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Summary DNA microarray experiments generating thousands of gene expression
measurements, are used to collect information from tissue and cell samples regarding
gene expression differences that could be useful for diagnosis disease, distinction of
the specific tumor type, etc. One important application of gene expression microarray
data is the classification of samples into known categories.

As DNA microarray technology measures the gene expression en masse, this has
resulted in data with the number of features (genes) far exceeding the number of
samples. As the predictive accuracy of supervised classifiers that try to discriminate
between the classes of the problem decays with the existence of irrelevant and
redundant features, the necessity of a dimensionality reduction process is essential.
We propose the application of a gene selection process, which also enables the biology
researcher to focus on promising gene candidates that actively contribute to classi-
fication in these large scale microarrays.

Two basic approaches for feature selection appear in machine learning and pattern
recognition literature: the filter and wrapper techniques. Filter procedures are used in
most of the works in the area of DNA microarrays. In this work, a comparison between a
groupofdifferentfiltermetricsandawrapper sequential searchprocedure is carriedout.
The comparison is performed in two well-known DNA microarray datasets by the use of
four classic supervised classifiers. The study is carried out over the original-continuous
andthree-intervalsdiscretizedgeneexpressiondata.Whiletwowell-knownfiltermetrics
are proposed for continuous data, four classic filter measures are used over discretized
data. The same wrapper approach is used for both continuous and discretized data.

The application of filter and wrapper gene selection procedures leads to considerably
better accuracy results in comparison to the non-gene selection approach, coupled with
interesting and notable dimensionality reductions. Although the wrapper approach
mainly shows a more accurate behavior than filter metrics, this improvement is coupled
withconsiderable computer-load necessities.Wenote that mostof the genes selected by
proposedfilterandwrapperproceduresindiscreteandcontinuousmicroarraydataappear
inthelistsofrelevant-informativegenesdetectedbypreviousstudiesoverthesedatasets.

The aim of this work is to make contributions in the field of the gene selection task in
DNA microarray datasets. By an extensive comparison with more popular filter
techniques, we would like to make contributions in the expansion and study of the
wrapper approach in this type of domains.
� 2004 Published by Elsevier Ltd.
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1. Introduction

The year 2001 marked the emergent bioinformatics
discipline with the release of the human genome
working draft [1]. This achievement has revolutio-
nized the field of genomics, and within it, producing
a spectacular development of the novel DNA micro-
array technology [2—4]. Instead of investigating one
or two specific genes in an organism (as done until
nowadays), DNA microarray technology allows for
the simultaneous monitoring and measurement of
thousands of gene expression activation levels in a
single experiment; in this way, researchers can view
and study the expression of thousands of genes one
at a time.

DNA microarray examples are generated by a
hybridization of the mRNA obtained from the stu-
died tissue or blood to the cDNA (in the case of
spotted array) and the oligonucleotides of DNA (in
the case of Affymetrix chips, on the surface of a
chip-array). The arrays are then scanned, producing
a fluorescent image: this fluorescent intensity at
any particular probe location indicates the relative
concentration of the mRNA in the sample (tissue or
blood). Microarray data analysis begins with the
scanned image of these fluorescent intensities [4].

The DNA microarray technology is providing
unprecedent discovery opportunities and reshaping
biomedical sciences. Microarray technology opens
up the possibility of obtaining answers for old and
new biological questions that, before the appear-
ance of this technology, could not be dreamt of. A
systematic and computational analysis of microar-
ray datasets is an interesting way to study and
understand many aspects of the underlying biologi-
cal processes. Parallel to these technological
advances has been the development of machine
learning methods to analyze and understand the
data generated by this new kind of experiments
[5,6]. The analysis frequently involves class predic-
tion (supervised classification), regression, feature
selection (in this case, gene selection), outlier
detection, principal component analysis, discover-
ing of gene relationships and cluster analysis (unsu-
pervised classification) [7].

For most biological problems, information about
the class (or type) of each cell-line exists: reflecting
whether the tissue is diseased or healthy, the dis-
tinction of the specific tumor type, etc. By means of
this interesting class information, the DNA micro-
array analysis can be formulated as a classic super-
vised classification task, classifying samples into
categories. Our work is focused on class prediction
for DNA microarray problems: starting from a set of
cell-lines for which the classification (the class
type) is known, we tackle the construction of a

predictive model which discriminates among the
different categories of the problem. Our objective
is to construct accurate and simple classification
models. In our study, we use four well-known super-
vised classification algorithms with completely dif-
ferent approaches to learning and a long tradition in
different classification tasks: IB1, naive-Bayes, C4.5
and CN2.

From a pattern recognition point of view, biolo-
gical samples can be seen as objects, and genes as
features to describe each object. In a typical micro-
array dataset, the number of samples is small
(usually less than 100), but the number of genes
measured is of magnitude of several thousands, far
exceeding the number of samples, with many of the
genes being either correlated or irrelevant. More-
over, for diagnostic purposes it is important to find
small subsets of genes that are sufficiently informa-
tive to distinguish between cells of different types
[8]. In this way, the biology researcher can focus
attention on a manageable subset of promising gene
candidates that actively contribute to classification
of cell-lines [9]. All the studies also show that most
genes measured in a DNA microarray experiment are
not relevant for an accurate distinction among
different classes of the problem [3], and scientists
in the field are aware that simple classifiers with
few genes (less than 15—20) achieve better accura-
cies [10,11]. To avoid this ‘curse of dimensionality’
[12], feature selection plays a crucial role in DNA
microarray analysis. It is well known that the accu-
racy of supervised classification methods is not
monotonic regarding the inclusion of features
[13]: irrelevant or redundant attributes, depending
on the specific characteristics of the classifier, may
degrade the accuracy of the classification model. In
this sense, given the entire set of genes, we aim to
find the gene subset with the best predictive accu-
racy for a certain classifier. This problem is known in
the machine learning community as the feature
subset selection (FSS) problem (in our case, gene
selection) and it has been tackled with success in so
many different types of problems [14].

The FSS task has received much attention in the
classification literature, where two basic approaches
appear to tackle the problem:

� ‘Filter’ methods evaluate the goodness of the
proposed feature subset looking only at the intrin-
sic characteristics of the data, based on the
relation of each single gene with the class label
by the calculation of simple statistics computed
from the empirical distribution [15]. The most
common way is to rank the features in terms of
the values of an univariate scoring metric: then,
the d features with the highest score are chosen
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to build the classifier. There is a large variety of
different measures such as probabilistic or dis-
tance metrics, measures inspired on the informa-
tion theory, etc. The filter approach is the mostly
used FSS method in microarray literature for gene
selection [16—18].

� In the ‘wrapper’ approach [13] a search is con-
ducted in the space of genes, evaluating the
goodness of each found gene subset by the esti-
mation of the accuracy percentage of the specific
classifier to be used, training the classifier only
with the found genes. The wrapper approach,
which is very popular in machine learning appli-
cations, is not extensively used in DNA microarray
tasks, and few works in the field make use of it
[19].

In this work, a comparison among a group of
different filter metrics and a wrapper sequential
search procedure is carried out. The comparison is
performed in two well-known DNA microarray
datasets involved in the diagnosis of cancer such
as Colon [8] and Leukemia [3]. The study is carried
out over the original-continuous and three-inter-
vals discretized gene expression data. While
two well-known filter metrics are proposed for
continuous data, four classic filter measures are
used over discretized data. The same wrapper
approach is used for both continuous and discre-
tized data.

The aim of this work is to make contributions in
the field of the gene selection task in microarray
datasets. We would also like to make contributions
in the expansion and study of the wrapper approach
in this type of domains, while an extensive and deep
comparison with more popular filter techniques is
carried out.

The rest of the paper is organized as follows. The
supervised classifiers and the gene selection filter
and wrapper approaches included in the study are
presented in the next section. The studied micro-
array datasets and experimental results for both
continuous and discretized data are shown in Sec-
tion 3. Section 4 surveys related supervised class
prediction works in DNA microarray domains. We
finish the work with a brief summary, presenting
ways of future research in the field.

2. Learning supervised classifiers by
feature subset selection

2.1. Supervised classifiers

In our study, four well-known machine learning
supervised classifiers, with completely different

approaches to learning, are applied to perform
the class prediction in microarray datasets. All
the algorithms are selected due to their simplicity
and their long standing tradition in classification
studies [20]. Apart from the prediction accuracy,
the explanation ability of the classifier is also very
important. To support the diagnostic process in
everyday practice, physicians and biologists need
a classifier that is able to explain its decisions, as
such transparent decisions are much more accep-
table by them. For this reason, other promising
techniques, such as neural nets, are not included
among our classification models due to their low
human-transparency [21,22].

The IB1 [23] is a case-based, nearest-neighbor (K-
NN) classifier. To classify a new test sample, all
training instances are stored and the nearest train-
ing instance regarding the test instance is found: its
class is retrieved to predict this as the class of the
test instance. To measure the distance between
two samples, the Euclidean distance measure is
used for continuous values and the overlap metric
for discrete ones.

The naive-Bayes (NB) rule [24] uses the Bayes
theorem to predict the class for each case, assum-
ing that the predictive genes are independent given
the category. To classify a new sample character-
ized by n genes x ¼ ðx1; x2; . . . ; xnÞ, the NB classifier
applies the following rule:

cNB ¼ arg max
cj2C

pðcjÞ
Yn

i¼1

pðxijcjÞ

where cNB denotes the class label predicted by the
NB classifier and the possible classes of the problem
are grouped in C ¼ fc1; . . . ; clg. The probability for
discrete features is estimated from data using max-
imum likelihood estimation and applying the Laplace
correction. A normal distribution is assumed to
estimate the class conditional densities for predic-
tive genes. Despite its simplicity, the NB rule has
obtained better results in comparison to more com-
plex algorithms in many domains.

The C4.5 [25] represents a classification model by
a decision tree. The tree is constructed in a top-
down way, dividing the training set and beginning
with the selection of the best variable in the root of
the tree. The selection of the best feature is usually
based on metrics inspired on the information the-
ory. A descendant of the root node is then created
for each possible value of the selected feature, and
the training samples are sorted to the appropriate
descendant node. The entire process is then recur-
sively repeated using the training cases associated
with each descendant node to select the best fea-
ture to test at that point in the tree. The process
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stops at each node of the tree when all cases in that
point of the tree belong to the same category or the
best split of the node does not surpass a fixed chi-
square significancy threshold. Then, the tree is
simplified by a pruning mechanism to avoid over-
specialization.

The CN2 [26] algorithm represents a classifica-
tion model by a set of IF—THEN rules, where the
THEN part represents the category predicted for
the samples that match the conditions of the IF
part. CN2 is also based on the information theory,
using a significance metric to improve rule quality
and to avoid overspecialization of the results.
When a significant rule is found, CN2 removes those
samples it covers from the training set and adds the
rule to the end of the rule list. To use induced rules
to classify test examples, CN2 tries each rule in
order until one is found whose conditions are
satisfied by the example being classified. If no
induced rules are satisfied, the final default rule
assigns the most common class in the training set to
the test case.

Even though a decision tree can be converted
into a set of IF—THEN rules, while CN2 rules are
independent to each other, C4.5 rules are depen-
dent on each other. It must be noted that C4.5 and
CN2, on their own, can discard some of the pre-
sented features to build their classification models.
On the other hand, IB1 and NB include all the
presented variables in their classification models.

Due to the low number of samples of microarray
datasets, the leave-one-out cross-validation
(LOOCV) procedure [27], a special case of k-fold
cross-validation, is used in this work to estimate the
accuracy of built classifiers. In the LOOCV techni-
que, the supervised algorithm is run N times, where
N is the number of examples of the dataset. Each
time, N 
 1 examples are used for training and the
remaining example is used for testing, where each
example is used only once for testing. The LOOCV
estimate of accuracy is the overall number of cor-
rect classifications during testing, divided by N,
the number of examples in the dataset. As the
LOOCV estimate is based on the binomial distribu-
tion (error versus success), its standard deviation is
calculated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðloocvaccÞ � ð100 
 loocvaccÞ

N 
 1

r

where loocvacc is the LOOCV accuracy estimate
percentage and N the number of samples of the
dataset. LOOCV estimation is almost unbiased from
the real accuracy [27] and it is considered as the
most reliable estimator. However, its computa-
tional cost can only be assumed, as in our case in

microarray datasets, when few samples are pre-
sented.

2.2. Selection of genes: the feature subset
selection process

The basic problem of supervised classification is
concerned with the induction of a model that clas-
sifies a given object into one of several known
categories. In order to induce the classification
model, each object is described by a pattern of n
features. Here, the community of researchers has
formulated the following question: Are all of these
n descriptive features useful for learning the ‘clas-
sification rule’? On trying to respond to this ques-
tion, we come up with the feature subset selection
[14,28] approach which can be reformulated as
follows: given a set of candidate features, select
the ‘best’ subset in a classification problem. In our
case, the ‘best’ subset will be the one with the best
predictive accuracy.

Most of the supervised learning algorithms per-
form rather poorly when faced with many irrelevant
or redundant (depending on the specific character-
istics of the classifier) features. In this way, the FSS
proposes additional methods to reduce the number
of features so as to improve the performance of the
supervised classification algorithm.

The FSS problem has been addressed from dif-
ferent research communities such as data mining,
pattern recognition, statistics, unsupervised and
supervised learning, text learning, etc., and it is
an emergent and crucial topic in DNA microarray
tasks. Two basic approaches appear in the literature
to tackle this problem: ‘filter’ and ‘wrapper’ pro-
cedures.

2.2.1. FSS: the filter approach
A typical filter procedure assesses the goodness of a
single feature looking only at the intrinsic charac-
teristics of the data, measuring the relation of each
attribute with the class label of the studied pro-
blem. In this way, filter scores try to identify genes
that are differentially expressed in the categories of
the problem. The first step of the filter procedure is
to rank the features in terms of the values of the
used univariate scoring metric. In a second step, the
d features with the highest scoring metric are cho-
sen to induce the classification model. The litera-
ture has plenty of filter metrics of different nature
[15]: probabilistic or distance metrics, dependence
measures, scores based on the information theory,
etc.

In our study, we propose four filter metrics for
discretized microarray data. Each metric has a long
tradition in FSS and statistics literature [29], and
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they calculate the score of each gene Xi in the
following way, computing the needed statistics
from data:

Shannon-entropy :

HðXiÞ ¼ 

Xv

j¼1

pðxjjc1Þ log2 pðxjjc1Þ

þ pðxjjc2Þ log2 pðxjjc2Þ;
Euclidean-distance :

EðXiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXv

j¼1

ðpðxjjc1Þ 
 pðxjjc2ÞÞ2
vuut ;

Kolmogorov-dependence :

KOðXiÞ ¼
Xv

j¼1

ðjpðxjjc1Þ 
 pðxjjc2ÞjÞpðxjÞ;

Kullback
Leibler :

KLðXiÞ ¼
Xv

j¼1

pðxjjc1Þ log
pðxjjc1Þ
pðxjÞ

þ
Xv

j¼1

pðxjjc2Þ log
pðxjjc2Þ
pðxjÞ

where problem classes are C ¼ fc1; c2g and the gene
Xi has v different discrete values.

For microarray continuous data, we propose the
following filter metrics to measure the relation
between gene Xi and the problem class:

P-metric : PðXiÞ ¼
jm1 
 m2j
s1 þ s2

;

t-score : tðXiÞ ¼
jm1 
 m2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn1s2
1 þ n2s2

2Þ=ðn1 þ n2Þ
q

where m1 and m2 are within-class mean expression
levels in class c1 and class c2, respectively. s1 and s2

are standard deviations of expression levels within
classes c1 and c2, respectively. The t-score is based
on a statistical t-test [30] and has a t-distribution
with n1 þ n2 
 2 degrees of freedom, where n1 and
n2 are the number of samples of class c1 and c2,
respectively.

2.2.2. FSS: the wrapper approach
While the classic filter approach uses a univariate
FSS procedure, the wrapper approach carries out a
multivariate FSS process. The other crucial differ-
ence between both approaches resides in the role
that the final classification algorithm plays in the
FSS process. Kohavi and John [13] report that when
the goal of FSS is the maximization of accuracy, the
features selected should depend not only on the
features and the target concept to be learned, but
also on the classification algorithm. The wrapper
concept implies that the FSS algorithm conducts a

search for a good subset of features using the
induction algorithm itself as a part of the evaluation
function, the same algorithm that will be used to
induce the final classification model. Once the
classification algorithm is fixed, the idea is to train
it with the feature subset found by the search
algorithm, estimating the accuracy and assigning
it as the value of the evaluation function of the
feature subset. In this way, representational biases
of the induction algorithm which are used to con-
struct the final classifier are included in the FSS
process. It is claimed by many authors [13,14] that
the wrapper approach obtains better predictive
accuracy estimates than the filter approach. In this
way, the wrapper approach is becoming the domi-
nant FSS procedure in many scientific areas; how-
ever, its computational cost must be taken into
account.

In our microarray problems, we propose using
sequential forward selection (SFS) [31], a classic
and well-known hill-climbing, deterministic search
algorithm which starts from an empty subset of
genes. It sequentially selects genes, one at a time,
until no further improvement is achieved in the
evaluation function value. As another advantage
with respect to filter approaches, our wrapper
approach does not need to fix a specific number
of features to train the final classifier, and the
number of genes that induce the final classification
model is selected by the search component inserted
in the own wrapper procedure. As the totality of
previous microarray studies note that very few
genes are needed to discriminate between different
cell classes, we consider that SFS could be an
appropriate search engine as it performs the major
part of its search near the empty gene subset.

As supervised classifiers when non-gene selection
is used, our wrapper approach estimates, by the
LOOCV procedure, the goodness of the classifier
using only the gene subset found by the search
SFS search procedure. Thus, the microarray dataset
is projected maintaining the only values of the
selected genes and the class variable for all cell
samples: the goodness of the proposed gene subset,
using the specific classifier, is estimated by the
explained LOOCV technique over this projected
dataset, which only includes the genes selected
by the SFS search procedure and the class of the
samples.

3. Experimental results

We test the classification power of proposed gene
selection and classification techniques in the fol-
lowing well-known microarray domains:
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� The Colon dataset of Alon et al. [32] is composed
of 62 samples of colon epithelial cell-lines. The
samples were collected from colon-cancer
patients. The ‘tumor’ (22 samples) biopsies were
collected from tumors, and the ‘normal’ (40
samples) biopsies were collected from healthy
parts of the colons of the same patient. The task
is to predict the status of biopsy samples. Of the
original �6000 genes represented in these arrays,
2000 were selected by the original authors, based
on the confidence in their measured expression
levels. We work with this dataset of previously
selected 2000 genes.

� Leukemia dataset of Golub et al. [3]. It contains
72 cell-lines of leukemia patients involving 7129
genes. The class to be predicted is the specific
type of acute leukemia of the patient: acute
myeloid leukemia-AML (25 patients) or acute
lymphoblastic leukemia-ALL (47 patients).

For each filter metric, we construct the classifi-
cation models with the d 2 f3; 5; 10; 20g genes of
highest scoring value. Thus, for each filter metric,
the same subset of genes (selected by the ranking of
genes of the filter measure) is used to build our four
different classification models (IB1, naive-Bayes,
C4.5 and CN2). Experiments are run in an SGI-Ori-
gin200 computer using the MLCþþ [33] machine
learning software library for the presented classi-
fiers.

3.1. Results in continuous data

Tables 1 and 2 show a summary of the results for
original-continuous gene expression values in Colon
and Leukemia datasets, respectively. In each table,
for each classifier, we first show the LOOCV percen-
tage accuracies for the non-gene selection (no-FSS)
and wrapper approaches. Then, these tables show
the LOOCV values for each specified gene subset
cardinality (3, 5, 10, 20) and filter metric. Tables do
not show the standard deviation value of the LOOCV
procedure, whose calculation is explained in Sec-
tion 2.

A deeper analysis of the accuracy results is car-
ried out by using statistical tests. For each domain
and specific classifier, a paired t-test [30] is per-
formed to determine the statistical significance
degree of differences between the accuracy of each
approach (without a gene selection and four filter
subsets with 3, 5, 10 and 20 genes) and the result of
the wrapper procedure. In both tables, the symbol {
denotes a statistically significant difference to the
wrapper procedure at the 
P < 0:05 confidence
level, and *, denotes significant difference at the

P < 0:1 confidence level. This comparison is main-
tained in the rest of the tables of this work.

With the aid of the wrapper gene selection tech-
nique, all classifiers improve their accuracy results
in both datasets with respect to the non-gene selec-
tion approach. In all cases, except for C4.5 in Colon

Table 1 LOOCV accuracy results for each classifier and gene selection technique in Colon domain

IB1 NB C4.5 CN2

P-metric t-score P-metric t-score P-metric t-score P-metric t-score

Three genes 79.03
 75.81{ 80.65 82.26 80.65{ 74.19{ 74.19{ 75.81{

Five genes 80.65 72.58{ 83.87 87.10 69.35{ 82.26{ 75.81{ 77.42{

Ten genes 82.26 75.81{ 83.87 83.87 79.03{ 77.42{ 77.42{ 77.42{

Twenty genes 80.65 69.35{ 80.65 83.87 75.81{ 77.42{ 85.48 80.65


No-FSS: IB1, 74.19{; NB, 53.23{; C4.5, 87.10; CN2, 77.42{. Wrapper: IB1, 91.94; NB, 87.10; C4.5, 95.16; CN2,
91.94.

Table 2 LOOCV accuracy results for each classifier and gene selection technique in Leukemia domain

IB1 NB C4.5 CN2

P-metric t-score P-metric t-score P-metric t-score P-metric t-score

Three genes 81.94{ 81.94{ 90.18 90.18 87.50
 84.72{ 86.11{ 87.50{

Five genes 80.56{ 83.33{ 90.28 88.89 81.94{ 86.11{ 83.33{ 86.11{

Ten genes 76.39{ 84.72{ 91.66 91.66 80.56{ 72.22{ 81.94{ 87.50{

Twenty genes 80.56{ 81.94{ 90.28 90.28 93.06 84.72{ 81.94{ 83.33{

No-FSS: IB1, 86.11{; NB, 84.72{; C4.5, 84.72{; CN2, 75.00{. Wrapper: IB1, 100.00; NB, 95.83; C4.5, 95.83; CN2,
97.22.
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dataset, these accuracy differences between the
non-gene selection and the wrapper procedure are
statistically significant at the 
P < 0:05 significance
level. Statistically significant differences are also
found between the wrapper procedure and most of
the gene subsets selected by filter metrics; how-
ever, these differences are not noted for NB classi-
fier in both domains.

In the Colon dataset, the wrapper procedure
selects four, two, three and three genes for IB1,
NB, C4.5 and CN2 classifiers, respectively. In the
Leukemia dataset, the wrapper approach selects
three, four, two and three genes for IB1, NB, C4.5
and CN2 classifiers, respectively.

The embedded capacity of C4.5 and CN2 to select
features to construct their predictive model should
be analyzed. Without a gene selection process, the
classification trees built by C4.5 have four and two
features for Colon and Leukemia datasets, respec-
tively. When the CN2 algorithm is faced with the
whole set of features, its sets of IF—THEN rules have
10 and 9 genes for Colon and Leukemia datasets,
respectively. In this way, the number of genes of the
classification models built by C4.5 and CN2 when
non-gene selection is used is similar to the amount
of genes selected by the wrapper approach for these
classifiers (the dimensionality reduction is larger for
CN2).

The own learning process of C4.5 and CN2 prefers
genes that are closely correlated (based on informa-
tion theory metrics) with the class label and does not
directly take the predictive accuracy level into
account to build the classification model. The filter
approach, which applies similar measures to those
internally employed by C4.5 and CN2 to select the
proper features in the model, is not always able to
significantly increase the predictive accuracy. In
contrast to filter metrics, the wrapper approach
always helps C4.5 and CN2 in the detection of genes
that directly build a more accurate model. Thus, by
means of the wrapper approach, which focuses its
attention on the accuracy level, genes that build a
more accurate tree and IF—THEN rules can be found.
This capacity of the wrapper approach to improve
the accuracy levels of classifiers with an embedded
property to select features is largely studied in [34].

However, these accuracy improvements of the
wrapperprocedurearecoupledwithdemandingcom-
puter-load necessities. In the Colon dataset, the
whole wrapper process needs 10 070; 871; 21 950
and 29 851 CPU seconds for IB1, NB, C4.5 and CN2
classifiers, respectively. In the Leukemia dataset,
the computer necessities of the whole wrapper
procedure are 48 780, 36 006, 115 714 and 203 053
CPU seconds for IB1, NB, C4.5 and CN2 classifiers,
respectively. The computer-load necessities of filter

procedures can be considered as negligible with
respect to wrapper ones.

An analysis of the genes selected by different
approaches in the Colon dataset reveals interesting
questions:

� Among the first 20 genes scored by P-metric and t-
score, the following five genes appear in the top-
20-scoring lists of both scores (GenBank number;
gene description):
� R87126; 197371 myosin heavy chain nonmuscle

(Gallus gallus);
� M63391; human desmin gene, complete cds.;
� M76378; human cysteine-rich protein (CRP)

gene, exons 5 and 6;
� Z50753; H. sapiens mRNA for GCAP-II/urogua-

nylin precursor;
� J02854; myosin regulatory light chain 2,

smooth muscle isoform (human), contains ele-
ment TAR1 repetitive element.

� The only coincidence among the genes selected
by the wrapper procedures over four classifiers is
that the gene M63391 (human desmin gene, com-
plete cds.) is selected by IB1 and NB inducers.

� Most of the genes selected by proposed filter and
wrapper continuous procedures appear in the lists
of relevant genes detected by previous studies
over this dataset [8,35].

A similar analysis of the genes selected by dif-
ferent approaches in the Leukemia dataset reveals
interesting questions:

� Among the first 20 genes scored by P-metric and t-
score, the following 15 genes appear in the top-
20-scoring lists of both scores (GenBank number;
gene description):
� M23197_at; CD33 CD33 antigen (differentiation

antigen);
� M31211_s_at; MYL1 myosin light chain (alkali);
� X17042_at; PRG1 proteoglycan 1, secretory

granule;
� X95735_at; zyxin;
� M22960_at; PPGB protective protein for beta-

galactosidase (galactosialidosis);
� M16038_at; LYN V-yes-1 Yamaguchi sarcoma

viral related oncogene homolog;
� M84526_at; DF D component of complement

(adipsin);
� M62762_at; ATP6C vacuolar Hþ ATPase proton

channel subunit;
� M63138_at; CTSD Cathepsin D (lysosomal aspar-

tyl protease);
� U46499_at; glutathione S-transferase, micro-

somal;
� X16546_at; RNS2 ribonuclease 2 (eosinophil-

derived neurotoxin, EDN);
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� X15414_at; ALDR1 aldehyde reductase 1 (low
Km aldose reductase);

� M11147_at; FTL ferritin, light polypeptide;
� Y00787_s_at; interleukin-8 precursor;
� X52056_at; SPI1 spleen focus forming virus

(SFFV) proviral integration oncogene spi1.
� The only coincidence among the genes selected

by the wrapper procedures over four classifiers is
that the gene M23197_at (CD33 CD33 antigen,
differentiation antigen) is selected by IB1, NB
and CN2 inducers.

� Most of the genes selected by proposed filter and
wrapper continuous procedures appear in the lists
of relevant genes detected by previous studies
over this dataset [5,35].

It must be noted that there are few coincidences
in both datasets among the genes selected by the
filter and wrapper approaches. It seems that the
wrapper approach, by its multivariate selection
search procedure, prefers genes which directly
cause high accuracy levels in the induced classifiers.
On the other hand, the filter approach does not
directly take the predictive power of the genes into
account, and it univariately selects the genes that
are closely related with the class label. Thus, there
are no large coincidences between the ‘accurate’
genes multivariately selected by the wrapper
approach and the class-related genes univariately
proposed by the filter metrics.

3.2. Results in discrete data

A similar comparison is performed for both datasets
when the expression values of each gene are
discretized in three states by the procedure pro-
posed in [17], where the author uses the discreti-
zation algorithm as a classification model itself.
The decision to discretize the gene expression
levels in three states is a common approach in
the field, assuming that gene expression values
can be codified as funder-expressed, baseline,
over-expressedg [36].

The applied univariate discretization procedure
is supervised by the class label and it is inspired on
the information theory. The pair of cutpoints h1 and
h2 (h1 < h2) for the gene Xi in a two class problem
(class 0, class 1) which maximizes the following
measure is chosen:

cutpointðXi; h1; h2Þ ¼ n<0 log
n<0
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where n<j represents the number of cases in the
dataset where Xi < h1 and belong to class j; n< the
number of cases in the dataset where Xi < h1; n<>j

the number of cases in the dataset where
h1 < Xi < h2 and belong to class j; n<> the number
of cases in the dataset where h1 < Xi < h2; n>j the
number of cases in the dataset where h2 < Xi and
belong to class j; n> the number of cases in the
dataset where h2 < xj.

To compute the maximum of this formula for
each gene Xi, it is sufficient to consider all the

N 
 1
2

	 


pairs of the N 
 1 midpoints of Xi’s ordered obser-
vations.

Tables 3 and 4 show a summary of the results for
three-state discretized gene expression values in
Colon and Leukemia datasets, respectively. In each
table, for each classifier, we first show the LOOCV
percentage accuracies for the non-gene selection
(no-FSS) and wrapper approaches. Then, both
tables show the LOOCV values for each specified
gene subset cardinality (3, 5, 10, 20) and filter
metric. The tables do not show the standard devia-
tion value of the LOOCV procedure, whose calcula-
tion is explained in Section 2.

In both datasets, the discretization process of the
gene expression values helps to considerably
improve the predictive accuracy of IB1 and NB
classifiers when the whole set of genes is used
and for most of the gene subsets selected by filter
metrics: for these classifiers, no statistical signifi-
cant differences are shown between the accuracy of
the wrapper procedure and the accuracy of the
whole gene set. On the other hand, the advantage
of the wrapper procedure with respect to the non-
gene selection approach for C4.5 and CN2 classifiers
is clear. For all classifiers, statistically significant
differences are found between the wrapper
approach and most of gene subsets selected by filter
metrics.

In the Colon dataset, the wrapper procedure
selects two, two, three and two genes for IB1,
NB, C4.5 and CN2 classifiers, respectively. In the
Leukemia dataset, the wrapper approach selects
three, three, two and two genes for IB1, NB, C4.5
and CN2 classifiers, respectively.

As in the case of continuous data, the dimension-
ality reduction of the wrapper procedure with
respect to the non-gene selection approach for
C4.5 and CN2 should be analyzed. When the non-
gene selection process is used, the classification
trees built by C4.5 have three features for both
Colon and Leukemia datasets, respectively. When
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CN2 algorithm is faced with the whole set of fea-
tures, its sets of IF-THEN rules have 12 and 10 genes
for Colon and Leukemia datasets, respectively. As in
the case of continuous microarray data, the number
of genes of the classification models built by C4.5
and CN2 when non-gene selection is used, is similar
to the amount of genes selected by the wrapper
approach for these classifiers for discretized gene
expression values; it must be noted that this dimen-
sionality reduction is larger for the CN2 classifier.

As in the case of continuous data, the filter
approach, which applies similar measures to those
internally employed by C4.5 and CN2 to select the
proper features in the model, is not always able to
significantly increase the predictive accuracy. In
contrast to filter metrics, the wrapper approach
always helps C4.5 and CN2 in the detection of genes
that directly build a more accurate model. Thus, by
means of the wrapper approach, which focuses its
attention on the accuracy level, genes that build a
more accurate tree and IF—THEN rules can be
found.

These accuracy improvements of the wrapper
procedure are coupled with demanding computer-
load necessities. In the Colon dataset, the whole
wrapper process needs 4432, 1441, 7849 and 9115
CPU seconds for IB1, NB, C4.5 and CN2 classifiers,
respectively. In the Leukemia dataset, the compu-
ter necessities of the whole wrapper procedure are
47 699, 20 346, 37 483 and 74 741 CPU seconds for
IB1, NB, C4.5 and CN2 classifiers, respectively. The
computer-load necessities of filter procedures can
be considered as negligible with respect to wrapper
ones.

An analysis of the genes selected by different
approaches in the Colon dataset reveals interesting
questions:

� Among the first 20 genes scored by four filter
metrics, the following 4 genes appear in the
top-20-scoring lists of four metrics (GenBank
number; gene description):
� M26383; human monocyte-derived neutrophil-

activating protein (MONAP) mRNA, complete
cds.

� H08393; collagen alpha 2(XI) chain (Homo
sapiens);

� J05032; human aspartyl-tRNA synthetase
alpha-2 subunit mRNA, complete cds.;

� U09564; human serine kinase mRNA, complete
cds.

� Among the first 20 genes scored by four filter
scores, other 9 and 8 genes are shared by three
and two filter metrics, respectively.

� The gene M26383 (human monocyte-derived neu-
trophil-activating protein, MONAP, mRNA, com-

plete cds.) is also selected by the wrapper
procedures of four classifiers: this is the only
coincidence among the genes selected by filter
and wrapper approaches.

� Most of the genes selected by proposed filter and
wrapper procedures in discrete data appear in the
lists of relevant genes detected by previous stu-
dies over this dataset [8,35].

A similar analysis of the genes selected by dif-
ferent approaches in the Leukemia dataset reveals
interesting questions:

� Among the first 20 genes scored by four filter
metrics, the following 6 genes appear in the
top-20-scoring lists of four metrics (GenBank
number; gene description):
� D88422_at; cystatin A;
� M23197_at; CD33 CD33 antigen (differentiation

antigen);
� X95735_at; zyxin;
� M84526_at; DF D component of complement

(adipsin);
� U46499_at; glutathione S-transferase, micro-

somal;
� M31211_s_at; MYL1 myosin light chain (alkali).

� Among the first 20 genes scored by four filter
scores, another 8 and 6 genes are shared by three
and two filter metrics, respectively.

� The gene U46499_at (glutathione S-transferase,
microsomal) is also selected by the wrapper pro-
cedures of four classifiers: this is the only coin-
cidence among the genes selected by filter and
wrapper approaches.

� Most of the genes selected by proposed filter and
wrapper procedures in discrete data appear in the
lists of relevant genes detected by previous stu-
dies over this dataset [5,35].

As in the case of continuous microarray data, few
coincidences between the genes selected by filter
and wrapper approaches in both datasets appear:
there are few coincidences between the ‘accurate’
genes multivariately selected by the wrapper
approach and the class-related genes univariately
proposed by filter metrics.

4. Related work in DNA microarray for
class prediction

Classic statistical techniques (discriminant analysis,
Gaussian and logistic classifiers, etc.) [10,11,
37,38], support vector machines [8,18,39], neural
networks [40,41] and K-NN [3,11,16,42] are the
most broadly used supervised class prediction pro-
cedures in microarray domains.
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Apart from K-NN, the rest of the classifiers used
in our study, which are broadly used in the machine
learning field, are not so popular in the DNA micro-
array area. The decision tree methodology, which is
commonly employed in other classification tasks, is
not very popular in the DNA microarray domain, but
several references can be found in the literature
[17,19,43—46]. The NB classifiers only appears in
references [19,45,47]. To our knowledge, the CN2
algorithm is only used in our previous work [19] for
classification in DNA microarrays. It must be noted
that the work of Tobler et al. [45] states the classi-
fication problem for choosing the appropriate
probes in a microarray study and not for tissue class
prediction.

As explained in previous sections, all microarray
works are concerned about the necessity of a gene
selection procedure to improve the predictive accu-
racy of their class prediction model. Filter proce-
dures are used in most of the works in the area of
DNA microarrays. While the filter metrics that we
propose for discretized data are novel in the micro-
array field, P-metric [3,40] and t-score [35,48] are
broadly used in microarray studies.

Few works use the wrapper approach in micro-
array domains [19,38,42,47]. Xing et al. [11] pro-
pose a hybrid of filter and wrapper approaches.

Before the selection process starts, all the works
except [19,47] fix the number of genes for the
classifiers to be induced. In this way, we think that
the application of the SFS search tool in the space of
gene subsets, which does not previously fix a spe-
cific number of genes, implies an improvement.

Apart from the FSS approach, other dimension-
ality reduction procedures appear in supervised
microarray literature such as principal component
analysis [49] or partial least square [50]. These
approaches, considered as feature extraction pro-
cedures, combine information from individual fea-
tures (genes) into components, and describe each
sample by these new components instead of indi-
vidual features.

From the point of view of the employed accuracy
estimation technique, most of the works use a hold-
out procedure, using a portion of the samples to
train a predictive model and using the rest of the
instances as a test set to estimate the goodness of
the classifier. However, other works use more
sophisticated validation techniques, such as k-fold
cross-validation [43]. LOOCV is also emerging as a
reference validation technique in the microarray
field [19,35,37,41,42,47]. Although LOOCV can be
considered as the most suited estimation procedure
for microarray datasets, the employment of the
hold-out procedure can be justified in many works
as a portion of the samples arise from a specific

medical-center or study and other samples arise
from a different source. In this way, it is common
to use the samples of the first medical-center to
train the classifier and the samples of the second
source to estimate its accuracy.

5. Summary and future work

A battery of filter and wrapper feature selection
algorithms is proposed for the crucial task of accu-
rate gene selection in class prediction problems
over DNA microarray datasets. Four classic filter
metrics for discretized gene expression data and
other two popular filter scores for continuous
microarray values are compared with a sequential
wrapper technique. The performance of these gene
selection techniques is evaluated by four classic
supervised classifiers over two well-known DNA
microarray datasets involved in the diagnosis of
cancer such as Colon and Leukemia. The benefits,
in terms of predictive accuracy improvements, of
the proposed gene selection techniques with
respect to the non-gene selection approach are
shown in most of the cases. Although the wrapper
approach mainly shows a more accurate behavior
than filter metrics, this improvement is coupled
with considerable computer-load necessities. It
must be noted the predictive accuracy improve-
ment of IB1 and NB classifiers when gene expression
data is discretized.

All gene selection techniques are able to con-
siderably reduce the huge number of genes to small
informative and accurate subsets of components:
the markers or discriminants of the biological group
that actively contribute to the classification of cell-
lines [9]. The low number of genes needed by our
wrapper approach and previous works over the same
datasets show that, with a reduced number of genes
(less than 5—10), it is possible to obtain accurate
classifiers in these DNA microarray domains.

We note that most of the genes selected by
proposed filter and wrapper procedures in discrete
and continuous microarray data appear in the lists
of relevant-informative genes detected by previous
studies over these datasets. Several interesting
coincidences between the genes selected by pro-
posed filter and wrapper procedures have also been
found.

As future work, we envision to use new filter
metrics which, by the use of a statistical hypothesis
tests, automatically fix the number of genes to
induce the classifier. We also plan to use popula-
tion-based, randomized search algorithms, such as
genetic algorithms or estimation of distribution algo-
rithms for the selection of discriminative genes in
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DNA microarray tasks: while our sequential search
returns a unique gene subset, the output of a popula-
tion-based, randomized search algorithm can be
interpreted as a group of different gene subsets,
from that a ‘consensed’ final gene subset can be
formed [42].
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