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We thank all the discussants for their insightful remarks on our paper that broaden the
possibilities of the new class of models we propose. Next we comment on the issues
raised by them.

Marco Scutari suggests to add colors to the arcs that help define a single mea-
sure for the structural distance between two HSPBNs. Adding colors can give more
expressiveness to the graph, although we think that shades and shapes that we use for
the nodes (see Figure 1 in the paper) already capture the nature (discrete/continuous)
and the conditional distribution type (Gaussian/KDE). Combining both, structural and
type, Hamming distances into one measure may be interesting to simplify the perfor-
mance output. However, by maintaining separate measures (as we also do with the
likelihood, see Table 1), we can convey the specificities of each measure (goodness of
fit, differential arcs, different conditional distribution types, etc.).

As Scutari points out, we agree on the need for updating the definition of equivalence
classes for HSPBNs. This would be useful for building completed partially directed
graphs, which is the output of constraint-based learning algorithms. Implementing
those algorithms for HSPBNSs is challenging, also raised by Scutari, because suitable
conditional independence tests must be sought. They could be conditional mutual
information-based tests for any possible combination of triplets of variables, including
discrete, Gaussian or KDE. To the best of our knowledge, the state of the art only
considers simpler scenarios. First, in semiparametric Bayesian networks (Atienza et al.
2022a), without discrete variables, we used nonparametric conditional independence
tests, in particular, a permutation test based on the estimation of the mutual information
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with K-nearest neighbors (CMIknn test) and a fast randomized conditional correlation
test, version of the well-known kernel conditional independence test. Second, mutual
information of discrete and continuous random variables, without any conditioning
set, is computed with different methods, namely the nearest neighbor estimator, the
kernel estimator and the orthogonal projection estimator (Beknazaryan et al. 2019).

Marco Scutari and Antonio Salmerén deal with the HSPBN constraint that con-
tinuous nodes cannot be parents of discrete nodes (also found in conditional linear
Gaussian Bayesian networks) as a limitation of those models as causal models, since
some arc directions are fixed and might not be in accordance with the cause—effect
relationship. The solution of using a logistic regression or softmax functions to define
the conditional model, mentioned by Salmerén, seems appropriate. Unfortunately,
causal models are beyond the scope of our paper and requires further attention.

The complexity of learning HSPBNs may be an important issue, both in high-
dimensional settings and/or in large sample problems, including streaming data. This
concern has been raised by Salmerén. Eldest streaming data may be progressively
deleted as new data arrive, as commonly done with sliding windows strategies. This
involves discarding the corresponding terms in the summation of the KDE and adding
the new terms of the incoming data, in an incremental and more local fashion. For
static scenarios, our paper uses the PyBNesian library (Atienza et al. 2022b) for
the experiments. This is an open-source Python package that implements KDEs with
OpenCL to enable GPU acceleration and hence significant execution speeding up.
Moreover, others authors have adapted KDEs to the streaming scenario (Kristan et al.
2011). As regards high dimensionality, the experiments in the paper can cope with
tens of nodes and tens of thousands of instances.

Comparing HSPBNs against hybrid Bayesian networks with approximations of
conditional probability densities based on mixtures of truncated basis functions
(MoTBFs) (Langseth et al. 2012) (or mixtures of truncated exponentials and mix-
tures of polynomials, as particular cases) is interesting for future research, as Antonio
Salmerén and Serafin Moral mention. Our previous results of inefficient evaluation
time of KDEs when compared with mixtures of polynomials were restricted to super-
vised classification problems, and more specifically, to simple Bayesian classifiers as
naive Bayes and tree augmented naive Bayes where conditional densities of predictor
variables have at most two parents. We think this cannot be extrapolated to the more
general HSPBNs, without any target class variable or restrictions on the number of
parents. However, MoTBFs are closed under multiplication, addition and integration
and this is an advantage over HSPBNs for probabilistic inference, that we circumvent
with a sampling procedure from the KDEs. As highlighted by Moral, better sampling
procedures when evidence (observed variables) is available would include likelihood
weighting and Markov chain Monte Carlo methods.

Direct estimation of the joint conditional density, suggested by Moral, rather than
using a quotient of the full joint density and the joint density of the conditioning
variables (Equation (9)), as evidenced also in the expression we obtain for sampling
(Equation (21)), is really appealing. The double kernel estimator, also known as the
Nadaraya—Watson conditional density estimator, was accelerated in Holmes et al.
(2007) to deal with conditional densities over multivariate variables, which was con-
fined to bivariate variables so far, being an option in our context. Also, the density
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ratio estimation (Sugiyama et al. 2012) seems an interesting alternative to explore in
the future.

Our design of model selection via cross-validation with an extra validation set has
been motivated to achieve a tradeoff between computational cost and overfitting avoid-
ance. Moral comments on alternative schemes include repeated k-fold cross-validation
or leaving one out in the training data set. In addition, other honest methods, as boot-
strap, bolstered or jackknife estimations can be used for the training set, depending
on its size and the statistical properties (mainly bias and variance) intended to be held
by the score estimator. Furthermore, the partition training/validation might be also
repeated, improving the stability of the learning process.

Stefan Sperlich comments on having a generalized LG, allowing interactions of
continuous parents in the mean of the Gaussian distribution, to relax CLGs but being
less flexible than KDEs (a compromise between these two extremes). This raises many
problematic issues: how the graph would encode those interactions via the g ; functions
is not clear, how to design a structure learning algorithm (apart from the parameter
learning methods, for B’s and g; parameters), how to determine s and g’s and how to
develop (exact or approximate) inference approaches for these new CgLG densities.
Furthermore, we still assume Gaussianity, whose violation in the data has been the
motivation of our HSPBN models.

We were not aware of the smooth handling of discrete variables suggested by
Sperlich, which requires further inspection in the future. Getting rid of conditioning
on each value of the discrete variables is certainly interesting especially when each
resulting subsample is not sufficiently large, although Bayesian estimation is typically
used to correct for small observed samples. Anyway treating discrete variables as
continuous hinders model interpretability.

While it is true that the Gaussian kernel is not the most asymptotically efficient ker-
nel, it inherits many interesting theoretical properties from the Gaussian distribution.
For example, Equation (21) can be calculated with a closed-form expression because
the conditional distributions of a Gaussian are known. Also, some bandwidth esti-
mation procedures (such as biased cross-validation and plug-in) require computing
derivatives, and we know that the Gaussian is infinitely derivable (Chacén and Duong
2015); hence, the use of Gaussian kernels can be suitable.

In Section 3.5, we describe an analysis of the computational asymptotic complex-
ity of the proposal. This section could have been alternatively entitled “Asymptotic
Complexity Analysis” to avoid confusions with the asymptotic statistical theory, as
in the case of Sperlich. The asymptotic statistical properties are beyond the scope of
this paper. However, much work has been done on the statistical behavior of KDE, for
example about its consistency (Wied and Weillbach 2012). A discussion about con-
sistency is also found in interesting works on Bayesian network classifiers (John and
Langley 1995; Pérez et al. 2009). Unlike these works, our proposal can make paramet-
ric assumptions, and studying how the consistency (and other statistical properties) of
the joint distribution estimator changes with the mix of parametric and nonparametric
distributions remains as an open issue.
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