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Objective:  Our aim  is  to use  multi-dimensional  Bayesian  network  classifiers  in  order  to  predict  the  human
immunodeficiency  virus  type  1 (HIV-1)  reverse  transcriptase  and  protease  inhibitors  given an  input set
of respective  resistance  mutations  that  an  HIV  patient  carries.
Materials  and  methods:  Multi-dimensional  Bayesian  network  classifiers  (MBCs)  are  probabilistic  graph-
ical models  especially  designed  to solve  multi-dimensional  classification  problems,  where  each  input
instance  in  the  data  set  has  to be  assigned  simultaneously  to multiple  output  class  variables  that  are  not
necessarily  binary.  In this paper,  we  introduce  a new  method,  named  MB-MBC,  for  learning  MBCs  from  data
by  determining  the  Markov  blanket  around  each  class  variable  using  the  HITON  algorithm.  Our  method  is
applied  to  both  reverse  transcriptase  and protease  data  sets  obtained  from  the  Stanford  HIV-1  database.
Results:  Regarding  the  prediction  of  antiretroviral  combination  therapies,  the  experimental  study  shows
promising  results  in terms  of  classification  accuracy  compared  with  state-of-the-art  MBC  learning  algo-
rithms. For  reverse  transcriptase  inhibitors,  we  get 71% and  11%  in  mean  and  global  accuracy,  respectively;
while  for protease  inhibitors,  we  get  more  than  84%  and  31%  in  mean  and  global  accuracy,  respec-

tively.  In addition,  the  analysis  of  MBC  graphical  structures  lets us  gain  insight  into  both  known  and
novel  interactions  between  reverse  transcriptase  and  protease  inhibitors  and  their respective  resistance
mutations.
Conclusion:  MB-MBC  algorithm  is  a  valuable  tool  to analyze  the  HIV-1  reverse  transcriptase  and  protease
inhibitors  prediction  problem  and  to  discover  interactions  within  and  between  these  two  classes  of
inhibitors.
. Introduction

The multi-dimensional classification problem is an extension
f the classical one-dimensional classification problem, where we
ave to deal with multiple output class variables rather than a single
utput class variable [1]. Formally, the multi-dimensional classifi-
ation problem consists of finding a function f that predicts for each
nput instance, given by a vector of m features x = (x1, . . .,  xm), a
ector of d class values c = (c1, . . .,  cd):
f : ˝X1 × · · · × ˝Xm −→ ˝C1 × · · · × ˝Cd

x = (x1, . . . , xm) �−→ c = (c1, . . . , cd)

∗ Corresponding author. Tel.: +34 91 3363675; fax: +34 91 3524819.
E-mail addresses: hanen.borchani@upm.es (H. Borchani), mcbielza@fi.upm.es

C. Bielza), carlos.toro@salud.madrid.org (C. Toro), pedro.larranaga@fi.upm.es
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© 2012 Elsevier B.V. All rights reserved.

where ˝Ci
and ˝Xj

denote the sample spaces of each class variable
Ci, for all i ∈ {1, . . .,  d}, and each feature variable Xj, for all j ∈ {1, . . .,
m}, respectively. Note that, we consider that all class and feature
variables are discrete random variables such that |˝Ci

| and |˝Xj
|

are greater than 1.
When |˝Ci

| = 2 for all i ∈ {1, . . .,  d}, i.e., all class vari-
ables are binary, the multi-dimensional classification problem is
known as a multi-label classification problem [2,3]. In general, a
multi-label classification problem can be easily modeled as a multi-
dimensional classification problem where each label corresponds
to a binary class variable. However, modeling a multi-dimensional
classification problem, that possibly includes non-binary class
variables, as a multi-label classification problem may  require a
transformation over the data set to meet multi-label framework
requirements.

In recent years, the concept of multi-dimensionality has been

introduced in Bayesian network classifiers providing an accurate
modeling of this emerging problem and ensuring interactions
among all variables [1,4–8]. In these probabilistic graphical models,
known as multi-dimensional Bayesian network classifiers (MBCs),

dx.doi.org/10.1016/j.artmed.2012.12.005
http://www.sciencedirect.com/science/journal/09333657
http://www.elsevier.com/locate/aiim
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about the input vector of feature variables x = (x1, . . .,  xm).
More formally, for a given observed evidence x, we have to
20 H. Borchani et al. / Artificial Intell

he graphical structure partitions the set of class and feature
ariables into three different subgraphs: class subgraph, feature
ubgraph and bridge subgraph, and the parameter set defines the
onditional probability distribution of each variable given its par-
nts.

In this paper, we introduce a novel MBC  learning algorithm
ased on Markov blankets. Motivated by the fact that the classi-
cation is unaffected by parts of the structure that lie outside the
arkov blankets of the class variables, we first build the Markov

lanket around each class variable using the well-known HITON
lgorithm [9–11], and then we determine edge directionality over
ll three MBC  subgraphs. Thanks to this filter and a local approach
o MBC  learning, we can lighten the computational burden of MBC
earning using wrapper algorithms [1,4,5] and provide more accu-
ate MBC  structures.

We  finally apply our Markov blanket MBC  (MB-MBC) algorithm
o the problem of predicting human immunodeficiency virus type 1
HIV-1) reverse transcriptase and protease inhibitors given an input
et of corresponding resistance mutations that an HIV patient car-
ies. In general, a combination of several antiretroviral drugs should
e repeatedly administered for each patient in order to prevent and
reat the HIV infection.

We  analyze both reverse transcriptase and protease data sets
btained from the Stanford HIV-1 database [12]. In the reverse
ranscriptase data set (respectively, protease data set), the class
ariables are ten reverse transcriptase inhibitors (respectively,
ight protease inhibitors) and the feature variables are 38 pre-
efined mutations [13] associated with resistance to reverse
ranscriptase inhibitors (respectively, 74 predefined mutations [13]
ssociated with resistance to protease inhibitors).

In both data sets, all class and feature variables are binary, so
hat the problem of predicting HIV-1 reverse transcriptase and
rotease inhibitors can be also viewed as a multi-label classi-
cation problem. However, since our approach is general and
an be applied to additional classification problems where class
ariables are not necessarily binary, we opt to use the term
ulti-dimensional classification as a more general concept. More-

ver, contrary to multi-label classification methods, our approach
resents the merit of explicitly modeling the relationships between
ll variables through their graphical structure component which, in
ur study, may  be useful in further investigating the interactions
mong the different inhibitors and resistance mutations.

Experimental results on reverse transcriptase and protease
nhibitors data sets were promising in terms of classification
ccuracy compared with state-of-the-art MBC  and multi-label
lassification methods, as well as regarding the identification of
nteractions among inhibitors and resistance mutations, which

ere either consistent with the latest knowledge or not previously
entioned in the literature.
The remainder of this paper is organized as follows. Sec-

ion 2 introduces Bayesian networks. Section 3 presents MBCs and
riefly reviews state-of-the-art MBC  learning algorithms. Section 4
escribes our new MBC  learning approach. Section 5 presents the
xperimental study on the HIV-1 reverse transcriptase and pro-
ease inhibitor data sets. Finally, Section 6 sums up the paper with
ome conclusions.

. Background

A Bayesian network [14,15] over a set of discrete random vari-
bles U = {X1, . . .,  Xn}, n ≥ 1, is a pair B = (G,�). G = (V, A) is a

irected acyclic graph (DAG) whose vertices V correspond to vari-
bles in U and whose arcs A represent direct dependencies between
he vertices. � is a set of conditional probability distributions such
hat �xi |pa(xi) = p(xi|pa(xi)) defines the conditional probability of
 in Medicine 57 (2013) 219– 229

each possible value xi of Xi given a set value pa(xi) of Pa(Xi), where
Pa(Xi) denotes the set of parents of Xi in G.

A Bayesian network B represents a joint probability distribution
over U factorized according to structure G as follows:

p(X1, . . . , Xn) =
n∏

i=1

p(Xi|Pa(Xi)) · (1)

Definition 1 (Conditional independence [14]). Two set of variables
X and Y are conditionally independent given some set of variables
Z, denoted as I(X, Y|Z), iff P(X|Y, Z) = P(X|Z) for any assignment of
values x, y, z of X, Y, Z, respectively, such that P(Z = z) > 0.

Definition 2 (Markov blanket [14]). A Markov blanket of a variable
X, denoted as MB(X), is a minimal set of variables with the following
property: I(X, S| MB(X)) holds for every variable subset S with no
variables in MB(X) ∪ X.

In other words, MB(X) is a minimal set of variables conditioned
by which X is conditionally independent of all the remaining vari-
ables. Under the faithfulness assumption, ensuring that all the
conditional independencies in the data distribution are strictly
those entailed by G, MB(X) consists of the union of the set of parents,
children, and parents of children (i.e., spouses) of X [16].

3. Multi-dimensional Bayesian network classifiers

In this section we  present MBCs, then briefly review the state-
of-the-art methods for learning these models from data.

Definition 3 (Multi-dimensional Bayesian network classifier [1]). An
MBC is a Bayesian network B = (G,�) where the structure G = (V, A)
has a restricted topology. The set of n vertices V is partitioned into
two sets: VC = {C1, . . .,  Cd}, d ≥ 1, of class variables and VX = {X1,
. . .,  Xm}, m ≥ 1, of feature variables (d + m = n). The set of arcs A is
partitioned into three sets AC, AX and ACX, such that:

• AC⊆ VC× VC is composed of the arcs between the class variables
having a subgraph GC = (VC, AC ) – class subgraph – of G induced
by VC.
• AX⊆ VX× VX is composed of the arcs between the feature variables

having a subgraph GX = (VX, AX ) – feature subgraph – of G induced
by VX.
• ACX⊆ VC× VX is composed of the arcs from the class variables to

the feature variables having a subgraph GCX = (V, ACX ) – bridge
subgraph – of G induced by V [4].

Depending on the graphical structures of the class and feature
subgraphs MBCs can be divided into several families. These fami-
lies can be denoted as <class subgraph structure>-<feature
subgraph structure> MBCs, where the possible structures of
each subgraph are: empty, tree, polytree, or DAG [4]. In this paper,
we do not consider any constraints on the subgraph structures of
the learned MBCs, i.e., any possible structure type is allowed for
either class or feature subgraphs.

Classification with an MBC  under a 0–1 loss function is
equivalent to solving the most probable explanation (MPE) prob-
lem, which consists of finding the most likely instantiation of
the vector of class variables c∗ = (c∗1, . . . , c∗

d
) given an evidence
determine

c∗ = (c∗1, . . . , c∗d) = arg max
c1,...,cd

p(C1 = c1, . . . , Cd = cd|x) · (2)
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rithm to each class variable and then specifying directionality
ig. 1. An example of a multi-dimensional Bayesian network classifier structure
ith its class, bridge and feature subgraphs.

xample 1. An example of an MBC  structure is shown in Fig. 1. VC
ontains four classes, VX includes seven features, and the structure

 is equal to GC ∪ GX ∪ GCX. We  have

max
1,...,c4

p(C1 = c1, . . . , C4 = c4|x) ∝ max
c1,...,c4

p(c1|c2, c3)p(c2)p(c3)p(c4) ·

p(x1|c2, x4)p(x2|c1, c2)p(x3|c4)p(x4|c1) ·
p(x5|x2)p(x6|c3, x3, x7)p(x7|c4).

Several approaches have been recently proposed to learn MBCs
rom data. In [1], van der Gaag and de Waal use Chow and Liu’s
lgorithm [17] to learn the class and feature subgraphs of a <tree>-
tree> MBC, then they greedily select the bridge subgraph, using

 wrapper method, aiming to induce the most accurate classifier.
e Waal and van der Gaag later present a theoretical approach for

earning <polytree>-<polytree>  MBCs in [6]. Class and feature
ubgraphs are separately generated using Rebane and Pearl’s algo-
ithm [18]; however, the induction of the bridge subgraph was  not
pecified.

Zaragoza et al. [19] propose a two-step method to also learn
polytree>-<polytree> MBCs. First, they build class and feature
ubgraphs using Chow and Liu’s algorithm [17] and generate an
nitial bridge subgraph based on mutual information. Then, in a
econd step, they refine the bridge subgraph by adding more arcs
o improve MBC  accuracy.

Rodríguez and Lozano [7] use a multi-objective evolution-
ry approach to learn <DAG>-<DAG> MBCs. Each permitted MBC
tructure is coded as an individual with three substrings, one
er subgraph. Based on different classification measures, joint
nd marginal, they define the objective functions as k-fold cross-
alidated estimators of each class classification error. The aim is
o find non-dominated structures according to the objective func-
ions.

Bielza et al. [4] propose three MBC  learning algorithms: pure fil-
er (guided by any filter algorithm based on a fixed ordering among
he variables), pure wrapper (guided by the classification accuracy)
nd a hybrid algorithm (a combination of pure filter and pure wrap-
er). None of these three algorithms places any constraints on the

ubgraph structures of the generated MBCs.

In [5], we propose the CB-MBC learning algorithm for class-
ridge decomposable MBCs [4], instead of general MBCs, based
n a greedy forward selection wrapper approach. Class or feature
 in Medicine 57 (2013) 219– 229 221

subgraphs can have any type of structure. The algorithm firstly
learns an initial bridge subgraph with a number of maximal con-
nected components equal to the number of class variables, then it
learns an initial feature subgraph. Next, as long as the number of
maximal connected components is greater than one and there is
an accuracy improvement, it iteratively and sequentially merges
together the components and updates the bridge and feature
subgraphs.

More recently, Zaragoza et al. present a two-step method in [8].
In the first phase, a tree-based Bayesian network that represents
the dependency relations between the class variables is learned. In
the second phase, several chain classifiers are built using selective
naive Bayes models, such that the order of the class variables in the
chain is consistent with the class subgraph. At the end, the results
of the different generated orders are combined in a final ensemble
model.

4. Learning multi-dimensional Bayesian network classifiers
using Markov blankets

In this section we describe a new algorithm for learning MBCs
from data based on Markov blanket discovery. As far as we know,
this is the first paper to propose a MBC  learning algorithm rely-
ing exclusively on a constraint-based approach. Our objective is
to tackle the shortcomings of our previous learning method [5],
mainly its computational cost, by taking advantage of the merits of
a filter constraint-based approach. This should considerably lighten
the computational burden, especially when the data set includes
a large number of class and feature variables, while guaranteeing
good performance.

Additionally, this work is motivated by its application to the HIV
drug resistance problem, where it is not only important to build an
MBC  with a high predictive power but also to discover the resis-
tance pathways of each HIV drug by analyzing the MBC  structure.
Applying our previous learning method may  not always lead to an
accurate MBC  structure, since arcs between features are selected
at random in the feature subgraph learning steps. In fact, in each
feature subgraph learning step, CB-MBC iteratively selects a random
arc between features, then adds it if it improves the accuracy. This
means that, in each iteration, no exhaustive search is performed to
add the arc that improves the most the accuracy. Such exhaustive
search is avoided since, as pointed out in [5], it may  be impractical
and very time-consuming. In other words, these random arcs added
to the feature subgraph, though they improve in each iteration the
accuracy, they may  not lead to the MBC  with the best accuracy.
Therefore, this may  affect the overall quality of the learned MBC
structure and consequently lead to misinterpretations.

To deal with this issue, we make use of Markov blankets. In
recent years, several specialized Markov blanket learning meth-
ods have been proposed in the literature, such as GS, TPDA,
IAMB and its variants, MMHC, MMMB  and HITON (see [10,11]
and their references for reviews). In this paper, we only consider
and adapt the HITON algorithm [9–11] extended to the context
of multi-dimensional Bayesian network classifiers. In fact, the
HITON algorithm was empirically proven to outperform most of
the state-of-the-art Markov blanket discovery algorithms in terms
of combined classification performance and feature set parsimony
[10].

The idea of our Markov blanket MBC  (MB-MBC) learning
algorithm is simple and consists of applying the HITON algo-
over the MBC  subgraphs. HITON identifies the Markov blan-
ket of each class variable in a two-phase scheme, HITON-MB
and HITON-PC, outlined, respectively, in Algorithms 1 and
2.
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lgorithm 1 HITON-MB(Ci)
. PC(Ci)← HITON-PC(Ci)
. for every variable T ∈ PC(Ci) do
. PC(T)← HITON-PC(T)
. end for
. MB(Ci) ← PC(Ci)
. S ← {

⋃
T∈PC(Ci )

PC(T)} \ {PC(Ci) ∪ Ci}
. for every variable X ∈ S do
. Retrieve a subset Z s.t. I(X, Ci|Z)
. for every variable T ∈ PC(Ci) s.t. X ∈ PC(T) do
0. if ¬I(X, Ci|Z ∪ {T}) then
1. Insert X into MB(Ci)
2. end if
3. end for
4. end for
5. return MB(Ci)

Step 1 of HITON-MB identifies the parents and children of each
lass variable Ci, denoted PC(Ci), by calling the HITON-PC algorithm.
hen, it determines the PC set for every member T of PC(Ci) (steps 2
o 4). The Markov blanket set MB(Ci) is initialized with PC(Ci) (step
) and set S includes potential spouses of Ci (step 6). From steps

 to 14, HITON-MB loops over all members of S to identify correct
pouses of Ci. MB(Ci) is finally returned in step 15.

HITON-PC starts with an empty set of candidates PC(T), ranks the
ariables X in OPEN by priority of inclusion according to I(X, T) and
iscards variables having I(X, T) = 0. Then, for every new variable

nserted into PC(T), it checks if there is any variable inside PC(T) that
s independent of T given some subset Z. In this case, this variable

ill be removed from PC(T) (steps 6–11). These steps are iterated
ntil there are no more variables in OPEN. Finally, PC(T) is filtered
sing the symmetry criterion (steps 13–17). In fact, for every X∈
C(T), the symmetrical relation holds iff T∈ PC(X). Otherwise, i.e., if
/∈ PC(X), X will be removed from PC(T). At the end of this step, we
btain PC(T) [10].

lgorithm 2 HITON-PC(T)
. PC(T)← ∅
. OPEN ←U \ {T ∪ PC(T)}
. Sort the variables X in OPEN in descending order according to I(X, T)
.  Remove from OPEN variables X having I(X, T) = 0
. repeat
. Insert at end of PC(T) the first variable in OPEN and remove it from OPEN
.  for every variable X ∈ PC(T) do
. if ∃ Z ⊆ PC(T) \ {X}, s.t. I(X, T|Z) then
.  Remove X from PC(T).
0. end if
1. end for
2. until OPEN =∅
3. for every variable X ∈ PC(T) do
4. if T /∈ PC(X) then
5. Remove X from PC(T)
6. end if
7. end for
8. return PC(T).

Note that the complexity of both algorithms could be controlled
sing a parameter maxCS restricting the maximum number of ele-
ents in the conditioning sets Z [10]. In our experiments, we use

he G2 statistical test to evaluate the conditional independencies
etween variables with a threshold significance level of  ̨ = 0.05,
nd we consider different values of maxCS = 1, 2, 3, 4, 5.

Unlike the HITON algorithm that only determines the Markov
lanket of a single target variable for solving the variable selec-
ion problem, our algorithm considers many target variables, then
nduces the MBC  graphical structure. Given the MBC  definition,
irect parents of any class variable Ci, i = 1, . . .,  d, can only be among

he remaining class variables, whereas direct children or spouses
f Ci can include either class or feature variables. We  can then eas-
ly deduce the different MBC  subgraphs based on the results of the
ITON algorithm:
 in Medicine 57 (2013) 219– 229

• Class subgraph: we  firstly insert an edge between each class vari-
able Ci and any class variable belonging to its corresponding
parents–children set PC(Ci). Then, we direct all these edges using
the PC algorithm’s edge orientation rules [20].
• Bridge subgraph: this is built by inserting an arc from each class

variable Ci to every feature variable belonging to PC(Ci).
• Feature subgraph: for every feature X in the set MB(Ci) \ PC(Ci), i.e.,

for every spouse X, we insert an arc from X to the corresponding
common child given by PC(X) ∩ PC(Ci). Moreover, more arcs can
be added especially to discover additional dependency relation-
ships among features. In fact, for every feature X, child of Ci, we
determine the set Y = PC(X) \ ({Ci} ∪ {MB(Ci) ∩ PC(X)}). If Y /= ∅, we
insert an arc from X to every feature variable in Y.

Example 2. Let us assume that we apply HITON algorithm to a
data set coming out of the MBC  structure of Fig. 1. By the end of
HITON-PC and HITON-MB algorithms, we identify, respectively, the
parents–children sets and the Markov blanket sets of each class
variable:

• PC(C1) = {C2, C3, X2, X4}; MB(C1) = PC(C1)
• PC(C2) = {C1, X1, X2}; MB(C2) = {C1, C3, X1, X2, X4}
• PC(C3) = {C1, X6}; MB(C3) = {C1, C2, X6, X3, X7}
• PC(C4) = {X3, X7}; MB(C4) = PC(C4)

Next, we  specify the three MBC  subgraphs as follows:

• Class subgraph: edges are inserted between the class variables C1,
C2 and C3. Then, using the PC algorithm’s edge orientation rules,
these edges are directed from C2 and C3 to C1.
• Bridge subgraph: arcs are inserted from C1 to X2 and X4; from C2

to X1 and X2; from C3 to X6; and from C4 to X3, X5 and X7.
• Feature subgraph: given that MB(C2) \ PC(C2) = {X4}, an arc is

inserted from spouse X4 to the common child X1 determined by
PC(X4) ∩ PC(C2) = {X1}. Similarly, given that MB(C3) \ PC(C3) = {X3,
X7} and PC(X3) ∩ PC(C3) = PC(X7) ∩ PC(C3) = {X6}, arcs are inserted
from X3 and X7 to X6. For additional dependency relationships
among features, given that PC(X2) = {C1, C2, X5}, we  determine
the set Y = PC(X2) \ ({C1} ∪ {MB(C1) ∩ PC(X2)}) = PC(X2) \ ({C2}
∪ {MB(C2) ∩ PC(X2)}) = {C1, C2, X5} \ {C1 ∪ C2} = {X5}. Thus, an arc
is inserted from X2 to X5.

5. Experimental study

5.1. Data sets

Commonly used therapies for human immunodeficiency virus
type 1 (HIV-1) are combinations or cocktails of antiretroviral drugs.
Typically, these drugs may  belong to one or more different drug
groups that target different stages of the viral HIV-1 life cycle. In
order to deal with the HIV-1 therapy prediction problem and gain
insight into the different interactions between drugs and resistance
mutations, we  analyzed reverse transcriptase and protease data
sets obtained from the online Stanford HIV-1 database [12].

5.1.1. Reverse transcriptase inhibitors
Reverse transcriptase inhibitors (RTIs) consist of two groups of

antiretroviral drugs preventing HIV-1 replication, namely nucleo-
side and nucleotide reverse transcriptase inhibitors (NRTIs) and
non-nucleoside reverse transcriptase inhibitors (NNRTIs). NRTIs
inhibit reverse transcription by being incorporated into the newly

synthesized viral deoxyribonucleic acid (DNA) and preventing its
further elongation [21]. We  study seven drugs in this group: Aba-
cavir (ABC), Didanosine (DDI), Emtricitabine (FTC), Lamivudine
(3TC), Stavudine (D4T), Tenofovir (TDF), and Zidovudine (AZT).
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NRTIs inhibit reverse transcriptase directly by binding to the
nzyme, restricting its mobility and making it unable to function
21]. We  consider three drugs in this group: Efavirenz (EFV), Nevi-
apine (NVP), and Delavirdine (DLV).

We studied a data set obtained from the Stanford HIV-1 reverse
ranscriptase database [12] containing treatment histories from
855 patients that received either NRTIs, NNRTIs or both. These
reatment histories were collected from previously published stud-
es and all belonged to subtype B. There may  be one or multiple
solates for the same patient. Each isolate corresponds to a sample
n the data set, including a list of resistance mutations and a com-
ination of RTIs administered to a patient at a specified time point
uring his or her course of RTI treatment. Only samples where no
rug was administered were discarded. Accordingly, the final data
et contained a total of 4884 samples. Note that the number of RTIs
n the administered combinations varies from 1 to 8 drugs, such that
he highest number of samples comprises 5 RTIs (1852 samples)
nd 6 RTIs (1600 samples). There are only 698 samples including 4
TIs, 483 samples including 7 RTIs, 157 samples including 3 RTIs,
6 samples including 8 RTIs, and finally, we have only 17 and 25
amples, respectively, for 1 and 2 RTIs.

Additionally, we considered a total of 38 mutations associated
ith resistance to RTIs and defined in the latest International AIDS

ociety-USA resistance mutation list [13]. There are no common
esistance mutations between the two RTI groups; in fact, 22 muta-
ions are associated with NNRTs and 16 mutations are associated
ith NNRTIs.

.1.2. Protease inhibitors
Protease inhibitors (PIs) represent the third group of antiretro-

iral drugs. They bind to the protein cleavage site, and therefore
revent the enzyme from releasing the individual core proteins
nd virus particles from subsequently maturing as infections [22].
e considered eight PI drugs: Atazanavir (ATV), Darunavir (DRV),

osamprenavir (FPV), Indinavir (IDV), Lopinavir (LPV), Nelfinavir
NFV), Saquinavir (SQV) and Tipranavir (TPV), and we analyzed a
ata set obtained from the Stanford HIV-1 protease database [12]
ontaining antiretroviral PI treatment histories from 1255 patients.
s with the RTI data set, the treatment histories were collected from
reviously published studies. There may  be one or more patient

nstances in the data set such that each instance includes a list
f resistance mutations and a set of administered PIs drugs. Only
amples where no drug was administered were discarded.

The final data set contained a total of 4341 samples belonging
ainly to subtype B (subtype B: 92%, subtype C: 3%, and other sub-

ypes (A, D, F, G, H, J, K, CRF01 AE, CRF02 AG): 5%). Note also that
he number of PI combinations is not evenly represented; in fact,
here are 3256 samples including only 1 PI, 862 samples including

 PIs, 213 samples including 3 PIs, and only 10 samples containing
 PIs.

Using the International AIDS Society-USA resistance mutation
ist [13], we also considered a set of established PI resistance

utations. The total number of mutations in the protease gene
ssociated with resistance to PIs is 74, where 23 are classified as
ajor and the remainder as minor mutations. Major mutations are

efined as mutations selected first in the presence of the drug
r mutations substantially reducing drug susceptibility, whereas
inor mutations generally emerge later than major mutations and,

y themselves, do not have a substantial effect [13].
In both the RTI and PI data sets, drug combinations (respectively,

esistance mutations) were represented using binary vectors such
hat every value indicates either the presence, 1, or absence, 0, of

n individual drug (respectively, an individual resistance muta-
ion) in the corresponding sample of each data set. Using two

ulti-dimensional Bayesian network classifiers learned separately
rom each data set, we were able to predict the antiretroviral
 in Medicine 57 (2013) 219– 229 223

combination of RTI and PI therapies given sets of corresponding
input resistance mutations. Thanks to the graphical structure of
the learned MBCs, we  were also able to investigate dependen-
cies among classes (i.e., RTI or PI drugs), features (i.e., RTI or PI
resistance mutations) and between classes and features (i.e., inter-
actions between RTI or PI drugs and their respective resistance
mutations).

5.2. Evaluation

We compare our MB-MBC algorithm with what is defined as a
independent classifiers method (sometimes called binary rel-
evance in the literature on multi-label classification) where each
classifier with one class variable is learned independently using
the same HITON algorithm [10,11]. In what follows, we  denote
independent classifiers method as IndepMBs.  Additionally,
we compare MB-MBC with five other MBC  learning algorithms,
namely, Tree-Tree [1], Polytree-Polytree [6], Pure Filter
[4], Pure Wrapper [4], and class-bridge decomposable MBC  (CB-
MBC) [5].

As non Bayesian network-based approaches, we consider for
comparison three different methods: multi-label k-nearest neigh-
bor (ML-kNN) [23], back propagation for multi-label learning
(BP-MLL) [24], and multinomial logistic regression (MNL) [25]. ML-
kNN extends the k-nearest neighbor lazy algorithm to a multi-label
version and uses the maximum a posteriori principle to predict
the label set; BP-MLL is derived from the popular back propagation
algorithm by modifying its error function with a new function that
takes into account the characteristics of multi-label learning; and
MNL uses the multinomial logistic regression on an input set of fea-
ture variables, and returns the class value with the highest posterior
probability. Similar to IndepMBs,  MNL is applied independently to
each class variable, and the results are then concatenated to obtain
the predicted class vector.

All methods were run in Matlab R2010b on a laptop 2.2 GHz  with
6 GB RAM using Windows operating system. The HITON algorithm
was run using Causal Explorer toolkit [26] provided as compiled
Matlab functions, and G2 statistical test was used to evaluate the
conditional independencies between variables with a significance
level  ̨ = 0.05. ML-kNN and BP-MLL were run using the Matlab pack-
ages available at http://lamda.nju.edu.cn/datacode/MLkNN.htm
and http://lamda.nju.edu.cn/datacode/BPMLL.htm, respectively.
For the ML-kNN algorithm, the number of clusters was to set to 4 for
both RTI and PI data sets, and for BP-MLL the number of training
epochs was  set to 20, and the number of hidden neurons was set to 7
for the RTI data set and 14 for the PI data set. For the remaining MBC
learning approaches and CB-MBC, Matlab implementations from [4]
and [5] were used, respectively.

Five 10-fold cross-validation experiments were run for each
learning algorithm for both RTI and PI data sets. Bayesian network-
based methods all start from an empty structure. For MB-MBC and
IndepMBs methods, the five 10-fold cross-validation experiments
were run with five different conditioning set size values, i.e., with
maxCS = 1, 2, 3, 4, 5.

In order to evaluate the performance of the learned MBCs, we
use two  performance metrics [4], namely:

• The mean accuracy over the d class variables:

Accm = 1
d∑ 1

N∑
ı(c′li, cli), (3)
d
i=1

N
l=1

where N is the size of the test set, c′
li

is the Ci class value pre-
dicted by the MBC  for sample l, and cli denotes its corresponding

http://lamda.nju.edu.cn/datacode/MLkNN.htm
http://lamda.nju.edu.cn/datacode/BPMLL.htm
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Table 1
Estimated performance metrics (mean ± std. deviation) for reverse transcriptase
inhibitors data set.

Mean accuracy Global accuracy

MB-MBC

maxCS = 1 0.7108 ± 0.0221 0.1151 ± 0.0466
maxCS = 2 0.7062 ± 0.0191 0.0881 ± 0.0403
maxCS = 3 0.7019 ± 0.0153 0.0780 ± 0.0363
maxCS = 4 0.6995 ± 0.0145 0.0701 ± 0.0336
maxCS = 5 0.6978 ± 0.0106 0.0646 ± 0.0241

IndepMBs

maxCS = 1 0.7331 ± 0.0178 0.0561 ± 0.0199
maxCS = 2 0.7344 ± 0.0143 0.0484 ± 0.0142
maxCS = 3 0.7314 ± 0.0141 0.0398 ± 0.0101
maxCS = 4 0.7316 ± 0.0141 0.0380 ± 0.0098
maxCS = 5 0.7315 ± 0.0141 0.0377 ± 0.0099

Tree-Tree 0.6968 ± 0.0163 0.0364 ± 0.0101
Polytree-Polytree 0.6999 ± 0.0147 0.0299 ± 0.0062
Pure Filter 0.7074 ± 0.0063 0.0240 ± 0.0066
Pure Wrapper 0.7095 ± 0.0040 0.0291 ± 0.0008
CB-MBC 0.7261 ± 0.0113 0.0382 ± 0.0105

•

5

5

m
l

ML-kNN 0.7373 ± 0.0180 0.0729 ± 0.0259
BP-MLL 0.7189 ± 0.0095 0.0428 ± 0.0165
MNL 0.7365 ± 0.0159 0.0595 ± 0.0203

real value. ı(c′
li
, cli) = 1 if the predicted and real class values are

equal, i.e., c′
li
= cli, and 0 otherwise.

The global accuracy over the d-dimensional class variable:

Accg = 1
N

N∑

l=1

ı(c′l, cl) · (4)

In this more strict case, the (d-dim) vector of predicted classes
c′

l
is compared to the vector of real classes cl, so that we  have

ı(c′
l
, cl) = 1 if there is a complete equality between both vectors,

i.e., c′
l
= cl , and 0 otherwise.

.3. Experimental results
.3.1. Reverse transcriptase inhibitors
Table 1 shows the prediction results for the RTI data set with

ean values and standard deviations for each metric and each
earning method. The best result of each metric is written in
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Fig. 2. The graphical structure of the multi-dimensional Bayesian netwo
 in Medicine 57 (2013) 219– 229

bold. ML-kNN presents the best mean accuracy (73%), whereas MB-
MBC outperforms the remaining approaches in the global accuracy
with 11%. Note that the best results for the MB-MBC algorithm are
obtained with maxCS = 1, and as maxCS grows, the overall mean and
global accuracies decrease. We  performed a multiple comparison
of all algorithm performances using the Friedman test followed
by the Tukey–Kramer post hoc test with a significance level of

 ̨ = 0.05. For the mean accuracy, it turns out that (1) ML-kNN and MNL
are significantly better than MB-MBC with maxCS = 4, MB-MBC with
maxCS = 5, Tree-Tree, and Polytree-Polytree;  (2) IndepMBs
with maxCS = 2 are significantly better than MB-MBC with maxCS = 4,
MB-MBC with maxCS = 5, and Tree-Tree; and (3) IndepMBs with
maxCS = 1 is only significantly better than Tree-Tree. For the global
accuracy, it turns out that MB-MBC with maxCS = 1 is significantly
better than IndepMBs with maxCS = 5, Tree-Tree, Polytree-
Polytree, Pure Filter, and Pure Wrapper. For all remaining
algorithms, the differences in classification performance are not
statistically significant.

Using the learned graphical structure of the most accurate MBC,
shown in Fig. 2, we identified and analyzed the different interac-
tions in the RTI data set between drugs belonging to both the NRTI
and NNRTI groups and established resistance mutations.

Firstly, the class subgraph (red arcs) in the RTI network shows
associations between the following NRTI drugs: AZT, ABC, 3TC, TDF
and DDI, which may  reveal the extent of cross-resistance between
each related pair of these drugs. The NRTI drug D4T has a unique
association with the NRTI drug AZT, and two associations with
the NNRTI drugs EFV and NVP. Note that these identified depend-
ence relationships are partially consistent with the previous work
by Deforche et al. [27] that proved the existence of direct influ-
ences between the NRTI drugs AZT, 3TC, ABC, DDI, and D4T, as
well as direct influences between the NNRTI drugs EFV and NVP
and D4T. Deforche et al. also used Bayesian networks to discover
interactions between drugs and resistance mutations within and
between NRTIs and NNRTIs; however, contrary to our approach,

they do not deal with the HIV treatment prediction problem and
they learned just two  Bayesian networks separately for two  NNRTI
drugs, namely EFV and NVP, to investigate resistance pathways
[27].

DDI

FTC

3TC TDF

AZT
DLV

K70R

L74V

K103N

V106M

V179 D Y181C

Y181 V

M184I

Y188C
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 Y188L G190E

G190S

L210W

T215F

T215Y

K219E

rk classifier learnt using reverse transcriptase inhibitors data set.
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Table 2
Estimated performance metrics (mean ± std. deviation) for protease inhibitors data
set.

Mean accuracy Global accuracy

MB-MBC

maxCS = 1 0.8476 ± 0.0072 0.3187 ± 0.0304
maxCS = 2 0.8463 ± 0.0086 0.3123 ± 0.0412
maxCS = 3 0.8449 ± 0.0070 0.3035 ± 0.0298
maxCS = 4 0.8408 ± 0.0072 0.2886 ± 0.0329
maxCS = 5 0.8407 ± 0.0069 0.2904 ± 0.0333

IndepMBs

maxCS = 1 0.8518 ± 0.0051 0.2726 ± 0.0256
maxCS = 2 0.8563 ± 0.0054 0.2231 ± 0.0134
maxCS = 3 0.8594 ± 0.0036 0.2010 ± 0.0047
maxCS = 4 0.8593 ± 0.0038 0.1896 ± 0.0099
maxCS = 5 0.8610 ± 0.0021 0.1912 ± 0.0060

Tree-Tree 0.8399 ± 0.0019 0.1931 ± 0.0256
Polytree-Polytree 0.8432 ± 0.0050 0.1509 ± 0.0220
Pure Filter 0.8527 ± 0.0030 0.0966 ± 0.0157
Pure Wrapper 0.8530 ± 0.0006 0.0998 ± 0.0038
CB-MBC 0.8552 ± 0.0037 0.2224 ± 0.0232
ML-kNN 0.8612 ± 0.0069 0.2279 ± 0.0364
H. Borchani et al. / Artificial Intell

The unique NRTI drug that has no dependency relationships
ith the other drugs is FTC. This can be attributed either to the

act that there is not enough data on this drug since it appears in
nly 205 samples, or to their being no influence between FTC and
ll other drugs in this data set.

In the class subgraph, we also find that no dependency rela-
ionships are detected within the NNRTI group, that is, there is no
ependency relationships between the three NNRTI drugs: NVP,
FV and DLV. In fact, NVP only has associations with two NRTI drugs
4T and DDI, EFV has a unique association with the NRTI drug
4T, whereas DLV has no associations with any other drugs. The

ame finding as for FTC may  also apply to DLV. However, the sec-
nd hypothesis, i.e., absence of influence between DLV and all other
rugs, is more likely since there is a greater frequency of appearance
f DLV in the data set (1990 samples) than FTC.

Secondly, the bridge subgraph (blue arcs) reveals dependency
elationships between RTI drugs and resistance mutations. For the
rst group of NRTIs, we find that each NRTI drug, except TDF,
as directly related to at least one of its established resistance
utations, which confirms the current knowledge on the role of

hese mutations in relation to corresponding NRTI drugs [13]. For
nstance, ABC was associated with mutations L74V and Y115F; D4T

as associated with mutations M41L and D67N; FTC was associated
ith mutations K70R and T215F/Y; and DDI was  associated with
utation L74V. Additionally, AZT and 3TC were directly connected

o mutations K70R and 184V, respectively. This result was also con-
rmed in recent work by Theys et al. [28], where the K70R and 184V
utations were identified as two major resistance mutations to the

ombination of AZT and 3TC.
In general, two basic types of NRTI-resistance mechanism are

nown for HIV-1. The first resistance mechanism is exclusion and
nvolves enhanced discrimination at the time the NRTI is incor-
orated. One example is the M184-V/I mutation that reduces the

ncorporation of 3TC and FTC by steric hindrance. The second mech-
nism is excision and involves the selective removal of NRTI from
he end of the viral DNA after it has been incorporated by RT. This is,
or instance, the excision mechanism involved in AZT resistance and
s achieved through the accumulation of a specific set of mutations
ncluding M41L, D67N, K70R, L210W, T215F, and K219E/Q. Inter-
stingly, the same set of mutations is also selected in viruses from
atients under D4T therapy and are commonly designated as TAMs
i.e., thymidine analog resistance mutations) [29]. Cross-resistance
ue to the presence of TAMs affects all NRTI drugs to some extent
13,30].

Dependency relationships identified for NNRTI group are also
onsistent with current knowledge [27,13] as EFV and DLV
ere directly associated with the established resistance mutation
103N, and NVP was associated with G190A.

The bridge subgraph indicated that all NRTI drugs were directly
ssociated with some NNRTI resistance mutations, such as K103N
associated with AZT, FTC, DDI and TDF), Y181C (associated with
ZT and FTC), P225H (associated with D4T and 3TC), V108I, V179D
nd G190S (associated, respectively, with ABC, AZT and FTC). Sim-
larly, all NNRTI drugs were directly associated with some NRTI
esistance mutations, such as M41L, D67N, T69D and F77L (associ-
ted with EFV), K70R and M184V (associated with NVP), and L74V
associated with DLV). This certainly reveals the extent of inter-
roup interactions between NRTIs and NNRTIs.

Finally, the feature subgraph (green arcs) allowed us to iden-
ify interactions between NRTI and NNRTI resistance mutations.
he mutations with the greatest number of dependence relation-
hips were mutations D67N (4 connections: M41L, T69D, A98G,

219Q), T69D (4 connections: M41L, D67N, A98G, T215F), K70R

4 connections: L74V, M184V, T215F, K219Q) and K103N (4 con-
ections: V179D, M184V, Y188H, G190G). Notice that there are 13
esistance mutations (at the bottom) that do not interact with drugs
BP-MLL 0.8080 ± 0.0283 0.1473 ± 0.0328
MNL 0.8682 ± 0.0051 0.2551 ± 0.0174

or features. A possible explanation is the lack of instances of such
mutations and/or their low interactions with the other variables in
the data set.

5.3.2. Protease inhibitors
Table 2 presents the prediction results for the PI data set with

mean values and standard deviations for each metric and each
learning method. The best result of each metric is written in
bold. MNL presents the best mean accuracy (86%), whereas MB-
MBC induces the best global accuracy (31%). As with the RTI data
set, we ran a multiple comparison of all algorithm performances
using the Friedman test followed by the Tukey–Kramer post hoc
test with a significance level of  ̨ = 0.05. For the mean accuracy,
it turns out that (1) MNL is significantly better than MB-MBC with
maxCS = 3, MB-MBC with maxCS = 4, MB-MBC with maxCS = 5, Tree-
Tree, Polytree-Polytree and BP-MLL; (2) ML-kNN and IndepMBs
with maxCS = 5 are significantly better than MB-MBC with maxCS = 4,
MB-MBC maxCS = 5, Tree-Tree and BP-MLL; and (3) IndepMBs with
maxCS = 3 and IndepMBs with maxCS = 4 are only significantly better
than BP-MLL. For the global accuracy, it turns out that (1) MB-MBC
with maxCS = 1, MB-MBC maxCS = 2, and MB-MBC with maxCS = 3 are
significantly better than Polytree-Polytree,  Pure Filter, Pure
Wrapper, and BP-MLL; and (2) MB-MBC with maxCS = 4 and MB-MBC
with maxCS = 5 are only significantly better than Pure Filter and
Pure Wrapper. For all remaining algorithms, the differences in
classification performance are not statistically significant.

Note finally that the performance results are better over the PI
than the RTI data set; this can be explained by the fact that the
number of classes (8 in PI and 10 in RTI) and the number of possible
class combinations (256 in PI and 1024 in RTI) are lower in PI than
in the RTI data set.

In addition, we examined the graphical structure of the most
accurate learned MBC, shown in Fig. 3, in order to evaluate the
usefulness of the proposed learning algorithm for identifying the
different interactions between drugs and mutations in the HIV-1
protease data set.

Firstly, the learned network, specifically the class subgraph
(red arcs), shows dependency relationships between the follow-
ing drugs IDV, ATV, NFV, LPV and SQV, which may reveal the extent
of cross-resistance between each related pair of these drugs. Notice

that, for IDV, which has associations with LPV, ATV and NFV, Rhee
et al. [31] recently proved in their PI cross-resistance study that
IDV and LPV are among the most strongly correlated PIs. In fact,
these two drugs had a correlation coefficient value equal to 0.57
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Fig. 3. The graphical structure of the multi-dimensional Bay

31]. Similarly, based on their study, IDV and ATV, ATV and NFV as
ell as NFV and IDV had high correlation coefficients. Neverthe-

ess, correlation coefficients between LPV and both drugs NFV and
QV were lower, equal to 0.14 and 0.05, respectively. This goes to
onfirm then that the dependency relationships among the above
I drugs identified in the network are consistent with Rhee et al.’s
tudy [31].

However, our results were less conclusive for other drugs (FPV,
RV and TPV) since we did not find any associations between these

hree drugs and between these and the other drugs. A possible
xplanation is the lack of available data, as there were fewer than
0 samples for each of these drugs. This may  be due to the fact that
RV and TPV, considered as new-generation PI drugs, have differ-
nt profiles to the other PI drugs, and hence they are mainly used in
escue therapies for PI-experienced patients displaying failure on
revious PI drugs [32,33]. On this ground, we would require a larger
nd more diverse data set for future analyses in order to investigate
ossible interactions between these drugs and the other network
ariables.

Concerning relationships between PI drugs and mutations, visu-
lized by the bridge subgraph (blue arcs), let us first discuss the
wo possible types of mutations, major and minor, and then how
heir associations with PI drugs have been previously interpreted
n the literature in the Bayesian network context. As Defroche et al.
34,35] found, a major mutation actually plays a key role in drug
esistance, and thus should have an unconditional dependency
n the drug. This is indicated in the network graphical structure
y the presence of an arc between the major mutation and the
rug.

In contrast, a minor mutation further increases drug resistance
ostly only in the presence of major mutations. Thus, it is expected
o be conditionally independent of the drug but dependent on other
ajor resistance mutations. This is indicated in the network by the

resence of an arc between major or minor mutations instead of
n arc between the minor mutation and the drug node. Even so,
 network classifier learnt using protease inhibitors data set.

as claimed by Defroche et al. [34], a minor mutation may still be
connected to the drug.

Notice that the conditional independencies revealed in our
bridge subgraph in Fig. 3 are largely consistent with the above def-
initions, since most of the major mutations are directly connected
to one or more drug nodes. For instance, on the left, D30N (which
is defined in [13] as a major mutation of NFV) was  not only asso-
ciated with NFV but also with IDV, LPV and SQV, again attesting to
the extent of cross-resistance between these drugs. Similarly, on
the right, L76V (which is defined in [13] as a major mutation of
LPV) was  directly associated with LPV, SQV and NFV. At the center
bottom of the network, G48V (major mutation of SQV [13]) was
directly associated with SQV and NFV. L90M (another major muta-
tion of SQV [13]) was also directly associated with SQV. I47A, I50L,
V82A, V82L, defined in [13] as major mutations of LPV, ATV, IDV and
TPV, respectively, were directly associated with the right drugs in
the MBC  graphical structure.

A good number of minor mutations were also directly connected
to drug nodes. L10I and L33F seem to be the main minor mutations:
they have the highest number of connections (3) with PI drugs, fol-
lowed by the minor mutations L10F and I54V. L10I was  associated
with IDV, NFV and SQV; L33F with LPV, IDV and NFV; L10F with
ATV and IDV, and I54V with LPV and NFV. Additionally, consistently
with the latest knowledge reported in [13], more minor mutations,
namely V82A/T, I84V, N88D/S, were associated directly with NFV.
Also in agreement with [13], the minor mutation K20R was associ-
ated with LPV, and the minor mutation I84V was  associated with
SQV.

From the feature subgraph (green arcs) of the learned MBC,
we were able to identify interactions among different protease
mutations. The mutations with the greatest number of dependency

relationships were L10I (21 connections: L10F, L10R, K20R, D30N,
M46L, M46I, K43T, G48V, I50V, F53L, I54A, I54T, I62V, A71I, A71V,
G73S, V82A, I84V, I85V, L90M, I93L), L10F (15 connections: L10I,
L10V, V11I, K20T, L33F, M46I, G48V, I54L, I54V, L63P, I84V, I85V,
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88D, L89V, L90M), M46I (8 connections: L10F, L10I, K20I, V32I,
46L, I64L, V77I, N88S), and 7 connections for L33F (L10F, K43T,
46L, I50V, I54L, A71L, V82L) and G48V (L10F, L10I, L24I, D30N,

54A, I54S, V77I).
Note that, only three of the 19 mutations that present no inter-

ctions with other drugs or features (at the bottom), are major ones,
amely T74P, V82F and N83D. As with RTIs, a possible explanation

s the low number of occurrences of these mutations and/or their
ow interactions with the other variables in the data set.

In summary, for both RTI and PI data sets, the identified depend-
nce relationships were proved to be consistent with the current
nowledge, and were also verified by the third author, who is a
edical doctor specialist in the HIV problem. However, for the vari-

bles (inhibitors or resistance mutations) that do not present any
nteractions with the rest of variables, larger and more diverse RTI
nd PI data sets need to be considered, and additional analyses need
o be performed to thoroughly prove the current findings.
Finally, the computation times consumed by each algorithm on
TI and PI data sets are plotted in Figs. 4 and 5, respectively. As
bserved, ML-kNN is always the fastest, followed by MNL and the fil-
er approaches, namely, Pure Filter and Polytree-Polytree.
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lgorithm on reverse transcriptase inhibitors data set.

For RTI data set, IndepMBs is also quite efficient and requires less
computation time than MB-MBC. However, for PI data set, including
a larger number of variables (82 variables instead of 48 variables
in RTI data set), IndepMBs with maxCS = 1 takes a similar computa-
tion time than MB-MBC with maxCS = 1, but more computation times
than MB-MBC for maxCS = {2, 3, 4, 5}. Note here that, for both MB-
MBC and IndepMBs,  the consumed computation times increase as
maxCS grows, because the number of executed statistical indepen-
dence tests increases as maxCS grows. This is mainly noticed over
PI data set that contains a larger number of variables. Moreover,
as pointed out by Aliferis et al. [11], as maxCS grows, the overall
power decreases. This is also verified in our case, especially for the
global accuracy values in Tables 1 and 2, that drop for both MB-
MBC and IndepMBs as maxCS grows. Therefore, using smaller maxCS
avoids excessive computations while producing better predictive
performance.

In addition, as shown in Figs. 4 and 5, BP-MLL consumes more

computation times than ML-kNN, MNL and the filter approaches
mainly due to its complex error function which needs to
be optimized through an iterative learning process [24]. CB-
MBC, Tree-Tree and Pure Wrapper take always the longest
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omputation times comparing to the rest of the methods since they
re all based on wrapper approaches that involve time-consuming
PE  computations.
Tree-Tree is the slowest over RTI data set, whereas CB-MBC

s the slowest over PI data set; and this can be explained by the
ifferent learning strategies behind both algorithms. In fact, the

earning process of the bridge subgraph for Tree-Tree algorithm
equires, in each iteration, an evaluation of the global accuracy of
ach possible MBC  candidate using MPE  computations. These com-
utations mainly depend on the number of class variables and their
alue combinations; so that, as the number of class variables grows,
ree-Tree running time increases. In our case, PI data set contains

 binary class variables, i.e., 256 class value combinations, however,
TI data set contains 10 binary class variables, i.e., 1024 class value
ombinations, which increases considerably Tree-Tree computa-
ion time over the RTI data set. The same observation applies as
ell for Pure Wrapper that iteratively evaluates and selects the
BC candidates using MPE  computations.
CB-MBC is based on a different learning wrapper strategy. It first

earns an initial bridge subgraph by building a selective naive Bayes
or each class variable, defines the feature subgraph by randomly
electing arcs between features and adding them if they improve
he accuracy, then iteratively updates MBC  subgraphs as long as the
umber of maximal connected components is greater than one and
here is an accuracy improvement. The first step in CB-MBC depends
n the number of class and feature variables, and may  require the
ongest computation time during CB-MBC learning process. In fact,
or each class variable, it iterates over all feature variables to select,
n each iteration, the feature that improves the accuracy the most.
his, indeed, explains the highest computation time consumed by
B-MBC over PI data set (including 82 variables) compared to the
ne consumed over RTI data set (including only 48 variables).

Note finally that, being defined as a filter constraint-based
pproach, MB-MBC requires less computational time than all exist-
ng wrapper algorithms, since its learning process is based on
tatistical independence tests instead of accuracy metrics. Gener-
lly speaking, MNL, ML-kNN and the filter approaches require shorter
omputation times, whereas the wrapper approaches always take
onger.

. Conclusion

This paper proposed a novel MBC  learning approach using
arkov blankets, then presented its application to the HIV-1

everse transcriptase and protease inhibitors prediction problem.
reliminary experimental results on HIV-1 Stanford data sets are
romising compared with state-of-the-art MBC  learning algo-
ithms. As a constraint-based approach, MB-MBC ensured, through
he induced MBC  graphical structures, an accurate identification of
he probabilistic dependence relationships among RTI and PI drugs
nd their corresponding resistance mutations, which was largely
onsistent with the latest knowledge.

It is important to emphasize that, though only applied to the
IV-1 problem, our proposed approach is general and can be
pplied to additional medical or biological multi-dimensional clas-
ification problems. For instance, it can be applied to coronary heart
isease [36] to predict heart wall motion for the 16 segments of the
eart (i.e., 16 class variables), or to the benchmark Medical data
et [37] to assign clinical text reports to a subset of 45 diseases.
nother example is the biological Yeast data set [38] where genes

n the yeast Saccharomyces cerevisiae have to be associated with

ne or more out of 14 biological functions. Generally speaking, our
pproach can be applied to any multi-dimensional classification
roblem where an instance has to be assigned to more than one
lass variable.
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Note however that, our approach has two  main limitations. First,
it cannot deal directly with continuous variables and requires a
discretization pre-processing step before its application to contin-
uous data. So, in the future, it will be an interesting issue to extend
MB-MBC to allow the combination of both discrete and continuous
predictor variables. Second, our approach cannot handle instances
with missing values. To overcome this limitation, we have to per-
form missing values imputation before using MB-MBC, or adapt for
example the more sophisticated Expectation-Maximization algo-
rithm [39] to enable parameter estimations or structure learning
from incomplete data [40].

In the future, we also intend to carry out a more extensive exper-
imental study using additional synthetic and real data sets in order
to prove the merits of our approach. Furthermore, since the class
distributions in both the RTI and PI data sets were imbalanced, it
would be worthwhile to extend our approach to deal with the chal-
lenging task of imbalanced multi-dimensional data sets. This might
improve learning and classification performance results.

Finally, another line for future research is to enable our approach
to adapt the learned MBCs over time as new incoming data become
available. As regards non-stationary domains, this may  also require
the definition of concept drift for the multi-dimensional stream
classification problem, as well as the development of appropriate
methods to monitor concept drift and adjust the current models.

Acknowledgements

This work has been supported by projects TIN2010-20900-C04-
04, Consolider Ingenio 2010-CSD2007-00018, Cajal Blue Brain, and
Dynamo (FONCICYT, European Union and Mexico). Hanen Borchani
is supported by an FPI fellowship from the Spanish Ministry of
Economy and Competitiveness (BES-2008-003901).

References

[1] van der Gaag LC, de Waal PR. Multi-dimensional Bayesian network classifiers.
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fiers for multidimensional classification. In: Walsh T, NICTA, University of New
South Waleseditors, editors. Twenty-second international joint conference on
artificial intelligence. AAAI Press; 2011. p. 2192–7.

[9] Aliferis CF, Tsamardinos I, Statnikov A. HITON: A novel Markov blanket algo-
rithm for optimal variable selection. In: Proceedings of the American Medical
Informatics Association annual symposium. American Medical Informatics
Association; 2003. p. 21–5.

10] Aliferis CF, Statnikov A, Tsamardinos I, Mani S, Koutsoukos XD. Local causal
and Markov blanket induction for causal discovery and feature selection for
classification. Part I: Algorithms and empirical evaluation. Journal of Machine

Learning Research 2010;11:171–234.

11] Aliferis CF, Statnikov A, Tsamardinos I, Mani S, Koutsoukos XD. Local causal and
Markov blanket induction for causal discovery and feature selection for classi-
fication. Part II: Analysis and extensions. Journal of Machine Learning Research
2010;11:235–84.



igence

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

H. Borchani et al. / Artificial Intell

12] Rhee SY, Gonzales MJ,  Kantor R, Betts J, Ravela J, Shafer RW.  Human immuno-
deficiency virus reverse transcriptase and protease sequence database. Nucleic
Acids Research 2003;31(1):298–303.

13] Johnson VA, Brun-Vézinet F, Clotet B, Günthard HF, Kuritzkes DR, Pillay D, et al.
Update of the drug resistance mutations in HIV-1: December 2010. Interna-
tional AIDS Society-USA, Topics in HIV Medicine 2010;18(5):156–63.

14] Pearl J. Probabilistic reasoning in intelligent systems: networks of plausible
inference. San Francisco, CA, USA: Morgan Kaufmann Publishers; 1988.

15] Koller D, Friedman N. Probabilistic graphical models. Principles and techniques.
Cambridge, MA,  USA: MIT  Press; 2009.

16] Pearl J, Verma TS. Equivalence and synthesis of causal models. In: Bonissone
PP,  Henrion M,  Kanal LN, Lemmer JF, editors. Sixth annual conference on uncer-
tainty in artificial intelligence. Cambridge, MA,  USA: Elsevier; 1990. p. 220–7.

17] Chow C, Liu C. Approximating discrete probability distributions with depend-
ence trees. IEEE Transactions on Information Theory 1968;14(3):462–7.

18] Rebane G, Pearl J. The recovery of causal polytrees from statistical data. In:
Kanal LN, Levitt TS, Lemmer JF, editors. Third annual conference on uncertainty
in  artificial intelligence. Washington, USA: Elsevier; 1987. p. 222–8.

19] Zaragoza JH, Sucar LE, Morales EF. A two-step method to learn multidimen-
sional Bayesian network classifiers based on mutual information measures. In:
Murray RC, McCarthy PM,  editors. Twenty-fourth international Florida Artifi-
cial Intelligence Research Society Conference. Palm Beach, FL, USA: AAAI Press;
2011. p. 644–9.

20] Spirtes P, Glymour C, Scheines R. Causation, prediction, and search. Cambridge,
MA,  USA: MIT  Press; 2000.

21] Altmann A, Beerenwinkel N, Sing T, Savenkov I, Doumer M,  Kaiser R, et al.
Improved prediction of response to antiretroviral combination therapy using
the genetic barrier to drug resistance. Antiviral Therapy 2007;12(2):169–78.

22] von Kleist M,  Menz S, Huisinga W.  Drug-class specific impact of antivirals
on  the reproductive capacity of HIV. PLoS Computational Biology 2010;6(3),
http://dx.doi.org/10.1371/journal.pcbi.1000720.

23] Zhang ML, Zhou ZH. ML-kNN: a lazy learning approach to multi-label learning.
Pattern Recognition 2007;40(7):2038–48.

24] Zhang ML,  Zhou ZH. Multi-label neural networks with applications to functional
genomics and text categorization. IEEE Transactions on Knowledge and Data
Engineering 2006;18(10):1338–51.

25] Greene WH.  Econometric analysis. Upper Saddle River, NJ, USA: Prentice Hall;
1997.

26] Aliferis CF, Tsamardinos I, Statnikov A. Causal explorer: a probabilistic net-

work learning toolkit for discovery. Available from: discover.mc.vanderbilt.
edu/discover/public/causal explorer/ [accessed 10.12.12].

27] Deforche K, Camacho R, Grossman Z, Soares MA,  Van Laethem K, Katzenstein
DA, et al. Bayesian network analyses of resistance pathways against efavirenz
and nevirapine. AIDS 2008;22:2107–15.

[

 in Medicine 57 (2013) 219– 229 229

28] Theys K, Deforche K, Libin P, Camacho R, Van Laethem K,  Vandamme AM.
Resistance pathways of human immunodeficiency virus type 1 against the
combination of zidovudine and lamivudine. Journal of General Virology
2010;91(8):1898–908.

29] Sarafianos SG, Marchand B, Das K, Himmel DM,  Parniak MA,  Hughes SH,
et  al. Structure and function of HIV-1 reverse transcriptase: molecular
mechanisms of polymerization and inhibition. Journal of Molecular Biology
2009;385(3):693–713.

30] Whitcomb JM,  Parkin NT, Chappey C, Hellmann NS, Petropoulos CJ. Broad
nucleoside reverse-transcriptase inhibitor cross-resistance in human immu-
nodeficiency virus type 1 clinical isolates. Journal of Infectious Diseases
2003;188(7):992–1000.

31] Rhee SY, Taylor J, Fessel WJ,  Kaufman D, Towner W,  Troia P, et al. HIV-1 protease
mutations and protease inhibitor cross-resistance. Antimicrobial Agents and
Chemotherapy 2010;54(10):4253–61.

32] Lambert-Niclot S, Flandre P, Canestri A, Peytavin G, Blanc C, Agher R, et al.
Factors associated with the selection of mutations conferring resistance to
protease inhibitors (PIs) in PI-experienced patients displaying treatment
failure on darunavir. Antimicrobial Agents and Chemotherapy 2008;52(2):
491–6.

33] Marcelin AG, Masquelier B, Descamps D, Izopet J, Charpentier C, Alloui
C,  et al. Tipranavir–ritonavir genotypic resistance score in protease
inhibitor-experienced patients. Antimicrobial Agents and Chemotherapy
2008;52(9):3237–43.

34] Deforche K, Silander T, Camacho R, Grossman Z, Soares MA,  Van  Laethem K,
et  al. Analysis of HIV-1 pol sequences using Bayesian networks: implications
for drug resistance. Bioinformatics 2006;22(24):2975–9.

35] Deforche K, Camacho R, Grossman Z, Silander T, Soares MA,  Moreau Y, et al.
Bayesian network analysis of resistance pathways against HIV-1 protease
inhibitors. Infection Genetics and Evolution 2007;7:382–90.

36] Qazi M,  Fung G, Krishnan S, Rosales R, Steck H, Rao R, et al. Automated heart
wall motion abnormality detection from ultrasound images using Bayesian
networks. In: Veloso MM,  editor. Twentieth international joint conference on
artificial intelligence. Hyderabad, India: AAAI Press; 2007. p. 519–25.

37] Medical Dataset Mulan: a Java library for multi-label learning. Datasets. Avail-
able from: http://mulan.sourceforge.net/datasets.html [accessed 10.12.12].

38] Elisseeff A, Weston J. A kernel method for multi-labelled classification.
Advances in Neural Information Processing Systems 2002;14:681–7.

39] Dempster AP, Laird NM,  Rubin DB. Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Society 1977;39:
1–38.

40] Friedman N. The Bayesian structural EM algorithm. In: Cooper GF, Moral S, edit-
ors.  Fourteenth conference on uncertainty in artificial intelligence. Madison,
WI,  USA: Morgan Kaufmann Publishers; 1998. p. 129–38.

dx.doi.org/10.1371/journal.pcbi.1000720
http://discover.mc.vanderbilt.edu/discover/public/causal_explorer/
http://discover.mc.vanderbilt.edu/discover/public/causal_explorer/
http://mulan.sourceforge.net/datasets.html

	Predicting human immunodeficiency virus inhibitors using multi-dimensional Bayesian network classifiers
	1 Introduction
	2 Background
	3 Multi-dimensional Bayesian network classifiers
	4 Learning multi-dimensional Bayesian network classifiers using Markov blankets
	5 Experimental study
	5.1 Data sets
	5.1.1 Reverse transcriptase inhibitors
	5.1.2 Protease inhibitors

	5.2 Evaluation
	5.3 Experimental results
	5.3.1 Reverse transcriptase inhibitors
	5.3.2 Protease inhibitors


	6 Conclusion
	Acknowledgements
	References


