
TPI1 Hemolytic anemia
IL6R Multiple myeloma
KRT10 Epidermolytic hyperkeratosis
HLA-DPB1 Beryllium disease
PPARGC1A Familiar lipodystrophy
UROD Porphyria cutanea tarda

precursor protein that is cleaved by secretases to form a num-
ber of peptides. Some of these peptides form the amyloid
protein plaques found in the brains of patients with Alzheimer
transcripts that are somehow linked with human diseases.
Significantly, 17 out of the 63 probes found by the network
ensemble are related to or are triggers of several diseases.
More  interestingly, 10 out of these 17 probes are probes related
to neurological disorders. Table 1 lists both sets of associated
genes.

To discuss the possible rationale behind the presence of
these genes, Table 2 presents the p-values obtained from the
Wilcoxon rank sum test comparing the expression profiles.
Notice that only transcripts illustrated in Fig. 1 are listed. A
total of 18 out of 23 transcripts exhibit statistically significant
differences at  ̨ = 0.05. Moreover, the first 10 transcripts have a
p-value lower than 0.01. These results corroborate the key role
played by these transcripts, previously reported by the multi-
variate ensemble structure. The first ten transcripts are sorted
in three groups with increasing p-values. In addition, by using
the Genotator text-mining database [19], 7 out of the 23 tran-
scripts are traced to have key roles in the reported literature
of AD: RPS3A, BTRC, TM2D1, PARK7, COX5B, TPP1 and HSPA8.
There follows a brief biological discussion of some important

links between the transcripts and the condition.

Fig. 2 – Core results for the four-class supervised problem data a
Individual labels represent the occurrence level of each arc (t is s
Unfilled nodes map  root nodes in the structure, whereas shaded
 b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 442–450

4.1.1.  AD  pathogenesis  and/or  metabolism
One of the most relevant transcripts in terms of both net-
work connections and p-value is RPS3A. This gene has highly
reliable dependences on almost all the genes reported by the
network at a confidence level of 1000. This topological posi-
tion may have a direct correspondence in biology. Ribosomes
consist of a small 40S subunit and a large 60S subunit that,
together, are composed of 80 structurally distinct proteins.
The RPS3A gene encodes a S3AE ribosomal protein that is a
component of the 40S subunit. Grupe et al. [20] performed
an association study of candidate genes on chromosome 10
for triggering late-onset Alzheimer’s disease (LOAD). They
conducted two rounds of analyses with a total of 779 LOAD
samples and 629 controls. The study analyzed 1412 SNPs
with 677 putative functional mutations. Results reported just
five relevant mutations. Of these, marker rs498055, located
in a gene homologous to RPS3A, was significantly associ-
ated with AD with an allelic p-value of 0.0001. This study
implicates RPS3A gene in the pathogenesis of this disorder.
Looking at the fold-change values in Table 2, we  can corrob-
orate that its activity in the AD entorhinal cortex is greatly
underexpressed compared with the control samples: a 4.9521
logRatio decrease. Also there is a significant variance in its
expression level across the control samples, whereas AD sam-
ples have a low constant expression (see Supplementary Fig.
1).

MED8 transcript is part of the 20 subunits of the media-
tor complex, which is required to activate mRNA  production.
MED8 presents interactions with proteins of key relevance
in the central nervous system, like ARRB2, which plays a
role in the regulation of synaptic receptors by inhibiting
beta-adrenergic receptor function. Another target protein
is CCNC or cyclin C, whose expression has been proven
to be involved in the pathogenesis of Alzheimer’s disease
[21].

TM2D1 is a beta-amyloid peptide-binding protein. Beta-
amyloid peptide has a toxic effect on neurons, including death,
morphological and physiological alterations (among others)
and the consequent loss of cognitive abilities observed in AD
[22]. TM2D1 interacts with APP amyloid beta (A4) precursor
protein, which is a cell surface receptor and transmembrane
disease.

nalysis: EC-AD vs EC-Control vs DG-AD vs DG-Control.
et to 1000 times out of the 10,000 bootstrap samplings).

 nodes denote child nodes.

dx.doi.org/10.1016/j.cmpb.2011.11.011
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Table 2 – Fold-change expressions of the transcripts found to have highest relevancies in the entorhinal cortex
comparison between AD patients and controls. Fold-change is expressed in three complementary ways, namely, ratio
(FCr), logarithmic transformation of the ratio (log2 FCr) and difference (FCd). The p-value in the last column shows the
output of a Wilcoxon rank sum test to compare the expression levels. Transcripts are listed in increasing p-value order.

FCr log2 FCr FCd p-Value

UROD 0.2884 −1.7938 −860.7 0.0022
HIP1R 0.3416 −1.5497 −777.7 0.0022
BEND5 0.7262 −0.4615 −125.3 0.0022
ATRX 0.7919 −0.3366 −492.8 0.0022
RPS3A 0.0323 −4.9521 −8889 0.0043
BHLHE40 0.5713 −0.8077 −846.4 0.0043
BTRC 1.3652 0.4491 63.6 0.0043
MED8 0.0431 −4.5350 −515.8 0.0087
TM2D1 0.2419 −2.0476 −622.0 0.0087
PARK7 0.7135 −0.4871 −3116 0.0087
HNRNPA3 0.0592 −4.0774 −628.9 0.0152
MBD4 0.1782 −2.4884 −378.9 0.0152
MRPL20 0.0105 −6.5684 −1300.6 0.0260
HUWE1 0.0624 −4.0013 −2427.8 0.0260
ERCC1 0.1833 −2.4479 −409.3 0.0260
COX5B 0.8077 −0.3081 −1026.6 0.0260
PTTG1IP 1.5275 0.6112 951.5 0.0260
TPP1 1.4906 0.5759 603.1 0.0411
COPB1 0.3177 −1.6544 −1475.3 0.0649
BNIP3 0.5631 −0.8286 −1861.2 0.0649
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MAPRE1 1.1517 0
HSPA8 0.6991 −0
CBX3 0.8795 −0

.1.2. Circadian  rhythm
ne of the symptoms in severe AD is the asynchronity of

he circadian rhythm [23]. Of our list of genes, BHLHE40, also
nown as DEC1, plays a role in the finer regulation and robust-
ess of the molecular clock components CLOCK/BMAL1 [24].
revious research pointed to CLOCK gene regulation in the
orrect setup of the circadian rhythm of the metabolism. In
ur experiments, the gene profiling of BHLHE40 shows an
nderexpression in AD samples, a fact that may be linked
ith the dysfunction of CLOCK and, therefore, of the circadian

hythm. Another transcript find to be relevant, BTRC, asso-
iates with beta-catenin destruction motifs by activating the
F-kappaB pathway and inhibiting the beta-catenin pathway.
uch inhibition has already been studied as an alteration of
he circadian clock gene expression in mice [25].

These findings match the hypotheses of [26], stating that
myloid beta production follows the circadian rhythm, rising
hen a person is awake and falling during sleep. [26] also sug-

ests that excessive sleep debt could cause a chronic build-up
f amyloid beta protein, which could hypothetically lead to
D.

.1.3. Other  central  nervous  system  diseases
o the best of our knowledge the other 5 transcripts have
ot been previously related to AD. However, they might play
oles in the central nervous system metabolism since they
re all related (or have domain interactions) to several other
eurological diseases. Among them, HIP1R is named after
he Huntingtin-interacting protein, or, mutations in ATRX are

ssociated with the X-linked mental retardation syndrome.
or PARK7, it has been widely studied because its defects
re the cause of autosomal recessive early-onset Parkinson’s
isease.
 67.7 0.2403
 −1783.3 0.3095
 −140.9 0.3939

4.2.  EC-AD  vs  EC-Control  vs  DG-AD  vs  DG-Control

The aim of this second analysis is to locate relevant transcripts
and/or relationships that are differentially expressed in all
four tissues under study. Results in Section 3.2.2 reported a
simpler network structure (see Fig. 2) than in the case of sin-
gle EC comparison. Even so, there are some similarities: the
presence of the HUWE1, UROD and BHLHE40 transcripts.

As in the previous analysis, Table 3 lists the p-values for
three sets of hypothesis tests applied to the set of transcripts
found in Fig. 2. The first column, labeled as PATvsCON, con-
trasts the expression profiles of patient and control samples
no matters what the type of tissue is. The second column,
ECvsDG, groups the profiles by tissue type. In both cases, the
Wilcoxon test is used to retrieve the associated p-values. The
column labeled MULTICLASS lists the p-value output by the
Friedman hypothesis test, comparing all four types of tissue-
patient profiles as in the ensemble network analysis.

Let us examine the values of the Friedman test in Table 3, as
they were computed in a similar manner to the ensemble net-
work. Hence, there are a total of 7 out of 9 transcripts that show
statistical significance at  ̨ = 0.05. This supports the findings
from the networks and adds even more  robustness to the data
analysis. We  also used Genotator text-mining database [19]
to check the already published relation between these genes
and AD: 3 out of the 9 transcripts seem to have key roles in AD:
S100A10, CYB5A and CCNI. There follows a brief discussion of
the biological foundations between some of these transcripts
and the condition.
4.2.1. AD  pathogenesis  and/or  metabolism
In the network topology of Fig. 2, S100A10 forms a central
node. This is the only transcript that is not conditionally

dx.doi.org/10.1016/j.cmpb.2011.11.011
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Table 3 – Log2 fold-change expressions and p-values of the transcripts found to have highest relevancies in the multiple
class comparison. The first two columns list values output by grouping the EC and DG expressions and computing the
changes comparing the activities of patients against controls (PATvsCON). The third and fourth columns list values
output by grouping the patient and control expressions and computing the changes comparing the activities of both
classes in EC and DG (ECvsDG). Finally, the multiclass column presents the p-values of a Friedman test for multiple
comparison of all four expressions. Transcripts are listed in increasing order of Friedman test p-value.

PATvsCON ECvsDG MULTICLASS

log2 FCr p-Value log2 FCr p-Value p-Value

S100A10 1.4880 <0.0002 −0.2879 0.0120 <0.0008
MCM6 −0.3244 0.0051 0.0509 0.5444 0.0074
LYPLA1 −0.5938 0.0006 0.0996 0.5444 0.0081
UROD −1.8375 <0.0001 −0.3531 0.0226 0.0169
HUWE1 −4.6466 <0.0002 −0.5201 0.8852 0.0186
BHLHE40 −0.6219 0.2602 0.4674 0.1124 0.0203

CYB5A −0.1370 0.1410 

SYT17 0.0253 0.8852 

CCNI −0.1761 0.4357 

dependent on any other, and its links are within the high-
est level occurrences set. S100A10 plays a pivotal role in the
dynamic modulation of serotonergic 1B receptor function, and
is involved in the pathogenesis of major depressive disor-
der (MDD) and the therapeutic mechanisms of antidepressant
action [27]. In our data, the expression profile shows a clear
dysregulation between AD and control samples in both DG
and EC. A recent study [28] identifies another S100 family
member (S100A7) as a novel biomarker of AD involved in
the attenuation of beta amyloid neuropathology in mice. The
findings of [28] suggest that S100A7 expression in the brain
promotes ˛-secretase activity in the AD brain, precluding the
generation of amyloidogenic �-amyloid peptides. This over-
expression matches our expression profiles for S100A10 (see
Supplementary Fig. 2). The quantitative p-value reported by
the Friedman test also corroborates the key role identified by
the ensemble network.

4.2.2.  Circadian  rhythm
BHLHE40 has previously been proposed as a key transcript
in the circadian dysregulation symptom of AD patients, and
hence in the beta-amyloid production. Its expression profile
shows that only in the EC tissue is a differential expression
detected. For the DG, the expression levels are similar in both
AD and control samples, where variance is higher in the con-
trol tissue (see Supplementary Fig. 2). This expression profile
makes full sense in the light of recent research on the impor-
tance of EC only in the regulation of the circadian rhythm of
the hypothalamic–pituitary–adrenal (HPA) axis [29].

4.2.3.  Other  central  nervous  system  diseases
UROD shows a clear underexpression in both the DG and EC
of AD samples. The decrease in UROD concentration alters
the production of heme and, hence, hemoglobin. Hemoglobin
is distributed in AD patients in a brain region-dependent
manner, where the highest levels are to be found in the
hippocampus [30]. Our finding may corroborate previous
hypotheses that hemoglobin levels are inversely related to

the AD condition [31–33].  We also find the HUWE1 transcript,
which is directly related to the X-linked mental retarda-
tion syndrome [34]. It regulates neural differentiation and
proliferation.
−0.1907 0.0262 0.0293
−0.7766 0.0783 0.1447

0.3873 0.7950 0.2214

5.  Conclusions

Systems biology is breaking new ground in search of answers
to the complex and devastating neurodegenerative disease
domain. Of these diseases, Alzheimer’s disease is one of the
best known, affecting millions of elderly people worldwide.
Computational intelligence techniques are now developing
promising approaches and reporting results that build bridges
between disciplines [35].

In this study, we focused on a data mining approach that
is able to retrieve key transcripts in high-throughput gene
expression analysis. Since the number of samples in this kind
of analysis is still very low, reliable approaches are required to
dispel the so-called curse of dimensionality.  To do this, we  tack-
led two different supervised classification problems based on
Alzheimer’s disease microarray data. First, we  compared the
gene expression profiles of patient and control samples col-
lected from the entorhinal cortex. Second, we  compared all
these samples with the respective dentate gyrus hippocampal
subregions.

The computational intelligence approach on trial makes
use of three different and complementary machine learning
approaches: bootstrap resampling, multivariate filter subset
selection and a Bayesian network classifier. As the output,
this combination provides the researcher with a highly reli-
able ensemble gene-interaction network. Precisely, the aim of
this research is to propose these findings as possible targets
for deeper and more  detailed studies.

The reported results suggest interesting findings. New
potential relationships have been pinpointed, including the
role of BHLHE40 in the regulation of the circadian rhythm in AD
patients. Several other findings are a potential source of work-
ing hypotheses. Of these, we  have discussed AD pathogenesis,
transcription regulation and products related to other neuro-
logical conditions. In actual fact, ensemble network findings
corroborate previous findings in AD: the importance of the
RPS3A gene within AD pathogenesis or the inverse relation-
ship of hemoglobin levels to the AD condition.
Practitioners in the field are aware that some of these rela-
tionships may be numerical artifacts. The need for multiple
and independent validations of these statistical findings is
crucial. However, the production cost of all these hypotheses
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s really low, whereas their contributions could be enormous
n terms of key insights for future research. Hence, more

onitoring and validation will, as in any kind of biomedical
esearch, be needed.
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Larrañaga, A.M. Zubiaga, Microarray analysis of
autoimmune diseases by machine learning procedures, IEEE
Transactions on Information Technology in Biomedicine 13
(3) (2009) 341–350.

[19] D.P. Wall, R. Pivovarov, M. Tong, J.-Y. Jung, V.A. Fusaro, T.F.
DeLuca, P.J. Tonellato, Genotator: a disease-agnostic tool for
genetic annotation of disease, BMC Medical Genomics 3
(2010) 50.

[20] A. Grupe, Y. Li, C. Rowland, P. Nowotny, A.L. Hinrichs, S.
Smemo, J.S. Kauwe, T.J. Maxwell, S. Cherny, L. Doil, K. Tacey,
R.  van Luchene, A. Myers, F. Wavrant-De Vrièze, M. Kaleem,
P.  Hollingworth, L. Jehu, C. Foy, N. Archer, G. Hamilton, P.
Holmans, C.M. Morris, J. Catanese, J. Sninsky, T.J. White, J.
Powell, J. Hardy, M. O’Donovan, S. Lovestone, L. Jones, J.C.
Morris, L. Thal, M. Owen, J. Williams, A. Goate, A scan of
chromosome 10 identifies a novel locus showing strong
association with late-onset Alzheimer disease, American
Journal of Human Genetics 78 (1) (2006) 78–88.

[21] U. Ueberham, A. Hessel, T. Arendt, Cyclin C expression is
involved in the pathogenesis of Alzheimer’s disease,
Neurobioloy of Aging 24 (3) (2003) 427–435.

[22] J.L. Price, J.C. Morris, So what if tangles precede plaques?
Neurobiology of Aging 25 (6) (2004) 721–723.

[23] D.G. Harper, L. Volicer, E.G. Stopa, A.C. McKee, M.  Nitta, A.
Satlin, Disturbance of endogenous circadian rhythm in
aging and Alzheimer disease, American Journal of Geriatric
Psychiatry 13 (5) (2005) 359–368.

[24] A. Nakashima, T. Kawamoto, K.K. Honda, T. Ueshima, M.
Noshiro, T. Iwata, K. Fujimoto, H. Kubo, S. Honma, N.
Yorioka, N. Kohno, Y. Kato, Dec1 modulates the circadian
phase of clock gene expression, Molecular and Cellular
Biology 28 (12) (2008) 4080–4092.

[25] X. Yang, P.A. Wood, C.M. Ansell, M. Ohmori, E.Y. Oh, Y. Xiong,
F.G.  Berger, M.M. Peña, W.J. Hrushesky, Beta-catenin induces

beta-TrCP-mediated PER2 degradation altering circadian
clock gene expression in intestinal mucosa of
ApcMin/+mice, Journal Biochemistry 145 (3) (2009) 289–297.

dx.doi.org/10.1016/j.cmpb.2011.11.011
http://dx.doi.org/10.1016/j.cmpb.2011.11.011


 s i n
450  c o m p u t e r m e t h o d s a n d p r o g r a m

[26] J.-E. Kang, M.M. Lim, R.J. Bateman, J.J. Lee, L.P. Smyth, J.R.
Cirrito, N. Fujiki, S. Nishino, D.M. Holtzman, Amyloid-beta
dynamics are regulated by orexin and the sleep–wake cycle,
Science 326 (5955) (2009) 1005–1007.

[27]  R.F. Tzang, C.J. Hong, Y.J. Liou, Y.W.  Yu, T.J. Chen, S.J. Tsai,
Association study of p11 gene with major depressive
disorder, suicidal behaviors and treatment response,
Neuroscience Letters 447 (1) (2008) 92–95.

[28] L. Ho, H. Fivecoat, J. Wang, G.M. Pasinetti, Alzheimer’s
disease biomarker discovery in symptomatic and
asymptomatic patients: experimental approaches and
future clinical applications, Experimental Gerontology 45
(2010) 15–22.

[29] W. Zhu, R. Zhang, C. Hu, H. Umegaki, Effect of the entorhinal
cortex on diurnal ACTH and corticosterone release in rats,
Neuro Endocrinology Letters 29 (1) (2008)
159–162.

[30] C.-W. Wu, P.-C. Liao, L. Yu, S.-T. Wang, S.-T. Chen, C.-M. Wu,
Y.-M. Kuo, Hemoglobin promotes a-beta oligomer formation
and localizes in neurons and amyloid deposits,
Neurobiology of Disease 17 (3) (2004) 367–377.
[31] R.S. Pandav, V. Chandra, H.H. Dodge, S.T. DeKosky, M.
Ganguli, Hemoglobin levels and Alzheimer disease: an
epidemiologic study in India, American Journal of Geriatric
Psychiatry 12 (5) (2004) 523–526.
 b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 442–450

[32] C. Hock, K. Villringer, F. Müller-Spahn, M.  Hofmann, S.
Schuh-Hofer, H. Heekeren, R. Wenzel, U. Dirnagl, A.
Villringer, Near infrared spectroscopy in the diagnosis of
Alzheimer’s disease, Annals of the New York Academy of
Sciences 777 (2006) 22–29.

[33] H. Arai, M. Takano, K. Miyakawa, T. Ota, T. Takahashi, H.
Asaka, T. Kawaguchi, A quantitative near-infrared
spectroscopy study: a decrease in cerebral hemoglobin
oxygenation in Alzheimer’s disease and mild cognitive
impairment, Brain and Cognition 61 (2) (2006) 189–194.

[34] G. Froyen, M. Corbett, J. Vandewalle, I. Jarvela, O. Lawrence,
C. Meldrum, M. Bauters, K. Govaerts, L. Vandeleur, H. Van
Esch, J. Chelly, D. Sanlaville, H. van Bokhoven, H.H. Ropers, F.
Laumonnier, E. Ranieri, C.E. Schwartz, F. Abidi, P.S. Tarpey,
P.A. Futreal, A. Whibley, F.L. Raymond, M.R. Stratton, J.P.
Fryns, R. Scott, M. Peippo, M. Sipponen, M. Partington, D.
Mowat, M. Field, A. Hackett, P. Marynen, G. Turner, J. Gécz,
Submicroscopic duplications of the hydroxysteroid
dehydrogenase HSD17B10 and the E3 ubiquitin ligase
HUWE1 are associated with mental retardation, American
Journal of Human Genetics 82 (2) (2008) 432–443.
[35] J.A. Miller, M.C. Oldham, D.H. Geschwind, A systems level
analysis of transcriptional changes in Alzheimer’s disease
and normal aging, The Journal of Neuroscience 28 (6) (2008)
1410–1420.

dx.doi.org/10.1016/j.cmpb.2011.11.011

	Ensemble transcript interaction networks: A case study on Alzheimer's disease
	1 Introduction
	2 Materials and methods
	2.1 Microarray data
	2.2 Experimental design
	2.3 Ensemble Bayesian networks of highly reliable dependences
	2.4 Differential expression measures

	3 Results
	3.1 Running parameters
	3.2 Ensemble interaction networks
	3.2.1 EC-AD vs EC-Control
	3.2.2 EC-AD vs EC-Control vs DG-AD vs DG-Control


	4 Discussion
	4.1 EC-AD vs EC-Control
	4.1.1 AD pathogenesis and/or metabolism
	4.1.2 Circadian rhythm
	4.1.3 Other central nervous system diseases

	4.2 EC-AD vs EC-Control vs DG-AD vs DG-Control
	4.2.1 AD pathogenesis and/or metabolism
	4.2.2 Circadian rhythm
	4.2.3 Other central nervous system diseases


	5 Conclusions
	Conflict of interest
	Acknowledgements
	Appendix A Supplementary data
	r e f e r e n c e s


