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Estimation of distribution algorithms (EDAs) are a type of evolutionary algorithms where a probabilistic model
is learned and sampled in each iteration. EDAspy provides different state-of-the-art implementations of EDAs
including the recent semiparametric EDA. The implementations are modularly built, allowing for easy extension
and the selection of different alternatives, as well as interoperability with new components. EDAspy is totally
free and open-source under the MIT license.

1. Introduction

Estimation of distribution algorithms (EDAs) [1] are a type of evo-
lutionary algorithms [2] in which traditional mutation and crossover
operators are replaced by a probabilistic model that is iteratively
learned and sampled during the optimization process. EDAs have been
successfully applied to a wide range of tasks [3-6]. See [7] for a review
on EDAs applied to solve machine learning tasks. In recent meetings
within the field of EDAs [8] a need for establishing an EDA reference
library has been identified. EDAspy is proposed to satisfy this need for
the scientific community working on this topic.

In this paper we present a python package in which several EDA
implementations are efficiently designed. The different optimizers are
easily called and can be tuned in a user friendly mode. Each EDA vari-
ant is built using different available modules, which can be customly
selected to build a new implementation. These variants can be easily
extended and interoperate with new components.

2. Background

Algorithm 1 shows the pseudocode of the EDA baseline. Firstly,
random population (G,) with size N is sampled (line 1). Secondly,
population G,_, is evaluated (line 3) and ranked (line 4) according to a
given cost function g(-). Thirdly, a probabilistic model is learned from
a fraction a of the best individuals, i.e., the top |aN | solutions (line
5). Finally, a new population is sampled (line 6). These four steps are
iterately repeated until the stopping criterion is met.

Depending on the complexity of the probabilistic model and the na-
ture of the optimization problem, different EDA variants are identified
in the literature.
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Algorithm 1 Estimation of distribution algorithm

Input: Population size N, selection ratio a, cost function g
Output: Best individual x” and cost found g(x’)

1: Gy < N individuals randomly sampled

2: for t = 1,2, ... until stopping criterion is met do

Evaluate G,_; according to g(-)

4 G¥, < Select top |aN] individuals from G,_,

5:  f;_1() « Learn a probabilistic model from Grs_ |

6: G, < Sample N individuals from f,_,(-)

7: end for

W

Univariate approaches assume independence among the variables,
and a probability distribution is fitted independently to each of them.
EDAspy uses independent Gaussian distributions, kernel density esti-
mation (KDE) or categorical probability distributions, depending on the
EDA variant and the nature of the data.

Multivariate approaches contemplate dependencies between the
variables using different probabilistic models. EDAspy uses multi-
variate Gaussians or different types of Bayesian networks (BNs) [9],
corresponding to different EDA versions.

3. Software framework

Fig. 1 represents the high order representation of the previously
mentioned modules in EDAspy. In general, an EDA implementation
is applied to a cost function to be minimized, and some results are
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Fig. 1. High order organization of the EDAspy library.

found. There are several EDA implementations available in the li-
brary organized in univariate and multivariate modules, but it is also
possible to build a customizable implementation by integrating the
already available components with other modules (optionally) in the
EDA object. Regarding the cost function, there are several benchmarks
implemented. In addition, a custom cost function can be used. Once the
optimizer has converged, several information and plots can be extracted
from the execution.

Moreover, although the library has been built modular in order
to allow the integration with new custom implementations, the EDA
optimizer can be easily extended and built from scratch by the user
without using Custom EDA module facilities.

EDAspy is organized in different modules:

» Benchmarks. Different test functions for benchmarking and com-
paring the different optimizers are included. Toy discrete func-
tions such as OneMax [10] and benchmark suites such as IEEE
CEC 2014 [11] are included.

Univariate. The following univariate approaches in which no de-
pendencies between variables are considered: univariate marginal
distribution algorithm (UMDA) for (i) binary [12] (UMDAp),
(ii) categorical (UMDA ), and (iii) continuous optimization [13]
(UMDA(); (iv) kernel EDA [14] (u_KEDA); and (v) population-
based incremental learning algorithm [15] (PBIL).

Multivariate. The following multivariate approaches in which
dependencies between variables are considered: (i) estimation
of Bayesian network algorithm [1] (EBNA), (ii) estimation of
multivariate normal algorithm [1] (EMNA), (iii) estimation of
Gaussian network algorithm [16] (EGNA), (iv) semiparametric
EDA [17] (SPEDA), and (v) multivariate kernel density EDA [17]
(m_KEDA), (vi) Bayesian optimization algorithm (BOA) [18] in
which a discrete BN, a multivariate Gaussian distribution, a Gaus-
sian BN, a semiparametric BN, a kernel density estimated BN, and
a discrete BN are iteratively learned, respectively.

Custom: this module includes the different components to build
a custom EDA variant and is divided into probabilistic and initial-
ization models.

- Probabilistic model. The following components are im-
plemented for learning and sampling. Regarding univariate
probabilistic models, (i) binary, (ii) discrete, (iii) Gaussian,
and (iv) KDE models are considered. Regarding Bayesian
networks, (v) Gaussian, (vi) semiparametric, (vii) KDE, and

(viii) discrete models are available. Other models include
(ix) multivariate Gaussian.

- Initialization model. Uniform sampling meeting landscape
user defined bounds, Latin hypercube sampling [19] and
initialization from a given dataset are available to build the
first population of the EDA.

— Self-implemented modules. This includes modules imple-
mented by users that can be integrated into the library.

+ Plotting tools. The tools for graphically representing the proba-
bilistic model embedded by the EDA are included in this module.
Fig. 2 shows an example of two different probabilistic mod-
els. Panel (a) represents a Gaussian BN, in which dependencies
between variables are considered, while panel (b) represent a
univariate model, in which no dependencies are considered.

Regarding the multivariate EDA implementations, some of the prob-
abilistic models are interfaced to PyBNesian library [20], which
uses C++ to speed up the back-end computations. All the algebraic
computations in EDAspy are computed using numpy library [21],
employing C to speed up the back-end computations. Moreover, the
parallelization of the optimizer is available by using multiprocess-
ing library [22,23], and can be optionally activated in all the EDA
implementations.

4. Related work

Although there are several libraries in which different evolutionary
algorithms are available, to the best of our knowledge we have not
found comparable published libraries with different EDA implementa-
tions in python. However, here we list some libraries in which some
EDA implementations are available.

+ mateda [24] is a matlab library which allows building mul-
tivariate EDAs based on undirected probabilistic models and
Bayesian networks. The purpose of the library is different from
EDAspy. It offers a framework to build a multivariate EDA
algorithm by modules, in which different components can be in-
tegrated. mateda implements categorical and Gaussian Bayesian
networks, multivariate Gaussian distributions, Markov networks
and mixtures of Gaussian distributions as probabilistic models.
However, semiparametric and KDE Bayesian networks are missed,
and the implementations for univariate approaches are omitted.
Moreover, the last released version of mateda was in 2020.
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Fig. 2. Probabilistic models graphical representations.

Table 1
Summary of functionalities implemented in each library. Note that X* denotes that the
implementation is expected to be released in the near future.

EDAspy
python

mateda inspyred LEAP

Language matlab

UMDA.
UMDA ,,
UMDA,,
u_KEDA
PBIL

BOA
EMNA
EGNA
SPEDA
m_KEDA
EBNA

python
X

python

X

X*

R o R Tl I

Custom

» inspyred [25] is a python library which implements general
evolutionary algorithms such as genetic algorithms, evolution-
ary strategies, differential evolution and multi-objective genetic
algorithms, among others. UMDA. is the only EDA implemented.
LEAP [26] is a python library built for evolutionary compu-
tation and incorporates useful visualization modules. Regard-
ing EDAs, the population-based incremental learning algorithm
(PBIL) [15] and Bayesian optimization algorithm (BOA) [18] are
expected to be available in future releases.

Table 1 summarizes the main differences between the listed li-
braries. Regarding univariate approaches, inspyred implements
UMDA. and LEAP plans to integrate PBIL approaches in the near
future, compared to the five implemented variants in EDAspy. Re-
garding multivariate approaches, LEAP will incorporate BOA approach,
which is also implemented in EDAspy. The most competitive library is
mateda, which overlaps with some of the implemented multivariate
approaches. It also allows for building a custom EDA version with some
additional probabilistic models. However, mateda is implemented in
matlab and seems to be no longer updated.

5. Performance analysis

In this section we compare the performance of different continuous
domain optimizers implemented in EDAspy. For the evaluation three
different cost functions (to be minimized) have been selected from the
benchmark suite in EDAspy: CEC14_3, CEC14 4 and CEC14_8, where
the former is unimodal and the rest are multimodal functions.

Section 4 reviewed some existing software for EDAs in different
programming languages. In this section we also compare the result
found by the UMDA approach implemented in inspyred. Although

mateda and LEAP were also reviewed, the former is implemented in a
different programming language, and thus it is not fair to be compared
in terms of CPU time, and the latter does not currently include any of
the implemented approaches.

All the optimizers have been configured equally in order to perform
a fair comparison. Hyper-parameters and a more extended tutorial can
be found in the original documentation.!

Since a statistical study is out of the scope of the paper (see [17]
for a more complete analysis), we show a runtime and final solu-
tions analysis of the different variants for continuous optimization in
EDAspy.

Fig. 3 shows the mean best cost found after 5 independent exe-
cutions. It is generally observed how in the three functions the best
approaches are SPEDA, m_KEDA and EGNA, which find the minimal
costs in the benchmarks. Previous analyses have shown that m_KEDA,
SPEDA and EGNA approaches are able to achieve statistically signifi-
cant improvements in terms of quality of solutions [17]. In the case
of the UMDA, implementation from inspyred library, a slightly
worse result is found in all the three benchmarks compared to the
implementation provided in EDAspy.

Fig. 4 shows the mean CPU times of all the tested algorithms
after 5 independent executions. Note that all the tested approaches
have been configured in the same environment, that is, the number
of function evaluations and hardware. It is observed that generally
the higher the complexity of the probabilistic model embedded, the
longer the CPU time required. However, PBIL is one of the slowest
approaches in the comparison for CEC14_3. In this case, the multi-
variate version of KEDA is the most expensive algorithm in terms of
CPU time, followed by SPEDA and EGNA. In the case of the UMDA,
implementation from inspyred library, our implementation seems
to be more efficient implemented in terms of CPU time consumption,
keeping a good performance in terms of results found (Fig. 3).

6. Illustrative examples

The following examples are available in the original documenta-
tion', where different EDAs are applied to different tasks:

+ Using UMDA. for continuous optimization. UMDA_. is tested on
a IEEE CEC 2014 benchmark.

+ Using SPEDA for continuous optimization. SPEDA is tested on a
provided benchmark and several convergence plots are shown.

» Using EGNA for continuous optimization. SPEDA is tested on a
provided benchmark and the plotting tools module is used to
graphically show the probabilistic model embedded into the EDA
approach.

1 https://github.com/VicentePerezSoloviev/EDAspy/blob/master/
notebooks/CPU%20time%20analysis.ipynb.
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Fig. 3. Best cost found analysis of some EDA variants for continuous optimization. UMDA., EMNA, EGNA, SPEDA, univariate KEDA (u_KEDA), multivariate KEDA (m_KEDA) and

PBIL are shown.
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Fig. 4. CPU runtime analysis of some EDA variants for continuous optimization. UMDA., EMNA, EGNA, SPEDA, univariate KEDA (u_KEDA), multivariate KEDA (m_KEDA) and

PBIL are shown.

Table A.2
Software metadata.
N Software metadata description Software metadata information
S1 Current software version 1.1.4
S2 Permanent link to executables of this version https://github.com/VicentePerezSoloviev/EDAspy/releases/tag/1.1.3
S3 Legal software license MIT License
S4 Computing platform/Operating system Linux, OS X, Windows
S5 Installation requirements & dependencies python 3.8-3.11, pybnesian, numpy, pandas, scikit learn, scipy, pgmpy pyarrow, multiprocessing
S6 Link to user manual https://edaspy.readthedocs.io/en/latest/
S7 Support email for questions vicente.perez.soloviev@gmail.com

Using EMNA for continuous optimization. EMNA is tested on a
IEEE CEC 2014 benchmark.

Using UMDA,, for feature selection in a toy example. Given a
dataset and a forecasting model, UMDA, is used to select the best
subset of variables that optimizes the accuracy of the prediction.
Categorical optimization using EBNA and UMDA,. A categorical
cost function is designed and optimized by EBNA and UMDA,,
approaches.

Building my own EDA implementation. A tutorial on how to
customize an EDA implementation is provided.

CPU time analysis. All the continuous domain EDA variants are
tested against the same IEEE CEC 2014 benchmark.

7. Conclusions

In this paper we present the first python library entirely dedicated
to EDA implementations. EDAspy has been shown to be easy to use,
and to integrate with custom implementations. Therefore, we hope that
EDAspy can speed up the development of research on EDAs and their
applications.

In addition to maintaining the code and solving bugs found by
EDAspy users, future work would include adding more visualization
tools for the optimization process and the implementation of other EDA
variants.
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A.1. Current executable software version

See Table A.2.
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N Software metadata description Software metadata information

Cl Current code version 1.1.4

Cc2 Permanent link to code/repository used https://github.com/VicentePerezSoloviev/EDAspy
of this code version

Cc3 Legal software license MIT License

Cc4 Code versioning system used git

Cc5 Software code languages, tools, and python 3.8-3.11
services used

Cc6 Compilation requirements, operating Compatible python pybnesian, numpy, pandas,

environments & dependencies

Cc7 Link to developer documentation/manual
c8 Support email for questions

scikit_learn, scipy, pgmpy, pyarrow,
multiprocessing
https://edaspy.readthedocs.io/en/latest/
vicente.perez.soloviev@gmail.com

Current code version

See Table A.3.
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