
Data Min Knowl Disc
DOI 10.1007/s10618-013-0323-0

Semi-supervised projected model-based clustering

Luis Guerra · Concha Bielza · Víctor Robles ·
Pedro Larrañaga

Received: 3 September 2012 / Accepted: 7 May 2013
© The Author(s) 2013

Abstract We present an adaptation of model-based clustering for partially labeled
data, that is capable of finding hidden cluster labels. All the originally known and
discoverable clusters are represented using localized feature subset selections (sub-
spaces), obtaining clusters unable to be discovered by global feature subset selec-
tion. The semi-supervised projected model-based clustering algorithm (SeSProC) also
includes a novel model selection approach, using a greedy forward search to estimate
the final number of clusters. The quality of SeSProC is assessed using synthetic data,
demonstrating its effectiveness, under different data conditions, not only at classifying
instances with known labels, but also at discovering completely hidden clusters in dif-
ferent subspaces. Besides, SeSProC also outperforms three related baseline algorithms
in most scenarios using synthetic and real data sets.

Responsible editor: Charu Aggarwal.

L. Guerra (B) · C. Bielza · P. Larrañaga
Computational Intelligence Group, Departamento de Inteligencia Artificial,
Facultad de Informática, Universidad Politécnica de Madrid, Campus de Montegancedo,
28660 Boadilla del Monte, Madrid, Spain
e-mail: l.guerra@upm.es

C. Bielza
e-mail: mcbielza@fi.upm.es

P. Larrañaga
e-mail: plarranaga@fi.upm.es

V. Robles
Departamento de Arquitectura y Tecnología de Sistemas Informáticos, Facultad de Informática,
Universidad Politécnica de Madrid, Campus de Montegancedo,
28660 Boadilla del Monte, Madrid, Spain
e-mail: v.robles@fi.upm.es

123

L. Guerra et al.

Keywords Clustering · Subspaces · Semi-supervised · Model-based · Partially
labeled data

1 Introduction

Partially labeled data sets are becoming common in machine learning, specifically in
classification tasks. Although the available data labels are an important source of infor-
mation for improving classification, they are still scarce in some domains because they
are either expensive or labour intensive to gather. Learning problems using partially
labeled data are semi-supervised. Depending on whether the unlabeled instances can
be classified according to one of the known labels or there is the possibility of discover-
ing new previously unknown clusters, we can refer to this problem as semi-supervised
classification or semi-supervised clustering, respectively. Our approach can be classed
as semi-supervised clustering since instances are classified according to known labels,
but new clusters can also be found if necessary.

We rely on finite mixture models to tackle this problem. We propose an algorithm
that integrates the known labels and the expectation-maximization (EM) algorithm
(Dempster et al. 1977) to help estimate the parameters of each mixture component.
A localized feature subset selection (LFSS) approach, where each cluster is described
using a different subset of features (subspace), is also integrated with the EM. LFSS
is a recent trend that is useful for finding hidden data structures. This is different from
traditional global feature subset selection (GFSS), where a single subset of features is
used to carry out the clustering. Therefore our proposal is a semi-supervised projected
model-based clustering (SeSProC) algorithm.

Our algorithm is capable of finding new unknown clusters, the final number of
clusters must be then estimated as with many traditional clustering algorithms. We
introduce a novel approach, based on an iterative greedy forward search, which uses
the known groups as a starting point and tries to introduce a new component at each
iteration. Our algorithm is based on the cluster assumption, which states that instances
in the same cluster are likely to belong to the same class.

The rest of the paper is organized as follows. Section 2 gives an introduction to
related work on the topics covered in our proposal, highlighting the advantages of
our contribution. In Sect. 3, we first introduce basic model-based clustering theory
and then we add the different characteristics of our proposal and detail SeSProC. This
section is supported by four appendices at the end of the document. Section 4 outlines
the experiment describing the database, experimental process, and results on both,
synthetic and real data sets. Finally, Sect. 5 contains a discussion, conclusions, and
future work.

2 Related work

Together with partitional, hierarchical, or density-based approaches, which are beyond
the scope of this paper, model-based clustering (McLachlan and Basford 1988) is one
of the main approaches for clustering. This approach is based on “soft” clustering,
i.e., each instance has some probability of belonging to each cluster. This kind of

123

Semi-supervised projected model-based clustering

assignment might lead to more accurate solutions. One advantage of using model-
based clustering, is that components and parameter estimations are searched simul-
taneously, avoiding problems that can arise when this is done separately. Also the
problem of selecting the number of clusters (components) in model-based clustering
can be considered as a statistical model selection problem, and models with different
number of components can be compared using known approaches (Fraley and Raftery
1998). For a recent model-based clustering review and a book focused on this approach,
see Maitra and Melnykov (2010) and McLachlan and Peel (2000), respectively.

2.1 Semi-supervised learning

Semi-supervised learning (Chapelle et al. 2006; Chawla and Karakoulas 2005; Zhu
and Goldberg 2009) can be located between clustering and supervised classification,
and deals with learning either in the presence of both labeled and unlabeled data or
some other kinds of constraints, like relationships between instances. Neural networks
(Chandel et al. 2009) and nearest neighbors classifiers (Wang et al. 2006) have been
proposed for this task.

Semi-supervised learning can be divided into semi-supervised classification and
semi-supervised clustering, depending on the input data and the purpose (Zhu 2005).
The task related to SeSProC is semi-supervised clustering, since new groups, which are
unknown in the input partially labeled data, may be found. Semi-supervised clustering
is sometimes known as constrained clustering, since the known information can take
the shape of pairwise constraints (must-link and cannot-link constraints). When data
are partially labeled, constraints can be directly inferred from the available labels.
Metric pairwise constrained K-means (MPCKM) (Basu et al. 2004), is an example
of an algorithm based on pairwise constraints. This algorithm penalizes its objective
function and trains a metric both by using the available constraints. Reviews of recent
works dealing with constrained clustering can be found in Basu et al. (2009).

The idea of using partially labeled data sets together with EM was introduced in
Miller and Browning (2003). This was also applied to a leukemia data set in Alexan-
dridis et al. (2004). Examples of the introduction of constraints into the EM algorithm
for finite mixture models and model-based clustering can be found in Shental et al.
(2003) and Lange et al. (2005). Another approach can be found in Lu and Leen (2005),
where clustering constraints were expressed in the prior distribution over assignments
of instances to clusters in a Gaussian mixture model. Cluster assignments were then
penalized depending on this prior and according to the degree of constraint violation.
Finally, a more recent example of semi-supervised mixture modeling can be found in
Miller et al. (2009), where standard semi-supervised mixtures and nearest neighbors
classification were combined. We can conclude that available information has been
successfully introduced into model-based clustering, using different approaches, in
many previous works.

2.2 Clustering in subspaces

Two important surveys related to clustering in subspaces were presented in Parsons
et al. (2004) and Kriegel et al. (2009). Kriegel et al, who presented another related

123

L. Guerra et al.

and updated review in Kriegel et al. (2012), categorize the subspace approaches more
thoroughly, distinguishing between (i) algorithms that are able to find clusters parallel
to the axes (axis-parallel algorithms), (ii) algorithms that find clusters in arbitrarily
oriented subspaces (correlation clustering), and (iii) clustering algorithms based on
patterns, also called biclustering, which is out of the scope of this work. Correlation
clustering is a more general case of subspace clustering than (i), but the number of
arbitrarily oriented subspaces might become infinite. Examples of correlation clus-
tering algorithms are ORCLUS (Aggarwal and Yu 2000), P3C (Moise et al. 2008),
MrCC (Cordeiro et al. 2010), and SSCC (Günnemann et al. 2012). Taking into account
the problem with possibly high number of subspaces, it can be enough, depending on
the application, to assume the existence of axis-parallel subspaces. Our proposal is
therefore focused on this approach.

Axis-parallel algorithms can be further divided, according to how algorithms are
created, into bottom-up and top-down algorithms depending on whether the search
starts from all one-dimensional subspaces or from the full-dimensional space, respec-
tively. This separation is also suggested by Parsons et al. (2004). However, axis-parallel
algorithms can also be divided, according to the made assumptions, into the next types
of algorithms:

– Projected clustering algorithms, where disjoint clusters are identified and charac-
terized by different subspaces. Related to this kind of algorithms, soft projected
clustering aims at finding subspaces by weighting features instead of by select-
ing them as relevant/irrelevant. A feature with a high weight is considered more
important to define a subspace than another lower weighted feature. Many pro-
jected algorithms are also top-down algorithms. PROCLUS (Aggarwal et al. 1999)
was the first top-down and projected clustering algorithm, followed by FINDIT
(Woo et al. 2004), or COSA (Friedman and Meulman 2004). COSA is an example
of algorithm that is also classified as soft projected clustering algorithm.

– Subspace clustering algorithms, which aim at finding all subspaces where clusters
can be found. Therefore, instances can be grouped into many different clusters
(overlapping is allowed), and each cluster is characterized by a different fea-
ture subspace. Most subspace clustering algorithms are bottom-up algorithms.
CLIQUE (Agrawal et al. 1998) was the first algorithm of this type, using a grid
approach. Other algorithms are ENCLUS (Cheng et al. 1999) and MAFIA (Goil
et al. 1999).

– Hybrid algorithms find clusters that may overlap. However, the number of found
subspaces is not the full set of possible subspaces, but only a smaller subset accord-
ing to some criteria. This kind of algorithms can be both top-down and bottom-up
algorithms. Some examples of hybrid algorithms are DOC (Procopiuc et al. 2002),
which is a density-based algorithm, and HARP (Yip et al. 2004), which uses dif-
ferent distance functions to iteratively merge clusters by minimizing the number
of relevant features for each cluster.

Our proposal can be categorized as soft projected soft clustering because subspaces
are found by weighting features and clusters may also overlap since model-based
clustering is based on soft clustering. Therefore, our proposal is soft at selecting
features and at assigning instances to clusters.

123

Semi-supervised projected model-based clustering

An important and related concept is feature saliency, that is the probability that a
feature is relevant to a cluster. This probability was introduced into the EM algorithm
for model-based clustering and GFSS (Law et al. 2004). It is a close approach to soft
projected clustering if it is extended to all clusters separately. The extension of Law
et al. (2004) to subspaces was applied in Li et al. (2007), which is the groundwork for
our research. A variant was later presented by the same authors, estimating parameters
with Bayesian variational learning (Li et al. 2009). Other approaches (Boutemedjet et
al. 2010; Hoff 2005, 2006), based also on mixture models, used the Dirichlet process.
Somehow related, Graham and Miller 2006 presented an approach allowing one shared
representation for each feature when appropriate to reduce the complexity of the model.
The extension of this work, using multivariate Gaussian mixtures, was presented in
Markley and Miller (2010). Finally, MPC (Chen et al. 2012) is a related projected
model-based clustering algorithm. MPC requires the correct number of clusters to be
entered as an input parameter and is sensitive to initialization.

2.3 Semi-supervised and subspaces

Another recent review (Sim et al. 2012) identifies the relationship between semi-
supervised clustering and subspace-based approaches. Sim et al deal with subspace
clustering from an enhanced point of view, classifying approaches into two groups:
handling complex data and improving clustering results. Approaches in the first group
handle streaming (Aggarwal et al. 2004; Kriegel et al. 2011) or categorical data (Müller
et al. 2009). The second group covers three aspects: finding significant subspace clus-
ters (instead of all subspace clusters), relaxing the parameter-sensitivity problem, and
introducing knowledge as semi-supervised subspace clustering (see Fig. 1).

In this respect, different knowledge can be introduced to enhance clustering results.
For example, ASCLU (Günnemann et al. 2010) finds alternative solutions consider-
ing previous subspace clustering results using different features. However, knowledge
is commonly related to constraints or known labels. The algorithm SSPC (Yip et
al. 2005) is based on a partitional method similar to K-medoids algorithms to find
projected clusters, where the available domain knowledge is related to class labels
rather than instance-level constraints. Cheng et al. (2008) presented an extension of
LAC, called CLWC, incorporating pairwise constraints (must-link and cannot-link
constraints) into the local weighting scheme. A main limitation of these algorithms
is that all final clusters must be represented by some of the beforehand known labels
or constraints. Fromont et al. (2009) presented a common framework for subspace
clustering, called SC-MINER. This work proposed integrating pairwise constraints

Fig. 1 SeSProC is a
semi-supervised soft projected
model-based clustering
algorithm that combines the
search for subspaces and class
labels information

123

L. Guerra et al.

into the mining step of subspace clustering algorithms. SISC (Ahmed and Khan 2009)
is another closely related approach that deals with binary features only. Zhang et al.
(2010) pointed out that feature correlation and distance divergence are important con-
siderations for subspace clustering, and, consequently, used constraints for clustering.
Zhang et al. (2011) recently exploited constraint inconsistency for dimension selection
in subspaces.

In sum, our work focuses on a projected soft clustering approach based on semi-
supervised clustering in subspaces. An adaptation of the EM algorithm is used to fit
the finite mixture models, including both the search for subspaces by weighting the
feature relevance and the labeled data as known information. The labeled data are
used to initialize the model, whereas new components are added depending on how
instances fit the known components. A novel greedy process estimates the number of
mixture components. This process is based on both instance fitting to the components
and a quality measure.

Our proposal contributes to projected clustering and semi-supervised learning, pro-
viding a single algorithm that covers all the three aspects presented in Sim et al. (2012)
to improve clustering results:

– We guide the clustering process using the available data labels. They are used to
initialize the known groups and as a starting point for selecting the final number
of clusters. Note that our algorithm does not need labels of all the final clusters as
input.

– We relax the number of tuning parameters. Users have to choose only one para-
meter. This parameter does not have a big impact on the results and is easily
adjustable.

– Our work is based on projected clustering. Therefore, we not enumerate all but
only the subspace clusters considered as relevant by the algorithm.

3 Proposed algorithm: SeSProC

This section introduces our algorithm SeSProC for semi-supervised subspace model-
based clustering using the EM algorithm, and estimating the final number of mixture
components. It is based on the traditional concept of finite mixture models (Bishop
2007).

3.1 Notation

Let X = {x1, . . . , xN } be a set of instances described by continuous features in a space
of dimension F , that is, xi ∈ �F ,∀i ∈ {1, . . . , N }. Besides, the class1 information of
some instances is available in this partially labeled data set. Thus, X can be divided
into X = X L ∪ X U , where X L = {x1, . . . , xL} is the subset of instances with
an associated known class label and X U = {xL+1, . . . , xN } are the instances with

1 Note that “class”, “component”, and “cluster” are equivalent concepts at the end of the classification, but
each concept will be used here to refer, respectively to a priori knowledge about instances (classes), mixture
components (components) or identified groups (clusters).

123

Semi-supervised projected model-based clustering

unknown labels. This information is gathered in the mixture using a latent variable
Z = ZL ∪ ZU = {z1, . . . , zL } ∪ {zL+1, . . . , zN }, separating known from unknown
class labels, respectively, where zi = (zi1, . . . , ziC , zi,C+1, . . . , zi K), with zim = 1 if
instance i belongs to component m and with all other elements zim′ = 0, ∀ m′ �= m.
Note that zim = 0 if m > C for zi ∈ ZL , C being the number of known classes in our
semi-supervised setting. This constraint does not apply to ZU because the instances
with unknown class labels can belong to a known class or any other discoverable class.
For this reason, the final number of classes is K , with K ≥ C .

The feature relevance for each mixture component is indicated in the set V =
{v1, . . . , vK }, being vm = (vm1, . . . , vm F) with vmj = 1 if feature j is relevant to
component m, and vmj = 0 otherwise, ∀ m ∈ {1, . . . , K }, j ∈ {1, . . . , F}. The values
of each vm are unknown, and, therefore, set V is a new set of latent variables. The
aim of the algorithm is to find the correct group component for each instance in X U ,
which is either a known class or a new unknown cluster.

3.2 Basic theory

The underlying theory of mixture modeling is the groundwork for SeSProC. There
is no kind of subset selection or knowledge about the data to start with in the basic
theory. For this reason, V does not exist, and ZL is not a priori known. In a finite
mixture model, an instance is assumed to be generated by a probabilistic model given
by a finite mixture of distributions. Assuming that the mixture has K components, the
density function of an instance xi is (see details in Appendix 1)

p(xi | Θ) =
K∑

m=1

πm p(xi | θm), (1)

where p(·) is the density function, and θm is the parameter set and πm is the mixing
probability of component m, with πm ≥ 0 and

∑K
m=1 πm = 1. The full parameter set

of the mixture is Θ = {θ1, . . . , θK , π1, . . . , πK }. This parameter set could be directly
estimated using the maximum likelihood method if both the latent variables (Z) and the
observable data (X) were known , i.e., if the complete-data were available to compute
the log-likelihood function. This function would be (see details in Appendix 1)

log L(Θ | X ,Z) =
N∑

i=1

K∑

m=1

zim (log πm + log p(xi | θm)) . (2)

Nevertheless, the latent variables are unknown and we cannot use this function directly.
However, we can obtain the expectation of this log-likelihood function with respect
to the posterior distribution of the latent variables. This expectation is calculated in
iteration t , having fixed the parameters from the previous iteration2 t −1, in the E-step

2 Note that, for legibility, the notation related to iterations is used with Θ , but not with θ throughout the
paper.

123

L. Guerra et al.

of the EM algorithm. After this, the parameters of the distributions are recalculated to
maximize this expectation (M-step). These two steps are repeated until a convergence
criterion is reached. Hence, using the expectation of zim ,

Ezim |xi ,θm [zim] = γ (zim)

= πm p(xi | θm)
∑K

m′=1 πm′ p(xi | θm′)

= p(zim = 1 | xi , θm),

the expectation of the complete-data log-likelihood function is given by (see details
in Appendix 1)

EZ|X ,Θ t−1[log L(Θ | X ,Z)] =
N∑

i=1

K∑

m=1

γ (zim) (log πm + log p(xi | θm)) . (3)

The set of parameters is estimated in the M-step to maximize the expectation of the
complete-data log-likelihood, presented in Eq. (3). They are obtained by computing
the partial derivatives with respect to the different parameters and equaling to zero.
These derivatives will be presented as part of the proposed solution for our specific
problem.

3.3 Introduction to SeSProC

We apply the above mixture model theory to a clustering problem with two specific
characteristics:

1. The groups of instances can be hidden in different feature subspaces. Therefore,
an LFSS is required in each mixture component. This way we can identify data
structures that would remain undiscovered using all features or GFSS.

2. The class information of some instances is available. This knowledge is used during
the EM process to improve the final clustering; therefore, this is a semi-supervised
clustering task.

The possibilities for adapting basic model-based clustering to the characteristics
of our problem are described next. First, LFSS is presented in Sect. 3.4, which leads
on to the development for maximizing the above expectation of the complete-data
log-likelihood function. Section 3.5 details how the knowledge about some instance
labels is taken into account to improve the final clustering. Section 3.6 discusses how
to estimate the final number of components using all the above characteristics, based
on an iterative forward greedy approach. Finally, both the E and M procedural steps
are detailed in Sects. 3.7 and 3.8, respectively. Therefore, SeSProC adds subspaces and
available label instance information to model-based clustering, plus a novel proposal
for the estimation of the final number of clusters.

123

Semi-supervised projected model-based clustering

3.4 Adding subspaces to EM

We have to know which features are relevant to each mixture component to find the
subspaces that best describe the components. As previously mentioned, each compo-
nent’s feature relevance is indicated in the set V , which is a new set of latent variables.
First, we can define, for each component and feature, ρmj = p(vmj = 1), the proba-
bility that feature j is relevant to component m. A feature is relevant to a component
following the concept of feature saliency indicated in Law et al. (2004), but extending
it to each cluster. We assume that features are independent given the component label,
which is a common choice in many models and obtains reasonable results, as also
commented in Law et al. (2004). Then, the new density function is (see details in
Appendix 2)

p(xi | Θ) =
K∑

m=1

πm

F∏

j=1

(
ρmj p(xi j | θmj) + (1 − ρmj)p(xi j | λmj)

)
,

where θmj indicates the parameters for the density function if feature j is relevant to
component m, whereas λmj indicates the parameters for the density function if feature
j is not relevant to component m. With the inclusion of subspaces, a whole new set of
parameters has to be estimated: Θ = {θmj , λmj , ρmj , πm}m=1,...,K ; j=1,...,F .

The new complete-data includes the new set of latent variables (V). Therefore,
including it in Eq. (2), the new complete-data log-likelihood function is given by (see
details in Appendix 2)

log L(Θ | X ,Z,V)

=
N∑

i=1

K∑

m=1

(
zim log πm

+
F∑

j=1

(
zim

[
vmj (log ρmj + log p(xi j | θmj))

+ (1 − vmj)(log(1 − ρmj) + log p(xi j | λmj))
]))

.

This function indicates how necessary the two sets of latent variables are: zim indicates
instance i’s membership of component m, whereas vmj indicates feature j’s relevance
to a component m. Obviously, the problem again is that these variables are not available
and must be estimated. For this reason, and as in Eq. (3), the expectation of the
complete-data log-likelihood function must be calculated in the E-step of the EM
algorithm, taking into account the two sets of latent variables Z and V . Hence, using

Evmj ,|xi j ,θmj [vmj] = γ (vmj)

= ρmj p(xi j | θmj)

ρmj p(xi j | θmj) + (1 − ρmj)p(xi j | λmj)

= p(vmj = 1 | xi j , θmj),

123

L. Guerra et al.

and

Ezim |vm ,xi ,θm [zim] = γ (zim)

= πm
∏F

j=1[ρmj p(xi j | θmj) + (1 − ρmj)p(xi j | λmj)]
∑K

m′=1 πm′
∏F

j=1[ρm′ j p(xi j | θm′ j) + (1 − ρm′ j)p(xi j | λm′ j)]
= p(zim = 1 | vm, xi , θm),

defining

γ (uimj) = γ (zim)γ (vmj),

γ (wim j) = γ (zim)(1 − γ (vmj)),

and separating each parameter into different addends, the expectation of the new
complete-data log likelihood function is (see details in Appendix 3)

EZ,V |X ,Θ t−1[log L(Θ | X ,Z,V)]

=
N∑

i=1

K∑

m=1

γ (zim) log πm

+
N∑

i=1

K∑

m=1

F∑

j=1

γ (uimj)(log ρmj + log p(xi j | θmj))

+
N∑

i=1

K∑

m=1

F∑

j=1

γ (wim j)(log(1 − ρmj) + log p(xi j | λmj)). (4)

Before detailing how to obtain the updated parameters of SeSProC in the M-step,
the expectation of the complete-data log-likelihood function is adapted to introduce
the available instance label information.

3.5 Adding instance label information

SeSProC uses the available instance label information to guide the clustering of the
unlabeled instances. Based on this information, the model learning process can be
divided into two learning parts: the labeled instances are correctly classified into known
classes {1, . . . , C} (classification term) and the unlabeled instances can be grouped
either in those known or in other unknown components {C + 1, . . . , K } (clustering
term). Thus, the expectation of the log-likelihood presented in Eq. (4), separating the
two learning steps, is

EZ,V |X ,Θ t−1 [log L(Θ | X ,Z,V)]
= EZL ,V |X L ,Θ t−1 [log L1(Θ | X L ,ZL ,V)]

+EZU ,V |X U ,Θ t−1[log L2(Θ | X U ,ZU ,V)],

123

Semi-supervised projected model-based clustering

where the expectation corresponding to the classification term is

EZL ,V |X L ,Θ t−1 [log L1(Θ | X L ,ZL ,V)]

=
L∑

i=1

C∑

m=1

zim log πm

+
L∑

i=1

C∑

m=1

F∑

j=1

γ (uimj)(log ρmj + log p(xi j | θmj))

+
L∑

i=1

C∑

m=1

F∑

j=1

γ (wim j)(log(1 − ρmj) + log p(xi j | λmj)). (5)

Note that when zim is known, γ (uimj) and γ (wim j) are obtained using the value of
zim instead of γ (zim). The expectation related to the clustering term is

EZU ,V |X U ,Θ t−1[log L2(Θ | X U ,ZU ,V)]

=
N∑

i=L+1

K∑

m=1

γ (zim) log πm

+
N∑

i=L+1

K∑

m=1

F∑

j=1

γ (uimj)(log ρmj + log p(xi j | θmj))

+
N∑

i=L+1

K∑

m=1

F∑

j=1

γ (wim j)(log(1 − ρmj) + log p(xi j | λmj)). (6)

Another feature of SeSProC is the procedure for estimating the final number of
clusters, which is described next.

3.6 Selecting the final number of clusters

The number of components of the finite mixture is an unknown parameter that must
be estimated. A top-down approach is usually taken to estimate this parameter, i.e.,
establishing a maximum number of components, Kmax , and iteratively deleting one
component in each step, depending on a quality measure, as the (regularized) log-
likelihood function.

As we have knowledge about some instance labels, we know that C is the minimum
number of mixture components (assuming one component per each known class).
From this number of components we propose a bottom-up approach (see Algorithm
1) to estimate the final number of clusters using a greedy forward search. This begins
at an initial level (l = 0), where a model M0 is built using a finite mixture with C
components, each in a different feature subspace. Then, in l = 1, a new model M1

with C + 1 components is built. M1 tries to find a new component in a new feature
subspace. This model is evaluated and compared with M0. If M1 is better than M0,

123

L. Guerra et al.

then a new component is added to the group of known components, and we have C +1
known components to begin the next level. The convergence criterion is reached when
Ml is better than Ml+1, returning the C + l known components as the clustering
solution. Note that the labeled instances can only belong to the C known components,
whereas the unlabeled instances can belong to any component C + l in a level l.

Algorithm 1 General code for model order selection. l is the level of the algorithm,
K is the number of components of a model, C is the number of known classes at the
beginning of the execution, BICold and BICnew are the evaluation values of a model
obtained with BIC. A model is represented by Ml .

l = 0
K = C
Build Ml

BICold, BICnew = Evaluation of Ml

repeat
BICold = BICnew
l = l + 1
K = K + 1
Initialize K
Build Ml

BICnew = Evaluation of Ml

until BICold ≥ BICnew

Two models from consecutive levels and with a different number of components are
compared by penalizing the log-likelihood with a term related to model complexity.
We use the Schwartz criterion (Schwarz 1978), also known as Bayesian information
criterion (BIC). This term must be minimized. If R is the number of free parameters
of the model and N is the number of instances, its definition is

B I C = −2 log L + R log N .

At level 0, the parameters of the C known components must be initialized. This
is carried out using only the labeled instances. On the other hand, the initialization
of the new component of each Ml , with l ≥ 1, must be explained in detail, because
it is performed using those instances that worse fit the components of level l − 1.
We assume that the instances that worse fit the known components of our model are
candidates for belonging to another component. Based on this assumption we rank the
unlabeled instances, taking into account the sum of all the membership values of the
C + (l − 1) components. This is calculated, from Eq. (15) and for an instance i , as

C+(l−1)∑

m=1

πm

F∏

j=1

(
ρmj p(xi j | θmj) + (1 − ρmj)p(xi j | λmj)

)
.

The top ranked instances are the ones that worse fit the known components. Then,
starting with the top-ranked instance, Cth (candidates threshold) instances are selected
to initialize the new subspace of the next level.

123

Semi-supervised projected model-based clustering

Finally, to generalize for a level l of SeSProC, Eqs. (5) and (6), for Ml , are updated
as

E
l
ZL ,V |X L ,Θ t−1 [log L1(Θ | X L ,ZL ,V)]

=
L∑

i=1

C∑

m=1

zim log πm

+
L∑

i=1

C∑

m=1

F∑

j=1

γ (uimj)(log ρmj + log p(xi j | θmj))

+
L∑

i=1

C∑

m=1

F∑

j=1

γ (wim j)(log(1 − ρmj) + log p(xi j | λmj)), (7)

and

E
l
ZU ,V |X U ,Θ t−1[log L2(Θ | X U ,ZU ,V)]

=
N∑

i=L+1

C+l∑

m=1

γ (zim) log πm

+
N∑

i=L+1

C+l∑

m=1

F∑

j=1

γ (uimj)(log ρmj + log p(xi j | θmj))

+
N∑

i=L+1

C+l∑

m=1

F∑

j=1

γ (wim j)(log(1 − ρmj) + log p(xi j | λmj)), (8)

respectively. The E and the M steps of the EM algorithm are detailed next. For sim-
plicity’s sake, it is assumed that l = 1 in the following.

3.7 E-step

The aim in the E-step of the EM algorithm is to calculate the expectation of the
complete-data log-likelihood function, having fixed the parameters. These parameters
must be initialized before the first iteration of the EM algorithm, whereas they are
recalculated in the M-step for subsequent iterations.

The value of the expected complete-data log-likelihood function for M1 is the sum
of Eqs. (7) and (8). The expectations of the latent variables, γ (zim) and γ (vmj , can be
found in Appendix 3.

3.8 M-step

The parameters are recalculated in the M-step to maximize the value of the expectation
of the complete-data log-likelihood function. As already mentioned, these updates are

123

L. Guerra et al.

obtained by computing the partial derivatives of this expectation and equaling to zero.
The parameter updates for the Gaussian case are (see details in Appendix 4)

πm =
∑L

i=1 zim + ∑N
i=L+1 γ (zim)

N
,

μθmj =
∑N

i=1 γ (uimj)xi j∑N
i=1 γ (uimj)

,

σ 2
θmj

=
∑N

i=1 γ (uimj)(xi j − μθmj)
2

∑N
i=1 γ (uimj)

.

The same development is valid for λmj = (μλmj , σ 2
λmj

) but using γ (wim j) instead of
γ (uimj) to indicate that feature j is irrelevant for component m:

μλmj =
∑N

i=1 γ (wim j)xi j∑N
i=1 γ (wim j)

,

σ 2
λmj

=
∑N

i=1 γ (wim j)(xi j − μλmj)
2

∑N
i=1 γ (wim j)

,

ρmj =
∑N

i=1 γ (uimj)∑L
i=1 zim + ∑N

i=L+1 γ (zim)
,

∀m = 1, . . . , C + 1; j = 1, . . . , F , for all the equations.

4 Experimental results

4.1 Experiments and evaluation

We have used two experimental setups. The first evaluates the proposed algorithm with
different configurations (created by changing the value of Cth) and data conditions:
using different data distributions, different cluster overlap levels, or clusters with a
different number of dimensions. Synthetic data are used for the first set of experiments
(see Sect. 4.2). These data have been randomly generated using the Weka data generator
tool (Witten et al. 2011). The specific characteristics of each data set are detailed in
each experiment.

The second setup compares SeSProC with three related baseline algorithms: Mclust
(Fraley and Raftery 2012), which is an implementation of model-based clustering, and
HARP and SSPC (see Sect. 2.2), which are algorithms based on subspace clustering
without and with known labeled instances, respectively. We have used synthetic and
known real data sets with different levels of noisy injections. For details, see Sect. 4.3.

All the used data are fully labeled. However, as the input of SeSProC is expected
to be a partially labeled data set, some of the labels will be hidden to the algorithm in
each experiment. Instances that retain their original labels (OL) are randomly selected

123

Semi-supervised projected model-based clustering

and, on this ground, each scenario is executed five times (for five random selections).
Only the unknown labels will be used as ground truth to evaluate the output clusters.

SeSProC is based on soft clustering, but for the purposes of validation and compar-
ison, we translate the output of the algorithm using the group with highest posterior
probability in each case, to assign only one cluster to each instance (hard clustering).
We use the Adjusted Rand Index (ARI) (Hubert and Arabie 1985) to compare the post-
processed output (PO) with the OL. This measure of similarity between two partitions
can be defined as

ARI =
(N

2

)
(a + d) − [(a + b)(a + c) + (c + d)(b + d)]
(N

2

)
2 − [(a + b)(a + c) + (c + d)(b + d)] , (9)

where N is the number of instances, a is the number of pairs of instances located in
the same group in PO and in OL, b is the number of pairs of instances in the same
group in PO but not in OL, c is the number of pairs of instances in the same group in
OL but not in PO, and d is the number of pairs of instances in different groups in both
partitions PO and OL. A perfect match between two partitions receives an ARI of 1.

4.2 Synthetic scenarios

Different scenarios have been created to simulate different configurations and data
conditions. These scenarios cover many situations that can arise when using our algo-
rithm. An important characteristic for the data sets is the cluster overlap level. We
specify the degree of interaction between mixture components using an overlap mea-
sure introduced in Melnykov and Maitra (2010). The average cluster overlap level
among clusters of a data set (ω̂) is calculated as the average value of the overlap level
between each pair of components, where the overlap level between two components
i and j is calculated as ωi j = ωi | j + ωi | j , ωi | j being the misclassification probability
of an instance originated from the i th component but assigned to the j th component.
An implementation of this measure can be found in the R-project (R Core Team 2012)
MixSim package (Melnykov et al. 2012). For more details, see Melnykov and Maitra
(2010).

4.2.1 Candidates threshold

Cth is, as indicated in Sect. 3.6, the only parameter that must be fixed beforehand
in SeSProC. Figure 2 shows the results of fixing different values for Cth with two
synthetic data sets. Both synthetic data sets were composed of 100 instances in four
balanced clusters and described by eight features. The Gaussian distribution was used
to generate the data. The differences between the two data sets were the number of
relevant features for each cluster and the cluster overlap level: each cluster in the first
data set (cth1) was described by four features with ω̂ = 0.15; the second data set (cth2)
contained two clusters described by four features, and other two clusters described by
only two features, all of them with ω̂ = 0.03. We fixed 15 % of labeled instances for
this experiment.

123

L. Guerra et al.

0.4

0.6

0.8

1.0

4 8 12

Cth value

A
R

I

cth1

cth2

Fig. 2 ARI results with different Cth values and data sets

The results illustrated in Fig. 2 yield a higher stability of SeSProC with Cth = 8
than with Cth = 4 and Cth = 12, according to the lower values of the standard
deviations. Regarding the average values, the results for Cth = 8 were higher than for
Cth = 4 with both data sets, and also than for Cth = 12 with cth2. The results for a
value of Cth = 12 were slightly better than for Cth = 8 with only cth1. According to
these results, we fix Cth = 8 for the next experiments. However, the most interesting
finding was that the performance of SeSProC was relatively similar regardless of the
Cth value, and there were no significant differences. This is one of the main advantages
of SeSProC over other related algorithms, which require extensive parameter tuning
in order to achieve any, let alone valuable, results.

4.2.2 Different data distributions

This experiment aims at evaluating the behaviour of SeSProC when features are gen-
erated using different distributions. We generated four different data sets, each with
100 instances and four balanced clusters. Each dataset contained six relevant features,
whereas four irrelevant features were injected to each data set. Each cluster had from
two to four relevant features and ω̂ = 0.02 for all data sets. The differences between
data sets were the distributions used to generate the data. Specifically, we consid-
ered Gaussian and uniform distributions. The proportion of labeled instances for this
experiment was fixed to 15 %. Details and results for each data set are shown in Table 1.

The main conclusion is that there were no significant differences in the results
regardless of the distribution used to generate both relevant and irrelevant features,
even when SeSProC is built to model all features following Gaussian distributions.
The results show that the similarities between the data sets regarding the number of
features and, mainly, the cluster overlap level, are more important for achieving similar
results than using different distributions to generate the data sets. The next experiment
covers this scenario, showing results for data sets with different overlap levels taking
into account different percentages of labeled instances.

123

Semi-supervised projected model-based clustering

Table 1 Details of the
distributions used to generate
relevant and irrelevant features
for the study of different data
distributions, together with
average (av) and standard
deviation (sd) ARI results

Data Relevant Irrelevant ARI

Gaussian Uniform Gaussian Uniform av ± sd

dist1
√ √

0.85±0.12

dist2
√ √

0.81±0.11

dist3
√ √

0.84±0.08

dist4
√ √

0.83±0.07

Table 2 Differences between data sets for the overlap level study

Data F p (%) ω̂

over1 12 25 0

over2 10 50 0.005

over3 10 50 0.01

over4 5 75 0.2

Differences are related to the number of features (F), the average percentage of relevant features for each
cluster (p), and the overlap level (ω̂)

4.2.3 Overlap level

The cluster overlap level is one of the most important features for determining how
hard it is to cluster a data set. We generated four data sets with similar numbers of
instances and features, but with different cluster overlap levels. The aim is to study
the performance of SeSProC when dealing with data sets that are increasingly harder
to cluster. All data sets were composed of 100 instances in four balanced clusters. The
differences between data sets are detailed in Table 2.

We use different percentages of labeled instances in order to check the evolution
of the performance of SeSProC. Figure 3 shows results depending on the used data
set and the percentage of labeled instances. As expected, the ARI value was generally
more accurate, the higher the percentage of labeled instances was. These results show
the importance of the cluster overlap level for obtaining accurate results. SeSProC
classification was near perfect in scenarios with over1 and over2, with average ARI
values ranging from 0.95 to 1 from 10 % of labeled instances. However, the results
were lower when the overlap level was increased with over3, and average ARI values
were from around 0.85 to 0.87 from 5 to 20 % of labeled instances. And, predictably,
with a higher overlap level with over4, the average ARI results only reached around
0.7 on average with 20 % of labeled instances.

4.2.4 Scalability

This experiment aims at checking the behaviour of SeSProC when data sets with
different numbers of instances and features are clustered. Six different synthetic data
sets were generated, combining 100, 500, and 1,000 instances, with 10 (four irrelevant)

123

L. Guerra et al.

0.5

0.6

0.7

0.8

0.9

1.0

5 10 15 20

% of labeled instances

A
R

I

over1
over2
over3
over4

Fig. 3 ARI values depending on the used data set and the percentage of labeled instances for the overlap
level study

0.4

0.6

0.8

1.0

5 10 15 20

% of labeled instances

A
R

I

10 features

0.4

0.6

0.8

1.0

5 10 15 20

% of labeled instances

A
R

I

25 features

100
500
1000

Fig. 4 ARI values depending on the number of features of each data set, percentage of labeled instances,
and number of instances

and 25 (seven irrelevant) features. The percentage of relevant features for each cluster
was from 30 to 40 %. Data were generated in four balanced clusters with ω̂ = 0.015.

Results are presented in Fig. 4 and show that the algorithm behaves well with data
sets with 500 and 1,000 instances. Regarding the data set with 100 instances, results
depended on the percentage of labeled instances. With the data set with 25 features and
only 5 % of labeled instances, the resulting ARI was around 0.55 on average. However,
this value rose considerably with a higher percentage of labeled instances, from 10 %
onwards, reaching an average of almost 0.8. There was no such rise with the data sets
with 500 and 1,000 instances, where the initial result with 5 % of labeled instances was
higher. Regarding the number of features, and although results were better for data sets
with 10 features than for data sets with 25 features when the number of instances was
100, these differences decreased for data sets with 500 and 1,000 instances. Therefore,
the results for these data sets demonstrated the scalability of SeSProC.

SeSProC is a computationally demanding algorithm. EM-based algorithms are
known to be computationally expensive (Watanabe and Yamaguchi 2003), and the
iterative process used to estimate the relevance of each feature and the final number of
clusters further increases this cost in this case. The computational cost for completing
one level of SeSProC is detailed in Fig. 5. The experiment was run on a multi-core

123

Semi-supervised projected model-based clustering

Fig. 5 Average computational
time per level of SeSProC
depending on the number of
instances and features

0

10

20

30

100 500 1000

Number of instances
S

ec
on

ds
 x

 1
0³

Features

10

25

machine with eight Intel(R) Xeon(R) CPU E5320 @1.86GHz and 12GB of RAM.
Values were calculated on average since a level with fewer components takes less time
to complete than a level with more components. The difference in computational cost
between a level with 10 features and another level with 25 features was very low with
100 instances. However, this difference was very noticeable with 1,000 instances.
According to these results, run time depends on the number of both instances and
features, and more specifically, on the combination of both.

4.3 Comparison with other algorithms

Mclust, HARP and SSPC are used for comparison purposes. Mclust and HARP are
unsupervised algorithms, although one of the input parameters required by HARP is
the number of final clusters. Therefore this value was fixed to the correct number of
clusters beforehand. We also fixed the correct number of clusters for SSPC, since this
algorithm will not work unless the input contains at least one labeled instance from
each final cluster. Mclust is freely available from the R-project, whereas the HARP
and SSPC source code was provided by the author. We compare these algorithms using
synthetic and real data sets.

4.3.1 Synthetic data

We generated a synthetic data set (hidden) with the following characteristics: 75
instances in three balanced clusters characterized by eight relevant and two irrele-
vant features, generated with Gaussian and uniform distributions, respectively. The
percentage of relevant features per cluster was 40 % and ω̂ = 0.02. The aim is to
compare the performance of SeSProC with three related algorithms and also to study
the behaviour of our proposal when there were different numbers of hidden clusters
in the algorithm input.

Figure 6 shows the results depending on the algorithm and the percentage of labeled
instances. Note that all clusters are represented by some labeled instances for SeSProC
and SSPC within this scenario. The ARI values for our proposal were higher than for

123

L. Guerra et al.

0. 4

0.6

0.8

5 10 15 20

% of labeled instances

A
R

I

HARP

Mclust

SeSProC

SSPC

Fig. 6 ARI values depending on the algorithm and the percentage of labeled instances for the comparison
study with a synthetic data set

Table 3 ARI results for
SeSProC depending on the
percentage of labeled instances
with different numbers of hidden
clusters in the algorithm input
(H)

% H = 0 H = 1 H = 2

5 0.82±0.03 0.77±0.11 0.74±0.14

10 0.82±0.02 0.81±0.02 0.77±0.09

15 0.83±0.00 0.82±0.02 0.81±0.04

20 0.87±0.02 0.84±0.03 0.83±0.03

the other algorithms, and differences between these values became even higher when
the percentage of labeled instances reached 20 %, where the value for SeSProC was
0.87±0.02. Values for SSPC were also higher values than for Mclust as of 10 % labeled
instances, both semi-supervised algorithms (SeSProC and SSPCC) demonstrating that
labeled instances correctly supported the clustering process. However, the results for
Mclust were very competitive results even though this is an unsupervised algorithm
that does not search for interesting subspaces. HARP was not able to correctly cluster
the data set, obtaining very low ARI values.

The next scenario was set up to assess the performance of SeSProC when clusters
are hidden in the algorithm input, i.e. when there are no labeled instances of some
clusters. The aim is to check whether SeSProC is able to properly find the hidden
clusters. Note that this scenario cannot be tested with many other related algorithms,
such as SSPC, since the correct number of clusters has to be fixed beforehand with
labeled instances from all final clusters.

Results are shown in Table 3. The number of clusters hidden in the input (H)
ranged from 0 to 2. The clustering results were very accurate when H = 0 as high
as 0.87±0.02 with 20 % of labeled instances. These results were previously shown
in Fig. 6 demonstrating the competitiveness of SeSProC in this scenario. Besides, the
standard deviation values were low (only 0.03 with 5 % of labeled instances), indicating

123

Semi-supervised projected model-based clustering

that the algorithm was robust when dealing with this kind of data. The average ARI
values were slightly lower with H = 1, whereas the standard deviations were higher,
especially with 5 % of labeled instances (0.77±0.11). However, when the percentage
of labeled instances reached 15 and 20 %, the differences between results with H = 0
and H = 1 became reduced. Finally, this tendency was repeated with H = 2. This
was a more difficult scenario for SeSProC, since the algorithm had to find two hidden
clusters, as the values for 5 % of labeled instances show (0.74±0.14). However, it
was again demonstrated that when the percentage of labeled instances grew, the ARI
values reached very competitive results (0.83±0.03 with 20 % of labeled instances),
and there were no significant differences regardless of the value of H .

4.3.2 Real data

Real data sets were collected from the UCI repository (Frank and Asuncion 2010) (see
Table 4). These data sets are commonly used for evaluating different pattern recog-
nition tasks. It is interesting to check the behaviour of the proposal with this kind
of data where classes are not balanced and subspaces are not their main character-
istics. Besides, we introduce some complexity into the data sets by adding five and
15 uniform-distributed features (between 0 and 1) for each data set, simulating some
noise for the experiment. In all, we compare results with 12 data sets: four original data
sets, four data sets with five noisy features, and four data sets with 15 noisy features.

Figure 7 shows the results for the glass data sets. SeSProC obtained the most
accurate results with the original data set regardless of the percentage of labeled
instances. Moreover, the behaviour of SeSProC was logical in two senses: firstly, the
higher the percentage of labeled instances, the higher the resulting ARI value was; and
secondly, the ARI value decreased when the number of injected noisy features grew.
Regarding the other algorithms, the results for Mclust were very competitive even
though the input data was fully unlabeled. This algorithm even obtained the highest
ARI values with the glass data set with 15 added features. Mclust did not behave
logically with respect to the injection of noisy features, since this algorithm obtained
better ARI values when the noisy features were added. This algorithm does not take
into account any feature subset selection process, and therefore this behaviour was
merely motivated by the characteristics of the injected features. Results for HARP
and SSPC were not competitive with these data sets. Besides, SSPC did not behave
logically with respect to the number of labeled instances, since this algorithm did not
always get better results with a higher percentage of labeled instances.

Table 4 Number of instances
(N), features (F), and classes
(K) of original real data sets
used in the experiments

Name N F K

glass 214 9 6

iris 150 4 3

shape 160 17 9

wine 178 13 3

123

L. Guerra et al.

HARP
Mclust
SeSProC
SSPC

0.00

0.05

0.10

0.15

0.20

0.25

% of labeled instances

A
R

I

Glass + 15 features

0.00

0.05

0.10

0.15

0.20

0.25

% of labeled instances

A
R

I

Glass + 5 features

0.00

0.05

0.10

0.15

0.20

0.25

5 10 15 205 10 15 205 10 15 20

% of labeled instances

A
R

I
Glass

Fig. 7 ARI values for glass data sets depending on the number of injected features, algorithm, and per-
centage of labeled instances

HARP
Mclust
SeSProC
SSPC

0.4

0.6

0.8

% of labeled instances

A
R

I

Iris + 15 features

0.4

0.6

0.8

% of labeled instances

A
R

I
Iris + 5 features

0.4

0.6

0.8

5 10 15 205 10 15 205 10 15 20
% of labeled instances

A
R

I

Iris

Fig. 8 ARI values for iris data sets depending on the number of injected features, algorithm, and percentage
of labeled instances

Figure 8 shows the results with the iris data sets. The results for these data sets varied
enormously depending on whether noisy features were injected. Using the scenario set
up with the original iris data set SeSProC yielded the highest ARI results and behaved
predictably regarding the percentage of labeled instances. SSPC achieved better results
than Mclust and HARP. Therefore, the labeled instances correctly supported the semi-
supervised algorithms to achieve these results. However, this scenario was totally
different when noisy features were added, mainly for the iris data set with five added
features. Mclust’s performance was the best in this comparison with the indicated data
set. The added features definitely helped this algorithm to achieve this result. SeSProC
was also competitive, whereas SSPC and HARP obtained lower ARI values. Finally,
SeSProC again achieved the best results with the iris data set with 15 added features,
and Mclust obtained better results than for the original iris data set, but worse than for
the previous scenario.

Figure 9 shows the results for the shape data sets. SSPC achieved better results than
the other algorithms for these data sets with 5 and 10 % of labeled instances. However,
the behaviour of SeSProC improved when the percentage of labeled instances grew
and it achieved the best results with 20 % of labeled instances. Note that the shape
data set contains nine real clusters and that they all have to be represented by some
labeled instances in the SSPC input. This is not a necessary condition for SeSProC,
and it is the reason for the significant improvement when the percentage of labeled
instances grew. Mclust again achieved competitive results, whereas HARP was yet
again the worse algorithm.

Figure 10 shows the results with the wine data sets. SeSProC achieved very accurate
results in all these scenarios, again obtaining the best results compared with the other
algorithms. However, there was no improvement in its behaviour with 15 and 20 % over
10% of labeled instances for the wine data set with 15 added features. Mclust’s behav-
iour was again illogical regarding the added features, since this algorithm improved

123

Semi-supervised projected model-based clustering

0.2

0.3

0.4

0.5

0.6

% of labeled instances

A
R

I
Shape

0.2

0.3

0.4

0.5

0.6

% of labeled instances

A
R

I

Shape + 5 features

0.2

0.3

0.4

0.5

0.6

5 10 15 20 5 10 15 20 5 10 15 20

% of labeled instances

A
R

I

Shape + 15 features

HARP
Mclust
SeSProC
SSPC

Fig. 9 ARI values for shape data sets depending on the number of injected features, algorithm, and
percentage of labeled instances

0.6

0.8

1.0

% of labeled instances

A
R

I

Wine + 5 features

0.6

0.8

1.0

155 10 20
% of labeled instances

A
R

I

Wine

0.6

0.8

1.0

5 10 15 20 5 10 15 20
% of labeled instances

A
R

I

Wine + 15 features

HARP
Mclust
SeSProC
SSPC

Fig. 10 ARI values for wine data sets depending on the number of injected features, algorithm, and
percentage of labeled instances

with the injections and even achieved competitive results for the wine data set with 15
added features.

In sum, SeSProC was competitive in all scenarios, and mostly achieved better
results than the other algorithms. At the other end of the scale, HARP obtained the
worst results in most scenarios, even when the correct number of clusters was fixed
beforehand. This is also a necessary condition for the execution of SSPC, and this
algorithm did not achieve competitive results with the glass and iris data sets either,
although it did yield better results with the shape and wine data sets. Finally, results
for Mclust were very competitive in most scenarios even though this approach is
completely unsupervised and does not take into account any feature subset selection
process. The odd thing about this algorithm was its illogical behaviour with many data
sets with added features.

5 Conclusion

We have proposed a semi-supervised method, called SeSProC, capable of discov-
ering unknown clusters, based on EM algorithm, and including a LFSS. This algo-
rithm includes available information in the search for subspaces and clusters. Besides,
SeSProC has two major advantages over related algorithms. The first one is that our
proposal has only one, easily adjustable input parameter. Whereas other algorithms
are unable to find a final solution without proper parameter tuning, SeSProC always
obtains a clustering solution regardless of the value of the input parameter. The second
advantage is related to the known labels. SeSProC is able to find hidden clusters that
are not represented by the labeled instances. It uses a novel greedy process to find
these clusters, assuming that instances that fit the known clusters worst are candidates
for initializing new clusters.

123

L. Guerra et al.

The performance of SeSProC has been assessed using synthetic and real data sets
under very different scenarios, such as data generated by different distributions, data
with different overlap levels, and different data sizes. SeSProC has also outperformed
related and baseline algorithms, demonstrating that available data labels are a useful
guide for the clustering process.

SeSProC is open to future work related to methodological improvements. The
iterative process for introducing new components could be improved. Currently, we
consider only one subspace as a new component candidate. We could generate more
than one subspace, selecting the best (one or more) to be introduced as new compo-
nents. This would also be very useful for improving the efficiency of SeSProC in terms
of computational cost, since SeSProC is a very demanding algorithm mainly due to
its iterative approach. Other changes related to computational cost could be made to
the code in order to directly improve efficiency. We also want to improve the search
for subspaces in very low dimensional spaces. It can be considered a very difficult
search, due to the vast search space when the number of features increases, and the
very few relevant features that must be identified. A better initialization regarding the
relevance of features can be considered by using, for instance, a statistical test that
helps to a priori identify the most relevant features. Other distributions could also
be used, for modeling either both relevant and irrelevant features sets or only one
of them. This may introduce more flexibility to the model, relaxing some assump-
tions. SeSProC could be also extended in this direction to discover arbitrarily oriented
subspaces.

Regarding the data labels, we have considered them to be fully reliable. Nev-
ertheless, some uncertainty could be introduced to the point that labeled instances
would have freedom either to change or maintain their labels. Another char-
acteristic to be introduced is the search for outliers. Some instances may not
fit any subspace, and an outlier detection method could improve the results of
SeSProC. Finally,

Acknowledgments This research is partially supported by the Spanish Ministry of Economy and Compet-
itiveness TIN2010-20900-C04-04 and TIN2010-21289-C02-02 projects, the Cajal Blue Brain project and
Consolider Ingenio 2010-CSD2007-00018. The authors thankfully acknowledge the computer resources,
technical expertise and assistance provided by the Centro de Supercomputación y Visualización de Madrid
(CeSViMa). The authors are also very grateful for the useful comments and suggestions proposed by the
anonymous reviewers, which have contributed definitely to the improvement of the manuscript.

Appendices

Appendix 1: Basic EM theory

The density function of an instance xi is

p(xi | Θ) =
K∑

m=1

πm p(xi | θm).

123

Semi-supervised projected model-based clustering

We can define a binary random variable zi = (zi1, . . . , zi K), with zim = 1 if instance
xi belongs to component m and with all other elements zim′ = 0, ∀ m′ �= m. Besides,
p(zim = 1) = πm . Therefore, we can write

p(zi) =
K∏

m=1

π zim
m . (10)

Also, p(xi | zim = 1) = p(xi | θm), which, extended, is

p(xi | zi ,Θ) =
K∏

m=1

p(xi | θm)zim . (11)

Using Eqs. (10) and (11), Eq. (1) is obtained by summing over all possible states of zi

p(xi | Θ) =
∑

zi

p(xi , zi | Θ) =
∑

zi

p(zi)p(xi | zi ,Θ)

=
∑

zi

(
K∏

m=1

π zim
m

K∏

m=1

p(xi | θm)zim

)

=
K∑

m=1

πm p(xi | θm).

This mixture of distributions has unknown parameters in Θ that must be esti-
mated. These parameters can be obtained using the maximum likelihood estimation
method. Therefore, assuming that each instance is independent and identically distrib-
uted (i.i.d.), and building the log-likelihood function (log L) from Eq. (1) and extending
it to all the instances, we obtain

log L(Θ | X) = log p(X |Θ)

= log
N∏

i=1

p(xi | Θ)

=
N∑

i=1

log

(
K∑

m=1

πm p(xi | θm)

)
.

This log-likelihood function is difficult to maximize because the summation over
the components is inside the logarithm function. The log-likelihood function would
change if both the latent variables (Z) and the observable data (X) were known. Then,
based on Eqs. (10) and (11), we can define the complete-data log-likelihood function
as

123

L. Guerra et al.

log L(Θ | X ,Z) = log p(X ,Z|Θ)

= log
N∏

i=1

K∏

m=1

π zim
m p(xi | θm)zim

=
N∑

i=1

K∑

m=1

zim (log πm + log p(xi | θm)) . (12)

The maximization of this complete-data log-likelihood function is straightforward
because the summation is outside the logarithm. Since the latent variables are unknown
we cannot use this function directly. However, we can obtain the expectation of this log-
likelihood function with respect to the posterior distribution of the latent variables.
This expectation is calculated in iteration t , having fixed the parameters from the
previous iteration t − 1, in the E-step of the EM algorithm. After this, the parameters
of the distributions are recalculated to maximize this expectation (M-step). These two
steps are repeated until a convergence criterion is reached. Hence, the expectation of
the complete-data log-likelihood function is given by

Q(Θ,Θ t−1) = EZ|X ,Θ t−1[log L(Θ | X ,Z)]
=

∑

Z
p(Z | X ,Θ t−1) log p(X ,Z | Θ), (13)

where the posterior distribution of the latent variables given the data and the parameters
of the previous iteration t − 1 using Eq. (12), is

p(Z | X ,Θ t−1) ∝
N∏

i=1

K∏

m=1

(πm p(xi | θm))zim . (14)

This factorizes over i so that the {zi } in this distribution are independent. Using this
posterior distribution and Bayes’ theorem, we can calculate the expected value of each
zim (responsibility) as

Ezim |xi ,θm [zim] = γ (zim)

=
∑

zim
zim(πm p(xi | θm))zim

∑
zim′ (πm′ p(xi | θm′))zim′

= πm p(xi | θm)
∑K

m′=1 πm′ p(xi | θm′)

= p(zim = 1 | xi , θm),

which we can use to calculate the expectation of the complete-data log-likelihood, as

EZ|X ,Θ t−1[log L(Θ | X ,Z)] =
N∑

i=1

K∑

m=1

γ (zim) (log πm + log p(xi | θm)) .

123

Semi-supervised projected model-based clustering

Appendix 2: Including subspaces

Defining, for each component and feature, ρmj = p(vmj = 1), the probability of
feature j being relevant to component m, the new density function, including the
search for subspaces, is

p(xi | Θ) =
K∑

m=1

πm

F∏

j=1

(
ρmj p(xi j | θmj) + (1 − ρmj)p(xi j | λmj)

)
. (15)

To prove this new density function, we can obtain for a component m and an instance
i ,

p(vm | zim = 1) =
F∏

j=1

(ρmj)
vmj (1 − ρmj)

1−vmj .

This can be extended for all components as

p(V | zi) =
K∏

m=1

⎛

⎝
F∏

j=1

(ρmj)
vmj (1 − ρmj)

1−vmj

⎞

⎠
zim

. (16)

Besides, we can extend Eq. (11) introducing V , as

p(xi | V, zi ,Θ) =
K∏

m=1

⎛

⎝
F∏

j=1

p(xi j | θmj)
vmj p(xi j | λmj)

1−vmj

⎞

⎠
zim

. (17)

The new density function, based on Eq. (1), and using Eqs. (10), (16), and (17), is,

p(xi | Θ) =
∑

zi

∑

V
p(xi ,V, zi | Θ)

=
∑

zi

∑

V
p(xi | V, zi ,Θ)p(V | zi)p(zi).

The summation over zi is solved as in Eq. (1), obtaining,

p(xi | Θ)=
∑

V

(K∑

m=1

πm

F∏

j=1

(
[ρmj p(xi j | θmj)]vmj ×[(1−ρmj)p(xi j | λmj)]1−vmj

))
.

123

L. Guerra et al.

And we can solve the summation over V , summing over all the possible states of each
vmj , as,

p(xi | Θ)=
K∑

m=1

πm

F∏

j=1

1∑

vmj =0

(
[ρmj p(xi j | θmj)]vmj ×[(1−ρmj)p(xi j | λmj)]1−vmj

)

=
K∑

m=1

πm

F∏

j=1

(
ρmj p(xi j | θmj) + (1 − ρmj)p(xi j | λmj)

)
.

Taking into account that each component can be described in a different feature sub-
space, this is the new density function of an instance, as shown in Eq. (15).

The new log-likelihood function that should be maximized, by extending Eq. (15)
to all the instances, is

log L(Θ | X) = log p(X |Θ) = log
N∏

i=1

p(xi | Θ)

=
N∑

i=1

(
log

K∑

m=1

πm

F∏

j=1

(
ρmj p(xi j | θmj) + (1 − ρmj)p(xi j | λmj)

))
.

This is again difficult to compute since the summation over the components is inside
the logarithm function. This equation would change if we knew the sets of latent
variables, Z and V . Again by extending Eqs. (10), (16), and (17) to all the data, we
can write

p(X ,Z,V | Θ) =
N∏

i=1

K∏

m=1

⎛

⎝
F∏

j=1

p(xi j | θmj)
vmj p(xi j | λmj)

1−vmj

⎞

⎠
zim

×
N∏

i=1

K∏

m=1

⎛

⎝
F∏

j=1

(ρmj)
vmj (1 − ρmj)

1−vmj

⎞

⎠
zim

×
N∏

i=1

K∏

m=1

π zim
m ,

which can be simplified to

p(X ,Z,V | Θ) =
N∏

i=1

K∏

m=1

(
π zim

m

F∏

j=1

([ρmj p(xi j | θmj)]vmj

× [(1 − ρmj)p(xi j | λmj)]1−vmj
)zim

)
. (18)

123

Semi-supervised projected model-based clustering

We can obtain the complete-data log-likelihood function by taking the logarithm of
the previous function as,

log L(Θ | X ,Z,V) = log p(X ,Z,V | Θ)

= log
N∏

i=1

K∏

m=1

(
π zim

m

F∏

j=1

([ρmj p(xi j | θmj)]vmj

× [(1 − ρmj)p(xi j | λmj)]1−vmj
)zim

)
,

and operating again,

log L(Θ | X ,Z,V)

=
N∑

i=1

K∑

m=1

(
zim log πm +

F∑

j=1

(
zim

[
vmj (log ρmj + log p(xi j | θmj))

+ (1 − vmj)(log(1 − ρmj) + log p(xi j | λmj))
]))

. (19)

Appendix 3: Expectation of the complete-data log-likelihood function

Similarly to Eq. (13), the expectation of the complete-data log-likelihood function can
be written as

EZ,V |X ,Θ t−1[log L(Θ | X ,Z,V)]=
∑

Z

∑

V
p(Z,V | X ,Θ t−1) log p(X ,Z,V | Θ).

As in Eq. (14), the posterior distribution of the latent variables given the data, having
fixed the parameters of the previous iteration t − 1, and using Eq. (18), can be written
as

p(Z,V | X ,Θ t−1) ∝
N∏

i=1

K∏

m=1

(
π zim

m

F∏

j=1

([ρmj p(xi j | θmj)]vmj

× [(1 − ρmj)p(xi j | λmj)]1−vmj
)zim

)
.

Before computing the expected values of each vmj and each zim , we need to define
some other necessary probabilities:

p(xi j , vmj = 1 | θmj) = ρmj p(xi j | θmj),

and, similarly

p(xi j , vmj = 0 | θmj) = (1 − ρmj)p(xi j | λmj).

123

L. Guerra et al.

Taking both expressions into account, we have

p(xi j | θmj) = p(xi j , vmj = 1 | θmj) + p(xi j , vmj = 0 | θmj)

= ρmj p(xi j | θmj) + (1 − ρmj)p(xi j | λmj).

Now, as detailed after Eq. (14), we can calculate the expected value of each vmj , as

Evmj ,|xi j ,θmj [vmj] = γ (vmj)

= ρmj p(xi j | θmj)

ρmj p(xi j | θmj) + (1 − ρmj)p(xi j | λmj)

= p(vmj = 1 | xi j , θmj).

Using this, we calculate the expected value of each zim

Ezim |vm ,xi ,θm [zim] = γ (zim)

= πm
∏F

j=1[ρmj p(xi j | θmj) + (1 − ρmj)p(xi j | λmj)]
∑K

m′=1 πm′
∏F

j=1[ρm′ j p(xi j | θm′ j) + (1 − ρm′ j)p(xi j | λm′ j)]
= p(zim = 1 | vm, xi , θm).

Thus the expectation of the complete-data log-likelihood, as in Eq. (3) and using Eq.
(19), is

EZ,V |X ,Θ t−1 [log L(Θ | X ,Z,V)]

=
N∑

i=1

K∑

m=1

γ (zim)

×
(

log πm +
F∑

j=1

(
γ (vmj)(log ρmj + log p(xi j | θmj))

+(1 − γ (vmj))(log(1 − ρmj) + log p(xi j | λmj))

))
.

Then, for simplicity’s sake, we define

γ (uimj) = γ (zim)γ (vmj),

γ (wim j) = γ (zim)(1 − γ (vmj)).

123

Semi-supervised projected model-based clustering

Now we can obtain the expectation of the complete-data log-likelihood as

EZ,V |X ,Θ t−1[log L(Θ | X ,Z,V)]

=
N∑

i=1

K∑

m=1

γ (zim) log πm

+
N∑

i=1

K∑

m=1

F∑

j=1

γ (uimj)(log ρmj + log p(xi j | θmj))

+
N∑

i=1

K∑

m=1

F∑

j=1

γ (wim j)(log(1 − ρmj) + log p(xi j | λmj)).

Appendix 4: M-step

The parameters are recalculated in the M-step to maximize the value of the expectation
of the complete-data log-likelihood function. As already mentioned, these updates are
obtained by computing the partial derivatives of this expectation and equaling to zero.
The univariate Gaussian distribution for each feature and component is used for this
explanation. Therefore θmj = (μθmj , σ 2

θmj
), and

log p(xi j | θmj) = log(σ−1
θmj

(2π)−
1
2) − 1

2
(xi j − μθmj)

2σ−2
θmj

.

All the detailed steps of how to update each parameter, follow.

– πm is updated3 using a Lagrange multiplier to enforce constraint
∑C+1

m=1 πm = 1:

∂

∂πm

(
L∑

i=1

C∑

m=1

zim log πm

+
N∑

i=L+1

C+1∑

m=1

γ (zim) log πm

+ λ

(
C+1∑

m=1

πm − 1

))
= 0, ∀m = 1, . . . , C + 1,

whose derivative is

L∑

i=1

zim
1

πm
+

N∑

i=L+1

γ (zim)
1

πm
+ λ = 0.

3 Note that the classification term only iterates theoretically until m = C , but we can assume that this
iteration finishes at m = C + 1 with zi,C+1 = 0, ∀i = 1, . . . , L .

123

L. Guerra et al.

Multiplying both sides by πm and summing over m, with m = 1, . . . , C + 1, we
have λ = −N , as

−λ =
L∑

i=1

C+1∑

m=1

zim +
N∑

i=L+1

C+1∑

m=1

γ (zim) = N ,

and then we update each πm by using

πm =
∑L

i=1 zim + ∑N
i=L+1 γ (zim)

N
.

– μθmj is updated solving the following partial derivative equation:

∂

∂μθmj

(L∑

i=1

C∑

m=1

F∑

j=1

γ (uimj) log p(xi j | θmj)

+
N∑

i=L+1

C+1∑

m=1

F∑

j=1

γ (uimj) log p(xi j | θmj)

)
= 0.

Then the result is

L∑

i=1

(
γ (uimj)σ

−2
θmj

xi j − γ (uimj)σ
−2
θmj

μθmj

)

+
N∑

i=L+1

(
γ (uimj)σ

−2
θmj

xi j − γ (uimj)σ
−2
θmj

μθmj

)
= 0,

and the value of the parameter can be found as

μθmj =
∑L

i=1 γ (uimj)xi j + ∑N
i=L+1 γ (uimj)xi j

∑L
i=1 γ (uimj) + ∑N

i=L+1 γ (uimj)

=
∑N

i=1 γ (uimj)xi j∑N
i=1 γ (uimj)

, ∀m = 1, . . . , C + 1; j = 1, . . . , F.

– And for σ 2
θmj

,

∂

∂σ 2
θmj

(L∑

i=1

C∑

m=1

F∑

j=1

γ (uimj) log p(xi j | θmj)

+
N∑

i=L+1

C+1∑

m=1

F∑

j=1

γ (uimj) log p(xi j | θmj)

)
= 0.

123

Semi-supervised projected model-based clustering

The derivative is

L∑

i=1

(
γ (uimj)(xi j − μmj)

2σ−4
θmj

− γ (uimj)σ
−2
θmj

)

+
N∑

i=L+1

(
γ (uimj)(xi j − μmj)

2σ−4
θmj

− γ (uimj)σ
−2
θmj

)
= 0,

and the parameter update is

σ 2
θmj

=
∑L

i=1 γ (uimj)(xi j − μθmj)
2 + ∑N

i=L+1 γ (uimj)(xi j − μθmj)
2

∑L
i=1 γ (uimj) + ∑N

i=L+1 γ (uimj)

=
∑N

i=1 γ (uimj)(xi j − μθmj)
2

∑N
i=1 γ (uimj)

, ∀m = 1, . . . , C + 1; j = 1, . . . , F.

The same development is valid for λmj = (μλmj , σ 2
λmj

) but using γ (wim j) instead
of γ (uimj) to indicate that feature j is irrelevant for component m.

– Then, we update μλmj as

μλmj =
∑N

i=1 γ (wim j)xi j∑N
i=1 γ (wim j)

, ∀m = 1, . . . , C + 1; j = 1, . . . , F.

– And for σ 2
λmj

σ 2
λmj

=
∑N

i=1 γ (wim j)(xi j − μλmj)
2

∑N
i=1 γ (wim j)

, ∀m = 1, . . . , C + 1; j = 1, . . . , F.

– Finally in M1, ρmj is updated by

∂

∂ρmj

(L∑

i=1

C∑

m=1

F∑

j=1

γ (uimj) log ρmj

+
N∑

i=L+1

C+1∑

m=1

F∑

j=1

γ (uimj) log ρmj

+
L∑

i=1

C∑

m=1

F∑

j=1

γ (wim j) log(1 − ρmj)

+
N∑

i=L+1

C+1∑

m=1

F∑

j=1

γ (wim j) log(1 − ρmj)

)
= 0,

123

L. Guerra et al.

whose partial derivative solution is,

N∑

i=1

γ (uimj)
1

ρmj
−

N∑

i=1

γ (wim j)
1

1 − ρmj
= 0.

This parameter is updated by

ρmj =
∑N

i=1 γ (uimj)∑L
i=1 zim + ∑N

i=L+1 γ (zim)
, ∀m = 1, . . . , C + 1; j = 1, . . . , F.

Note that zi,C+1 = 0 for i = 1, . . . , L for the three sets of parameters, θmj , λmj

and ρmj .

References

Aggarwal C, Yu P (2000) Finding generalized projected clusters in high dimensional spaces. SIGMOD Rec
29(2):70–81

Aggarwal C, Han J, Wang J, Yu P (2004) A framework for projected clustering of high dimensional data
streams. In: Proceedings of 30th international conference on very large data bases, pp 852–863

Aggarwal C, Procopiuc C, Wolf J, Yu P, Park J (1999) Fast algorithms for projected clustering. SIGMOD
Rec 28(2):61–72

Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Automatic subspace clustering of high dimensional
data for data mining applications. SIGMOD Rec 27:94–105

Ahmed M, Khan L (2009) SISC: a text classification approach using semi supervised subspace clustering.
In: IEEE international conference on data mining workshops, pp 1–6

Alexandridis R, Lin S, Irwin M (2004) Class discovery and classification of tumor samples using mixture
modeling of gene expression data, a unified approach. Bioinformatics 20(16):2545–2552

Basu S, Banjeree A, Mooney E, Banerjee A, Mooney R (2004) Active semi-supervision for pairwise
constrained clustering. In: Proceedings of the SIAM international conference on data mining, pp 333–
344

Basu S, Davidson I, Wagstaff K (eds) (2009) Constrained clustering: advances in algorithms, theory and
applications. Chapman and Hall/CRC, Boca Raton

Bishop C (2007) Pattern recognition and machine learning. Springer, New York
Boutemedjet S, Ziou D, Bouguila N (2010) Model based subspace clustering of non-Gaussian data. Neu-

rocomputing 73(10–12):1730–1739
Chandel A, Tiwari A, Chaudhari N (2009) Constructive semi-supervised classification algorithm and its

implement in data mining. In: Proceedings of the 3rd international conference on pattern recognition
and machine intelligence. Springer, Berlin, pp 62–67

Chapelle O, Schölkopf B, Zien A (eds) (2006) Semi-supervised learning. MIT Press, Cambridge
Chawla N, Karakoulas G (2005) Learning from labeled and unlabeled data: an empirical study across

techniques and domains. J Artif Intell Res 23:331–366
Chen L, Jiang Q, Wang S (2012) Model-based method for projective clustering. IEEE Trans Knowl Data

Eng 24(7):1291–1305
Cheng C, Fu A, Zhang Y (1999) Entropy-based subspace clustering for mining numerical data. In: Pro-

ceedings of the 5th ACM SIGKDD international conference on knowledge discovery and data mining.
ACM, New York, pp 84–93

Cheng H, Hua K, Vu K (2008) Constrained locally weighted clustering. In: Proceedings of the 34th inter-
national conference on very large data bases, vol 1, Auckland, pp 90–101

Cordeiro R, Traina A, Faloutsos C, Traina C (2010) Finding clusters in subspaces of very large, multi-
dimensional datasets. In: International conference on data engineering, Long Beach, pp 625–636

Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J
R Stat Soc 39(1):1–38

123

Semi-supervised projected model-based clustering

Fraley C, Raftery A (1998) How many clusters? Which clustering method? Answers via model-based cluster
analysis. Comput J 41(8):578–588

Fraley C, Raftery A (2012) MCLUST version 4 for R: normal mixture modeling for model-based clustering,
classication and density estimation. Technical report no. 597, Department of Statistics, University of
Washington, Seatlle

Frank A, Asuncion A (2010) UCI machine learning repository. http://archive.ics.uci.edu/ml
Friedman J, Meulman J (2004) Clustering objects on subsets of attributes. J R Stat Soc 66:815–849
Fromont E, Prado A, Robardet C (2009) Constraint-based subspace clustering. In: Proceedings of the 9th

SIAM international conference on data mining, pp 26–37
Goil S, Nagesh H, Choudhary A (1999) MAFIA: efficient and scalable subspace clustering for very large

data sets. In: International conference on data engineering
Graham M, Miller D (2006) Unsupervised learning of parsimonious mixtures on large spaces with integrated

feature and component selection. IEEE Trans Signal Process 54(4):1289–1303
Günnemann S, Färber I, Müller E, Seidl T (2010) ASCLU: alternative subspace clustering. In: Multi-

clust: first international workshop on discovering, summarizing and using multiple clustering, held in
conjunction with KDD 2010

Günnemann S, Färber I, Virochsiri K, Seidl T (2012) Subspace correlation clustering: finding locally
correlated dimensions in subspace projections of the data. In: Proceedings of the 18th ACM SIGKDD
international conference on knowledge discovery and data mining, pp 352–360

Hoff P (2005) Subset clustering of binary sequences, with an application to genomic abnormality data.
Biometrics 61(4):1027–1036

Hoff P (2006) Model based subspace clustering. Bayesian. Analysis 1(2):321–344
Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193–218
Kriegel H, Kröger P, Zimek A (2009) Clustering high-dimensional data: a survey on subspace clustering,

pattern-based clustering and correlation clustering. ACM Trans Knowl Disc Data 3(1):1–58
Kriegel H, Kröger P, Ntoutsi I, Zimek A (2011) Density based subspace clustering over dynamic data. In:

Proceedings of the 23rd international conference on scientific and statistical database management, pp
387–404

Kriegel H, Kröger P, Zimek A (2012) Subspace clustering. Wiley Interdiscip. Rev 2(4):351–364
Lange T, Law M, Jain A, Buhmann J (2005) Learning with constrained and unlabelled data. In: Proceedings

of the IEEE computer society conference on computer vision and pattern recognition, pp 731–738
Law M, Figueiredo M, Jain A (2004) Simultaneous feature selection and clustering using mixture models.

IEEE Trans Pattern Anal Mach Intell 26(9):1154–1166
Li Y, Dong M, Hua J (2007) A Gaussian mixture model to detect clusters embedded in feature subspace. J

Commun Inf Syst 7(4):337–352
Li Y, Dong M, Hua J (2009) Simultaneous localized feature selection and model detection for Gaussian

mixtures. IEEE Trans Pattern Anal Mach Intell 31(5):953–960
Lu Z, Leen T (2005) Semi-supervised learning with penalized probabilistic clustering. Adv Neural Inf

Process Syst 17:849–856
Maitra R, Melnykov V (2010) Simulating data to study performance of finite mixture modeling and clus-

tering algorithms. J Computd Graph Stat 19(2):354–376
Markley S, Miller D (2010) Joint parsimonious modeling and model order selection for multivariate

Gaussian mixtures. IEEE J Sel Top Signal Process 4(3):548–559
McLachlan G, Basford K (1988) Mixture models: inference and applications to clustering. Marcel Dekker,

New York
McLachlan G, Peel D (2000) Finite mixture models. Wiley-Interscience, New York
Melnykov V, Maitra R (2010) Finite mixture models and model-based clustering. Stat Surv 4:80–116
Melnykov V, Chen W, Maitra R (2012) MixSim: an R package for simulating data to study performance of

clustering algorithms. J Stat Softw 51(12):1–25
Miller D, Browning J (2003) A mixture model and EM-based algorithm for class discovery, robust classifi-

cation, and outlier rejection in mixed labeled/unlabeled data sets. IEEE Trans Pattern Anal Mach Intell
25(11):1468–1483

Miller D, Chu-Fang L, Kesidis G, Collins C (2009) Semisupervised mixture modeling with fine-grained
component-conditional class labeling and transductive inference. In: IEEE international workshop on
machine learning for signal processing, pp 1–6

Moise G, Sander J, Ester M (2008) Robust projected clustering. Knowl Inf Syst 14(3):273–298

123

http://archive.ics.uci.edu/ml

L. Guerra et al.

Müller E, Assent I, Seidl T (2009) HSM: heterogeneous subspace mining in high dimensional. In: Proceed-
ings of the 21st international conference on scientific and statistical database management, pp 497–516

Parsons L, Haque E, Liu H (2004) Subspace clustering for high dimensional data: a review. ACM SIGKDD
Explor Newsl 6(1):90–105

Procopiuc C, Jones M, Agarwal P, Murali T (2002) A Monte Carlo algorithm for fast projective clustering.
In: Proceedings of the ACM international conference on management of data, pp 418–427

R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statisical
Computing, Vienna

Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464
Shental N, Bar-Hillel A, Hertz T, Weinshall D (2003) Computing Gaussian mixture models with EM using

equivalence constraints. Adv Neural Inf Process Syst 16:1–8
Sim K, Gopalkrishnan V, Zimek A, Cong G (2012) A survey on enhanced subspace clustering. Data Min

Knowl Discov. doi:10.1007/s10618-012-0258-x
Wang F, Zhang C, Shen H, Wang J (2006) Semi-supervised classification using linear neighborhood prop-

agation. In: IEEE Computer Society Conference on Computer Vision and. Pattern Recognition, vol
1:160–167

Watanabe M, Yamaguchi K (2003) The EM algorithm and related statistical models. CRC Press, Boca
Raton

Witten I, Frank E, Hall M (2011) Data mining: practical machine learning tools and techniques, 3rd edn.
Morgan Kaufmann, Burlington

Woo K, Lee J, Kim M, Lee Y (2004) FINDIT: a fast and intelligent subspace clustering algorithm using
dimension voting. Inf Softw Technol 46(4):255–271

Yip K, Cheung D, Ng M (2004) HARP: a practical projected clustering algorithm. IEEE Trans Knowl Data
Eng 16:1387–1397

Yip K, Cheung D, Ng M (2005) On discovery of extremely low-dimensional clusters using semi-supervised
projected clustering. In: International conference on data engineering, pp 329–340

Zhang X, Wu Y, Qiu Y (2010) Constraint based dimension correlation and distance divergence for clustering
high-dimensional data. In: IEEE 10th International conference on data mining, pp 629–638

Zhang X, Qiu Y, Wu Y (2011) Exploiting constraint inconsistence for dimension selection in subspace
clustering: a semi-supervised approach. Neurocomputing 74(17):3598–3608

Zhu X (2005) Semi-supervised learning literature survey. Tech. rep., Computer Sciences, University of
Wisconsin-Madison

Zhu X, Goldberg A (2009) Introduction to semi-supervised learning. Morgan & Claypool Publishers, New
York

123

http://dx.doi.org/10.1007/s10618-012-0258-x

	Semi-supervised projected model-based clustering
	Abstract
	1 Introduction
	2 Related work
	2.1 Semi-supervised learning
	2.2 Clustering in subspaces
	2.3 Semi-supervised and subspaces

	3 Proposed algorithm: SeSProC
	3.1 Notation
	3.2 Basic theory
	3.3 Introduction to SeSProC
	3.4 Adding subspaces to EM
	3.5 Adding instance label information
	3.6 Selecting the final number of clusters
	3.7 E-step
	3.8 M-step

	4 Experimental results
	4.1 Experiments and evaluation
	4.2 Synthetic scenarios
	4.2.1 Candidates threshold
	4.2.2 Different data distributions
	4.2.3 Overlap level
	4.2.4 Scalability

	4.3 Comparison with other algorithms
	4.3.1 Synthetic data
	4.3.2 Real data

	5 Conclusion
	Acknowledgments
	Appendices
	Appendix 1: Basic EM theory
	Appendix 2: Including subspaces
	Appendix 3: Expectation of the complete-data log-likelihood function
	Appendix 4: M-step

	References

