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a b s t r a c t

Markov models lie at the interface between statistical independence in a probability
distribution and graph separation properties. We review model selection and estimation
in directed and undirected Markov models with Gaussian parametrization, emphasizing
the main similarities and differences. These two model classes are similar but not
equivalent, although they share a common intersection. We present the existing results
from a historical perspective, taking into account the amount of literature existing from
both the artificial intelligence and statistics research communities, where these models
were originated. We cover classical topics such as maximum likelihood estimation
and model selection via hypothesis testing, but also more modern approaches like
regularization and Bayesian methods. We also discuss how the Markov models reviewed
fit in the rich hierarchy of other, higher level Markov model classes. Finally, we close the
paper overviewing relaxations of the Gaussian assumption and pointing out the main
areas of application where these Markov models are nowadays used.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Markov models, or probabilistic graphical models, explicitly establish a correspondence between statistical indepen-
dence in a probability distribution and certain separation criteria holding in a graph. They were originated at the interface
between statistics, where Markov random fields were predominant (Darroch et al., 1980), and artificial intelligence, with
a focus on Bayesian networks (Pearl, 1985, 1986). These two model classes are now considered the traditional ones, but
still are widely applied and nowadays there is a significant amount of research devoted to them (Daly et al., 2011; Uhler,
2012). They both share the modelling of conditional independences: Bayesian networks relate them with acyclic directed
graphs, whereas in Markov fields they are associated with undirected graphs. However, the models they represent are
only equivalent under additional assumptions on the respective graphs.

In this paper, we review the existing methods for model selection and estimation in undirected and acyclic directed
Markov models with a Gaussian parametrization. The multivariate Gaussian distribution is among the most widely
developed and applied statistical family in this context (Werhli et al., 2006; Ibáñez et al., 2016), and allows for an explicit
parametric comparison of their similarities and differences. The highly interdisciplinary nature of these Markov model
classes has led to a wide range of terminology in methodological developments and theoretical results. They have usually
been studied separately, with some exceptions (Wermuth, 1980; Pearl, 1988), and most unifying works (Sadeghi and
Lauritzen, 2014; Wermuth, 2015) are characterized by a high-level view, where the models are embedded in other, more
expressive classes, and the focus is on the properties of these container classes. By contrast, in this paper we review
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Fig. 1. Timeline on the origins of Gaussian Markov models. Papers from the statistical community appear at the top, while papers from other research
areas appear below. Thematically, grey filled squares are papers about acyclic directed Markov models, the white ones are about the undirected
case, and those gradient filled treat both classes.

them from a low-level perspective. In doing so, we use a unified notation that allows for a direct comparison between the
two types of classes. Furthermore, throughout each section we explicitly compare them, in terms of both methodological
and theoretical developments.

The paper is structured as follows. A historical introduction to Markov models is presented in Section 2, emphasizing
the different research areas that contributed to their birth. Afterwards, preliminary concepts from graph theory are
presented in Section 3. In Section 4, undirected and acyclic directed Markov model classes are introduced, under no
distributional assumptions. This is because many foundational relationships between them can already be established from
this general perspective. Next, we restrict their parametrization to multivariate Gaussian distributions, and explore the
main derived properties from this in Section 5. We review maximum likelihood estimation in Section 6. These estimates
are used for model selection via hypothesis testing, as we present in Section 7. When maximum likelihood estimators
are not guaranteed to exist, a popular technique is to employ regularization, which we overview in Section 8. Finally, the
alternative Bayesian approach for model selection and estimation is treated in Section 9. We explore the relationship of
Gaussian acyclic directed and undirected Markov models with other, higher level model classes in Section 10. Alternatives
to the Gaussian distribution are discussed in Section 11. We close the paper discussing the main real applications of the
Gaussian Markov model classes reviewed in Section 12.

2. A historical perspective

We will now introduce the main terminology for Gaussian Markov models that can be found nowadays, from a
historical perspective. In Fig. 1 we have depicted a timeline on the origins of Markov models, containing most of the
key works we will refer to in this section.

Undirected Markov models for conditional independence are the oldest type of Markov models, preceded only by
special cases such as the Ising model for ferromagnetic materials (Kindermann and Snell, 1980; Isham, 1981). In fact,
they are a generalization of the Ising model, which is at the same time a generalization of Markov chains. Originally,
undirected Markov models were called Markov random fields (Grimmett, 1973), since they generalized the correspondence
between Gibbs measures (Besag, 1974) and Markov properties. The terminology graphical model was not introduced
until Darroch et al. (1980) linked the graphical ideas for contingency tables with Markov properties of discrete Markov
fields. Furthermore, we also find them called Markov networks (Pearl, 1988), from researchers in artificial intelligence, as
a parallel to the terminology Bayesian networks, used for acyclic directed Markov fields.

Regarding the Gaussian parametrization, we can find that one of the first works to impose some structure on the
covariance matrix of a multivariate Gaussian distribution, in order to reduce the number of parameters to be estimated,
was Anderson (1973). He considered the mean vector and covariance matrix to be linear combinations of known linearly
independent vectors and matrices, respectively. Closely following this work was Dempster (1972), who suggested to
estimate the inverse of the covariance matrix (concentration matrix) by assuming certain entries equal to zero, motivated
by the representation of the multivariate Gaussian distribution as an exponential family. His work was later referred to as
covariance selection models. Interestingly, although Dempster did not have any graphical interpretation in mind, such zero
entries in the concentration matrix are directly associated with missing edges in an undirected Gaussian Markov models,
and these correspondence was analysed some years later in Wermuth (1976a). This is why, even nowadays, these Markov
models with a Gaussian parametrization are sometimes called covariance selection models.
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Fig. 2. Examples of an undirected graph and two digraphs.

Acyclic digraphs, in contrast, were intensely used as models for multivariate probability distributions after the
definition of influence diagrams. These are used to model decision-making processes, and were introduced by Howard
and Matheson in 1981 (article reprinted in Howard and Matheson (2005)). Their probabilistic reduction coincides with
acyclic directed Markov models, and was subsequently extensively studied by Pearl (1988), who renamed probabilistic
influence diagrams as Bayesian networks or influence networks (Pearl, 1985). Some researchers working on Markov fields
also developed theory regarding these directed counterparts, calling them directed Markov fields (Lauritzen et al., 1990).

Earlier works than the previously outlined, employing or referencing acyclic directed Markov models, are avail-
able. Wermuth (1980) implicitly studied them in the Gaussian case as linear recursive regression systems, although the
main focus was rather on covariance selection models. In fact, we can trace the use of directed graphs as graphical models
for dependencies among random variables at least to the work of geneticist Sewall Wright in 1918, who developed the
method of path coefficients (Wright, 1934), nowadays known as path analysis. Linearly related variables were represented
using a directed acyclic graph, whereas their correlation was represented by bi-directed edges joining them.

3. Graph preliminaries

A graph is defined as a pair G = (V , E) where V is the vertex set and E is the edge set. Throughout all the paper,
and unless otherwise stated, the graphs will be labelled and simple, which means that the elements in V are labelled, for
example, as 1, . . . , p; and E is formed by pairs of distinct elements in V . A graph is called undirected if these latter pairs
are unordered (E ⊆ {{u, v} : u, v ∈ V }), and directed or digraph otherwise (E ⊆ {(u, v) : u, v ∈ V }). Edges {u, v} in an
undirected graph are usually denoted as uv and graphically represented as a line (see Fig. 2(a)); while in a digraph they
are called arcs or directed edges and represented as arrows (Figs. 2(b) and 2(c)).

3.1. Undirected graphs

In an undirected graph G = (V , E), if uv ∈ E, u and v are called neighbours. For v ∈ V , the set of its neighbours is
denoted as ne(v), and the closure of v is cl(v) := {v} ∪ ne(v). G is called complete if for every u, v ∈ V , uv ∈ E. A maximal
C ⊆ V such that GC is complete is called a clique. Let H = (VH, EH) be another undirected graph. H is a sub-graph of G
(written as H ⊆ G) if VH ⊆ V and EH ⊆ E. If EH = {uv ∈ E : u, v ∈ VH}, then H is called the induced sub-graph and
denoted GVH .

A walk between u and v is an ordered sequence of vertices (u =)u0, u1, . . . , uk−1, uk(= v) where ui−1ui ∈ E for
i ∈ {1, . . . , k}. The number k is called the length of the walk. If u = v the walk is closed, and when u0, . . . , uk−1 are distinct,
the walk is called a path. A closed path of length k ≥ 3 is called a cycle or k-cycle. G is called chordal or triangulated if all
minimal k-cycles are of length k = 3. A chordal cover of a graph G is a graph G∗ such that G ⊆ G∗ and G∗ is chordal.

S ⊆ V separates u and v in G = (V , E) if there is no path between u and v in the sub-graph GV\S . If we consider
A, B, S ⊆ V , A and B are said to be separated by S if u and v are separated by S for all u ∈ A, v ∈ B. Let V be partitioned
into disjoint sets A, B, S ⊆ V . (A, B, S) is called a decomposition of G if S separates A and B in G and GS is complete. If A ̸= ∅
and B ̸= ∅ the decomposition is said to be proper. An undirected graph is decomposable if (i) it is complete or (ii) it admits
a proper decomposition into decomposable sub-graphs. An undirected graph is decomposable if and only if it is chordal.

3.2. Acyclic digraphs

In a digraph D = (V , A) the definitions of (induced) sub-graph, walk, path, and cycle are analogous to the undirected
case. The undirected graph DU

:= (V , AU ) with AU
:= {uv : (u, v) ∈ A} is called the skeleton of D, and D is one of its

orientations. A digraph D is said to be complete when DU is complete.
In the following, assume that D is acyclic (see Fig. 2(b) for a cyclic digraph, and Fig. 2(c) for an acyclic one). The parent

set of v ∈ V is pa(v) := {u ∈ V : (u, v) ∈ A}; conversely, the child set is ch(v) := {u ∈ V : (v, u) ∈ A}. The ancestors of v,
an(v), are those u ∈ V such that there exists a directed path from u to v; the descendants of v, de(v), are those u ∈ V
such that there exists a directed path from v to u. We will let nd(v) := V \ ({v} ∪ de(v)) be the set of non-descendants of
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v ∈ V , and An(A) := A ∪ (∪a∈A an(a)) the ancestral set of A ⊆ V . Note that a total order ≺ can be defined over the set of
vertices V in an acyclic digraph D = (V , A), such that if (u, v) ∈ A, then u ≺ v. This ordering is usually called ancestral,
and it is a linear extension of the partial order naturally defined as u ⪯ v if u ∈ an(v). For v ∈ V , the set of successors of
v with respect to ≺ is su(v) = {u ∈ V : u ≻ v}; the set of predecessors of v is pr(v) = {u ∈ V : u ≺ v}.

Finally, let u, w1, w2 ∈ V with (w1, u), (w2, u) ∈ A and (w1, w2), (w2, w1) /∈ A (see vertices 1, 2 and 3 in Fig. 2(c)).
Such configurations are usually called v-structures and denoted as w1 → u← w2. The moral graph of D is defined as the
undirected graph Dm

= (V , Am) with Am
:= AU

∪ {w1w2 : w1 → u← w2 for some u ∈ V }.

4. Undirected and acyclic directed Markov model classes

The Markov model classes we will review associate conditional independences in random vectors X = (X1, . . . , Xp)t
with undirected graph and acyclic digraph separation properties. This is made explicit via the Markov properties of the
distribution of X , which are in turn based on what are known as independence relations.

In the following, for arbitrary I ⊆ {1, . . . , p}, we will denote the |I|-dimensional sub-vector of X as X I := (Xi)i∈I .
Conditional independence will be expressed as in Dawid (1979): X I y X J | XK represents the statement ‘X I is conditionally
independent from X J given XK ’ (see, e.g. Studenỳ, 2018, §1.3).

4.1. Independence relations

An independence relation over a set V = {1, . . . , p} is a collection I of triples (A, B, C) where A, B and C are pairwise
disjoint subsets of V . It is called a semi-graphoid when the following conditions are met,

if (A, B, C) ∈ I then (B, A, C) ∈ I,
if (A, B ∪ C,D) ∈ I then (A, C,D) ∈ I and (A, B, C ∪ D) ∈ I,
if (A, B, C ∪ D) ∈ I and (A, C,D) ∈ I then (A, B ∪ C,D) ∈ I;

and a graphoid when it additionally satisfies that if (A, B, C ∪ D) ∈ I and (A, C, B ∪ D) ∈ I then (A, B ∪ C,D) ∈ I (Pearl
and Paz, 1987).

Independence relations arise in different contexts relevant for Markov models. Specifically, an independence relation
I over V = {1, . . . , p} is said to be induced by

• an undirected graph G = (V , E) if (A, B, S) ∈ I ⇐⇒ A and B are separated by S in G,
• an acyclic digraph D = (V , A) if (A, B, S) ∈ I ⇐⇒ A and B are separated by S in (DAn(A∪B∪S))m,
• a p-dimensional random vector X if (A, B, S) ∈ I ⇐⇒ XA y XB | X S .

Graph-induced independence relations are always graphoids, while probabilistic ones are always semi-graphoids and
require additional assumptions on the probability spaces involved to be graphoids (Dawid, 1980). See Studenỳ (2018)
§1.5 and §1.11 for a detailed exposition of graphoid theory and how to compute and represent their closures, that is, all
the triplets that can be derived from a given independence relation by using the graphoid axioms.

The core of Markov model classes is the relationship between induced independence relations, which we will denote
as I(·) with the argument being the inducing element. Specifically, if G is an undirected (acyclic directed) graph, an
undirected (directed) Markov model is defined as

M(G) := {PX : I(G) ⊆ I(X)} .

where the random vectors X are defined over the same probability space and PX denotes their distribution. These classes
are non-empty (Geiger and Pearl, 1990, 1993); that is, for any undirected or acyclic directed graph, we can always find a
probability distribution whose independence model contains the one generated by the graph.

Graphoids can be generalized to what are known as separoids (Dawid, 2001), which are algebraic structures usually
appearing whenever a notion of ‘irrelevance’ is being mathematically treated (see, e.g. Studenỳ, 2018, §1.1.3). Further
research on these axiom systems from an abstract point of view could shed more light on how the apparently different
mathematical contexts in which such structures arise are related, and also provide an explicit bridge between them and
the recently defined independence logic (Grädel and Väänänen, 2013), closely related.

4.2. Markov properties

When a distribution PX belongs to M(G) for an undirected or acyclic directed graph G, it is said that PX is globally
G-Markov or satisfies the global Markov property with respect to G. There are other weaker Markov properties that usually
allow to simplify the model. Specifically, if G = (V , E) is an undirected graph, then the probability distribution PX of X is
said to be

• pairwise G-Markov if Xu y Xv | XV\{u,v} for all uv /∈ E,
• locally G-Markov if Xv y XV\cl(v) | Xne(v) for all v ∈ V ;
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whereas if G is an acyclic digraph, then PX is called

• pairwise G-Markov if Xu y Xv | Xnd(u)\{v} for all u ∈ V , v ∈ nd(u) \ pa(u);
• locally G-Markov if Xv y Xnd(v)\pa(v) | Xpa(v) for all v ∈ V .

The three Markov properties are equivalent when G is acyclic directed (Lauritzen et al., 1990), while if G is undirected
this equivalence is only guaranteed when I(X) is a graphoid (Pearl, 1988). A sufficient condition for this to happen is
that PX admits a continuous and strictly positive density. This result was proved in different forms by several authors,
but it is usually attributed to Hammersley and Clifford (1971), who were the first to outline the proof for the discrete
case (Speed, 1979). It relies on an additional characterization of a probability distribution with respect to G: denoting
as C (G) the class of cliques of G, the density function f of PX is said to factorize according to G when there exists a set
{ψC (xC ) : C ∈ C (G) , ψC ≥ 0} such that

f (x) =
∏

C∈C(G)

ψC (xC ). (1)

When (1) holds, then PX is globally G-Markov, while if f is continuous and strictly positive, the pairwise Markov property
implies (1), which gives the equivalence of Markov properties. Positivity is a straightforward sufficient condition for
checking whether an independence model originated from a distribution is a graphoid. Necessary and sufficient conditions
are given in measure theoretic terms by Dawid (1980), and recently by Peters (2014) in terms of special functions over
the sample space.

Finally, recall that the nodes of an acyclic digraph D = (V , A) can be totally ordered such that if (u, v) ∈ A, then
u ∈ pr(v). This gives rise to another Markov property, exclusive for acyclic digraphs: PX is said to be ordered D-Markov
if Xv y Xpr(v)\pa(v) | Xpa(v) for all v ∈ V . This property is also equivalent to the global, local and pairwise Markov
properties (Lauritzen et al., 1990). The classical theory of undirected and acyclic directed Markov properties can be found
in Lauritzen (1996), whereas Studenỳ (2018) §1.7 and §1.8 provides a recent overview.

4.3. Independence and Markov equivalence

When the Markov models defined by two graphs G and G̃, with the same vertex set V , coincide, such graphs are said
to be Markov equivalent. A simpler notion, which implies Markov equivalence, is independence equivalence, holding when
I(G) = I(G̃). Independence equivalence is implied by Markov equivalence under fairly general circumstances (Studenỳ,
2005, §6.1), which is why most authors treat them as the same notion. These equivalences allow to choose the most
suited graph for the Markov model.

We will first characterize equivalence within undirected graphs. For each graphoid I over V there exists a unique
edge-minimal undirected graph G such that I(G) ⊆ I (Pearl and Paz, 1987). It follows that I(G) = I(G̃) (independence
equivalence) if and only if G and G̃ are identical. Furthermore, if we assume that I(X) is a graphoid for all PX ∈M(G),
then a unique edge-minimal G̃ exists, with G̃ ⊆ G, such that M(G) = M(G̃) (Markov equivalence); that is, a unique
undirected graph can be chosen as representative of each undirected Markov model.

In contrast, acyclic digraphs are not, in general, unique representations of a Markov model, since I(D) = I(D̃) if
and only if D and D̃ have the same skeleton and the same v-structures (Verma and Pearl, 1991). However, unique
representatives can be constructed: let Dp be the set of acyclic digraphs over V = {1, . . . , p} and define an equivalence
relation ∼ in Dp as D ∼ D̃ ⇐⇒ I(D) = I(D̃). The quotient space of ∼ is Dp/∼ = {[D] : D ∈ Dp}, where
[D] := {D̃ ∈ Dp : D̃ ∼ D} is the Markov equivalence class; indeed, M(D̃) =M(D) for all D̃ ∈ [D], that is, [D] is the
unique representative of the directed Markov model.

The asymptotic ratio l = limp→∞|Dp|/|Dp/∼| influences the computational gain obtained by using Dp/∼ instead
of Dp as a search space for model selection. Steinsky (2004) analytically calculates an upper bound of l as 13.65. Exact
computations by Gillispie and Perlman (2002), for p ≤ 10, and approximations by Sonntag et al. (2015), up to p = 31, seem
to indicate that l ∼ 3.7. However, its analytical deduction remains an open problem. Note that the computational gain is
not only influenced by l, but also by other factors, such as how the element size in Dp/∼ is distributed. An algorithm to
compute such sizes can be found in He et al. (2015). Recently, Radhakrishnan et al. (2018) have provided tight lower and
upper bounds on the number and size of Markov equivalence classes when D is a tree.

Finally, we will characterize equivalence between directed and undirected graphs, firstly obtained by Wermuth
(1980) for multivariate Gaussian distributions, Wermuth and Lauritzen (1983) for contingency tables, and generalized
in Frydenberg (1990) for graphoid-inducing distributions. When G is an undirected graph, M(G) = M(D) for some
acyclic digraph D if and only if G is chordal. Conversely, an acyclic digraph D is Markov equivalent to its skeleton DU if
and only if D contains no v-structures. Furthermore, a relation with the moral graph can be established, which requires
an analogous to (1): a density function f is said to recursively factorize according to D when

f (x) =
∏
v∈V

f (xv | xpa(v)).

This characterization is equivalent to the Markov properties, and also implies that f factorizes as in (1) with respect to
the moral graph Dm (Lauritzen et al., 1990). This means that PX is always globally Dm-Markov for continuous X , and thus
M(D) ⊆M(Dm), with the equality only holding when Dm

= DU .
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Fig. 3. Markov equivalence.

Example 1. An illustration of the previous concepts can be found in Fig. 3. The graph in 3(a) is not chordal, and thus there
is no Markov equivalent acyclic digraph. 3(b) is a chordal cover of 3(a), and a Markov equivalent orientation is depicted
in 3(c). The acyclic digraph in 3(d) has v-structures, emphasized in dark grey, and thus cannot be Markov equivalent to
its skeleton 3(a). The moral graph of 3(d) is 3(e), which in fact is another chordal cover of 3(a), and thus none of its
orientations will be Markov equivalent to 3(c).

5. Gaussian parametrization

When restricting to multivariate Gaussian distributions, we find connections between conditional and vanishing
parameters. This correspondence can be used for providing a direct interpretation of Markov properties, both in the
undirected and directed case, allowing an enhanced manipulation of these Markov models.

In the following, the elements of a real q × r matrix M ∈ Mq×r (R) will be denoted as mij, where i ∈ {1, . . . , q} and
j ∈ {1, . . . , r}. MIJ will be the |I| × |J| sub-matrix of M, where I ⊆ {1, . . . , q} and J ⊆ {1, . . . , r}; and we will use M−1IJ as
(MIJ )−1. S≻0 and S⪰0 will represent the sets of positive and semi-positive definite symmetric matrices, respectively. The
p-variate Gaussian distributions is denoted as Np (µ,Σ), where µ ∈ Rp is the mean vector and Σ ∈ S≻0 is the covariance
matrix. Ip will denote the identity p-dimensional square matrix, whereas 1p will denote the p-vector with all entries equal
to 1; many times, dimensionality sub-scripts will be dropped if the dimension of the respective object is clear from the
context.

5.1. Conditional independence and the multivariate Gaussian distribution

Let V = {1, . . . , p}. When a random vector X is distributed as Np (µ,Σ), then for i, j ∈ V , Xi y Xj is equivalent to σij = 0.
If we consider a partition (I, J) of V , then X I | xJ is distributed as N|I|

(
µI ,ΣI·J

)
, where ΣI·J = ΣII −ΣIJΣ

−1
JJ ΣJI (Anderson,

2003). Thus, for i, k ∈ I , we have that Xi y Xk | xJ is equivalent to σik·J = 0, the (i, k) element in the conditional covariance
matrix ΣI·J .

A correspondence can be established between the zeros in ΣI·J and zero patterns in other representative matrices
(Wermuth, 1976a, 1980; Uhler, 2018, §9.1), as follows. Let the concentration matrix of X be Ω = Σ−1, with elements
ωuv for u, v ∈ V . The matrix ΣIJΣ

−1
JJ is usually denoted as BI·J and called the matrix of regression coefficients of X I on X J .

Letting ΩI·J := Σ
−1
JJ , we have the following matrix identity (Horn and Johnson, 2012)

Ω =

(
ΣII ΣIJ
ΣJI ΣJJ

)−1
=

(
Σ
−1
I·J −Σ

−1
I·J BI·J

−Bt
I·JΣI·J

−1 ΩI·J + Bt
I·JΣ
−1
I·J BI·J

)
.

This allows us to relate ΣI·J with Ω and BI·J as

ΣI·J = Ω
−1
II , (2)

BI·J = −Ω
−1
II ΩIJ , (3)

which implies that, dually, ΩII is identically equal to the concentration matrix of X I | xJ , while ΩI·J is the concentration
matrix of X J . Finally, from (2) we get, for i, k ∈ V ,

Xi y Xj | XV\{i,k} ⇐⇒ ωik = 0, (4)

whereas from (3) it follows that, for J ⊆ V , i, k ∈ V \ J ,

Xi y Xk | X J ⇐⇒ βik·J∪{k} = 0, (5)

where βik·J∪{k} is the v entry in the vector βt
i·J∪{k}, that is, the coefficient of Xk on the regression of Xi on xJ∪{k}. The original

notation for this, introduced in Yule (1907), was βik·J ; that is, k is implicitly considered as included in the conditioning
indexes. We have however chosen the alternative, explicit notation βik·J∪{k}, since it provides more notational simplicity
in later sections.
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5.2. Gaussian Markov models

In the Gaussian case, undirected Markov models are in correspondence with the concentration matrix, while for acyclic
digraphs this correspondence is with the regression coefficients. Both rely on the auxiliary Markov properties that we
presented in Section 4.2.

Let G = (V , E) be an undirected graph and consider X distributed as PX ≡ Np (µ,Σ) with PX ∈ M(G). Since PX is
globally G-Markov, it is also pairwise G-Markov, and thus (4) directly gives that ωuv = 0 for all u, v ∈ V such that uv ∈ E.
This means that, if we define the set S≻0(G) :=

{
M ∈ S≻0 : muv = 0 for all uv /∈ E

}
, we have Ω ∈ S≻0(G) if and only if PX

is pairwise G-Markov. Furthermore, since the multivariate Gaussian distribution has positive density, I(X) is a graphoid
and thus the three Markov properties are equivalent. This allows us to redefine the Gaussian undirected Markov model as

N (G) =
{
Np (µ,Σ) : Σ−1 ∈ S≻0(G),µ ∈ Rp} . (6)

In the directed case, the redefinition is not so direct. Let D = (V , A) be an acyclic digraph, and assume, for notational
simplicity, that the nodes are already ancestrally ordered as 1 ⪯ · · · ⪯ p. If X is distributed as PX ≡ Np (µ,Σ) with
PX ∈M(D), it satisfies the ordered Markov property. Thus, whenever v ∈ pr(u) \ pa(u), we have Xu y Xv | Xpa(u), which
is equivalent to βuv·pa(u)∪{v} = 0 as in (5). Since we have assumed an ancestral order, βuv·pa(u)∪{v} = βuv·pr(u) for all u ∈ V ,
v ∈ pr(u)\pa(u), which leads to PX being ordered D-Markov if and only if βuv·pr(u) = 0 for all u ∈ V , v ∈ pr(u)\pa(u). Such
triangular requirement on the regression coefficients can be expressed with the matrix B defined, for v < u as buv = 0 if
v /∈ pa(u), and buv = βuv·pa(u) ≡ βuv·pr(u) otherwise.

If we let vu := σuu·pr(u), the previous characterization leads to a matrix form of the linear regressions involved as

X = µ+ B(X − µ)+ E, (7)

where Eu ∼ N (0, vu). We can rearrange it as X = U−1ξ + U−1E , where ξ := Uµ and U := Ip − B, since U is invertible.
Let V be the diagonal matrix of conditional variances v. Sometimes ξ, B and V are called the D-parameters of (µ,Σ)
(Andersson and Perlman, 1998). In fact, U and V allow a decomposition of Σ (and Σ−1) as Σ = U−1VU−t . Furthermore,
this decomposition uniquely determines Σ via U/B and V (Horn and Johnson, 2012). Thus, in analogy with (6), if we define
the set

M(D) :=
{
M ∈ Mp×p(R) : muv = 0 for all (u, v) /∈ A

}
and the set ∆p of p× p diagonal matrices, we can redefine the Gaussian directed Markov model as

N (D) =
{
Np (µ,Σ) : Σ−1 = (Ip − B)tV−1(Ip − B), B ∈ M(D), V ∈ ∆p

}
. (8)

6. Maximum likelihood estimation

Maximum likelihood estimation is greatly simplified in exponential family theory (Barndorff-Nielsen, 1978). The
multivariate Gaussian distribution is a regular exponential family, and thus both undirected and directed Gaussian Markov
models can be expressed as special subfamilies of it.

6.1. The Gaussian family and maximum likelihood

In the multivariate Gaussian family the canonical parameter is η = (Ωµ,−Ω/2), over the space H = {(η1, η2) : η1 ∈

Rp,−η2 ∈ S≻0} and the sufficient statistics are t(X) = (X,XX t ). Let {x(n) : 1 ≤ n ≤ N} be N independent observations,
where X (n)

∼ Np (µ,Σ) for each n ∈ {1, . . . ,N}, arranged in x ∈ Mp×N (R), the respective random matrix being X. The
random sample is also a regular exponential family with canonical parameter η = (Ωµ,−Ω/2) over the space H. The
sufficient statistics in this case are t(X) = (NX̄,XXt ) with NX̄ =

∑N
n=1 X

(n).
In a regular exponential family FH, a maximum of the likelihood function, L(η), given a random sample X = x, is

reached in H if and only if t(x) belongs to the interior of C(t), the closed convex hull of the support of the distribution of
t , denoted as int(C(t)). In such case, it is unique and given by the η ∈ H satisfying E[t(X)] = t(x).

For the multivariate Gaussian random sample, we have that E[NX̄] = Nµ and E[XXt
] = NΣ+Nµµt , thus the convex

support of t(X) = (NX̄,XXt ) is C(t) = {(v,M) ∈ Rp
× Sp : M − vvt/N ∈ S⪰0}. This gives that the maximum likelihood

estimator for (µ,Σ) exists if and only if xxt − N x̄x̄t ∈ S≻0, which happens with probability one whenever N > p and
never otherwise. The solution in such case is (x̄,Q/N), where

Q =
N∑

n=1

(
X (n)
− X̄

) (
X (n)
− X̄

)t
= XXt

− NX̄X̄t
.

A particular situation, usually assumed, is when µ = 0. The canonical parameter now is η = −Ω/2 in the space
{η : − η ∈ S≻0}, and the sufficient statistic is t(X) = XXt . The maximum likelihood estimator exists if and only if
xxt ∈ S≻0, and in such case it is XXt/N = Q/N .
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6.2. Gaussian Markov models as exponential families

When G is an undirected graph, the set S≻0(G) is a convex (linear) cone inside the positive definite cone S≻0 (e.g. Uhler,
2018, §9.2), which means that Rp

× S≻0(G) is an affine subspace of Rp
× S≻0, and thus N (G) is also a regular exponential

family (Barndorff-Nielsen, 1978). Assume that µ = 0 and let QG be the projection of Q on E ∪ {uu : u ∈ V }, that is, such
that qGuv = 0 for all uv /∈ E with u ̸= v. Since L(Ω) ∝ det(Ω)

1
2 exp (− tr(ΩQ)) and Ω ∈ S≻0(G), we have tr(ΩQ) = tr(ΩQG)

and the sufficient statistic for N (G) is t(x) = QG (Lauritzen, 1996). Its convex support is C(t) = {PG
: P ∈ S⪰0},

equivalently called the set of projections extendible to full positive definite matrices. Thus, the maximum likelihood
estimator forΣ exists if and only if QG

∈ int(C(t)), which is equivalent to say that QG is extendible to a full positive definite
matrix. Whenever it exists, it is the only extendible matrix Σ̂ that also satisfies the model restriction Σ̂−1 ∈ S≻0(G). A
sufficient condition thus is that Q ∈ S≻0, which happens almost surely for N ≥ p. Recovering Σ̂ is a convex optimization
problem, Uhler (2018) §9.6 overviews some of the algorithms available for its computation. Note however that if G is
chordal, then there is a closed form expression for Ω̂ (Lauritzen, 1996)

The existence of Σ̂ has been completely characterized when G is chordal by Grone et al. (1984) and Frydenberg and
Lauritzen (1989), independently. Since finding Σ̂ is equivalent to a positive definite matrix completion problem (Uhler,
2018, §9.3), the problem lies at the interface between statistics and linear algebra. Therefore, this problem has been solved
from an algebraic (Sturmfels and Uhler, 2010; Uhler, 2012, 2018, §9.4) viewpoint for a general, non-chordal G. However,
the conditions on the sample size N are still unknown except for certain non-chordal graph types, see Uhler (2018) §9.5
for an up-to-date overview of the advances made so far.

Now we turn on the case where the random sample X is assumed to follow multivariate Gaussian distribution
constrained by the separation properties in an acyclic digraph. The restriction in (8), however, is not linear in the
canonical parameter; in fact, Spirtes et al. (1997) show that they are curved exponential families. To obtain the maximum
likelihood estimates, theory from multivariate linear regression can be applied (Andersson and Perlman, 1998). Recall that
if X ∼ Np (µ,Σ) and Np (µ,Σ) ∈ N (D), then X can be expressed as (7). Thus, we can estimate the D-parameters for
(µ,Σ) as the usual least squares estimators,

β̂
t
u·pa(u) = Qu pa(u)Qpa(u) pa(u)

−1,

ξ̂u = x̄u − β̂
t
u·pa(u)x̄pa(u),

N v̂uu = quu − β̂
t
u·pa(u)Q

t
u pa(u),

respectively for each u ∈ V , where quu is the uth diagonal entry in Q. We can then obtain directly the maximum likelihood
estimator for (µ,Σ) from their respective D-parameter estimators (see Andersson and Perlman, 1998, for an algorithm). As
opposed to the undirected case, (µ̂, Σ̂) exist with probability one if and only if N ≥ p+max {|pa(u)| : u ∈ V } (Anderson,
2003). Recently, Ben-David and Rajaratnam (2012) analyse in detail the relationship between the D-parameters and Σ as
a positive definite matrix completion problem, in analogy with the undirected case.

7. Model selection via hypothesis testing

Maximum likelihood estimators, presented in the previous section, can be used to address the problem of model
estimation, and require either prior knowledge or a statistical procedure that allows model selection; that is, selecting
the graph that will define the Markov model. In this section we will review the main hypothesis testing methods for such
task.

Throughout the section, for u, v ∈ V = {1, . . . , p} and U ⊆ V \ {u, v}, we will denote as ρuv·U the partial correlation
coefficient between u and v given the variables in U , and as ruv·U its maximum likelihood estimator, the sample partial
correlation (see e.g. Anderson, 2003, §4.3 for an introduction to partial correlation theory).

7.1. Stepwise selection

In the undirected case, we are interested in testing the hypothesis H0 : Ω ∈ S≻0(G0) against H 1 : Ω ∈ S≻0(G), where
G0 = (V , EG0 ) ⊆ G = (V , EG). The result of such test determines whether the edges in EG \ EG0 should be excluded from
the selected model; that is why these tests are usually known as edge exclusion tests. Note also that this is backward model
selection, since our null hypothesis consists on a subgraph. Let Σ̂0 and Σ̂ be the maximum likelihood estimators for a
covariance matrix in the Markov model determined by G0 and G, respectively. The likelihood ratio statistic is

TL =
det(Σ̂)N/2

det(Σ̂0)N/2
=

(
det(Ω̂0)
det(Ω̂)

)N/2

.

Under H0, −2 log(TL) = N(log det(Ω̂) − log det Ω̂0) is asymptotically distributed as a χ2 distribution with |EG | − |EG0 |

degrees of freedom; however, this is a poor approximation in many cases (Porteous, 1989). More accurate distributional
results have been derived by Eriksen (1996), as follows. Let G0 ⊂ . . . ⊂ Gk(= G) be a sequence of graphs where, for
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1 ≤ i ≤ k, EGi−1 = EGi \ {ei} for some ei = uivi ∈ EGi (sequence of edge deletions). Then, under H0, T
2/N
L is distributed as

the product
∏k

i=1 Bi of univariate Beta variables, where, for 1 ≤ i ≤ k,

Bi ∼ B
(
1
2
(N − |neGi (ui) ∩ neGi (vi)| − 2),

1
2

)
.

The above result is exact whenever G and G0 are chordal or share the same non-chordal maximal subgraphs (Eriksen,
1996). Specifically, denote as C∗i = ne(ui) ∩ ne(vi) the unique clique in Gi of which edge ei is a member. Then, under H0
(see e.g. Lauritzen, 1996, Proposition 5.14)

T 2/N
L =

k∏
i=1

(1− r2uivi·C∗i \{uivi}),

giving that T 2/N
L is distributed as

∏k
i=1 B((N − |C

∗

i |)/2, 1/2). Note that in this decomposable case one avoids to actually
compute Ω̂ and Ω̂0. The statistic TL has been used for model selection in undirected Gaussian Markov models by Wermuth
(1976b).

In the case of a directed Gaussian Markov model over an acyclic digraph D = (V , A), most of the results are adaptations
from analogues in multivariate linear Gaussian models. The likelihood ratio, whose moments are also characterized
in Andersson and Perlman (1998), is

TL =
det(Σ̂)

N
2

det(Σ̃)
N
2
=

∏
v∈V

⏐⏐σ̂vv − σ̂t
v·pa(v)Σ̂

−1
pa(v)σ̂v·pa(v)

⏐⏐∏
v∈V

⏐⏐σ̃vv − σ̃t
v·pa(v)Σ̃

−1
pa(v)σ̃v·pa(v)

⏐⏐ ,
where Σ̃ and Σ̂ are the respective maximum likelihood estimators for D̃ and D, D̃ ⊆ D.

A backward stepwise method has become popular for selecting D, commonly called the PC algorithm (Spirtes et al.,
2000). This method proceeds by first finding an estimator of the skeleton, D̂U , from a complete undirected graph, and
then orienting it. At iteration i of the first step (finding D̂U ), H0 : Xu y Xv | XC is tested, with C = n̂e(u) \ {v} and |C | = i.
The edge uv is removed from D̂U if H0 is not rejected. Note that D̂U depends on the order in which H0 is tested at each
iteration, problem circumvented in the modification by Colombo and Maathuis (2014). Assuming that I(X) = I(D) (see
Section 4), commonly called the faithfulness assumption, Robins et al. (2003) showed that the PC algorithm is pointwise
consistent but may not be uniformly consistent, regardless of the method used for testing H0. Zhang and Spirtes (2003)
approached this problem by introducing a stronger condition, called strong faithfulness, which, by requiring nonzero partial
correlations to have a common lower bound, gives uniform consistency, even in a high-dimensional setting (Kalisch and
Bühlmann, 2007). However, despite the set of ‘unfaithful’ distributions has Lebesgue measure zero (Meek, 1995), those
‘strongly unfaithful’ constitute a non-zero Lebesgue measure set, which can in some cases be very large (Uhler et al., 2013;
Lin et al., 2014).

7.2. Multiple testing

When performing model selection with these tests, multiple testing error rates need to be controlled. For overcoming
this, Drton and Perlman (2004) propose an alternative to the previous stepwise methods. First, note that both acyclic
directed and undirected Gaussian Markov models over V = {1, . . . , p} are characterized by certain partial correlation
coefficients, since for u, v ∈ V and U ⊆ V \ {u, v}, we have Xu y Xv | XU ⇐⇒ ρuv·U = 0. Assuming conditional
independence, that is, ρuv·U = 0, then

√
N − |U | − 2 ruv·U/

√
1− r2uv·U has a t distribution with N − |U | − 2 degrees of

freedom. However, a faster Gaussian approximation can be obtained using Fisher’s Z-transform,

Z(x) =
1
2
log
(
1+ x
1− x

)
= tanh−1(x).

In such case the distribution of
√
N − |U | − 3 Z(ruv·U ) tends to a standard Gaussian.

Based on the above discussion, Drton and Perlman (2004) propose a method where a set of simultaneous p-values
and confidence intervals is obtained such that the edge set is estimated, for a significance level α and using Sidak (1967)
inequality, as

Êα :=
{
uv :

√
N − p− 1

⏐⏐Z(ruv·V\{u,v})⏐⏐ > Φ−1
(
1
2
(1− α)

2
p(p−1) +

1
2

)}
, (9)

whereΦ is the cumulative distribution function of a standard Gaussian. Denoting as Ĝα = (V , Êα), it holds lim infN→∞ P(Ĝα
= G) ≥ 1− α if the distribution under consideration Np (µ,Σ) ∈ N (G) is faithful to G, that is, if ωuv = 0 ⇐⇒ uv /∈ E.
If faithfulness is not satisfied, then the result holds with respect to the smallest graph H such that G ⊆ H and Np (µ,Σ)
is faithful to H.
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The multiple testing procedure in (9) has also been extended in Drton and Perlman (2008), obtaining an estimate of
the arc set as

Âα :=
{
(v, u) : v < u and

√
N − u− 1

⏐⏐Z(ruv·pr(u)\{v})⏐⏐ > Φ−1
(
1
2
(1− α)

2
p(p−1) +

1
2

)}
, (10)

where an ancestral ordering ≺ is being assumed in V such that the resulting permutation is the identity; that is, such
that v ≺ u ⇐⇒ v < u. Consistency is established as in the undirected case; note the symmetry with (9). See Drton
and Perlman (2007) for a general discussion on some variations of (9) and (10) and their impact on overall error control.
Recently, Liu (2013) has extended the methodology of Drton and Perlman (2004) to the high dimensional scenario, with
p > N .

A related testing procedure has emerged motivated by the field of gene network learning from microarray data. Instead
of testing full partial correlations ρuv·V\{u,v} in an undirected model, only limited q-order partial correlations ρuv·U = 0,
where U ⊆ V \ {u, v} and |U | = q, are tested (Castelo and Roverato, 2006). An edge is added to the resulting graph, called
q-partial graph, only when all of the q-partial correlations are rejected to be zero. This procedure is specially suited for
situations where the number of variables is substantially larger than the number of instances, as happens in the case of
microarray data, where low order conditional independence relationships (up to q ≤ 3) have been popular (Wille and
Bühlmann, 2006; de la Fuente et al., 2004; Magwene and Kim, 2004). Castelo and Roverato (2006) generalize and formalize
these approaches, and provide a robust model selection procedure for q-partial graphs. This is intended to serve as an
intermediate step for model selection of a classical undirected Markov model N (G), and yields to a great simplification
when G is sparse (Castelo and Roverato, 2006).

8. Regularization

Regularization approaches, which performmodel selection and estimation in a simultaneous way, have become popular
in the context of Markov models. They are usually applied when N < p, and thus the existence of the maximum likelihood
estimator is not guaranteed. The main consistency results available for both the directed and undirected cases share
sparseness and high-dimensionality assumptions, as we will see below. There are two different approaches, those that
penalize the likelihood and those that instead focus on the regression coefficients.

Throughout this section, we will employ the asymptotic notation, specifically symbols O (·) andΘ (·), asymptotic inferi-
ority and equivalence, respectively. For M ∈ Mq×r (R), vec(M) will denote the vectorized function of M, (m11, . . . ,mq1, . . . ,
m1r , . . . ,mqr )t . This way, the operator norm of M will be denoted as ∥M∥; whereas ∥M∥q+r will be used to denote
∥vec(M)∥q+r , being ∥·∥p the p-norm function. If v is a p-vector, diag(v) will denote the matrix M in ∆p with main diagonal
v; analogously, diag(M) ∈ ∆p will have the same diagonal as M, and M− will be used for M− diag(M).

8.1. Node-wise regression

Let G = (V , E) be an undirected graph, with V = {1, . . . , p}. Let X be a random vector whose distribution Np (µ,Σ)
belongs to the undirected Gaussian Markov model N (G). Assume, for notational simplicity, that µ = 0, and, following the
notation of Section 6, let X = x be a p× N random sample from Np (0,Σ). Since for each u, v ∈ V , βuv·V\{u} = −ωuv/ωuu
(Eq. (3)), then

Xu y Xv | XV\{u,v} ⇐⇒ ωuv = 0 ⇐⇒ βuv·V\{u} = βvu·V\{v} = 0.

This means that an analogue of the matrix B in directed Gaussian Markov models (Eq. (7)) can be used for determining
the missing edges in the undirected case. In Meinshausen and Bühlmann (2006), this is done in the regression function, as

b̂λu := argmin
bu∈Rp, buu=0

(
1
N

xtu − xtbu
2
2 + λf (bu)

)
, (11)

where λ ≥ 0, xu is the u-the row vector of x and f (·) is the penalty function. For each v ∈ V \ {u}, b̂λuv gives an estimate
of βuv·V\{v}. Let n̂e(v) := {u ∈ V : b̂λvu ̸= 0}. while u ∈ ne(v) ⇐⇒ v ∈ ne(u) for all u, v ∈ V , this may not be true for
n̂e(u) and n̂e(v). Hence, two different estimators for the edge set E may be defined

Ê∧ := {uv : u ∈ n̂e(v) and v ∈ n̂e(u)} ,

Ê∨ := {uv : u ∈ n̂e(v) or v ∈ n̂e(u)} .

Let f (·) = ∥·∥1, commonly known as the lasso penalty (Tibshirani, 1996) or l1 regularization. Then both estimators Ê∧
and Ê∨ are consistent for certain choice of λ. This result was independently discovered by Meinshausen and Bühlmann
(2006), Zhao and Yu (2006), Zou (2006) and Yuan and Lin (2007b). It relies on the following almost necessary and sufficient
condition⏐⏐⏐⏐⏐⏐

∑
z∈ne(v)

sign(βvz·ne(v))βuz·ne(v)

⏐⏐⏐⏐⏐⏐ < 1, (12)
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Table 1
Comparison of assumptions for consistency results on regression based penalized estimation in acyclic
directed and undirected Gaussian Markov models.
N (G) (Meinshausen and Bühlmann, 2006) N (D) (van de Geer and Bühlmann, 2013)

l1 regularization l0 regularization
Lower bound on

⏐⏐ρuv·V\{u,v}⏐⏐ Lower bound on
⏐⏐βuv·pr(u)

⏐⏐
Upper bound on |ne(v)| Upper bound on |pa(v)|
Bounded neighbourhood perturbations Bounded permutation perturbations

This node-wise regression approach may also be used to perform model selection for acyclic directed Gaussian Markov
models if there is a known order among the variables, see for example Shojaie and Michailidis (2010) or Yu and Bien (2017)
and references therein. From Eq. (7), the regression function to penalize in this case would be, for each u ∈ V ,

Xu = µu +
∑
v∈pr(u)

βuv·pr(u)(Xv − µv)+ Eu (13)

The condition of Eq. (12), commonly called the ‘irrepresentable condition’ (Zhao and Yu, 2006) or ‘neighbourhood
stability’ (Meinshausen and Bühlmann, 2006), is inherent to model selection in linear regression with l1 regularization,
and thus it also holds when penalizing (13) with the l1 penalty. However, some variants have been proposed because
it is rather restrictive. These alternatives usually rely on thresholding the regression coefficients or adding weights in
the l1 penalty, that under milder assumptions still achieve model selection consistency (Meinshausen and Yu, 2009) or
other attractive, ‘oracle’ properties (van de Geer and Bühlmann, 2009); see Bühlmann and van de Geer (2011), §7 for a
review. van de Geer and Bühlmann (2009) show that although model selection consistency for neighbourhood selection
may be restrictive, sufficient conditions for such oracle properties hold fairly generally.

8.2. Penalized likelihood

In van de Geer and Bühlmann (2013), l0 regularization is alternatively used in the context of directed Gaussian Markov
models, without assuming a known order. As in Meinshausen and Bühlmann (2006), the regression coefficients are
penalized in their approach, more generally, the D-parameters in the likelihood function (assuming µ = 0). As such,
the assumptions required for the consistency of both methods share some symmetry, as we have outlined in Table 1. The
estimators in this case are obtained as

(̂Vλ, B̂λ) = argmin
Ω=(Ip−B)tV−1(Ip−B),B∈M(D),V∈∆p

(tr(ΩS)− N log det(Ω)+ λf (Ω)) ,

where λ ≥ 0, M(D), ∆p are as in Eq. (8) and S = xxt/N . When f (Ω) = |{(u, v) : buv ̸= 0}| (l0 regularization), V̂λ and B̂λ

are equal among Markov equivalent models and the resulting estimator of the concentration matrix Ω̂λ is consistent for
certain choice of λ (van de Geer and Bühlmann, 2013). The strong faithfulness condition for the PC algorithm, bounding
nonzero partial correlations, resembles the assumptions for regularization methods (Table 1). In fact, l0 regularization has
been suggested as an alternative for the PC, in order to avoid the restrictive strong faithfulness assumption (Uhler et al.,
2013); however, it is unclear how the assumptions of both methods are related. For recent extensions of the work by van
de Geer and Bühlmann (2013), see Aragam and Zhou (2015), Aragam et al. (2017).

In undirected Gaussian Markov models conditional independences can be read from Ω. Therefore, the penalized
likelihood approach can be formulated more directly, for λ ≥ 0, as

Ω̂λ
= argmin

Ω∈S≻0(G)
(tr(ΩS)− N log det(Ω)+ λf (Ω)) . (14)

Yuan and Lin (2007a) were the first to pursue this approach, and they chose f (Ω) =
Ω−1, that is, the off-diagonal

elements in Ω, which determine the edges of the resulting undirected graph, are penalized. Later, in Banerjee et al.
(2008) the diagonal elements are included in the regularization function, that is, f (Ω) = ∥Ω∥1; however, since 1/ωuu =

σuu·V\{u}, this choice for the penalty favours larger values for the error variances in the regression of Xu on the rest
of variables (Bühlmann and van de Geer, 2011). Nonetheless, this estimator is the one chosen in the extensively used
algorithm Graphical Lasso of Friedman et al. (2008), although model selection consistency has only been proved for
f (Ω) =

Ω−1 (Lam and Fan, 2009; Ravikumar et al., 2011). It is not known whether the sufficient conditions required
for this consistency are strictly stronger than the irrepresentable condition, as some examples (Meinshausen, 2008) seem
to indicate.

For the penalization of Yuan and Lin (2007a) (f (Ω) =
Ω−1), the convergence rate is (Rothman et al., 2008)

Ω̂λ
−Ω


2 ∈ O

(√
(|E| + p) log(p)

N

)
as N →∞.
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A relaxation of this rate can be obtained based on the correlation matrix, as follows. Since Σ = DPD with P the correlation
matrix and D the diagonal matrix of standard deviations, if we let the corresponding sample estimates be D̂2

= diag(Σ̂)
and P̂ = D̂−1Σ̂D̂−1, we can then estimate K = P−1 as

K̂λ = argmin
K∈S≻0(G)

(
tr(K̂P)− N log det(K)+ λf (K)

)
,

for λ ≥ 0. The concentration matrix can then be alternatively estimated as Ω̃λ
= D̂−1K̂λD̂−1, yielding a convergence rate

of Rothman et al. (2008)Ω̃λ
−Ω

 ∈ O

(√
(|E| + 1) log(p)

N

)
as N →∞.

Convergence rates in other norms are provided in Ravikumar et al. (2011), and they have been generalized by Lam and
Fan (2009) for other penalty functions.

9. Bayesian model selection and estimation

Consider a continuous multivariate family Fθ parametrized by θ, and denote as f (x | θ) the density function of a
random sample X from P ∈ Fθ for a given value of θ. In Bayesian statistics, θ is treated as a random variable with
known distribution, f (θ), usually called the prior distribution of θ. Inference is then performed based on the value of
f (θ | x) ∝ f (θ)f (x | θ), the posterior distribution of θ given the information in X = x.

In Gaussian Markov models, θ = (µ,Ω, G), where in our case G is either undirected or acyclic directed. Therefore the
target probability is f (G,µ,Ω | x) ∝ f (x | µ,Ω, G) f (µ,Ω | G) f (G). Integrating out µ and Ω, we obtain the posterior
density of model G, f (G | x) ∝ f (x | G) f (G). The prior for the graph space, f (G), is usually set as uniform. However, this
choice is biased towards middle size graphs, and thus other prior distributions (Scutari, 2013, e.g.) have been proposed; see
Massam (2018) §10.4.1 and references therein for a recent detailed overview. Bayesian inference for Gaussian graphical
models, is usually meant for moderate sample sizes, since it relies on sampling from the resulting posterior distribution,
which becomes infeasible in high dimensions (see e.g. Jones et al., 2005 or Massam, 2018).

In the following, the p-variate Wishart distribution will be denoted as Wp (n,Λ) with n ∈ R, n > p−1 and Λ ∈ Mp×p(R),
Λ ≻ 0; analogously, the p-variate inverse Wishart distribution will be W−1p (ν,Ψ) with ν ∈ R, ν > p−1 and Ψ ∈ Mp×p(R),
Ψ ≻ 0.

9.1. Hyper Markov laws

When G is undirected and decomposable, and assuming µ = 0, Dawid and Lauritzen (1993) proposed for f (Ω | G)
what are known as the hyper Markov laws. These are defined in terms of properties of the graph associated with the
Markov model, mimicking Markov properties. Specifically, let θ be a random variable taking values over N (G) and for
subsets A, B ⊆ V , denote as θA and θB|A the parameters of the marginal distribution of XA and the conditional distribution
of XA given values of XB, respectively. The probability distribution of θ is said to be (weakly) hyper G-Markov if, for any
decomposition (A, B, S) of G, it holds that θA∪S y θB∪S | θS ; if it further holds θB∪S|A∪S y θA∪S , it is called strongly hyper
G-Markov. For chordal graphs, if the probability distribution of θ is strongly hyper G-Markov with respect to G, then
the probability distribution of θ | x is the unique (strong) hyper G-Markov distribution specified by the clique-marginal
distributions {P(θC | xC ) : C ∈ C (G)}; and, when densities exist, f (θC | x) ∝ f (xC | θC )f (θC ) (Dawid and Lauritzen, 1993),
where xC stands for all the observations in x corresponding to the variables in C . That is, under these assumptions, it is
possible to localize computations over the graph cliques when performing Bayesian inference.

In a multivariate Gaussian distribution Np(0,Σ), the inverse Wishart is a conjugate prior for Σ; that is, if Σ ∼

W−1p (ν,Ψ), then Σ | Q/N ∼ W−1p (N + ν,Q+Ψ) (recall Q = xxt ). We can thus construct the hyper inverse
Wishart distribution, as the unique hyper Markov distribution associated with inverse Wishart clique marginals: ΣCC ∼

W−1
|C |

(
ν,Ψ C

)
, for each clique C ∈ C (G). This hyper Markov distribution is denoted as HW−1p (ν,Ψ), where Ψ ∈ S≻0 such

that ΨCC = ΨC for each clique C ∈ C (G). From the discussion above, we know that this distribution is strongly hyper
G-Markov. The main advantage of this prior is that it has many properties that mirror those for Markov models, since
hyper Markov distributions are also defined in terms of an underlying graph.

Since its introduction, the hyper inverse Wishart prior for decomposable graphs has been extensively studied. The
explicit expression for its density is devised in, e.g., Giudici (1996) or Roverato (2000). In order to set its parameters,
a hierarchical approach such as in Giudici and Green (1999) can be followed, where ν and Ψ are assumed to have a
Gamma and Wishart distribution, respectively. Since the absent edges of G correspond to zeros in Ω (Eq. (4)), Roverato
(2000) derives the distribution induced on Ω by assuming f (Σ | G) = HW−1p (ν,Ψ). He shows that in that case, the
density is proportional to that of a Wishart matrix conditioned on the event Ω ∈ S≻0(G), and calls such prior distribution
on Ω the G-conditional Wishart. Recently, Massam (2018) §10.3.2 has provided a detailed overview of the properties of
the hyper inverse Wishart, and technical considerations as how to sample from it or perform Bayesian model selection
using Bayes factors. Letac and Massam (2007) generalize both the G-conditional and hyper inverse Wishart to a broader
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conjugate family, allowing for more than one shape parameter, which is used for model selection by Rajaratnam et al.
(2008) (see also Massam, 2018, §10.3.3).

The hyper inverse Wishart has been extended to non-chordal graphs by Roverato (2002), based on properties of
the Isserlis matrix of Σ (Roverato and Whittaker, 1998). However, Bayesian model selection in this scenario requires
the evaluation of the G-conditional Wishart normalizing constant, which becomes a problem since it did not have a
known closed-form expression for a general non-chordal G until very recently (Uhler et al., 2018). Much of the literature
therefore has been devoted to this issue: Atay-Kayis and Massam (2005) analysed the Cholesky decomposition of Ω and
its relation with the cone S≻0(G) and positive definite matrix completions (Section 6), Carvalho et al. (2007) and Wang
and Carvalho (2010) used such theoretical analysis to provide a direct sampler from the hyper inverse Wishart prior,
etc. A recent detailed presentation of this computational body of research can be found in Massam (2018), §10.4. Note
that, although Uhler et al. (2018) provide exact formulas and examples for special types of graphs, it still remains to find
efficient methods for their computation.

9.2. Priors for acyclic directed models

The methodology by Geiger and Heckerman (2002) for acyclic directed Gaussian Markov models can be seen as an
extension of hyper Markov distributions to such context, since they both coincide for chordal skeletons.

If Dc is an arbitrary complete digraph, then, under some assumptions on f (µ,Ω | D) and f (x | D,µ,Ω), computations
can be localized as

f (x | D) =
∏
v∈V

f (x{v}∪paD (v) | Dc)
f (xpaD (v) | Dc)

, (15)

The posterior in Eq. (15) is equal among Markov equivalent acyclic digraphs (Geiger and Heckerman, 2002).
The conjugate prior for (µ,Ω) is the normal-Wishart distribution, where Ω ∼ Wp (αΩ,Λ) and µ | Ω ∼

Np
(
µ0, (αµΩ)−1

)
. This yields a normal-Wishart posterior distribution for (µ,Ω) | Dc . Using this, Geiger and Heckerman

(1994), obtain an explicit expression for each factor in Eq. (15): for U ⊆ V ,

f (xU | Dc) =
(

αµ

αµ + N

) |U |
2

2π−
lN
2
Γ |U |

(N+αΩ−p+|U |
2

)
Γ |U |

(
αΩ−p+|U |

2

) |ΛUU |
αΩ−p+|U |

2

|RUU |
αΩ−p+|U |+N

2

,

where Γp(·) is the p-dimensional Gamma function, and

R = Λ+ Q+
NαΩ

N + αΩ
(µ0 − x̄)(µ0 − x̄)t .

Furthermore, Geiger and Heckerman (2002) characterize the normal-Wishart prior for (µ,Ω) as the only distribution
satisfying the global parameter independence assumption,

f (θ | D) =
∏
v∈V

f (θv | D)

for every PX ∈ N (D). This condition is required for Eq. (15) to hold.
The above priors have been used by Consonni and Rocca (2012) and Altomare et al. (2013) for objective Bayesian model

selection, where f (θ | D) might be improper. For overcoming this, they use fractional Bayes factors (O’Hagan, 1995), which
had been also previously used by Carvalho and Scott (2009) for chordal undirected models (see Massam, 2018, §10.6 and
references therein for more details). Recently, Ben-David et al. (2016) have proposed a family of priors extending those
by Geiger and Heckerman (2002) but including more shape parameters, that is, mimicking those in Letac and Massam
(2007) for undirected models. See Rajaratnam (2012) and Cao et al. (2019) for further discussion on these priors.

10. Higher level Markov model classes with mixed graphs

As we have seen throughout this review, the classes of acyclic directed and undirected Markov models are intimately
related. Therefore, one approach for their unified treatment could be to step to a higher level, and define new Markov
model classes containing them as subclasses. In this section we will overview this approach, which has been particularly
active in the past few years. The graphs used for these new Markov models are usually called mixed graphs, because unlike
purely undirected or acyclic directed graphs, they allow for more than one edge type. We do not aim in this section for
a thorough account of the achievements and drawbacks of the different developments since that would take another full
paper.

Chain graphs are the first higher level attempt at this unification: they allow two edge types, directed and undirected,
and forbid semi-directed cycles. Drton (2009) provides a unifying view of these model classes, focusing on their discrete
parametrization: both the undirected and directed edges can have two different interpretations, thus giving rise to four
different chain graph model classes. Among them, AMP chain graphs (Andersson et al., 2001), and LWF chain graphs
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(Lauritzen and Wermuth, 1989; Frydenberg, 1990), named in such way because of the respective paper authors, contain
both acyclic directed and undirected Markov model classes.

Multivariate regression (MVR) chain graphs (Cox and Wermuth, 1993, 1996), or Type IV in Drton (2009), are possibly the
most traditional ones and can be viewed as a special case of the path diagrams by Wright (1934). Although they do not
contain undirected models, their extension, regression graphs (Wermuth and Sadeghi, 2012; Wermuth, 2011), do contain
both classes treated in this review, by allowing up to three edge types. The class of regression graphs allows to represent
additional relationships in classical sequences of multivariate regressions by means of a bi-directed edge, which could not
be otherwise modelled using only the acyclic directed or undirected graphs. These bi-directed edges represent interactions
with latent variables. The recovery of latent variables is specially relevant in social studies, where the presence of these
confounding variables may affect the prediction. It has been recently shown that a Gaussian MVR chain graph is Markov
equivalent to an acyclic directed Gaussian Markov model with latent variables when its bidirected part is chordal (Fox
et al., 2015). Pure Gaussian bidirected graphs represent marginal independences among variables, therefore they impose
zero constraints directly in the covariance Σ.

Finally, the Type III chain graph so far has not been devoted much attention (Lauritzen and Sadeghi, 2018). All of the
mentioned chain graph model classes are smooth, whereas for their discrete counterparts only the classes of LWF and
multivariate regression chain graphs consist of smooth models (Drton, 2009).

The semi-directed cycle constraint on chain graphs can be relaxed, and new graphical model classes are obtained
by forbidding only directed cycles. By doing so, we arrive at three different classes of what are called acyclic directed
mixed graphs: the so-called original acyclic directed mixed graph (oADMG, Richardson, 2003), the alternative (aADMG, Peña,
2016a), and UDAGs (Peña, 2018), which relax MVR, AMP and LWF chain graphs, respectively. Each oADMG model contains
a model obtained from a Bayesian network after marginalizing some of its nodes, (the latent variables). However, other
constraints may arise after marginalizing that cannot be represented in terms of conditional independence with this class,
for example, the Verma constraints (Richardson and Spirtes, 2002, §7.3.1) and inequality constraints (Drton et al., 2012).
In order to deal with these, Richardson et al. (2012) introduced nested Markov models which also allow for hyper-edges
between more than two nodes; however, we are not aware of any Gaussian parametrization.

The classes of both oADMGs and aADMGs are subsumed by the class of ADM graphs (Peña, 2018), consisting, naturally,
of three edge types. When parametrized with the Gaussian distribution, ADM graph models can be represented as
recursive linear equations with two blocks of variables and possibly correlated errors (Koster, 1999; Spirtes, 1995; Peña,
2016a,b). Bidirected edges in these models represent latent confounding effects, whereas undirected edges account for
dependence between the errors. Note that, although the classes of ADM graphs and regression graphs allow the same
edge types, they are not equivalent since the former contains AMP chain graph models, while the latter does not.

There are other models allowing for up to three edge types, besides the already mentioned ADM and regression graphs:
anterial and chain mixed graphs (Sadeghi, 2016), ribbonless graphs (Sadeghi, 2013), MC graphs (Koster, 2002), summary
graphs (Wermuth, 2011; Cox and Wermuth, 1996), ancestral graphs (Richardson and Spirtes, 2002), etc. These model
classes share rich relationships, which have been recently discussed by Lauritzen and Sadeghi (2018). Ancestral graphs
extend regression graphs by relaxing the cycle constraint, but they are not a maximal class; that is, if an edge is removed
from the graph, we may remain on the same Markov model. Maximality is convenient because it is what allows to define
pairwise Markov properties, so that each edge absent implies a conditional independence. Fortunately, for an arbitrary
ancestral graph we may always find a maximal one which is Markov equivalent to it, therefore many times authors speak
of the class of maximal ancestral graphs (MAGs). This class is closed under marginalization and conditioning, and every
MAG can be obtained from an acyclic digraph after performing such operations on its nodes. Just as marginalization leads
to latent confounders, conditioning is sometimes called selection bias in the literature on social sciences.

The class of summary graphs, although in correspondence with ancestral graphs, is not easily parametrized. One of
the main drawbacks is that they allow more than one edge type between the nodes, which means that in principle more
than one parameter can be associated between a pair of variables. Furthermore, they are not maximal and thus cannot
have a pairwise Markov property, which implies that fewer independences can be deduced from the model. Most of the
other three-edge-type models mentioned share these drawbacks for defining a parametrization (Richardson and Spirtes,
2002; Sadeghi and Marchetti, 2012).

The proliferation of higher level Markov model classes has led Lauritzen and Sadeghi (2018) to recently propose a
class of mixed graphs consisting of up to four edge types, in an attempt to unify most of them under a unique Markov
property (see also Sadeghi and Lauritzen, 2014; Evans, 2018). Nowadays, a great amount of research is focused on
characterizing basic foundational properties for these higher level models: for example, Markov equivalence, definition
and equivalence of Markov properties, factorization properties, etc.

11. Relaxing the Gaussian assumption

In some real problems, the Gaussian assumption is too restrictive, and thus some alternative models to overcome this
have been proposed. Although these are outside the scope of this review, we will survey here the main proposals to relax
the Gaussian assumption.

As we have seen, Gaussian Bayesian networks are equivalent to a set of recursive regressions where the errors are
Gaussian. In Shimizu et al. (2006), an analogous model is proposed, called LiNGAM, where the errors are assumed to be
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non Gaussian. The work by Loh and Bühlmann (2014) further generalizes this by not making distributional assumptions
on the errors. As an alternative, Peters et al. (2014) and Bühlmann et al. (2014) maintain Gaussian errors but the
additive regression is now assumed to be non linear. Other families of continuous distributions that have been used
for parametrizing Markov and Bayesian networks are nonparametric Gaussian copulas (Liu et al., 2009) and elliptical
distributions (Vogel and Fried, 2011), both of which generalize the Gaussian distribution. Copula graphical models are
usually referred to as ‘nonparanormal’ models, and model selection and estimation have been researched by Harris and
Drton (2013), Xue and Zou (2012) and Liu et al. (2012), including high-dimensional scenarios. Estimation results for
elliptical graphical models have been obtained by Vogel and Tyler (2014).

Another approach is to extend the model and allow for both discrete and continuous variables. In such case, a challenge
is posed specially on inference in Bayesian networks, where the usual operations may not allow for a direct and efficient
implementation as in the pure cases. The main source of this problem is the integration that appears in marginalization
of continuous variables. To overcome this, the classical approach is to use the conditional Gaussian distribution (Olkin
and Tate, 1961). It is characterized by a multinomial distribution on the discrete variables and a Gaussian distribution
for the continuous variables when conditioned on the discrete ones. Therefore, it contains the pure multinomial and
Gaussian models as particular cases. Markov properties of this distribution with respect to an undirected graph were
defined by Lauritzen and Wermuth (1989). With respect to an acyclic digraph, a further assumption is that no discrete
variable may have continuous parents, which leads to conditional linear Gaussian Bayesian networks (Lauritzen, 1992).
Exact inference in these networks is applicable thanks to these constraints imposed on the network topology.

In order to avoid the structural constraints of conditional linear Gaussian Bayesian networks, nonparametric density
estimation techniques have been proposed. Moral et al. (2001) approximated the joint density by mixtures of truncated
exponentials. In this model, discrete nodes with continuous parents are allowed, while exact inference remains possible. A
similar approach is that of Shenoy andWest (2011), where mixtures of polynomials are used instead for approximating the
joint density. These two models have been generalized by Langseth et al. (2012) as mixtures of truncated basis functions.
However, there are limited results about maximum likelihood estimation and model selection for these models (Langseth
et al., 2010, 2014; Varando et al., 2015).

12. Main application areas

Graphical or Markov models have been widely applied since their conception and continue to be nowadays an essential
tool in many fields, since they are intuitive for visualizing the associations between the components in a system. We
will first outline applications of Gaussian Markov and Gaussian Bayesian networks and then illustrate other areas where
graphical models have played an important role.

Markov and Bayesian networks with Gaussian parametrization have been specially useful in biomedical sciences.
For example, Gaussian Bayesian networks have been used for extracting knowledge from fMRI studies (Mumford and
Ramsey, 2014; Zhou et al., 2016), where nodes are identified with brain regions, and arrows are interpreted as direct
influences between the respective regions. Another example where both models have been applied is the modelling
of gene regulatory networks, which are high-dimensional and complex by nature. In fact, the challenge posed by this
problem has served as an impulse for methodological developments in both models. A vast amount of literature can be
found regarding the main computational aspects involved on this subject, as well as interpretability issues, see Lauritzen
and Sheehan (2003), Friedman (2004), Markowetz and Spang (2007) and Ness et al. (2016) for reviews.

In social sciences, Bayesian networks have been used since their conception, in fact, we could say that research in this
application area helped to settle the foundations of graphical models (Kiiveri and Speed, 1982). In terms of interpretability,
the directed arcs in Bayesian networks are usually given a causal interpretation (Pearl, 2000; Cox and Wermuth, 1996),
since ultimately the main goal of social studies is to identify the causes of a resulting event of interest. In recent years,
graphical models have found a natural area of application which is social network analysis (Farasat et al., 2015), which
include problems such as influence analysis, privacy protection, web browsing, etc.

Some other traditional models from bioinformatics can also be seen as graphical models. These include phylogenetic
trees, which model evolutionary relationships between different species or organisms, and pedigrees, which are diagrams
showing the occurrence and variants of a gene from one generation of organisms to the next (Jordan, 2004). Apart from
fMRI studies, Bayesian networks have also been applied in different subareas of neuroscience (Bielza and Larrañaga,
2014), such as morphological and electrophysiological studies. Finally, other, more technical application areas include
information retrieval (de Campos et al., 2004), where relevant documents about some matter are collected from an
available set of sources, and linguistics, with subfields such as speech recognition (Deng and Li, 2013), and natural language
processing (Cambria and White, 2014).
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