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Abstract

Problem domain information extraction is a critical issue in many real-world optimization problems. In-
creasing the repertoire of techniques available in evolutionary algorithms with this purpose is fundamen-
tal for extending the applicability of these algorithms. In this paper we introduce a unifying information
mining approach for evolutionary algorithms. Our proposal is based on a division of the stages where
structural modelling of the variables interactions is applied. Particular topological characteristics induced
from different stages of the modelling process are identified. Network theory is used to harvest problem
structural information from the learned probabilistic graphical models (PGMs). We show how different
statistical measures, previously studied for networks from different domains, can be applied to mine the
graphical component of PGMs. We provide evidence that the computed measures can be employed for
studying problem difficulty, classifying different problem instances and predicting the algorithm behavior.

Keywords:Knowledge extraction, network theory, optimization, evolutionary algorithms, computational
intelligence.

1. Introduction

Although the primary expected outcome of an evo-
lutionary algorithm (EA) is the solution to a given
optimization problem, there is an increasing need to
add new capabilities to these algorithms. There are
several situations in which the end-user may expect
other benefits from the computational effort spent
in the optimization. The user may be interested in
acquiring a better problem understanding (knowl-
edge extraction),1, 2 reusing the experience gained
by the algorithm to solve similar optimization prob-

lems (transfer learning),3 or evaluating and improv-
ing the way in which different components of the al-
gorithm interact by analyzing its output (algorithm
enhancement).4, 5

In principle, since EAs use populations of so-
lutions, they can be seen as automatic generators
of information about the search space. This valu-
able information can be mined to extract knowledge
about the problem domain. The conception of meth-
ods to such information extraction from EAs consti-
tutes a relevant topic and it expands the natural scope
of these algorithms. Mining the information gener-

International Journal of Computational Intelligence Systems, Vol. 6, No. 6 (November, 2013), 1163-1188

Co-published by Atlantis Press and Taylor & Francis 
Copyright: the authors 

1163

D
ow

nl
oa

de
d 

by
 [

U
JA

 U
ni

ve
rs

ity
 o

f 
Ja

en
] 

at
 0

4:
23

 2
5 

O
ct

ob
er

 2
01

3 

willieb
Typewritten Text
Received 23 August 2012

willieb
Typewritten Text
Accepted 28 January 2013

willieb
Typewritten Text

willieb
Typewritten Text
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ated by EAs may be useful in real-world applica-
tions such as bioinformatics, engineering or design,
where structural interactions between problem com-
ponents are usually only partially known. The key
issues are then, first, how to capture and process this
information and, secondly, how to transform such
information into useful answers to question the end-
users may face.

In this paper, we propose the aplication of meth-
ods and algorithms coming from network theory6, 7

in order to extract valuable information from the EA
evaluation. Networks are convenient tools to repre-
sent relationships between the components of very
diverse nature systems. The proposed framework
can be seen as structural mining in a space of net-
works which are related to the objective function and
the EA variation operators. The application of net-
work theory to the analysis of EAs intends to capture
complex relationships that arise between the prob-
lem variables in different subspaces of the search
space. Research on the use of networks as an effec-
tive tool to model complex systems has experienced
an important upsurge in recent years.6–10 Network
theoretic measures have been proposed to extract in-
formative descriptors of such networks. These mea-
sures allow to abstract from the particular character-
istics of the system’s components and to reveal pat-
terns of interactions between the variables of such
system.

We focus on the network-based analysis of two
types of evolutionary algorithms: Genetic algo-
rithms (GAs)11, 12 and estimation of distribution al-
gorithms (EDAs).13–16 EDAs are population based
optimization methods that share a number of simi-
larities with GAs. However, while GAs use genetic
operators, EDAs intensively apply learning of prob-
abilistic models to domains where the underlying in-
teractions between the variables are often unknown.
Network measures can be applied to identify proper-
ties about the problem being solved by EAs, but also
to serve as descriptors of the algorithms behavior.
Topological measures extracted from the networks
could be used to compare the difficulty of different
optimization problems (e.g. number of optima), ex-
tract problem information (e.g. average number of
generations needed to converge), or predict the be-

havior of the EA (e.g. number of times the optimum
was reached). Once a mapping between the network
measures and the characteristics of a problem is con-
structed from a set of training examples, it is possi-
ble to predict problem’s features such as difficulty,
favorable search regions or expected values for op-
timal solutions. End-user questions might be also
answered.

Througout this paper, our main aims are, first,
to show that the structural components of graphical
models extracted from GAs and EDAs can be char-
acterized as networks. Valuable information about
the optimization problem and the behavior of the al-
gorithms used to solve it can be extracted from the
analysis of the networks. Our second aim is to intro-
duce a methodological framework for practical im-
plementation of network analysis of GAs and EDAs.
This framework identifiesa priori, online, and a
posterioristructural knowledge on the application of
network analysis.

The content of the paper is divided as follows.
Section 2 presents network measures for informa-
tion extraction with local and global approaches.
The concepts ofa priori, online, anda posteriori
structural knowledge on the application of network
analysis are introduced. The experimental frame-
work and the numerical results of our experiments
are introduced in Section 3. Subsections 3.1, 3.2 and
3.3 respectively present three optimization problems
with different characteristics and discuss the results
of our general approach when applied to these prob-
lems. Previous work in this field is discussed in Sec-
tion 4 and conclusions and future lines are drawn in
Section 5.

2. Network analysis

In recent years, results from graph theory have been
developed and integrated in the modern theory of
networks.6–10 The term network is an informal de-
scription for a set of elements with connections or
interactions between them.17 We see an optimiza-
tion problem as a network where different kinds of
relationships between the variables of the problem
are represented as connections in the network. To
deal with networks in a formal way, they are usually
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Network measures for information extraction in evolutionaryalgorithms

modeled as graphs. Similarly to networks, graphs
comprise vertices and arcs representing elements
and connections. They are mathematical structures
that abstract for the particular interpretation given to
a network.

There is an extensive set of measures defined
for networks. Some of them have a direct inter-
pretation within the probabilistic graphical models
(PGM) application context. For instance, the tree-
width of the junction tree, or equivalently, the size
of the maximum-clique for the associated undirected
graph, are related to the complexity of the inference
step.18 Apart from this and other few examples,
most network measures have not been used in the
context of PGMs.

For our analysis, we divide network measures
into two groups. First, local measures which identify
local patterns in network topologies (e.g. number of
arcs outgoing from a given vertex). Second, global
measures that serve to capture the global structure of
a network (e.g. number of edges). In this group we
includemesomeasures such as those related to the
community structure andcontrastive measuresthat
reflect differences between two or more networks.
A number of definitions related to network theory
are following presented, focussing on the analysis
of networks represented by directed graphs.

2.1. Local network measures

The range gi j of an arcei j
19 is the length of the

shortest path fromj to i after arcei j has been re-
moved from the graph. Ifgi j > 2, then the arc forms
ashortcutfrom j to i.

Node eccentricityis the maximal shortest path
length between a node and any other node. Letki

be the number of neighbors for vertexvi . The max-
imal number of arcs between the neighbors ofvi is
ki(ki−1)

2 .
Theclustering coefficient Ci of vi is defined as the

fraction of the existing number of node arcs (|Ai|)
to the total possible number of neighbor-neighbor
arcs:20

Ci =
2|Ai|

ki(ki −1)
. (1)

Let λst be the total number of shortest paths
between verticess and t and let δst(v) denote the
fraction of shortest paths betweens and t that pass
through a particular vertexv, i.e. δst(v) =

λst(v)
λst

. Be-

tweenness centralityof a vertexv is defined as21

BC(v) = ∑
s,t:s6=v6=t

δst(v) . (2)

Similarly, edge betweenness centralityis the
fraction of all shortest paths in the network that tra-
verse a given edge.22 A clique is a set of nodes that
are all adjacent to each other, i.e. a maximal fully-
connected sub-graph.

2.2. Global network measures

The assortativity coefficientis a correlation coeffi-
cient for the degree of nodes that are joined by an
arc (linked nodes). A positive assortativity coeffi-
cient indicates that nodes tend to link to other nodes
with the same or similar degree.23 Assortativity co-
efficients can be also used to capture dependencies
between any node property that might be of interest.
However, in this paper we restrict the analysis to the
correlations between node degrees.

The characteristic path lengthof a graph is the
average shortest path length between every pair of
reachable vertices in the graph.Network radiusis
the minimum eccentricity andnetwork diameteris
the maximum eccentricity.

A structural motif of size Z24 is a connected
graph withZ vertices. For eachZ there is a lim-
ited set of distinct structural motifs which are called
motif classes.

A motif frequency spectrumrecords the number
of occurrences of each motif of a given class for a
sizeZ. Motif numberis the total number of all mo-
tifs of any class (for a given sizeZ) encountered in
a network. The motif number is obtained as the sum
over the motif frequency spectrum. Motif analysis
can be seen as a generalization of the clustering co-
efficient.25

Figure 1 shows all structural motifs for a motif
class of sizeZ = 3. Figure 2 shows an example of a
directed network. The motif frequency spectrum of
this network is(1,5,1,0,1,0,0,0,0,0,0,0,0), where
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motifs are ordered as in Figure 1. The network motif
number is 8.

a) b) c) d)

e) f) g) h)

i) j) k) l)

m)

Figure 1: All structural motifs for a motif class of
sizeZ = 3.

2

6

3

5

1 4

Figure 2: Example of a directed network.

A module is usually recognized as a unit that is a
component part of a larger system and yet possesses
its own structural or functional identity.26 There is
no generally accepted definition of what constitutes
a module within a complex network. It is generally
associated to a densely connected subset of nodes
that is only sparsely linked to the remaining net-
work. Score functions are defined to measure the
degree of network modularity.

We propose the use of two different approaches

for modularity detection: Newman’s spectral algo-
rithm27 and the Louvain method for community de-
tection in large networks.28 Newman’s algorithm is
based on the idea that modularity can be expressed
in terms of the eigenvectors of a characteristic ma-
trix for the network (modularity matrix). The lead-
ing eigenvector of the modularity matrix is com-
puted and the vertices are divided into two groups
according to the signs of the elements in this vector.
The decomposition process is continued until the en-
tire network has been decomposed into indivisible
subgraphs.27 The Louvain method is a greedy al-
gorithm divided into two phases that are repeated
iteratively. First, the method looks for small com-
munities by optimizing modularity locally. Second,
it aggregates nodes belonging to the same commu-
nity and builds a new network whose nodes are the
communities.28

2.3. Collection of network measures

On the basis of the introduced concepts, we chose a
set of key network measures which are able to cap-
ture important characteristics of the EA dynamics.
The whole set of selected measures follows:

1. dagdif: Number of different arcs between the
directed acyclic graphs (DAGs)29 learned at
generationst andt +1.

2. Ndensity: Connection density of the network,
i.e. the number of connections present in the
network out of all possible (n2 − n), wheren
is the number of vertices.

3. indegree: Indegree of a vertex.

4. outdegree: Outdegree of a vertex.

5. betw. cent.: Edge betweenness centrality.

6. pair dist.: For a vertex, average distance to
the other vertices. Disconnected vertices are
assigned a very high, unattainable, distance
value.

7. reachability: For a vertex, average reacha-
bility to the other vertices. The reachability
value between verticesi and j is 1 if i is reach-
able from j, 0 otherwise.
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Network measures for information extraction in evolutionaryalgorithms

8. clust. coef.: The clustering coefficient of a
vertex.

9. shortcut prob.: The shortcut probability is the
fraction of shortcuts in the network.30

10. n. motifs, Z= 3: Motif frequency for all mo-
tifs of sizeZ = 3.

11. n. motifs, Z= 4: Motif frequency for all mo-
tifs of sizeZ = 4.

12. max. modularity: The maximum modular-
ity gives a modularity value corresponding
to a network module decomposition com-
puted with the Louvain modularity algo-
rithm28 and the Newman’s spectral optimiza-
tion method,27 generalized to directed net-
works∗.

13. vert. participation coef.: The vertex participa-
tion coefficient31 defines how well distributed
the arcs of a node are among different mod-
ules.

In the previous list, network measures 3, 4, 6, 7,
and 8 are computed as the average of the local mea-
sures computed for each vertex. Similarly, network
measure 5 is the average of the measures computed
for each edge. The other measures correspond to
global values.

2.4. Network approach to the modelling of
evolutionary algorithms: a priori, online
and a posteriori

Algorithm 1 describes the main steps of our general
proposal for the analysis of EAs. Step 1 corresponds
to a general collection of information or the induc-
tion of networks from the outputs of the EAs. Step
2 computes the relevant measures for each particu-
lar case. In Steps 3 and 4 the information extracted
could be used with different purposes. Variations of
this general scheme are tested in the section of ex-
periments.

Algorithm 1: Network approach for modelling

1 Create the network from the available infor-
mation or extract them from the PGMs.

2 Compute a set of relevant measures for each
network.

3 Map the network measures to the problem
characteristics using machine learning.

4 Apply the machine learning algorithms for
classification and inference.

In Figure 3 we illustrate a possible application
of Algorithm 1. It shows a schematic representa-
tion of an EDA for an optimization problem of four
variables. Five generations are represented with dif-
ferent colors. In Figure 3, the populations selected
at different generations are mapped to Bayesian net-
works learned from them where the nodes corre-
spond to the variables of the optimization problem
(Step 1 in Algorithm 1). Similarly, each Bayesian
network structure is mapped to a vector of network
descriptors (Step 2 in Algorithm 1). After the net-
work measures have been computed, a classifier that
maps the network measures for the characterization
of the problem (Class) is learned (Step 3, Algo-
rithm 1). Finally, network measures extracted from
an unknown class problem are passed to the previous
classifier. The model then uses these measurements
to predict the class of that new problem (Step 4, Al-
gorithm 1).

Machine learning algorithms used in the context
of EAs should exhibit a good balance between the
computational time spent to learn them and their
classification accuracy. The exact balance between
the time complexity and the accuracy will depend
on the particular task being solved within the EA. In
the experiments presented in this paper we have se-
lected machine learning algorithms that are easy to
compute and interpret, and not overly complex.

Structural modelling can be done in EAs at dif-
ferent stages of the algorithm.A priori modelling
is done when some knowledge about the problem
structure is available previous to the optimization
process. In contrast,A posteriorimodelling pursues
the construction of networks learned after the search

∗Louvain modularity algorithm was available in the C++ implementation only. Newman’s spectral optimization algorithm was available
only in Matlab.
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is finished. They can correspond to the structural
component of the PGM or constructed with other
procedure using the information generated by the
EA during the evolution. Notice that it is possible to
construct more than one class ofa posterioriproba-
bilistic graphical model of the data, allowing to com-
pare their different associated networks.

In EDAs, the network contained in the proba-
bilistic model is learned from data during the opti-
mization process, i.e.online. In this case, the main
goal is to achieve an accurate description of the reg-
ularities (e.g. relationships between the variables)
contained in the selected solutions and translated to
probabilistic (in)dependences. The main use given
to the network during online modelling is the sam-
pling of new solutions.

While online learningis more suited to EDAs,
a posteriori learning is able to induce probabilis-
tic models of the selected populations produced by
a GA. Regardinga priori modelling, if the struc-
ture of the problem is previously known, we could
use the corresponding networks to evaluate to which
extent the crossover operator respects the original
problem interactions. However, we will focus the
experiments on theonlineanda posterioristages in
which the considered networks are derived from the
graphical structure of PGMs, rather than using ex-
pert knowledge, unavailable most of the times.

3. Experiments

The objective of our experiments is to show how the
use of structural modelling within EAs expands the
range of application of these algorithms and can be
used to improve their efficiency. We take three opti-
mization problems from disparate fields to illustrate
different scenarios in which structural modelling can
be applied, showing the gains that can be achieved
by its application. We devote one section to each
problem.
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Figure 3: Modeling stages in the analysis of EAs.
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Network measures for information extraction in evolutionaryalgorithms

3.1. NK fitness landscape

TheNK fitness landscape modelis a parameterized
model of a fitness landscape that allows to explore
the way in which the neighborhood structure and the
strength of interactions between neighboring vari-
ables determine the ruggedness of the landscape.
For given parameters, the problem consists of find-
ing the global maximum of the function.

An NK fitness landscape32 is defined by the fol-
lowing components:

• Number of variablesn.
• Number of neighbors per variable,k.
• A set ofk neighborsΠ(Xi) for Xi, i ∈ {1, . . . ,n}.
• A subfunction fi defining a real value for each

combination of values ofXi and Π(Xi), i ∈
{1, . . . ,n}.

The objective functionfnk to maximize is defined
as:

fnk(x) =
n

∑
i=1

fi(xi ,Π(xi)). (3)

The complexity of the NK fitness landscape
problem depends on all its components. Fork> 1 it
is NP-hard. This problem is particularly suitable to
investigate the use of network measures since it has
been extensively analyzed to investigate EAs and
other heuristic algorithms.33

3.1.1. Instance generation

To generate our benchmark, we used an initial
dataset of 9,000 random instances as described in.33

There are 1,000 for every possible combination of
n∈ {20,28,34} andk ∈ {4,5,6}. Instance genera-
tion was addressed as an optimization problem de-
fined in the space of instances, i.e., our goal in this
case is to find instances that maximizes a criterion
of easiness (respectively hardness). The function to
optimize was the number of times the estimation of
Bayesian networks algorithm (EBNA)34 found the
optimum in 30 runs. Notice that in this context
EBNA is used as auxiliar algorithm to compute the
fitnessg(I) of instanceI . An instance that maxi-
mizes this function, i.e. for which EBNA converged

in the 30 runs (g(I) = 30), is labeled as an easy in-
stance. Similarly, when the number of successful
runs reached by EBNA is minimized (g(I) = 0), the
corresponding instance is labeled as hard. The easi-
ness and hardness of the instances generated in this
way are related to the characteristics of the algo-
rithm used to evolve them. Starting from each of
the 9,000 instances we generated two additional in-
stances, one easy and one hard instance. The final
benchmark comprised 18,000 instances, including
only those easy and hard instances.

To search in the space of instances, we used a
greedy algorithm that starts from the original ran-
dom instance and randomly modifies its neighbor-
hood structure. If the optimization function is im-
proved(g(I ′)> g(I)), then the new instanceI ′ is ac-
cepted. The maximum number of moves allowed to
the greedy algorithm was set to 50. Notice that ev-
ery time a new instance is generated we need to run
a branch-and-bound algorithm to compute the new
optimum of the NK fitness landscape function. This
was necessary in order to identify the number of suc-
cessful runs by EBNA.

For the NK fitness landscape we applyonline
structural modelling of the structures generated by
an EDA. Two different issues are investigated:

• The use of network measures to predict the class
of an instance.

• The evaluation of the sensitivity of the prediction
methods to the EA parameters.

3.1.2. Prediction of the class instance

For each of the 18,000 instances we run EBNA us-
ing three different population sizes (N = n,2n,4n).
Ten different runs of the algorithm were conducted
for each instance. The total number of runs was
18,000× 3× 10= 540,000. All experiments were
computed in a cluster of over 240 computers and
we used C++ implementations of the NK fitness
model,33 EBNA,34 and of the brain connectivity
toolbox.35 The networks produced by the algorithms
in the first three generations were stored and from
each network the corresponding network measures
described in Section 2.4 were computed. Network
measures that corresponds to each ten runs of an
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EBNA configuration for the same instance were av-
eraged. These were the features used for our classi-
fication experiments.

In the NK landscape problem, the problem
classes can be defined by fixing the parametersn
and k. For a fixedn and with the objective of re-
stricting the analysis to a subset of instances with
similar problem difficulty (easy or hard), we group
instances into three classes according to the number
of neighborsk per variable:

• Class 1:k= 4
• Class 2:k= 5
• Class 3:k= 6

For a fixedn, as the number of neighbors per
variable (k) grows, also the difficulty of the problem
for an optimization algorithm grows. Empirical evi-
dence showing this effect in the behavior of different
EAs is presented in.33

To solve the classification task we used regular-
ized multi-logit regression which is an intuitive and
relatively simple classifier.36 It is used to address the
general case where the response variableC can have
m possible values, i.e. the cardinality ofC is m> 2.
In this case, the multi-logit model is expressed as:

log
Pr(C= l |y)
Pr(C = m|y)

= β0l +yTβl , l = 1, . . . ,m−1 (4)

where β0l and βl are the parameters of the linear
model for classl , andy is a p-vector of predictor
variables. In our application, the predictor variables
correspond to the network measures.
Following,37, 38

Pr(C= l |y) =
eβ0l+yTβl

∑m
j=1eβ0 j+yTβ j

(5)

The model is fitted using the regularized max-
imum multi-logit likelihood by means of the elas-
tic net approach.39 This is an algorithm applied in
different domains, that allows to combine the lasso
and ridge regularization and for which an efficient
implementation was available. We used elastic net
regularized multi-logistic regression37 with α = 0.9
and 5-fold-cross-validation to compute the accuracy
at predicting the problem class.

Table 1 presents the accuracy results for each
combination of the factors considered. In the table,
gens= i refers to a situation where only networks up
to the ith generation were used to compute the net-
work measures. Forgens= 1, only networks from
the first generation were considered in the analysis.
This way we evaluate the influence that limiting the
amount of information passed to the classifier has in
the accuracy results. Similarly, considering differ-
ent population sizesN ∈ {n,2n,4n}, we evaluate to
what extent a higher population size has an effect in
the amount of structural information captured by the
networks and in the associated network measures.

An analysis of the results shown in Table 1 re-
veals that it is possible to accurately extract the prob-
lem class by using the network measures as fea-
tures. Even when a very small population size is
used (N = n) and one single network is used to ex-
tract the network measures (gens= 1), the classifi-
cation accuracy can be twice the accuracy of a ran-
dom predictor (0.33). As the population size and
the number of networks considered for the analy-
sis grow the classification accuracy also increases
reaching 0.99 whenn = 34, N = 4n, and networks
from the three first generations are used to extract
the features. Also remarkably, accuracy improves
with the number of variables.

3.2. HP protein model

TheHP functional protein problemconsists of find-
ing a configuration of a simplified protein model that
minimizes an energy representing the interaction be-
tween hydrophobic (H) and polar (P) residues. The
HP simplified protein model40 is used in bioinfor-
matics to investigate protein folding. In the HP
model, a protein is considered a sequence of hy-
drophobic (H) and hydrophilic or polar (P) residues
which are located in regular lattice models forming
self-avoided paths. Figure 4 shows the graphical
representation of one possible configuration for the
sequenceHHHPHPPPPPH.
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Network measures for information extraction in evolutionaryalgorithms

Table 1: Estimated classification accuracies for the NK fitness landscape problem.
type n= 20 n= 28 n= 34

N/gens 1 2 3 1 2 3 1 2 3
easy n 0.69 0.71 0.73 0.59 0.76 0.80 0.84 0.78 0.82
easy 2n 0.66 0.64 0.79 0.79 0.83 0.84 0.78 0.86 0.87
easy 4n 0.72 0.68 0.87 0.71 0.95 0.95 0.98 0.98 0.99
hard n 0.64 0.68 0.69 0.86 0.75 0.79 0.63 0.79 0.82
hard 2n 0.63 0.72 0.77 0.83 0.82 0.85 0.81 0.86 0.87
hard 4n 0.62 0.75 0.85 0.95 0.95 0.93 0.98 0.98 0.98

b b

b

b

b

bc

b c

bc bc

bc

bc

Figure 4: One possible configuration of sequence
HHHPHPPPPPHin the HP functional model. Hy-
drophobic proteins are represented by black beads
and polar proteins, by white beads. There is oneHH
(represented by a dotted line with wide spaces), one
HP (represented by a dashed line) and twoPP (rep-
resented by dotted lines) contacts.

Interactions between neighbor residues (adjacent
in the lattice, but not connected in the sequence) con-
tribute to the total energy of the HP lattice configu-
ration. The energy values associated with the func-
tional HP model41 contain both attractiveεHH =−2
and repulsive interactions (εPP = 1, εHP = 1, and
εPH = 1). The HP problem consists of finding the
solution (HP chain topological configuration) that
minimizes the total energy. The energy that the func-
tional model protein associates with the configura-
tion shown in Figure 4 is 1 because there is oneHH
interaction, oneHP interaction, and twoPP interac-
tions.

An HP protein configuration can be represented
as a walk in the lattice (sequence of moves). In the
sequence of moves, the two initial residues are lo-
cated adjacent in the lattice. Each other residue is
located to the left, to the right, or forming a line
with the previous two residues. For a given HP
sequence and lattice,Xi will represent the relative
move of residuei in relation to the previous two
residues. Taking as a reference the location of the
previous two residues in the lattice,Xi takes values
in {0,1,2}. With respect to the location of the pre-

vious two residues,Xi = 0 means that residuei is lo-
cated to the left. SimilarlyXi = 1 andXi = 2 respec-
tively mean that residuei will be located in line with
the previous two residues and to their right. Values
for X1 andX2 are meaningless and they are arbitrar-
ily set to 0. This codification is called relative en-
coding.42 The representation of the configuration in
Figure 4 is thusx = (0,0,0,2,2,0,0,2,2,1,0).

Relative encoding can also represent il-
legal or unfeasible solutions (e.g., x =
(0,0,0,0,0,0,0,0,0,0,0)) which correspond to self-
intercepting protein sequences. To address this sit-
uation, in the evaluation phase of the EA we use
repairing algorithms1, 43 to transform unfeasible so-
lutions into feasible ones. Protein folds correspond-
ing to proteins from the same family usually share
common structural patterns. We expect that two
similar HP sequences will have similar optimal lat-
tice configurations. This fact explains the choice
of this problem for the experiments. Therefore, we
again propose the use of anonline modellingprob-
lem, with the following goals:

1. Can we predict whether EBNA has converged
to the optimum value without knowing which
the value of the optimum actually is?

2. Can we predict the number of local optima for
a given HP protein instance?

3. Given a predefined similarity measure be-
tween instances, can we predict the most sim-
ilar and most different characterized HP in-
stance with respect to a given uncharacterized
instance?

We assume that prediction is done based on the
networks learned from previous, characterized prob-
lems, and the networks obtained from the current,
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uncharacterized problem. Also, notice that the ques-
tions stated above address three distinct types of in-
formation about the problems: 1) Information about
the algorithm behavior; 2) Information about the
problem characteristics; 3) Information about the
similarity between the problems.

3.2.1. Instance selection and data exploratory
analysis

In this example, our final goal is to be able to pre-
dict problem features from the network measures de-
rived from the probabilistic models learned by the
EDAs. We assume that we have collected informa-
tion from the structures learned in the optimization
of a group ofcharacterizedproblems and we also
have the structures generated during the optimiza-
tion of a givenuncharacterizedproblem. The char-
acterization is given as a description of some prob-
lem attributes or features. What we want to obtain
is the characterization of the new, uncharacterized,
problem.

We will start from a dataset of characterized
problems and use a subset of them to characterize
the other problems as in a classical supervised clas-
sification problem. Classification accuracy is used
as a measure of the informativeness of the descrip-
tors used. It also gives a measure of the EDA ability
to produce information that can be used to character-
ize similar problems. We do not ignore the fact that
the classification accuracy will also depend on the
type of classifier used. We acknowledge that better
classifiers could improve the results presented here.
However, the focus of our investigation is to assess
the usability of the descriptors employed.

We use a dataset of 611 functional HP proteins
corresponding to different sequences of 23 residues.
This dataset is a subset of an original database of
17,681 sequences introduced in.42 These instances
have a suitable characteristic: We know their op-
timal value, which is reached at a single configu-
ration (disregarding symmetric representations). In
addition, we know the closest suboptimal value and
the number of configurations where this suboptimal
value is reached. This information is used as a char-
acterization of the problem.

Figure 5 shows a histogram of the optimal val-
ues for the 611 instances. It can be seen that their
optimal values lie between−26 and−8 which is
a wide range of values for instances that have the
same number of variables. Similarly, there are im-
portant differences in the distribution of the number
of suboptima for all instances in the dataset (data not
shown). 374 instances have a number of suboptima
between 1 and 4 and the other 237 instances have a
number of suboptima in between 193 and 2,532.

−26 −24 −22 −20 −18 −16 −14 −12 −10 −8
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Figure 5: Histogram of the optimal values for the
611 instances.

To evaluate the EDA behavior and collect the
networks, 30 independent runs of EBNA were ex-
ecuted for each HP protein instance. We used the
MATEDA-2.0 software44 implementation of EBNA.
The learning and sampling steps of the Bayesian net-
works included in this program are implemented us-
ing the Matlab Bayes-Net (BNT) toolbox.45 The
scoring metric used was the BIC with uniform pri-
ors, and each node was allowed a maximum num-
ber of five parents. Truncation selection was used
with a parameter of truncationT = 0.5. The popula-
tion size wasN = 500 and the termination criterion
was to reach the maximum number of generations
(gens= 50).
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Figure 6: Histogram of the number of times the op-
timum was found in the 30 experiments for the 611
instances.

For each instance, we computed how many times
the optimum was found in the 30 experiments, the
average generation at which it was found and the av-
erage fitness of the best solutions found in all runs.
Figure 6 shows a histogram of the number of times
the optimum was found in the 30 experiments for the
611 instances. For 310 out of the 611 problems the
optimum was found at least once. For 80 instances
it was found only once and for 62 it was found 10 or
more times. There were also differences in the av-
erage generation at which the optimum was found
for the successful runs of the algorithm (data not
shown). Most of the times the optimum is found, on
average, between generations 10 and 15. There are
important differences between the behavior of the
EDA for the instances. In general, most problems
are hard for the EDA since the success rate of the al-
gorithm is low. However, some problems, in which
the EDA finds no optimum in any run, are clearly
even harder to solve.

From the DAG of each Bayesian network learned
in each generation, we computed the network mea-
sures described in Section 2.4.

a) b) c) d)

Figure 7: All motifs (Z = 3) which appear in the
DAGs learned by EBNA.

3.2.2. Prediction of convergence and number of
local optima

The first problems considered are the determination
of the algorithm convergence and the number of sub-
optima of the problem. For these two classifica-
tion tasks, we specify two classes. In the first case,
classes are: 1A) Instances for which EBNA did not
converge to the optimum in any of the 30 experi-
ments. 1B) The other instances. For the second clas-
sification problem, classes are: 2A) Instances with 4
or fewer suboptima. 2B) Instances with 193 or more
suboptima. To get some clues about possible charac-
teristic patterns associated to each of the classes, we
computed and analyzed the average network mea-
sures from networks in each of the classes.

Figure 8 shows the motif frequencies for prob-
lems with a successful rate 0 (Class 1A) and with
a successful rate higher than 0 (Class 1B). In addi-
tion, the charts display information for a subset of
instances of Class 1B. This subset is comprised by
instances where the EDA converged 9 or more times
out of the 30 experiments. An initial observation is
that the frequencies of all motif classes get higher
for instances that are easier to solve by the EDA.
A similar pattern was observed for the problem of
classifying the number of suboptima of the instance
(results not shown). In this case, instances with a
lower number of suboptima produce networks with
a higher frequency of all types of motifs.

To determine good predictors of the problem
characteristics, we use a multivariate Gaussian clas-
sifier46 which is a simple classifier that only requires
to learn two multivariate Gaussian distributions. Ad-
ditionally, this classifier allows to consider potential
interactions between the features that can be rele-
vant for the classification process. The conditional
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Figure 8: Motif frequencies computed from the networks of instances in which EBNA respectively has success-
ful rate 0, higher than 0 and equal or higher than 9. Left) Motif frequencies for all motifs (Z = 3) shown in
Figure 7. Right) Motif frequencies for all motifs (Z = 4) which appear in the networks learned by EBNA.

density of a solution given the class valueAi is com-
puted as

p(z|Ai) = (2π)−
nc
2 |ΣAi |

− 1
2 e−

1
2(z−µAi )

tΣAi
−1(z−µAi )

(6)
whereZi ∈ {X1, . . . ,Xn}, i.e. Z is a subset ofnc = |Z|
components (or features ofX). Ai denotes a class,
and µAi and ΣAi are the parameters of a multivari-
ate Gaussian distribution estimated from the points
in classAi . In the simplest casenc = 1, i.e. only one
variable of the problem is used as a predictor. In this
case, Equation (6) only involves univariate Gaussian
distributions.

For a given set of features, we estimated the
classifier accuracy usingk-fold cross-validation with
k = 5. The parameters of the multivariate Gaus-
sians were learned using maximum likelihood es-
timation. In the classification step, we used that
p(Ai|z) ∝ p(z,Ai) = p(z|Ai)p(Ai) and assumed all
classesAi are equiprobable. Therefore the assigned
class was the one with the highestp(z|Ai). The
k-fold cross-validation procedure was repeated 50
times and from these experiments we computed the
mean and standard deviation of the classifier accu-
racy estimator.

For the first two classification problems, finding
the optimum and estimating the number of subop-
tima, the predicted accuracy given by each of the
features were independently computed. These re-

sults are shown in Table 2. For the sets of network
motifs (Z = 3 andZ= 4), the table only includes the
accuracy corresponding to the network motif with
the highest accuracy. The best classification results
achieved by single features are highlighted in bold.
It can be seen that the best accuracy is achieved by
the betweenness centrality in the first problem, and
by the clustering coefficient in the second problem.
Accuracies are higher for the second problem than
for the first. It seems easier here to predict whether
the problem has few or many suboptima than deter-
mining if the algorithm has converged to the opti-
mum.

In order to improve the classification accuracy,
we consider interactions between the predictors.
In this case, we search for a set of features that
maximizes the classification accuracy. This feature
subset selection problem, with 39 variables, is ad-
dressed using a tree-based EDA as implemented
with MATEDA.44 EDAs have shown to be a good
alternative for feature subset selection problems.47

Only one run of Tree-EDA was used to compute the
best set of features. Since Tree-EDA is a stochastic
algorithm, we expect that more runs would improve
the best solution found. Therefore subsets of fea-
tures with a better accuracy are likely to exist for
this problem. The accuracies obtained with the best
combination of features are shown in the last row
of Table 2. For both problems, improvements over
the best single classifiers were achieved. The clas-
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Network measures for information extraction in evolutionaryalgorithms

Table 2: Classification accuracy and standard deviation of each single predicting feature and best combination
for the EDA convergence to the optimum and the prediction of the number of suboptima.

Convergence Suboptima
f eature name acc. std.dev. acc. std.dev.

1 dagdif 0.6023 0.0027 0.7601 0.0020
2 Ndensity 0.6635 0.0022 0.8841 0.0014
3 indegree 0.6637 0.0025 0.8838 0.0014
4 outdegree 0.6621 0.0031 0.8842 0.0018
5 betw. cent. 0.6789 0.0025 0.7323 0.0025
6 pair dist. 0.6151 0.0023 0.8593 0.0018
7 reachability 0.6137 0.0020 0.8581 0.0014
8 clust. coef 0.6597 0.0026 0.8901 0.0017
9 shortcut prob. 0.6097 0.0043 0.6065 0.0068

10 : 13 n. motifs,Z = 3 0.6761 0.0025 0.8796 0.0024
14 : 37 n. motifs,Z = 4 0.6783 0.0022 0.8772 0.0016

38 max. modularity 0.6748 0.0034 0.7761 0.0020
39 vert. part. coeff. 0.6376 0.0032 0.7875 0.0031

Best combination 0.7084 0.0065 0.9132 0.0035

sification accuracies of these sets of predictors were
respectively above 0.70 and 0.91. Recall that a ran-
dom predictor that always picks the majority class
would respectively achieve accuracies of 0.5075
and 0.6121. This fact shows that all single predic-
tors improve the accuracy of the random predictor,
and that a good combination of features substan-
tially outperforms the results of the random predic-
tor. The sets containing the best predictors were
{2,5,6,12,14,15,26,27,28,33,37,39} for the first
problem, and{8,12,20,22,25,27,29,33,35,36,39}
for the second.

We highlight that although the two classification
tasks were conducted independently, we could think
of simultaneously classifying the EDA convergence
and the number of suboptima of the problem. This
could be a suitable alternative considering the inter-
actions between the two problems.

We have empirically shown that the information
learned during the optimization of past problems for
which some particular features are known can be
employed to predict features of new problems for
which we do not have the same class of information.

3.2.3. Prediction of most similar and most
different instances

In the next step, we intend to use the structures
to distinguish, in a data set of characterized prob-
lems, similar from dissimilar problems. Two dif-

ferent measures of similarity between instances are
used: 1) The sequence similarity, which is the num-
ber of common residues in the two instances, and,
2) The fitness correlation between two fitness func-
tions, computed from a random sample taken from
the solutions space.

Figure 9 shows the sequence similarity against
the fitness correlation for all pairs of instances. Re-
call that each instance defines a different fitness
landscape. We use 10,000 points to compute the
correlation between fitness functions. It can be ob-
served that there is a strong relationship between
both similarity measures. However, as expected,
pairs of instances with equal sequence similarity can
have very different fitness correlation.
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Figure 9: Sequence similarity against the fitness cor-
relation for all pairs of instances.

To construct the database of cases, we identified,
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for each instance, the most similar and most differ-
ent instance. We used two different similarity mea-
sures for selecting pairs of most similar and most
dissimilar instances. After the identification process
concluded, there were two dataset, one for each sim-
ilarity measure. We then were interested in detecting
those instances with highest values of similarity and
dissimilarity at the same time. To detect those pairs
of instances, we took the differencey = xi − x j as
features, i.e. the difference between the network de-
scriptors corresponding to instancesi and j.

The values ofy were categorized as very similar
instances as class label 1 or very dissimilar instances
as class label 0. This supervised set of values con-
stitued the classification problem to deal with. Since
an instance may have more than one most similar or
dissimilar matches. we chose an arbitrary instance
among those being closest. As a result, there was a
database of 611× 2 = 1,222 points for each simi-
larity measure, equally distributed between the two
classes

We used the same type of classifier and experi-
mental protocols than in the previous classification
experiments. Results are shown in Table 3. In this
prediction problem, the single classifiers have more
similar performance. The best individual predic-
tor, when sequence similarity measure is used, is
the reachability measure (0.6558). When the fitness
correlation measure is used, the best predictor is the
outdegree (0.6683). In general, single predictors do
not give a high accuracy. However, when interac-
tions between features are considered, the accuracy
in the prediction is much higher for both problems
(an increase of 0.07 for the first problem and of 0.13
for the second). The main conclusion from the ex-
periment is that information extracted from the net-
works can be used to distinguish similar and dissim-
ilar pairs of instances, particularly if interactions be-
tween the network measures are considered.

3.3. Neuroproteomics multi-objective feature
selection problem

The neuroproteomics multi-objective feature selec-
tion problemconsists of selecting a minimal subset
of features that gives the highest classification accu-
racy in the diagnosis of Alzheimer’s disease (AD).

For this multi-objective feature selection problem,
we have a dataset of cases with a set of attributes
and an observed class label. The minimal subset of
features will be used as input to a predefined clas-
sifier, giving a correct classification rate as high as
possible. There are two objectives to be fulfilled:
1) Maximize the correct classification rate, and 2)
Minimize the number of selected features. There-
fore, the problem is to obtain a good approximation
of the Pareto set of solutions.

The database used for this experimentation
comes from the work presented in.48 A panel of
biomarkers is investigated for the clinical diagnosis
of AD. The work makes use of a proteomic dataset
of 120 signaling proteins measured in individuals
with proved AD diagnosis and in various control
samples. We use the training set of this work as input
to our heuristic search. It comprises 120 features on
a dichotomic supervised problem with 43 AD sam-
ples and 40 healthy controls.

Each solution is represented using a binary vec-
tor whereXi = 1 means that the corresponding fea-
ture is included in the classifier. Two different classi-
fication strategies, that can be interpreted as two dif-
ferent problem formulations with two fitness func-
tions, are used:

• k-nearest neighbor - Thek-NN algorithm49 per-
forms the classification task in terms of similarity:
unlabeled examples are classified based on their
distance to the examples in the training set.k-NN
has no explicit classification model and, hence,
there is no learning stage. It finds thek closest ex-
amples in the data and assigns the class that most
frequently appears within suchk-subset. For our
experiments,k-NN was computed with Euclidean
distance andk= 1.

• Naı̈ve Bayes - Continuous naı̈ve Bayes50 is based
upon the Bayes formulation of conditional de-
pendencies. The simplest structure is based on
the assumption of conditional independence be-
tween the predictor variables given the class vari-
able, that is, the naı̈ve Bayes structure. Then, the
model parameters are estimated with a factoriza-
tion based on the normal distribution assumption
for each variable given each value of the class
variable.
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Network measures for information extraction in evolutionaryalgorithms

Table 3: Classification accuracy and standard deviation of each single predicting feature and best combination
for the prediction of the most similar and dissimilar pairs of instances.

Seq. similarity Fitness correlation
f eature name acc. std.dev. acc. std.dev.

1 dagdif 0.5639 0.0039 0.5608 0.0052
2 Ndensity 0.6516 0.0019 0.6207 0.0035
3 indegree 0.6516 0.0021 0.6211 0.0036
4 outdegree 0.6514 0.0024 0.6683 0.0017
5 betw. cen. 0.6126 0.0031 0.6113 0.0033
6 pair dist. 0.6554 0.0021 0.6100 0.0037
7 reachability 0.6558 0.0023 0.6457 0.0026
8 clust. coeff. 0.6495 0.0026 0.6208 0.0030
9 shortcut prob. 0.5959 0.0025 0.6097 0.0039

10 : 13 n. motifs,Z = 3 0.6469 0.0026 0.6103 0.0030
14 : 37 n. motifs,Z = 4 0.6435 0.0024 0.6193 0.0027

38 max. modularity 0.6164 0.0028 0.6164 0.0030
39 vert. part. coeff. 0.6056 0.0027 0.5822 0.0034

Best combination 0.7271 0.0041 0.8143 0.0043

To tackle this problem, we made use of thea
posteriori modelling to a multi-objective optimiza-
tion problem. The main goal of our experiment
is to show thata posteriori modelling can pro-
vide useful information when applied to evolution-
ary algorithms other than EDAs. To this end, we
analyzed the selected populations generated by a
GA (GA-KNN and GA-NB), constructing networks
from these populations and comparing them to those
generated by EBNA (EDA-KNN and EDA-NB).
Our analysis intends to show the convenience of
analyzing the network theoretic measures extracted
from the evolution of EAs. In particular to this ap-
plication, we want to find answers to the following
questions:

1. Can network theoretic measures be used for
characterizing the effect of different EA vari-
ation operators and problem formulations?

2. From a given time in the evolution, is it pos-
sible to predict dynamics of the algorithm in
subsequent generations?

3.3.1. Generation of the data

We applied a GA with single-point crossover and
also an EBNA to find a Pareto set approximation of
the bi-objective function under consideration. GA
and EBNA were modified to address the multi-
objective problem. The modification is based on

the use of Pareto ranking selection. This selection
method begins by computing all the Pareto sets in
the population, then solutions within each Pareto set
are sorted according to the average rank of the fitness
function for all the objectives. Finally, the selected
population is taken from the sorted population ap-
plying truncation selection. We have successfully
applied this selection method in previous applica-
tions to multi-objective problems.5, 51

The idea is to compare the networks produced
during the evolution of the GA with those gener-
ated by EBNA. Thek-NN and naı̈ve Bayes classi-
fiers were used as two alternative feature subset se-
lection (FSS) problem formulations. Each classifier
can assign a different accuracy to the same set of fea-
tures. However, there is a high correlation between
the fitness given by both classifiers. For each fitness
function, we executed 16 runs of the two EAs. The
GA used one-point crossover and bit-flip mutation
with crossover and mutation probabilities respec-
tively equal toPc = 1.0 andPm = 0.01. The popula-
tion size used for the two algorithms wasN = 250.
Truncation selection withT = 0.5 was used. The
stopping condition was to reach a number of gener-
ationsgens= 50.

In the case of the GA, the selected sets of each
generation were stored anda posteriori modelling
was done by learning the Bayesian networks from
the selected populations. For EBNA, the networks
generated during the evolution were used for the
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analysis. As a result, there were 16× 50 = 800
Bayesian networks for each fitness function and
each algorithm. The set of networks measures de-
scribed in Section 2.4 were computed for each of
the networks.

3.3.2. Influence of the variation operators and the
fitness function

The most straightforward analysis of the topological
characteristics of the networks is the analysis of the
frequency matrices. These matrices simply compute
how many times each arc appears in all the networks
learned by the EAs. The rationale is that the most
frequent arcs may correspond to relevant pairwise
interactions between the problem variables. There-
fore, we start by computing these matrices for each
of the fitness functions and algorithm.

Frequency matrices shown in Figure 10 store the
frequency of the arcs from the set of 800 DAGs
learned for each problem. In the figure, the color-
bars indicate the mapping between the arc frequen-
cies and the colors. For the two fitness functions, it
can be seen in Figure 10 (a and b) that the GAs pro-
duce networks in which arcs corresponding to adja-
cent nodes have a much higher frequency. This is
a known effect of one-point crossover: it tends to
respect relationships between variables closer in the
representation, but variables distant from each other
are more vulnerable to the disruption. The networks
learned by EBNA, Figure 10 (c and d), are less prone
to disrupt dependencies between distant nodes and
less likely to promote dependencies between adja-
cent variables in the representation. This example
clearly shows howa posteriorimodelling of the GA
can serve to detect the effect of the crossover opera-
tors in the arousal of dependencies. In cases where
the potential bias that the crossover operator induces
in the generation of solutions is less evident, fre-
quency matrices may be useful to detect this bias
and to modify the choice of the crossover operator
accordingly.

Further analysis of Figures 10 reveals that the
k-NN classifier (a) induces more dependencies be-
tween the variables of the problem than the naı̈ve
Bayes classifier (b). This can be deduced from the
higher frequency of the learned arcs. In this case,

a posteriorimodelling is useful to reveal differences
in the number of problem interactions determined by
the different fitness functions. Based on this infor-
mation, the user could be able to decide whether to
employ a problem formulation that induces more or
less dependencies between the variables. Notice that
the number of dependencies between the variables is
usually associated to the complexity of the problem
for the EA.

A more detailed characterization of the influence
that the variation operators and the fitness function
have in the evolution of the algorithms can be ob-
tained by analyzing the network measures. We focus
on two alternative approaches to the network mea-
sures analysis:

1. Vertex approach: Focuses on the differences
between the vertices of the networks. The in-
formation learned from all the EA generation
networks is condensed to compute the statis-
tics of each vertex. This approach does not
focus on differences between generations but
on the salient characteristics of the vertices,
allowing to identify differences between the
roles played by the variables.

2. Generation approach: Focuses on the differ-
ences between the networks learned at each
generation. Global network and local mea-
sures computed at each generation are used.
When the network measure is local (e.g. asso-
ciated to a vertex), it is the average of all local
measures computed for the network. There-
fore, this approach does not look at differ-
ences between the vertices or edges. It fo-
cuses on salient characteristics of the gener-
ations captured by the network measures.

Figure 11 shows examples of the two approaches
using the betweenness centrality local measure. Fig-
ure 11 (left) shows the betweenness centrality values
for each of the 120 vertices computed from the 800
networks learned for each fitness function. Figure 11
(right) shows the average betweenness centrality at
each generation of the algorithms. The betweenness
centrality of a network is computed by averaging
the betweenness centrality of its 120 nodes. The fi-
nal average betweenness centrality at generationg
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Figure 10: Frequency matrices of the Bayesian networks learned from the GA selected populations usingk-NN
(a) and naı̈ve Bayes (b) fitness functions. Frequency matrices learned by EBNA usingk-NN (c) and naı̈ve Bayes
(d).
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Figure 11: Two possible representations of the betweenness centrality values computed from the networks.
Left: Average betweenness centrality values of each vertex computed from all generations. Right: Average
betweenness centrality values at each generation computed from all vertices.

is computed as the mean of the network between-
ness connectivity of the networks learned at gener-
ationg in all the 16 runs. The same procedures are
used to compute the average of the other network
measures. Global network measures (e.g. modular-
ity coefficient) are only computed for the generation
approach.

The analysis of betweenness centrality of the ver-
tices shown in Figure 11 (left) also reveals the ef-
fect of the crossover operator in the topologies of
the networks. Vertices corresponding to the first and
last variables in the representation have a lower be-
tweenness centrality since their potential dependen-
cies to the other variables are more likely to be dis-
rupted. The characteristic bell shape of the between-
ness centrality values for the GA-produced networks
contrasts with the flat distribution of the centrality

values achieved by the EDA networks. The gener-
ation approach to the analysis of the network mea-
sures shown in Figure 11 (right) reveals clear dif-
ferences in the behavior of the GA with respect to
the EDA. The average betweenness centrality of the
networks produced by the GA is always higher than
those produced by the EDA. This fact may be related
to the different role played by the variables in both
variation operators.

The generation approach to the analysis of the
network measures also supports a dynamical view of
the EA behavior. It is possible to classify or group
generations according to the similarities between the
computed network measures. In particular, extreme
values of the network measures may point to critical
periods for the EDA behavior. In Figure 11 (right),
the maximal betweenness centrality values for the
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R. Santana, R. Armañanzas, C. Bielza and P. Larrañaga
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Figure 12: Network measure descriptors of the EA behavior. a) Clustering coefficient b) Path length c) Mini-
mized modularity.
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Figure 13: Evolution of the motifs frequencies for all possible motifs of size 3 included in DAGs. The order of
the charts corresponds to the motifs shown in Figure 7.
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Network measures for information extraction in evolutionaryalgorithms

GAs are rapidly reached around generation 5. EDAs
take more time to reach the maximal values (around
generation 15). As evolution advances the between-
ness centrality tends to decrease in the two algo-
rithms. Convergent behavior of the network mea-
sures may denote the stagnation of the evolutionary
process. More importantly, they could be used as
predictors of the future algorithm behavior, as ana-
lyzed later on Section 3.3.3.

Three network measures that have a relevant
place in the analysis of complex networks are the
clustering coefficient, the path length and the mod-
ularity. We use these measures to compare the ef-
fect of the different problem formulations. Figure 12
shows the values of the three measures in each gen-
eration of the EAs and for the two fitness functions.
The differences between the networks generated for
k-NN and naı̈ve Bayes depend for the three mea-
sures on the type of algorithm used to optimize the
functions. While the network measures ofk-NN and
naı̈ve Bayes are very similar for the GA, there are
bigger differences between them when the EDA is
used. A similar behavior was observed for other
network measures (results not shown). These re-
sults seem to indicate that, in general, the translation
of the problem differences to the network measures
will highly depend on the used variation operator.
However, some network measures may be more sen-
sitive to the differences in problem formulation. In
addition, the joint use of different network measures
can serve to better characterize the differences be-
tween problem formulations. One example of this
joint use of measures appears in the examination of
different motif frequencies.

We computed the network motif frequencies for
all motifs (Z = 3 andZ = 4) present in the DAGs.
Figure 13 shows the motif frequencies for the only
four motifs (Z= 3) which can be found in the DAGs.
These motifs are shown in Figure 7. The analysis of
Figure 13 reveals that the motif frequencies for the
networks produced by the EDAs tend to be higher
than the motif frequencies of networks generated by
the GAs for three out of the four motifs (Figure 7 a),
c) and d)). The exception is the second motif from
the left in Figure 13, for which the corresponding
frequencies are higher in the case of the EDA.

We have not been able to find a mechanistic ex-
planation for the unequal distribution of motif fre-
quencies between algorithms. Nevertheless, the in-
crease of motif frequencies with the number of gen-
erations in GA could be explained by the increase in
the network density. In the case of motifs withZ= 4
(results not shown), it is possible to identify a wider
variety of behaviors for the motifs frequencies. This
variability suggests the use of motifs as signatures of
the characteristic evolutionary path followed by an
EA in the solution of a given problem. These signa-
tures depend on the relationships between the vari-
ables captured by the networks and therefore they
would allow to compare not only different formula-
tions of the same optimization problem but also sin-
gle and multi-objective problems from completely
different domains.

3.3.3. Prediction of the algorithm behavior

Vertex network theoretic measures can also be used
to predict the behavior of the algorithms in future
generations. To investigate this use of the network
measures, we focus on the evolution of the univari-
ate probability distributions computed from the se-
lected sets. We show that univariate probabilities of
the selected set can be used as descriptors of the pop-
ulation homogeneity allowing the implementation of
diversity preserving methods.

Let p̂ j
i be the empirical probability ofXi = xi

at generationj. Let (y1
i, j , . . . ,y

r
i, j ) the set of the

r vertex network measures computed for vertexi
from the network learned at generationj. Then
we want to find a mappingγg such that p̂ j+g

i =

γg(y1
i, j , . . . ,y

r
i, j , p̂

j
i ) whereg is the number of gener-

ations from the current generation, from which the
prediction is to be made.

The idea of including the current univariate value
p̂ j

i as a source of information for prediction is be-
cause univariate probabilities usually experiment
only minor changes from one generation to the few
next generations. Therefore, the current univariate
probability of the selected population is a good can-
didate for a predictor variable.

We find γg using linear regression which can
be computed very fast. The minimum square er-
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R. Santana, R. Armañanzas, C. Bielza and P. Larrañaga

ror (MSE) betweenp̂ j+g
i and γg(y1

i, j , . . . ,y
r
i, j , p̂

j
i ) is

evaluated for different values ofg and the two EAs.
In our experiments, we set the number of vertex
network measuresr = 8. The used network mea-
sures were: indegree, outdegree, clustering coeffi-
cient, betweenness centrality, pair distance, reacha-
bility, shortcut probability, and the vertex participa-
tion coefficient.

Figure 14 shows the average MSE value, com-
puted from all the variables, for GA-KNN, GA-NB,
EDA-KNN, and EDA-NB, wheng ∈ {1,5,10,20}.
It can be seen that the error of the approximation is
in general very low and converges to zero in the last
generations. As expected, the error gets higher with
g.

We further investigated whether the good ap-
proximation is exclusively due to the use ofp̂ j

i as
a regressor or because of the vertex network mea-
sures contribute to the prediction. Figure 15 shows
the prediction gain achieved in the estimation of
the univariate probabilities by including vertex net-
works descriptors. To compute the prediction gain,
we found the difference between the prediction error
given usingp̂ j

i as the only regressor variable, and the
prediction given when all vertex network measures
are included as regressors. Therefore, in Figure 15,
positive values indicate a prediction gain. Not sur-
prisingly, prediction gain is very small wheng= 1,
i.e. prediction is made on the univariate probabilities
of the next generation. However, asg increases the
contribution of the vertex network measures is more
important.

If the charts showing the prediction gains are fur-
ther inspected, it is possible to see that between gen-
erations 15 and 20 GA-NB (Figure 15 b)) there is a
negative prediction gain from the use of the network
measures. This case demonstrates that not in all the
situations the predictions will be improved. There
are also marked differences between the algorithms:
the prediction gain is clearer for EDA-KNN and
EDA-NB (Figure 15 c) and d)) than for the GAs. We
applied also regression methods that consider the in-
teractions between the predictors. Using these meth-
ods it was possible to further improve the prediction
gain (results not shown). However, at some gener-
ations the low density of the networks and the sim-

ilarity between the measures computed from them
makes the behavior of the regression methods more
unstable. Also due to their simpler complexity, we
recommend the use of the linear regression methods.

4. Discussion on the structural findings

We have not found previous references on the struc-
tural modelling of GAs from the perspective of net-
work theory. Therefore, the following analysis cov-
ers previous work on EDAs that addresses different
facets of the models learned by these algorithms. We
review some of this work, stressing the differences
with the results introduced in this paper. We also
include an account of work on meta-learning that is
relevant to our research. Note that current work on
EDAs is a very productive field52 and our review is
by no means exhaustive.

4.1. Relationship between the problem structure
and the structure of dependencies

There are many papers that study and describe the
main characteristics of the structural component of
the probabilistic models learned by EDAs.53–56 This
description is mainly done in terms of the number
of edges or arcs that appear in the model structures.
Another popular approach has been the classifica-
tion of the graph edges in correct or spurious, in
accordance with their relationship with the (known)
problem structure. This has been done by computing
the most frequent edges appearing in the structural
component of the probabilistic models in EDAs and
analyzing their mapping with the structure of inter-
actions of the problem.55, 57–62

4.2. Using the models to improve the search in
EDAs

In EDAs, the use of structural information has
been mainly constrained to bias model building
and approximate fitness functions. Two main ap-
proaches have been identified to bias model build-
ing in EDAs:63 Impose soft restrictions by biasing
the scoring metric to prefer models that closely cor-
respond to the problem structure4 or impose hard
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Figure 14: MSE in the estimation of the univariate probabilities. a) GA-KNN, b) GA-NB, c) EDA-KNN, d)
EDA-NB.
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Figure 15: Prediction gain achieved in the estimation of the univariate probabilities by including vertex networks
descriptors. a) GA-KNN, b) GA-NB c) EDA-KNN, d) EDA-NB.

restrictions by strictly disallowing some dependen-
cies.4, 64–66The question of how to extract the struc-
tural information to bias the model is reviewed in the
next section.

For estimating the fitness function using the
models, statistical analysis of the structures, of the
type presented in this paper, is not usually made. In-
stead, the marginal probabilities or the probability
associated by the model to a given point are used to
estimate the fitness.67–70

4.3. Extracting information from the learned
models by EDAs

The first work where automatic procedures for ex-
tracting and reusing information in the future of the
solution of similar problems was recently presented
in.4 Two different approaches were introduced to
extract the problem information: a) Computation of
the probability coincidence matrix and b) Compu-
tation of a distance-based metric between variables
from the known problem structure.

In both approaches the extracted information was
used to bias model building in problems which are
knowna priori to be similar. The information is not
used to infer, predict or characterize other instances.
Another difference to our approach is the class of
information extracted from the models. The coinci-
dence matrix extracts local information about edge
frequencies in the model structures. The distance
based metric computes the distance from the origi-
nal problem structure (e.g. lattice and SAT based in-
teraction graph between the variables). The first ap-
proach can be considered as a particular case ofon-
line structural learning where only a particular net-
work measure is employed. The second approach
can be included as one of the possiblea priori struc-
tural modelling strategies. Addressing the ques-
tion of knowledge exchange in EAs using network
measures as problem structural descriptors, together
with classifiers as inference techniques, is both a
more general and flexible approach.

In parallel to the work presented in this paper,
recent works have described a variety of ways for
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knowledge extraction and its exploitation in EDAs.2

presents an example of how structural information
extracted from Bayesian networks by simple analy-
sis of edge frequencies can be used to reconstruct
networks of metabolites that reflect physiological
metabolite interconnections. In,71 peakbin selec-
tion in mass spectrometry data is addressed us-
ing an ensemble approach that integrates informa-
tion from different probabilistic models learned by
an EDA. In,72 structural transfer between instances
is implemented combining Bayesian network edge
frequencies computed from instances (single nu-
cleotide polymorphisms of 58 human populations)
with different sizes and only partially overlapping
variables. Extraction of information is also possi-
ble by analyzing the parameters in regularized Gaus-
sian models,73 or models that learn dependencies
between variables and objectives.74 Lastly,3 shows
that a distance-based bias technique can be applied
for knowledge exchange between instances that have
different sizes.

4.4. Other related work in evolutionary
computation

While we have focused on structural modelling, re-
cent work takes profit of all the information con-
tained in the probabilistic model to investigate the
efficiency of the EDAs components, and the rela-
tionship between the model structure and the qual-
ity of the solutions found. This is done by comput-
ing different measures associated to the probabilistic
models such as the most probable configurations75

and the correlations between the model probabilities
and the fitness function.57, 76 Using measures that
contain information about the model structure and
parameters can be seen as a possible way to gen-
eralize structural modelling. However, this type of
measures have not been applied to problem charac-
terization or instance classification within EDAs.

One of the few papers that treats different issues
related to EDAs complexity in terms of the topolog-
ical characteristics of the models learned by EDAs
is.18 By analyzing some topological characteris-
tics of the interaction graphs for random additively
decomposable functions, the authors prove that the
space complexity of the factorized distribution algo-

rithm and Bayesian network-based algorithms may
be exponential in the problem size even if the opti-
mization problem has a very sparse interaction struc-
ture. The network descriptors used by18 are just one
case of the informative network measures that could
be of application in EDAs.

The identification of network motifs and the
computation of their frequencies have been exten-
sively applied to the analysis of biological,24, 77 arti-
ficial24, 78 and evolved networks.51, 79 However, we
have not found previous references to the systematic
analysis of network motif frequencies in Bayesian
networks or graphical models in general.

4.5. Meta-Learning

Our work is also related to meta-learning,80, 81 an
area where active research is pursued by several
research groups. The goal in meta-learning is
twofold:80 1) To provide automatic and system-
atic user guidance by mapping a particular task to
a model (or combination of models) and 2) To allow
the learning mechanism itself to relearn, taking into
account previous experience.

There are some main differences between meta-
learning approaches and the method we propose
to extract relevant problem information from the
data generated by the EAs. The primary difference
from meta-learning methods is that we do not need
explicit structural (a priori) information about the
problem. This information can be extracted from
the networks learned from the data. In this sense,
our work is relevant for the question of identifying
features that correlate with the empirical hardness of
problem instances. This is a fundamental question
that arises in meta-learning and other areas.

5. Conclusions and future work

In this paper we have shown that network measures
computed from networks produced from the anal-
ysis of EAs can capture problem characteristic in-
formation and also support evidence about the be-
havior of the algorithms. We argue that the use of
these measures could serve to devise “intelligent”
optimization methods, able to learn from past expe-
rience to recognize and solve related problems. In
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addition, the application of network measures opens
a different perspective for the analysis of problem
difficulty and algorithm behavior in EAs. There
are a number of directions where further research is
worth.

Network measures can be employed to compare
different algorithms that produce networks, describ-
ing their behavior. Collaborative problem solving
between different optimizers (e.g. EAs that use dif-
ferent types of variation operators) can be organized
using the information derived from the networks
produced by the optimizers for different classes of
problems. It could be possible to assign optimiza-
tion problems based on previous performance of the
optimizers for similar classes of problems.

One assumed fact is that the identification of
strongly related subsets of variables can be used
as a way for problem decomposition. In directed
and undirected networks, a set of strongly related
variables can be associated to a network module,
community, or cluster of vertices. In weighted net-
works,82 modules can be considered as sets of re-
lated variables whose edges add to a high weight.
When applied in the context of EAs, a possibility
would be to investigate algorithms available for net-
work community detection83 as a way to achieve
problem decomposition.

In some of the conducted experiments, the anal-
ysis of the classifiers learned from the network mea-
sures allowed us to capture information about which
were the features relevant for classification. This
type of information could support additional knowl-
edge about the optimization problem and its rela-
tionship with the structural characteristics captured
by the network measures.

In previous work,1, 5 we showed that marginal
probabilities extracted from Bayesian networks can
help to detect valuable partial configurations. The
combination of structural and quantitative informa-
tion from Bayesian networks could help to improve
classification accuracy and we envision this topic as
worth for future work.

Another possible development is the application
of network measures defined for weighted networks
using as weights some parameters derived from
probability distributions in order to obtain other de-

scriptors of probability distributions.
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C. Echegoyen, A. Mendiburu, R. Armañanzas, and
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56. R. Santana, P. Larrañaga, and J. A. Lozano. The role
of a priori information in the minimization of contact
potentials by means of estimation of distribution algo-
rithms. InProceedings of the Fifth European Confer-
ence on Evolutionary Computation, Machine Learn-
ing and Data Mining in Bioinformatics, volume 4447
of Lecture Notes in Computer Science, pages 247–
257. Springer, 2007.

57. S. Brownlee, J. McCall, Q. Zhang, and D. Brown.
Approaches to selection and their effect on fitness
modelling in an estimation of distribution algorithm.
In Proceedings of the 2008 Congress on Evolution-
ary Computation CEC-2008, pages 2621–2628, Hong
Kong, 2008. IEEE Press.

58. C. Echegoyen, J. A. Lozano, R. Santana, and
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66. R. Santana, P. Larrañaga, and J. A. Lozano. Side chain
placement using estimation of distribution algorithms.
Artificial Intelligence in Medicine, 39(1):49–63, 2007.

67. M. Pelikan and K. Sastry. Fitness inheritance in the
Bayesian optimization algorithm. InProceedings of
the Genetic and Evolutionary Computation Confer-
ence GECCO-2004, volume 3103 ofLectures Notes
in Computer Science, pages 48–59. Springer Berlin
Hidelberg, 2004.

68. K. Sastry, M. Pelikan, and D. Goldberg. Efficiency en-
hancement of genetic algorithms via building-block-
wise fitness estimation. InProceedings of the 2004
Congress on Evolutionary Computation CEC-2004,
pages 720–727, Portland, Oregon, 2004. IEEE Press.

69. S. Shakya and J. McCall. Optimization by estima-
tion of distribution with DEUM framework based on
Markov random fields.International Journal of Au-
tomation and Computing, 4(3):262–272, 2007.

70. S. Shakya, J. McCall, and D. Brown. Using a
Markov network model in a univariate EDA: An
empirical cost-benefit analysis. In H. G. Beyer
and U. M. O’Reilly, editors,Proceedings of Genetic
and Evolutionary Computation Conference GECCO-
2005, pages 727–734, Washington, D.C., USA, 2005.
ACM Press.
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