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Learning an L1-Regularized Gaussian Bayesian
Network in the Equivalence Class Space

Diego Vidaurre, Concha Bielza, and Pedro Larrañaga

Abstract—Learning the structure of a graphical model from
data is a common task in a wide range of practical applications.
In this paper, we focus on Gaussian Bayesian networks, i.e., on
continuous data and directed acyclic graphs with a joint prob-
ability density of all variables given by a Gaussian. We propose
to work in an equivalence class search space, specifically using
the k-greedy equivalence search algorithm. This, combined with
regularization techniques to guide the structure search, can learn
sparse networks close to the one that generated the data. We pro-
vide results on some synthetic networks and on modeling the gene
network of the two biological pathways regulating the biosynthesis
of isoprenoids for the Arabidopsis thaliana plant.

Index Terms—Equivalence class, gene networks, graphical
Gaussian model, k-greedy equivalence search (GES), Lasso,
microarrays, network induction, regularization.

I. INTRODUCTION

A GAUSSIAN Bayesian network (GBN) [1] is a prob-
abilistic graphical model that encodes a joint Gaussian

density [f(X)] on a p-dimensional random variable X =
(X1, . . . , Xp)

f(x) ≡ 1
(2π)p/2|Σ|1/2

exp
(
−1

2
(x − μ)T Σ−1(x − μ)

)
(1)

where μ = (μ1, . . . , μp)T is the vector of means and Σ is the
p × p covariance matrix. In a GBN, the density function of the
joint distribution can be expressed as the product of p univariate
normal densities defined as

fi (xi|pa(xi)) ≡ N

⎛
⎝mi +

∑
xj∈pa(xi)

βji(xj − mj), vi

⎞
⎠ .

(2)

The variance is vi, and the mean is composed of subparameters
mi and βi = (β1i, . . . , βli)T, where l is the number of parents
of variable Xi, denoted by Pa(Xi). βji is the linear regres-
sion coefficient of Xj in the regression of Xi on Pa(Xi). It
represents how strong the relationship between Xi and Xj is;
if βji = 0, then Xj will not be a parent of Xi. Multivariate
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normal density and the product of normal densities given in (2)
are alternative and interchangeable representations [2].

There are two basic approaches to GBN structure learn-
ing from data: algorithms based on constrained methods and
score+search methods. Constraint-based approaches build net-
works that fulfill the conditional independences estimated from
data [3]. The conditional independences between variables are
checked by means of statistical tests. A recent method of this
kind was developed by Margaritis [4].

On the other hand, score+search algorithms are founded on
a scoring function for network evaluation in an attempt to find
the model that best fits the data. The methods suggested in
[5] and [6] are two examples of score+search algorithms. A
representation, a scoring function, and a search strategy have to
be defined.

First, to represent the solutions and move in the search space,
we typically choose between directed acyclic graphs (DAGs),
partial DAGs (PDAGs), or variable orderings. Variable order-
ings are an intermediate representation that must be mapped
to a graph to be meaningful. An equivalence class, modeled
by a PDAG [2], is the set of graphs with the same conditional
independences, encoding a unique probability density. Equiv-
alence classes are often the preferred representation. They are
the only representation that is capable of meeting the inclusion
boundary (IB) requirement [7], [8] described hereinafter. In the
PDAG, compelled arcs (arcs with the same orientation for all
the members in the class) are modeled by directed arcs; the
others are represented by undirected edges.

Second, assuming that we have a data set D of size n, to
measure how well the model fits the data, the likelihood of the
model given the data is defined as

L (D;v,m)

=
p∏

i=1

n∏
r=1

1√
2πvi

e
− 1

2vi
(xir−mi−

∑
xj∈pa(xi)

βji(xjr−mj))
2

. (3)

A penalized scoring criterion, made up of the likelihood
function and a penalization term that favors simple models, is
usually employed. An example of such a criterion is minimum
description length (MDL), which is defined in Section III. A
scoring criterion is score equivalent if it returns the same value
for all the members inside the class. Sometimes, a unique
orientation for all arcs is needed to provide an exact causal se-
mantic to the network. When the density function itself, without
causality implications, is of interest, to be score equivalent is a
positive property.

Finally, the third element is the search strategy. Whether it
is better to search in equivalence class spaces or, alternatively,
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Fig. 1. Equivalence class for three nodes. Around it, its inclusion boundary,
(top) dropping an arc and (bottom) adding an arc.

in DAG spaces is still an open question. Some researchers
think that it is not always worthwhile to work with equivalence
classes because it is more complex. Gillispie and Perlman [9]
analyzed the expected number of DAGs inside an equivalence
class. They found that, on average, this number is not big. This
could be an argument in favor of DAG spaces. However, the
variance is high, and potentially, there could be a huge number
of DAGs inside some equivalence classes, even when we are
trying to achieve sparse graphs. For example, a tree of p vertices
gives rise to a class of size p, whereas the equivalence class
contains p! DAGs in the case of the complete DAG (worst
case) [10]. For this reason, it is often a good idea to work with
equivalence classes because they are a more efficient and robust
representation. This representation is more able to deal with
situations involving equivalence classes of high cardinality.

Three main problems arise when working in the DAG space
rather than with equivalence classes. First, some operators
defined to move between DAGs may operate between graphs
in the same equivalence class. This is a waste of time, unless it
is checked by the algorithm. Therefore, if we work with a score-
equivalent criterion, these moves do not change the overall
network fitness. Second, the move from the current equivalence
class might not be the best if we ignore the equivalence class
space and analyze only the neighborhood of just one of its
DAGs. Given that all members of a class score the same value
(assuming a score-equivalent criterion), there is no reason other
than randomness to prefer a specific DAG member. The third
problem is related to how likely the final DAG is to belong to
a specific equivalence class. If all DAGs in the same class are
interpreted as different models, it is reasonable to expect the
final output to be an equivalence class covering many rather
than just a few DAGs. This makes it unpredictable.

A model is defined as inclusion optimal with regard to a
density f(X) if it is able to represent the density with a
minimum number of arcs. The IB concept [7] is defined as a
neighborhood of a model where the search strategy selects new
models. Intuitively, the IB can be defined as the union set of
equivalence classes that can be reached from each DAG inside
the current class by single arc addition or deletion (see Fig. 1).
The greedy equivalence search (GES) algorithm for Bayesian
network learning [11] uses the IB. It has appealing theoretical
properties for finding inclusion optimal models (see [8] and
[12] for more details). The k-GES (KES) algorithm [13] gener-
alizes GES and respects the IB too. Hence, it retains the same
theoretical properties. KES features a stochastic factor. This

way, multiple runs can be made to extract common patterns in
the solutions, whereby the final model includes just the arcs that
showed up in most of the runs.

In this paper, we extend the KES algorithm to continuous
(Gaussian) densities and learn sparser models based on regular-
ization techniques. By definition, a GBN defines a regression
for each variable Xi over its parents [see (2)]. Supposing
standardized data (so that mi = 0 and vi = 1), it is defined as

xi =
∑

xj∈pa(xi)

βjixj + wi (4)

where wi is the Gaussian noise term. Thus, it makes sense to ap-
ply a regularization technique to these regressions, linking the
variable selection task to the neighborhood selection process
in network structure learning. Here, we use the least absolute
shrinkage and selection operator, commonly named Lasso [14].
Lasso has been widely used for simultaneous variable selection
and regression because of its capacity to move many regression
coefficients to zero.

The key idea is to use Lasso regression in the equivalence
class space (prior to the learning stage) for each variable Xi on
the remaining variables, discarding variables whose coefficients
have been moved to zero as possible parents of Xi in the GBN.
This produces simple models that properly fit the available data.
We keep the set of parents that yields the best MDL score. As an
additional contribution, to reduce the computational burden, we
also take advantage of the “approximate” convexity of the MDL
score for each separate variable against the remainder. This
makes it possible to stop the Lasso algorithm before it ends.

Lasso has already been employed in the literature for some
sorts of probabilistic graphical model learning, taking ad-
vantage of its ability for variable selection (neighborhood
selection).

Li and Yang [15] performed neighborhood selection by using
Lasso to estimate a DAG from a given ordering, and then
transformed the DAG into an undirected graph, which is the
final aim of their algorithm. Under a Bayesian perspective, they
used a Wishart prior distribution for the precision matrix. The
DAG prior is derived from this precision matrix prior, and such
a DAG prior turns out to be equivalent to a Laplace prior.
Because the objective is learning the undirected graph, they
used an arbitrary ordering. Hence, this method cannot be used
to estimate a final directed graph.

Meinshausen and Bühlmann [16] carried out neighborhood
selection also in an undirected Gaussian graphical model set-
ting. They used Lasso regressions individually with every vari-
able against the rest, in such a way that an edge is created
when the regression coefficient is not zero. With an appropriate
selection of the penalization parameter, the method is proved to
be consistent for sparse high-dimensional graphs under certain
assumptions. However, the Lasso estimate is based only on
individual regressions and ignores the overall likelihood of
the network. This may entail some problems. For example,
the regression coefficient of a given variable Xi, when Xj

is the response, may (and probably will) be different from the
regression coefficient of Xj , when Xi is the response; it means
that it is possible that only one coefficient is shrunk to zero. In
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such a case, it is not clear whether the undirected edge must be
present or not in the learned graph.

Recently, Banerjee et al. [17] presented two new effi-
cient algorithms to estimate the (sparse) covariance matrix
that exactly maximizes the L1-penalized maximum likelihood.
Friedman et al. [18] developed an even faster algorithm for this
task, called graphical Lasso. Both papers state that the method
of Meinshausen and Bühlmann [16] is an approximation, as, in
general, it does not reach the maximum likelihood.

The use of Lasso directly to learn a graphical model entails an
important drawback: It fails to recover the true sparsity pattern
when variables are highly correlated, in particular when there
exists high correlation between relevant and irrelevant variables
[19]. This could be the case in some real-world scenarios. Thus,
as proposed in our paper, it is reasonable to use additional
heuristics instead of employing Lasso directly for network
induction.

There has been less work focusing on (directed) GBNs, but
we claim that the orientation is semantically useful in some
problems like gene network analysis. Undirected graphs also
imply a high complexity (NP-hard) in the estimation of parame-
ters when the distribution is not Gaussian. Schmidt et al. [20]
worked alternatively on the DAG space and the variable or-
dering space using Lasso to restrict both search spaces. The
drawbacks of their method are those commented earlier for
greedy searching in the DAG space. In this paper, instead
of directly creating an arc when the corresponding regression
coefficient is not zero, as in [16], we employ Lasso as a previous
neighborhood selector working in the equivalence class space.
The regression is also carried out for every variable against
the rest, as in [20]. Therefore, Lasso is viewed as a variable-
filtering first step and not as a direct model selection method.
Afterward, we employ the greedy algorithm KES in the GBN
training scenario.

The rest of this paper is organized as follows. Section II
describes the KES algorithm and sets out basic notions on
regularization. Section III introduces the proposed method,
detailing how KES and regularization have been combined in
a new algorithm. Section IV outlines the set of experiments
used to test the algorithm to learn three synthetic data sets and
a real genetic regulatory network for isoprenoid biosynthesis
in Arabidopsis thaliana. Finally, in Section V, we outline
conclusions and future work.

II. BACKGROUND

A. KES Algorithm

The concept of equivalence for Bayesian networks [8] has
been widely discussed in the literature: Two DAGs are Markov
equivalent (just equivalent from now on) if they represent the
same set of conditional independences.

A DAG G′ is said to include a graph G, G ⊂ G′, if, for
all the models M(G, θ) parameterized by θ whose structure
is represented by G, there exists a second model M ′(G′, θ′)
parameterized by θ′ with a structure G′ that represents the same
density function, i.e.,

G ⊂ G′ iff ∀θ ∃θ′ | f
(
xM(G,θ)

)
≡ f

(
xM ′(G′,θ′)

)
. (5)

Two DAGs G and G′ are said to be equivalent if

G ⊂ G′ ∧ G′ ⊂ G. (6)

For example, the DAG A → B → C is equivalent to the
DAG A ← B ← C because all the joint density functions (or
probability functions) that can be encoded by the first DAG can
also be encoded by the second, and vice versa. The equivalence
relationship is reflexive, symmetric, and transitive and hence
gives rise to the concept of equivalence class. The equivalence
class definition is the same for GBNs. A v-structure, also called
immorality, is induced when two disconnected vertices are
parents of a third vertex. G and G′ are equivalent if they have
the same skeletons and the same v-structures [21]. A covered
arc is an arc that is not part of any v-structure. Thus, it is
possible to move across all the individuals inside an equivalence
class just by covered-arc reversing.

A formal definition of inclusion boundary can be presented
on the basis of the DAG inclusion concept. Letting G and G′ be
two DAGs, we denote G ≺ G′ to mean that G ⊂ G′, and there
is no DAG G′′ such that G ⊂ G′′ ⊂ G′. The IB of G is then
defined as

IB(G) = {G′|G′ ≺ G} ∪ {G′′|G ≺ G′′}. (7)

The set of DAGs defined by the first term of the union is
called the lower IB, and the set of DAGs defined by the second
term is called the upper IB. The set of operators defined by
a neighborhood is said to satisfy the IB condition if, for a
DAG G, the induced neighborhood includes IB(G)[7]. The
two neighborhoods satisfying this condition are as follows:

1) Equivalence-class-based No-arc Reversals (ENR), which
considers all simple edge additions and deletions from all
the DAGs belonging to the equivalence class.

2) Equivalence-class-based Non-Covered-arc Reversals
(ENCR), which considers all simple edge additions,
deletions, and non-covered-arc reversals from all the
DAGs belonging to the equivalence class.

The ENR neighborhood exactly matches, and the ENCR
neighborhood includes the inclusion boundary, but they are
computationally complex to calculate. As we will note here-
inafter, these neighborhoods may be somehow approximated.

The so-called Meek conjecture [11] essentially claims that if
a DAG G includes another DAG G′, then G is reachable from
G′ through a finite sequence of edge additions and covered-arc
reversals. An important conclusion of this premise is drawn:
In the limit of large data sets, if the probability distribution
(density function) has a perfect map in a DAG, a greedy
search algorithm is suitable for finding the optimal solution
after a finite set of edge additions and covered-arc reversals.
Chickering [8] presented a proof of the Meek conjecture.

Basing on this, the GES algorithm [11] starts with the empty
graph and greedily explores the equivalence class space, mov-
ing at each iteration to the state where score improvement is
the greatest, and stopping the search when a locally optimal
model is reached. It does so in two phases, considering different
neighborhoods in each one. In the first phase, the neighborhood
is based on edge addition, whereas in the second phase, the
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neighborhood contains the networks obtained by deleting a
single edge. Chickering [8] presented a version of GES where
the entire IB is examined at each step, removing the separation
into two phases. In [22], six operators were introduced to enrich
the search space: insert undirected arc, delete undirected arc,
insert directed arc, delete directed arc, reverse directed arc, and
create v-structure.

Because of the high computational cost of working with
neighborhoods (specifically ENR and ENCR) that satisfy the
IB condition, mainly to enumerate all the DAGs of the class,
Castelo and Koka [23] defined an approximate approach. The
strategy is to somehow simulate the class by performing a
sufficient number of covered-arc reversals. At each individual
or set of covered-arc reversals, we get a DAG member of the
class, and we explore some neighborhood of this member in a
cheaper DAG space. It is shown that the number of covered-arc
reversals does not need to be large because the average size of a
class is bounded by a constant [9]. The number of covered-arc
reversals should depend on the size of the true equivalence class
if we have any idea of its cardinality [24].

The stochastic equivalence search (SES) algorithm intro-
duces a modification in the GES search strategy. It does not
select the best member of the IB at each step but randomly picks
any of the models that improve the score.

In search of a tradeoff, GES and SES are generalized in the
KES algorithm [13], controlling the degree of randomness ver-
sus greediness by a parameter 0 ≤ k ≤ 1. In a nutshell, KES is
an iterative algorithm that extracts an uninformed k proportion
(at least one model) of the IB at each step, selecting the best
model in this set. GES corresponds to the k = 1 case; SES is the
k = 0 case. Nielsen et al. [13] presented a theoretical analysis
of KES, supported on known results about GES. We will work
here with the KES algorithm, performing the IB neighborhood
approximation proposed in [13] and already suggested in [23].

B. Lasso Regularization

Regularization techniques (see a review in [25]) have been
attracting the attention of many researchers lately and have
been successfully employed in many fields related to statistics,
machine learning, and signal processing. The key idea is to add
a penalty term to the usual least squares linear regression with
the aim of reducing the variance of the estimates, preventing
overfitting, and improving the interpretation of the model.
Although other regularization methods have been proposed,
regularization with the �1-norm (called Lasso [26]) has been
particularly popular due to its ability to move the regression
coefficients of irrelevant variables to zero, thereby doing para-
meter estimation and variable selection simultaneously.

Let y ∈ R be the response variable to be predicted from a
p-dimensional variable X = (X1, . . . , Xp). The linear regres-
sion model has the form

g(x) = β0 +
p∑

i=1

xiβi. (8)

Parameters β = (β0, . . . , βp)T are estimated from a set of
training data, denoted by D′ = {(x1, y1), . . . , (xn, yn)}, by the

least squares method. Each xr = (x1r, . . . , xpr)T is a vector
of measurements for the rth instance. The Lasso formulation
shrinks the regression coefficients by imposing a penalty on
their size. Thus, the Lasso estimate minimizes a penalized
residual sum of squares

β̂
s

= arg min
β

n∑
r=1

(
yr − β0 −

p∑
i=1

xirβi

)2

(9)

subject to

p∑
i=1

|βi| ≤ s. (10)

We can omit the intercept β0 from the model by standardiz-
ing the predictors. β̂

s
depends on the value of s ≥ 0, the penalty

parameter: The greater the value of s, the greater the number of
β̂s

i that are not zero. The regularization path is composed of the
values of coefficients β̂s

i across the range of s. In Lasso, as we
increase the value of s, one β̂s

i at a time is made different from
zero. This allows us to pay attention only to the finite set of s
values where a new β̂s

i is driven to a nonzero value. Between
two of these values, the changes in coefficients β̂s

i are linear.
Computing the regularization path is a quadratic program-

ming problem with linear inequality constraints. However, it
can be efficiently solved by the least angle regression (LARS)
algorithm in O(p3 + np2) computations [27] (the same cost of
a least squares fit on p variables).

Lasso has proven to have interesting theoretical properties
for variable selection in the literature, showing its capacity to
deal with high-dimensional data (very much present in real
domains). Specifically, to hold these properties, Meinshausen
and Bühlmann [28] showed that the data-set cardinality has to
grow at no more than a logarithmic rate against the number of
variables. This turns out to be a clear advantage when working
with biological data, where the amount of training samples
is usually small compared with the number of variables. The
consistency of Lasso for variable selection (determination of the
true model) is demonstrated for underlying models that fulfill
certain conditions [16], [19]. Zhao and Yu [19] introduced the
term “irrepresentable condition,” meaning that the correlation
between the relevant (nonzero coefficients) and irrelevant vari-
ables (zero coefficients) must be limited; otherwise, spurious
variables may be included in the selected variable set.

III. KES COMBINED WITH LASSO

We propose a Lasso-based previous step to preselect a set of
potential parents for each variable on which the KES algorithm
will work greedily. Arcs corresponding to zero coefficients in
the penalized regression are discarded. The sparse candidate
algorithm [29] also performs a preselection phase. This algo-
rithm needs the user to set the maximum number of parents per
node in advance. The sparse candidate algorithm restricts the
search space so that there is only one set of possible parents for
each variable in the subsequent maximization step (typically
a greedy algorithm). These sets are constructed by including
the variables that are most closely associated with the target
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variable; this is usually quantified with a pairwise measure like
mutual information.

Alternatively, we employ Lasso with each variable on the
rest, discarding as parents the variables whose regression coef-
ficients become zero. Afterward, we launch the KES algorithm
on the equivalence class search space. Thus, unlike the sparse
candidate algorithm, we do not need to establish a maximum
number of parents in advance.

The pseudocode of our proposal is shown in Algorithm 1,
illustrating the two phases of the algorithm. Parent restriction
appears in the for loop, calculating for each variable the set of
coefficients that yields the best MDL score in the regularization
path (represented by a matrix with p columns and a variable
number of rows—one for each point in the regularization path
where a coefficient vanishes or reappears into the model). The
score+search KES algorithm, restricted by the previous step, is
enclosed in the repeat loop. Notice that MDL is used in both
phases.

Algorithm 1 Lasso embedded in KES
Input: data set D with p variables and n cases, k ∈ [0, 1]
Output: partially DAG G
for i = 1 to p do

Path(i) := matrix containing the L1-regularization path
of variable Xi

Beta(i) := row of p coefficients with the best MDL score
in Path(i)
PotentialParents(i) := set of variables such that
Beta(i)(j) �= 0, for j = 1 . . . p

end for
Initialize G := empty or randomly generated model
minimum := false
repeat

K := max(k · size(IB(G,PotentialParents)), 1)
where IB(G,PotentialParents) is the IB(G)
constrained by Lasso
S := set of K models drawn from
IB(G,PotentialParents)
G′ := the model from S with the best MDL score

if MDL(G′) < MDL(G) then
G := G′

else
minimum := true

end if
until minimum is true

Note that not all variables have to share the same value
of s when carrying out their regression against the rest of
variables, as some nodes in the true structure may have stronger
connectivity than others. A stronger regularizer (smaller s)
would be required for these nodes so that more regression
coefficients β̂s

i will be driven to zero. A common strategy for
selecting s is to choose it by cross-validation from a grid of
values. However, it would have to be applied individually for
each variable and could hence introduce a heavy computational
load in high-dimensional problems.

TABLE I
MEAN AND STANDARD DEVIATION (IN SECONDS) OF TEN RUNS

MEASURING THE RUN TIME FOR SOME NETWORK SIZES OF THE FACTOR

STRUCTURE (SEE SECTION IV). ALL DATA SETS HAVE 1000 INSTANCES

Instead, Schmidt et al. [20] took advantage of the piecewise
constant nature of the number of nonzero coefficients against
parameter s and suggested to take for each variable the best set
of “parent candidates” from such regularization path according
to some criterion, which has a finite and reduced number of
solutions. That is the approach that we use in this paper. Hence,
we do not estimate an explicit value of s. We employ the (score-
equivalent) MDL criterion, which is defined as

MDL(Xi) = m log(n)/2 + NLL (Xi|Pa(Xi)) (11)

where m is the number of parameters different from zero
and NLL(Xi|Pa(Xi)) is the negative log-likelihood of the
network made up of this node and its parents.

In short, we evaluate all the points (all the sets of p coeffi-
cients) where a new coefficient vanishes (or appears) in each
variable’s regularization path, and choose the set of coefficients
that minimizes the MDL score. The chosen set of penalized
regression coefficients is not used again beyond the parent
preselection stage, and the GBN parameters will be learned
later, irrespective of these coefficients.

In the second phase, we must choose between two strategies.
The first is that a variable Xj is included as a possible parent of
Xi if Xj is selected by Lasso when the response variable is Xi

or if Xi is selected by Lasso when the response variable is Xj .
The second is if both conditions are fulfilled. We have tested the
two strategies, which we will call OR-Lasso and AND-Lasso,
respectively.

Even restricted to the aforementioned subset of potential par-
ents, the KES algorithm does not lose the theoretical properties
that we described earlier if we assume L1 regularization to
be an ideal variable selector (specifically if it does not miss
true relations). As noted previously, this applies under certain
conditions. In this case, it will find a set of variables with all
the parents, children, and coparents: the Markov blanket [20].
Hence, ideally, Lasso only discards false parents.

We use a DAG to represent the current equivalence class
in our implementation. Therefore, we need a method to ap-
proximate the IB from a DAG representation. We do not cal-
culate the complete IB neighborhood at each step; rather, we
approximate its size from the total number of possible parents
(taking the Lasso restriction into account). Then, we derive a
k-proportional number of models of this estimated size and
keep the best one. Thus, we are not actually drawing a k propor-
tion from the set of models that is better than the current one,
but an approximate k proportion from the total (approximate
because the size of the IB has been approximated), keeping the
best model from this set.

The worst case computational cost of the algorithm is equiv-
alent to KES. This would be the unlikely situation where the
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Fig. 2. At the top, the MDL curve along the regularization path for two variables of the Alarm network (see Section IV-A). At the bottom, two variables of
isoprenoid biosynthesis for Arabidopsis thaliana (see Section IV-B). The solid line represents MDL, the dotted line is the negative log-likelihood, and the dashed
line is the penalization term in MDL [the first term in (11)]. Therefore, the solid line is the sum of the other two lines.

best Lasso preselection yields that all variables can be parents
of all variables. However, Lasso is proved to hold a parsimo-
nious property [30]. Thus, the variable selector nature of Lasso
usually restricts the search space quite a lot and makes the mean
computational cost of the proposed approach definitely lower
than that of the KES algorithm alone. Some run times are shown
in Table I to illustrate this issue.

Moreover, this paper introduces a simple but useful heuristic
on the LARS algorithm when used in the parent restriction
phase. As noted before, we must search for the MDL-optimal
β̂

s
for each and every variable in the regularization paths. The

MDL score along the regularization path of each Lasso with
each variable as the response (starting with all β̂s

i = 0 and
ending with all β̂s

i �= 0) often follows a convex curve with only
one minimum [see Fig. 2(a)]. The reason is that the MDL score
is the sum of two terms [see (11)]. The first term penalizes
networks that contain many parameters. It strictly increases
when parameters are added to the model. The second term is
the negative log-likelihood, and it strictly decreases as more
coefficients are made different from zero. The addition of a
strictly increasing function and a strictly decreasing function
is a convex function with only one global minimum. In some
cases, however, the regularization path for Lasso may have
more than p steps, i.e., at some steps, a variable may become
zero as s is increased, and be added again to the model later.
In such a situation, the MDL function along the regularization
path is not convex anymore.

These irregularities are the source of our heuristic, as more
than one local minimum is sometimes present [Fig. 2(b)–(d)].

For this reason, the whole curve should be inspected to be sure
of getting the global minimum. However, the global minimum
is usually reached at an early phase [an exception is shown in
Fig. 2(c)]. Even more importantly, when the MDL curve has
grown for long enough, it normally never decays significantly
again. This leads us to stop LARS if the MDL curve has grown
for a number of steps, e.g., equal to 20% of the full model
variables, where we can be reasonably sure of having obtained
the global minimum. In this way, we are saving a great deal of
computational cost.

In some cases, some local minima are reached later on
[Fig. 2(c) and (d), particularly Fig. 2(d)], but they are far
from the global minimum and should be ignored. To make our
stopping method robust to these minor slumps and preserve
its efficiency, instead of checking punctual MDL values, we
calculate the mean in a certain window of MDL values. This
way, we only keep searching if the decay is relevant, i.e., we
stop LARS when the MDL mean of this window has been
growing for enough iterations. If the number of values to be
included in this mean is too small (or is just one), we are being
conservative and will probably advance along the regularization
path further than necessary. On the other hand, if we take
many values, we risk stopping early and missing the real global
minimum. Empirically, we have found that taking the last five
values leads to good results, although this point should be
further researched.

In Table II, we show the iteration number where the al-
gorithm stops using different window sizes for each vari-
able against the rest in the Arabidopsis thaliana isoprenoid
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TABLE II
LARS STOPPING ITERATION FOR DIFFERENT WINDOW SIZES, FOR THE

Arabidopsis thaliana DATA SET. THE SECOND COLUMN REPRESENTS

THE ITERATION WHEN THE GLOBAL MINIMUM IS REACHED

biosynthesis data set (see Section IV-B). The optimal iteration,
where the global minimum is reached, is depicted in the second
column; if the stopping iteration is lower than the optimal one,
we are trapped in a local minimum. Note that the window size
does not have a big impact on most variables. For example, for
the first variable, the algorithm always stops around iteration
18, i.e., beyond the global minimum in iteration 10, regardless
of the window size. More meaningful is the effect of the number
of iterations that the MDL mean of the window needs to keep
increasing to stop. In Table III, we show the ratio of this
parameter against the number of variables. To simplify, we call
such ratio “stopping ratio.” Note that the difference between
0.05 and 0.3 is significant. Again, the iteration corresponding
to the global miminum is depicted in the second column. Note
that, in both experiments, we always advanced further than the
optimal iteration and thus covered the global minimum. For
all variables, the lowest size of the regularization path is over
60, and the mean size is 82. However, the global minimum is
usually in the first third of the regularization path.

TABLE III
LARS STOPPING ITERATION FOR DIFFERENT STOPPING RATIOS

(SEE TEXT), FOR THE Arabidopsis thaliana DATA SET. THE

SECOND COLUMN REPRESENTS THE ITERATION WHEN

THE GLOBAL MINIMUM IS REACHED

IV. EXPERIMENTS

A. Synthetic Networks

The Alarm network [31] contains 37 nodes and 46 arcs. The
Insurance network [32] has 27 variables and 52 arcs. Both are
commonly used to test Bayesian network learning algorithms.
Finally, we have generated a synthetic network called Factor,
with 100 variables and 382 arcs. This holds an arc from variable
Xi to Xj if i is a divisor of j. Because we need a GBN, we will
use the dependences of each network to simulate continuous
Gaussian data sets of 100 samples for Alarm, 1000 samples for
Insurance, and 50 samples for Factor (testing the p > n case).
Parameter βi in (2) is generated at random from a standard
normal distribution. The rest of the parameters of the density
functions are fixed (mi = 0 and vi = 1). We run the KES
algorithm for ten different values of k : 0.1, 0.2, . . . , 0.9, 1.0,
with and without a previous Lasso step. Here, we illustrate the
results using the OR-Lasso strategy, as the AND-Lasso strategy
turned out to be very restrictive in this case, producing networks
with few arcs. For each k, we performed ten runs and calculated
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Fig. 3. Behavior of the KES algorithm for the Alarm network. (a) With Lasso preselection. (b) Without Lasso parent preselection. Total, true, and false arcs are
shown.

Fig. 4. Behavior of the KES algorithm for the Insurance network. Same setting as that in Fig. 3.

the mean and the standard deviation. Results are shown in
Figs. 3–5. We also tried the approach proposed in [20], which
works in the DAG space, although we do not show the results in
the figures for clarity. Instead, we present means and standard
deviations in Table IV.

Note that our approach (working in the equivalence class
space) on the whole outperforms the networks obtained work-
ing in the DAG space. This is particularly notable in the Alarm
network. For the Factor network, the number of correct arcs
is equivalent in both spaces, whereas in the equivalence class
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Fig. 5. Behavior of the KES algorithm for the Factor network. Same setting as that in Fig. 3.

TABLE IV
MEAN AND STANDARD DEVIATION OF SOME MEASURES FOR NETWORKS

OBTAINED BY THE APPROACH PROPOSED IN [20]

space, the number of false positives is slightly lower. On the
other hand, for the Insurance network, where n > p, the results
between the DAG space and the equivalence class space are
quite similar. Note also that the random generation of the
network parameters may affect the final output and could be
the cause of some differences between the learned structures
and the original network.

Regarding the comparisons, within the equivalence class
space, between networks learned with Lasso preselection and
networks learned without it, the main conclusion that we can
draw is that the Lasso information makes the output network
sparser and tends to include fewer false arcs and, encouragingly,
even more correct arcs. Again, this is more obvious for the
Alarm network. For the Insurance network, the number of
correct arcs is not very different, but the Lasso preselection
yields less false positives (and, therefore, fewer total arcs). The
same happens for the Factor network, where the number of
false positives and the number of correct arcs are surprisingly
alike for the KES algorithm.

Without Lasso, we also observe that intermediate values of
k (moderate randomness) result in slightly better networks.
The Factor network, where k has no influence at all, is an
exception. When using Lasso, the quality of the networks is
roughly equivalent in all cases of k. Moreover, the variance of
the results is lower. Consequently, we could say that, with the

preselection phase, the algorithm becomes quite robust to k,
i.e., there is not so much variation on parameter k, and this is no
longer a cause for concern. Furthermore, as mentioned before,
the computational cost is significantly lower when Lasso is
employed.

B. Pathways of the Arabidopsis thaliana Plant

Probabilistic graphical models and, specifically, GBNs may
be used to model genetic networks. In the GBN case, each
variable represents a continuous gene expression level (see [33]
for a review). Narrowing the field down to static GBNs (that
do not model gene coregulation against time), Wu et al. [34]
defined the GBN by previously determining the conditional
independence relationships, and Imoto et al. [35] combined
microarray data and known biological information to train the
model.

Next, we will test our method with a real-world data set
taken from a biological environment: a list of 118 gene
expression patterns measured under different conditions for
40 genes that are found to be relevant in isoprenoid biosynthesis
for Arabidopsis thaliana[36]. Arabidopsis thaliana is the first
plant whose complete genome has been sequenced. Isoprenoids
are the largest family of biological substances in nature and
the oldest known biomolecules; over 30 000 known compounds
help in a great variety of biochemical processes. Understanding
the nature of their synthesis is a task with many practical
pharmaceutical and food applications. It is known that such
synthesis follows two different gene routes in high-order plants
like Arabidopsis thaliana: the mevalonate (MVA) pathway and
the methylerythritol 4-phosphate (MEP) pathway. Of the 40
measured genes, 16 come from the MVA pathway, 19 are
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Fig. 6. (a) Real isoprenoid biosynthesis network. (b) Network shown in [36]. (c) Network shown in [37].

from the MEP pathway, and the remaining 5 are encoding
proteins located in the mitochondrion. Fig. 6(a) shows the true
pathways: The MEP pathway is the set of proteins on the left,
and the MVA pathway is the set on the right; genes related to
mitochondrial proteins are UPPS1, DPPS2, GGPPS1, GGPPS5,
and GGPPS9.

Our aim here is to check if our method is capable of neatly
separating the two pathways. We train ten networks for each
k value (k ∈ {0.1, 0.2, . . . , 0.9, 1.0}), and we only keep those
arcs that have been repeated with a frequency of at least fr.
In order to experiment with different degrees of sparseness, we
examine some values for fr: 0.6, 0.7, 0.8, 0.9, and 1.0. The
networks obtained in [36] and [37] are shown in Fig. 6(b) and
(c), respectively.

It is also interesting to investigate the cross relationship
between both pathways. One might expect a limited connec-
tivity between the two pathways [37] because they are both
developed in different parts of the cell [see Fig. 6(a)]. However,
Wille et al. [36] cited some reports about these interactions,
showing that cross-link connections do exist under certain
circumstances.

Both the method suggested in [36] and the threshold gra-
dient method (TGD) proposed in [37] identify a separation
of both pathways. Note that undirected networks are used in
both papers, whereas we train directed networks. The simpler
method shown in [36] trained a dense network. Although this
network, in essence, owns many true arcs and distinguishes the
two pathways, it connects many genes that are independent in
the true network, with relatively dense cross-link connections.
On the other hand, TGD, using bootstrap and keeping only
the arcs that appear in at least 50% of the obtained networks,
reached a sparse network, and no cross-link between pathways
was drawn. However, there are some connections between the
MEP pathway and mitochondrial proteins (located at the center
of the network) that do not exist in the true-pathway diagram.
Furthermore, this network misses many true edges. For ex-
ample, DXPS1, DXPS2, and DXPS3 appear to be completely
independent, as do all GGPPS genes.

We have built different networks, depending on the parent
preselection strategy used (no preselection, AND-Lasso, and

OR-Lasso) and on the fr and k values. Except for the net-
works trained without Lasso preselection, parameter k has little
influence. If we do not employ Lasso [Fig. 7(a)], the KES
algorithm outputs very dense networks where we can barely
distinguish the two pathways. Only when fr is set to a high
value that sparser networks are reached, but it is not yet possible
to appreciate the two pathways. For example, there are no arcs
connecting genes inside the MVA pathway in Fig. 7(a). Note
that this network has an equivalent number or even fewer arcs
than the others; this is because of the higher variability of the
networks trained without constraints: There are many arcs, but
they differ from one run to another.

AND-Lasso networks [Fig. 7(b)] turn out to be the most
interesting because they identify two interconnected modules
in the network with relatively few arcs. The MVA pathway
is specially well connected as compared with the real one in
Fig. 6(a), and the DXPS, DXR, MCT, CMK, MECPS, and HDS
set is also connected in the MEP pathway except for the missing
CMK—MECPS arc. Moreover, most AND-Lasso networks dis-
cover a relation between IPPI1 and some MVA pathway genes,
which, as noted in [36], could have an interesting biological
interpretation.

When using an OR-Lasso [Fig. 7(c)], there are many arcs
that appear in at least 80% of the trained networks. Although
we find some cross-link connections, we also find a higher arc
density in each pathway. For instance, in the MEP pathway,
DXPS, DXR, MCT, CMK, MECPS, HDS, and HDR are closely
connected. Again, we find an interaction of IPPI1 with elements
of the MVA pathway.

Table V shows a quantitative comparison among the net-
works in Figs. 6(b) and (c) and 7(a)–(c). We score each pathway
using a simplified version of the structural Hamming distance
(SHD) [38]. This measure is defined by the number of operators
(add or delete an undirected edge, and add, remove, or reverse a
directed arc) that are different in the PDAG to be scored and in
the real PDAG. Because we want to evaluate also the undirected
networks shown in Fig. 6(b) and (c), we will ignore the arc
orientation and will not count reversal operators.

We also measure the rate between the number of arcs
within the pathways and the number of arcs crossing between
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Fig. 7. (a) Network trained without Lasso preselection (fr = 0.8, k = 0.2). (b) Network trained with AND-Lasso preselection (fr = 0.7, k = 0.7).
(c) Network trained with OR-Lasso preselection (fr = 0.8, k = 0.8).

TABLE V
SHD AND SEPARABILITY MEASURES FOR THE NETWORKS

SHOWN IN FIGS. 6(b) AND (c) AND 7(a)–(c). SHD
ASSESSES INDEPENDENTLY EACH PATHWAY

pathways and linking with mitochondrial genes. This value
might be considered as a measure of the ability to separate the
pathways, and will be denoted as separability.

Roughly speaking, the networks of Figs. 6(c) and 7(b) (cor-
responding to TGD and AND-Lasso methods) appear to be the
best. Whereas TGD presents the best separability, AND-Lasso
gives good SHD results and could produce the most refined
pathways at some extent.

In summary, we have built networks that can compete with
state-of-the-art methods, showing a very good computational
performance. This has been shown with some synthetic data
sets and a real biological network.

V. CONCLUSION

We have presented a procedure for learning the structure of
GBNs based on a well-known regularization method for parent
filtering and on the KES algorithm, a greedy algorithm working
on the equivalence class space. As discussed previously, there
are theoretical properties that support both methods. To the best
of our knowledge, this is the first time that regularization has
been employed in equivalence class searching.

One advantage of our method is its computational efficiency.
It is known that LARS solves Lasso with a reduced computa-
tional burden. Also, with parent restriction, the KES algorithm
is significantly faster than ordinary KES while offering better
results. This means that several executions or bootstrapping,
trying to extract common patterns, can be run in situations
where this would normally be infeasible. With the aim of

improving efficiency, we have developed a simple but useful
MDL-based method for stopping LARS in advance when it is
used for parent preselection.

We have applied our approach with good results to three
synthetic databases and a real biological data set, the isoprenoid
biosynthesis pathways of Arabidopsis thaliana. Our results
are successfully backed by previous domain knowledge, even
though the available data offer just gene coexpression levels,
not always directly related to regulatory patterns, i.e., it does
not always exactly reflect regulatory dependences. Previous
work on building graphical models for this data set used undi-
rected Gaussian networks. We think that our link orientation
could supply useful information on the underlying biological
processes in some situations. In fact, the original biological
network that we are trying to model is also directed.

For future research, it would be interesting to evaluate the
different varieties of Lasso (fused, group, elastic net, etc.) for
parent preselection, depending on the nature of the biological
domain. We think that the combination of the KES algorithm
with an appropriate Lasso extension may be a useful tool that
deserves further investigation. We may also intend to refine
our LARS stopping method to save computation resources and
make sure that we will find the true global minimum of the
MDL curve.

ACKNOWLEDGMENT

The authors would like to thank J. Nielsen for the valuable
support with the KES implementation. The authors would also
like to thank the referees for their valuable remarks that have
definitely contributed to the improvement of this paper.

REFERENCES

[1] D. Geiger and D. Heckerman, “Learning Gaussian networks,” in Proc.
10th Conf. Uncertainty Artif. Intell., 1994, pp. 235–243.

[2] E. Castillo, J. M. Gutiérrez, and A. S. Hadi, Expert Systems and Proba-
bilistic Network Models. New York: Springer-Verlag, 1997.

[3] P. W. Smith and J. Whittaker, “Edge exclusion tests for graphical Gaussian
models,” in Learning in Graphical Models, M. Jordan, Ed. Dordrecht,
The Netherlands: Kluwer, 1998, pp. 555–574.



1242 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 5, OCTOBER 2010

[4] D. Margaritis, “Distribution-free learning of Bayesian network structure
in continuous domains,” in Proc. 20th Nat. Conf. Artif. Intell., 2005,
pp. 825–830.

[5] F. Bach and M. I. Jordan, “Learning graphical models with Mercer
kernels,” in Advances in Neural Information Processing Systems 15.
Cambridge, MA: MIT Press, 2003.

[6] S. Davies, “Fast factored density estimation and compression with
Bayesian networks,” Ph.D. dissertation, Carnegie Mellon Univ.,
Pittsburgh, PA, 2002.

[7] T. Koc̆ka, R. R. Bouckaert, and M. Studený, “On characterizing inclusion
of Bayesian networks,” in Proc. 17th Conf. Uncertainty Artif. Intell.,
2001, pp. 261–268.

[8] D. M. Chickering, “Optimal structure identification with greedy search,”
J. Mach. Learn. Res., vol. 3, pp. 507–554, 2002.

[9] S. B. Gillispie and M. D. Perlman, “Enumerating Markov equivalence
classes of acyclic digraph models,” in Proc. 17th Conf. Uncertainty Artif.
Intell., 2001, pp. 171–177.

[10] S. B. Gillispie, “Formulas for counting acyclic digraph Markov equiva-
lence classes,” J. Stat. Plan. Inference, vol. 136, no. 4, pp. 1410–1432,
Apr. 2006.

[11] C. Meek, “Graphical models: Selecting causal and statistical models,”
Ph.D. dissertation, Carnegie Mellon Univ., Pittsburgh, PA, 1997.

[12] D. M. Chickering and C. Meek, “Finding optimal Bayesian networks,” in
Proc. 18th Conf. Uncertainty Artif. Intell., 2002, vol. 3, pp. 94–102.

[13] J. Nielsen, T. Koka, and J. Pea, “On local optima in learning Bayesian
networks,” in Proc. 19th Conf. Uncertainty Artif. Intell., 2003, pp. 435–
442.

[14] R. Tibshirani, “Regression shrinkage and selection via the Lasso,” J. R.
Stat. Soc., B, vol. 58, no. 1, pp. 267–288, 1996.

[15] F. Li and Y. Yang, “Using modified Lasso regression to learn large
undirected graphs in a probabilistic framework,” in Proc. AAAI, 2005,
pp. 801–806.

[16] N. Meinshausen and P. Bühlmann, “High dimensional graphs and variable
selection with the Lasso,” Ann. Statist., vol. 34, no. 3, pp. 1436–1462,
2006.

[17] O. Banerjee, L. E. Ghaoui, and A. d’Aspremont, “Model selection through
sparse maximum likelihood estimation for multivariate Gaussian or binary
data,” J. Mach. Learn. Res., vol. 9, pp. 485–516, 2008.

[18] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance
estimation with the graphical Lasso,” Biostatistics, vol. 9, no. 3, pp. 432–
441, Jul. 2008.

[19] P. Zhao and B. Yu, “On model selection consistency of Lasso,” J. Mach.
Learn. Res., vol. 7, pp. 2541–2567, 2006.

[20] M. W. Schmidt, A. Niculescu-Mizil, and K. P. Murphy, “Learning graph-
ical model structure using L1-regularization paths,” in Proc. AAAI, 2007,
pp. 1278–1283.

[21] T. Verma and J. Pearl, “Equivalence and synthesis of causal models,” in
Proc. 6th Conf. Uncertainty Artif. Intell., 1990, pp. 1287–1330.

[22] D. M. Chickering, “Learning equivalence classes of Bayesian-network
structures,” J. Mach. Learn. Res., vol. 2, pp. 445–498, 2002.

[23] R. Castelo and T. Koka, “On inclusion-driven learning of Bayesian net-
works,” J. Mach. Learn. Res., vol. 4, pp. 527–574, 2003.

[24] J. Muruzábal and C. Cotta, “A study on the evolution of Bayesian network
graph structure,” in Advances in Probabilistic Graphical Models, vol. 214.
New York: Springer-Verlag, 2007, pp. 193–213.

[25] J. Fan and R. Li, “Statistical challenges with high dimensionality: Feature
selection in knowledge discovery,” in Proc. Int. Congr. Mathematicians,
Madrid, vol. 3, J. V. M. Sanz-Sole, J. Soria, and J. Verdera, Eds. Zürich,
Switzerland: Eur. Math. Soc., 2006, pp. 595–622.

[26] T. Hesterberg, N. M. Choi, L. Meier, and C. Fraley, “Least angle and l1
penalized regression: A review,” Statist. Surv., vol. 2, pp. 61–93, 2008.

[27] B. Efron, I. Johnstone, T. Hastie, and R. Tibshirani, “Least angle regres-
sion,” Ann. Statist., vol. 32, no. 2, pp. 407–499, 2004.

[28] N. Meinshausen and P. Bühlmann, “Consistent neighbourhood selection
for sparse high-dimensional graphs with the Lasso,” Statist. Surv., vol. 2,
pp. 61–93, 2004.

[29] N. Friedman, I. Nachman, and D. Pe’er, “Learning Bayesian network
structure from massive datasets: The sparse candidate algorithm,” in Proc.
Int. Conf. Artif. Intell., 1999, pp. 206–215.

[30] K. Knight and W. Fu, “Asymptotics for Lasso-type estimators,” Ann.
Statist., vol. 28, no. 5, pp. 1356–1378, 2000.

[31] I. Beinlich, G. Suermondt, R. Chávez, and G. F. Cooper, “The ALARM
monitoring system,” in Proc. 2nd Eur. Conf. Artif. Intell. Med., 1989,
pp. 247–256.

[32] J. Binder, D. Koller, S. Russell, and K. Kanazawa, “Adaptive probabilistic
networks with hidden variables,” Mach. Learn., vol. 29, no. 2/3, pp. 213–
244, Nov. 1997.

[33] N. Friedman, “Inferring cellular networks using probabilistic graphical
models,” Science, vol. 303, no. 5659, pp. 799–805, Feb. 2004.

[34] X. Wu, Y. Ye, and K. R. Subramanian, “Interative analysis of gene in-
teractions using graphical Gaussian models,” in Proc. 3rd ACM SIGKDD
Workshop Data Mining Bioinformatics, BIOKDD, 2003, pp. 63–69.

[35] S. Imoto, T. Higuchi, T. Goto, K. Tashiro, S. Kuhara, and S. Miyano,
“Combining microarrays and biological knowledge for estimating gene
networks via Bayesian networks,” J. Bioinformatics Comput. Biol., vol. 2,
no. 1, pp. 77–98, 2004.

[36] A. Wille, P. Zimmermann, E. Vranová, A. Fürholz, O. Laule, S. Bleuler,
L. Hennig, A. Prelić, P. von Rohr, L. Thiele, E. Zitzler, W. Gruissem,
and P. Bühlmann, “Sparse graphical Gaussian modeling of the isoprenoid
gene network in Arabidopsis thaliana,” Genome Biol., vol. 5, no. 11,
pp. R92.1–R92.13, 2004.

[37] H. Li and J. Gui, “Gradient directed regularization for sparse Gaussian
concentration graphs, with applications to inference of genetic networks,”
Biostatistics, vol. 7, no. 2, pp. 302–317, 2006.

[38] I. Tsamardinos, L. E. Brown, and C. F. Aliferis, “The max–min hill-
climbing Bayesian network structure learning algorithm,” Mach. Learn.,
vol. 65, no. 1, pp. 31–78, Oct. 2006.

Diego Vidaurre received the M.S. degree in com-
puter engineering from Rey Juan Carlos Uni-
versity, Madrid, Spain, in 2005. He is currently
working toward the Ph.D. degree at the Departa-
mento de Inteligencia Artificial, Universidad Politéc-
nica de Madrid, Madrid, under the supervision of
Pedro Larrañaga and Concha Bielza.

His first publication appeared in the IEEE
TRANSACTIONS ON NEURAL NETWORKS in 2007.
His areas of interest are probabilistic graphical mod-
els, neural networks, machine learning, and neuro-

science.

Concha Bielza received the M.S. degree in math-
ematics from Complutense University of Madrid,
Madrid, Spain, in 1989 and the Ph.D. degree in
computer science from the Universidad Politécnica
de Madrid, Madrid, in 1996.

She is currently an Associate Professor of statis-
tics and operations research with the Departamento
de Inteligencia Artificial, Universidad Politécnica
de Madrid. Her research interests are primarily in
the areas of probabilistic graphical models, decision
analysis, metaheuristics for optimization, data min-

ing, classification models, and real applications. Her research has appeared in
journals like Management Science, Computers and Operations Research, Sta-
tistics and Computing, the European Journal of Operational Research, Deci-
sion Support Systems, Naval Research Logistics, the Journal of the Operational
Research Society, Bioinformatics, Medical Decision Making, Methods of In-
formation in Medicine, the IEEE TRANSACTIONS ON SIGNAL PROCESSING,
and Expert Systems with Applications and as chapters of many books.

Pedro Larrañaga received the M.S. degree in
mathematics from the University of Valladolid,
Valladolid, Spain, in 1981 and the Ph.D. degree in
computer science from the University of the Basque
Country, San Sebastian, Spain, in 1995.

He is currently a Professor of computer science
and artificial intelligence with the Departamento
de Inteligencia Artificial, Universidad Politécnica
de Madrid, Madrid, Spain. He has published three
edited books and over 50 refereed journal papers.
His main interests are in the areas of probabilistic

graphical models, machine learning, evolutionary computation, bioinformatics,
and neuroscience.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


