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Abstract—The multi-dimensional classification problem is a generalization of the recently-popularized task of multi-label
classification, where each data instance is associated with multiple class variables. There has been relatively little research carried
out specific to multi-dimensional classification and, although one of the core goals is similar (modeling dependencies among classes),
there are important differences; namely a higher number of possible classifications. In this paper we present method for
multi-dimensional classification, drawing from the most relevant multi-label research, and combining it with important novel
developments. Using a fast method to model the conditional dependence between class variables, we form super-class partitions and
use them to build multi-dimensional learners, learning each super-class as an ordinary class, and thus explicitly modeling class
dependencies. Additionally, we present a mechanism to deal with the many class values inherent to super-classes, and thus make
learning efficient. To investigate the effectiveness of this approach we carry out an empirical evaluation on a range of
multi-dimensional datasets, under different evaluation metrics, and in comparison with high-performing existing multi-dimensional
approaches from the literature. Analysis of results shows that our approach offers important performance gains over competing
methods, while also exhibiting tractable running time.

Index Terms—Multi-dimensional classification, problem transformation
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INTRODUCTION

THE goal of multi-dimensional classification is to assign
each data instance to multiple classes. This contrasts
with the traditional task of classification which involves
assigning each instance to a single class. The recently pop-
ularised task of multi-label classification (see [16], [22] for
overviews) can be viewed as a particular case of the multi-
dimensional problem that only involves binary classes,
considered as labels that can be turned on (1) or off (0) for
any data instance. Multi-label classification can be applied
to a variety of real-world problems, but there are many
others only suitable for multi-dimensional classification.
For example, an image can be multi-labelled with a set of
concepts (beach, forest, etc.), but other non-binary informa-
tion such as the month, season, number of objects present,
or the type of subject, are best represented in a context
which allows for multiple classes of multiple values; i.e.,
multi-dimensional classification.

As in multi-label classification, a fundamental goal
of multi-dimensional learning is modelling the relation-
ships (dependencies) between classes and dealing with the
computational complexity that this entails. If classes are
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completely unrelated, it should suffice to create a sepa-
rate (single-dimensional) independent model for each class.
However, this is unlikely to occur.

Although all multi-label problems can be considered as
multi-dimensional problems, the reverse is not true, and
there are some crucial differences meaning that much multi-
label research is not directly applicable.

Quantitatively speaking, for d class variables of K possi-
ble values each?, there are K¢ possible class assignments in
the multi-dimensional setting, compared to 27 possible label
assignments in a multi-label problem. There is often also a
qualitative difference in the class distribution. Typically in
multi-label classification, each class label is used to indi-
cate “relevant” / “not relevant”. Of many possible labels,
any particular label will be not relevant most of the time.
In other words, multi-labelling is sparse and imbalanced.
On the other hand, consider a binary class in a multi-
dimensional problem indicating “male” / “female”; clearly
(specific prior-knowledge of the problem aside), we expect
an even balance of both classes. Note that while of course
this class label is valid for multi-label data, the type of dis-
tribution it entails is less typical of one, being more like a
‘category’ than a ‘label” [16].

In this study, we investigate some existing techniques
from the multi-label literature and combine them with
novel developments suitable for the multi-dimensional
domain. The core contributions of this work are a
novel method for combining classes into super-classes
based on conditional dependencies between classes, and
a mechanism to make the resulting problem tractable

1. This is a simplification. As we explain shortly, each class variable
can take a different number of values.
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Fig. 1. Relationship between different classification paradigms, where d
is the number of class variables and K is the number of values each of
these variables may take.

for multi-dimensional learning settings by reducing the
number of distinct super-class values. Furthermore, our
approach reveals conditional dependencies among classes
and their relative strength (which may be of interest in
data analysis), is equally applicable to multi-label data and,
because it can take any base classifier, it is very flexible and
can be adapted to a wider range of problems than other
methods in the literature.

The rest of the paper is organised as follows. First,
we review multi-dimensional classification and classi-
fiers (Section 2). We then introduce our super-class clas-
sifier (Section 3), a filtering mechanism to make this
tractable (Section 4), and combine these into an ensemble
approach (Section 5). We then carry out an experimental
evaluation and discuss the relative performance of our clas-
sifiers (Section 6), and finally, we draw conclusions and
discuss future work (Section 7).

2 MULTI-DIMENSIONAL CLASSIFICATION

In multi-dimensional classification, we have a number of
training examples from which we wish to build a classifier
(i.e., some function) that associates multiple class values
with each data instance.

The data instance is represented by a vector of m values
X = (x1, ..., Xy), each drawn from some input domain X x

- X X

The classes associated with each data instance are rep-
resented as a vector of d values y = (y1, ...,y from the
domain Y; x - - - x Y where each Vi=1{1,...,Kj}is the set of
possible values for the jth class variable. In the traditional
task of (single-dimensional) multi-class classification, there
is only one such variable associated with a data instance,
ie, (x,y) where y € Y. In multi-label classification, each
|j| = 2 (there are only two classes) for all j=1,...,d (ie.,
binary classification where a label is either relevant or not).
In the multi-dimensional case, each |);| = K; for any positive
integer K;.

It is important to reiterate that we refer to a class
variable as a target or output variable; a kind of multi-
dimensional label that can take a number of class values
(a label, as we refer to it, is basically a binary class
variable).

Fig. 1 displays the relationship between the differ-
ent classification paradigms in terms of d class variables
of K possible values each. Table 1 exhibits a toy multi-
dimensional problem where d = 3.

In multi-dimensional learning we assume a set of train-
ing data of N labelled examples D = {(x", y?)}I¥ |, where
y® is the class vector assignment of the ith example
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TABLE 1
Multi-Dimensional Problem of N Examples and d = 3
Class Variables

[0}

. =

W o)

X ¢ O

) N =1

0 o, -

X: Xo Xs X4 X5/ V2 Yo Y3

(1) 1 22 08 1.8 0 1 1 1

(2) |0 20 07 35 1 2 1 1

3) |0 39 01 12 0 1 2 3

(4) |1 43 05 32 1 2 3 3

(N) |1 42 06 13 1 1 2 2

[5([0 350.83.31[? ? ?]
Suppose that Yy = (M, F}, Yo = {student, doctor, pilot}, and Y3 =
{low, med, high} such that y = (2,1,3) is a female student on a high
income. Each instance is described in this case by five variables X1, ..., Xs. The

goal is to learn to assign class values to test instances x.

and y;’) is the value of the jth class assigned to the ith
example.

We seek to build a classifier h that assigns each instance
x a vector y of class values:

hXy x- - xXy > Y1 x--- XYy

X =Yy,

where h is usually composed of a number of single-
dimensional classifiers I, hy, ... (hence the bold notation).
Thus, classifier h outputs prediction vector ¥ for any test
instance x:

(ﬁl,...,gd) :}A’ = h(x).

2.1 Multi-Dimensional Classifiers

A straightforward method for multi-dimensional classi-
fication is the independent classifiers method (IC); where
one single-dimensional multi-class classifier is used for
each class variable. Hence, IC trains d classifiers h:
(h1, ..., hg), where each

hj:X1><~-~><Xm—>yj

is a standard classifier that learns to associate one of the
values y; € ) to each data instance. The main problem
with IC is that it does not model class dependencies, and
its accuracy suffers as a result [16], [19], [23], [25].

To overcome the limitation of IC, [19] put forth the idea
(in a multi-label context) of classifier chains (CC). As in IC, d
classifiers are used, but linked in a chain such that each clas-
sifier learns the association of that label given the instance
and the previous label associations in the chain, such
that:

hjj){lX...meXylx...XJ}jil_)J)j

ie., §j = hj(x, i1, ..., §j-1) for any test instance X (classifiers
are evaluated in order hy, ..., hy).

This method has demonstrated high performance in
multi-label domains and is directly applicable to multi-
dimensional classification.



1722

A few Bayesian classifier-chain methods have appeared
recently in the literature. A Bayes-optimal classifier chain
was presented by [6]; however this method is intractable
for many real-world problems because it explores all 2¢
paths of the chain (K? paths if it were used in a multi-
dimensional setting). In [25] a Bayesian network approach
is followed according to the dependency relations between
the target variables. This network is learned as a tree struc-
ture d times (where the root node of the jth tree is the jth
class variable). Like other chain-based methods, the predic-
tive performance of this tree depends on the order of the
nodes.

An alternative offered in the multi-label literature to
chain-based learning is the so-called label powerset method;
which we shall refer to as the class powerset method (CP)
since that is more fitting for the multi-dimensional context.
This method considers all possible label combinations (i.e.,
the powerset) as the set of values of a single class. In prac-
tice, it predicts any combination of the training set as an
approximation of the full space:

h:Xy x -+ x Xy — DISTINCT{yD, ..., y™N}
R XX Vg

In other words, the output space is the Cartesian product
of the class spaces, approximated in practice by the distinct
class-combinations in the training set.

Because this method models label dependencies, it often
outperforms IC, but it is usually far too computationally
complex for practical application [19], [23] (even more so
in the multi-dimensional setting where it models up to K“
class combinations). Additionally, CP easily suffers from
class imbalance and overfitting (by not being able to pre-
dict class combinations it has not seen in the training data).
Several multi-label approaches have been introduced to
address these issues, particularly that of running time, such
as RAKEL [23] which creates an ensemble of random label
subsets, and EPS [17] which eliminates some of the less-
frequently occurring label combinations prior to training.
RAKEL could be adapted to multi-dimensional classification
(with changes to its label-voting ensemble process) but can
no longer compete with more modern methods (as shown
in a recent empirical evaluation by [15]); its label subsets
are arbitrary, without leveraging label-dependency infor-
mation. EPS’s label-based (binary-only) ‘subset’ method
is unsuitable for multi-dimensional classification since it
is based on finding subsets y € y & y Ay =y
a concept that does not translate outside of the binary
context.

Compared to the volume and variety of multi-label
classification, there is relatively little work specific to multi-
dimensional classification. We have already mentioned
the relatively recent Bayesian-network approach of [25].
Another Bayesian approach to multi-dimensional classi-
fication is [2], extended in [3] using Markov blankets;
dependencies are modelled among all input and class vari-
ables. In [20], ‘predictive clustering” decision trees are used.
These trees are built with a standard top-down induction
of decision trees, but use a difference variance function,
so that the tree can make multi-dimensional classifications
at the leaves. A newer ensemble version of this approach
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is presented in [14] which has proved highly competitive
in multi-label classification, as reported by [15]. In [24],
decision rules are adapted to make multi-dimensional
predictions.

These methods are of the so-called algorithm adapta-
tion type (adapting probabilistic classifiers, decision trees
and decision rules, respectively); which often excel in
certain domains but are less flexible than problem trans-
formation such as IC, CC and CP, which can take any
base classifier, and thus easily be adapted to the prob-
lem at hand. For example, Support Vector Machines have
been shown to perform very well on many multi-label
problems [19].

In the following sections we present the components of
a multi-dimensional problem transformation method that
we propose, called a Super-class Classifier. Specifically:

1)  Section 3: creating super-classes; Section 3.1: based
on conditional dependency information;

2) Section 4: a filter mechanism to make learning
super-classes more efficient and deal the issue of
sparsity; and

3) Section 5: a multi-dimensional ensemble process for
this classifier.

This method explicitly models class dependencies without
incurring intractable complexity and, unlike many existing
multi-label methods, it models only the strongest condi-
tional dependencies. As we show in later sections, it proves
very competitive.

3 A SUPER-CLASS CLASSIFIER FOR
MULTI-DIMENSIONAL CLASSIFICATION

It is already clear that independent classifiers (IC) do not
leverage class-dependency information, and therefore this
approach can yield poor accuracy. In essence, IC assumes
pylx) = ]_[]”;1 py;ilx), which is clearly violated in the
presence of class dependencies.

In light of this, authors in the multi-label literature have
turned to approaches which explicitly model label depen-
dencies, usually approximations of CP, e.g., [17], [19], [23].
However, these methods superficially tackle CP’s disad-
vantages: its time complexity and tendency to overfit the
data.

Relatively little of the literature has challenged the
assumptions that class dependencies are 1) incomplete
and 2) unequal (although [12], for example, addresses the
issue of ‘local’ rather than global correlations). These two
assumptions are almost certainly valid for most real-world
scenarios. Not all classes are always dependent on all other
classes (as assumed by CP), and not with the same strength.
This has important implications in building a classifier.
Moreover, we must take into account that the training data
is drawn from an unknown distribution. Therefore, depen-
dencies in the data may be inaccurate, (especially in smaller
training sets) and therefore it may even be at best unpro-
ductive and at worst positively harmful to include them in
the model.

We can demonstrate this issue with some toy exam-
ples. Suppose we have a dataset of examples {(x;, yi)}fi v
instances associated with d = 3 target variables Y7, Y, Y3,
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each of K = 3 classes, i.e., |[V1| = [V1]| = [V3] = 3. IC models

hiy X1, ..., &, — {1,2,3}
hy :X1,..., &, — {1,2,3}
h3 :Xl,...,Xm—> {1,2,3}.

CP, on the other hand, models

h:xy, ..., Xy — pisTINCT{y!D, ...y}
Which is the better model? In an extreme case where
IDISTINCT{y "D, ..., y™}| = 3, CP is in most cases the better

option: using N examples to learn 3 classes is likely more
easier than using the same number of examples to learn
3x3 =9 classes (as does IC). However, at the other extreme
where [DISTINCT{y"D, ..., y™}| = K? = 27, cP must learn
27 classes from N examples. IC in this case (which still
only learns 9 classes in total) is far more likely to be the
best model, especially for small N.

Rather than simply deciding between CP and IC for
a particularly problem, we investigate the issue further.
The distribution of our data could be such that (in our
toy example) the dependency between class variables Y7
and Y, is very high (let's say p(Yy 1,Y, 1)
0.5 and p(Y1 3,Y> 3) 0.5), whereas )5 is
independent of Yi,Y> (p(Y3]Y1,Y2) = p(Y3)) with uni-
formly distributed values. In this case the ideal model
will be:

hio Xy, ..., X — DISTINCT{y%, cee yg)}
={1, 1, 3,3} =Nx,I
h3 :Xq, ..., X — {1,2,3} = Vs,
where y12 = (y1,y2). This model uses N examples to

learn 2 bidimensional class values and 3 single-dimensional
class values. This is a super-class classifier. We can define
generally:

hG: = (hSp ey hS\g\)v
where 0 is a partition of classes
0 ={S1,..., S}

that takes these into account. In the above example the
partition of classes is

0 ={(1,2), (3}

The space of any super-class S € 0 is:

Vs = DISTINCT{y(Sl), . y(SN)}

A Vs X ... Xys‘s‘.

Thus S; can be considered an ordinary multi-dimensional
class, and can be learned with any off-the-shelf multi-
class classifier. Another way of seeing it, is that the set
of super-classes can be learned by any off-the-shelf multi-
dimensional classifier (e.g., IC) with |6| classes. A super-
class classifier with a good partition should perform better
than both IC and CP.

Fig. 2 illustrates our case for super-classes with respect
to real-world data. We see that the best performance is
obtained for these datasets neither for IC nor CP, but
rather for some partition of super-classes. Specifically, the
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Fig. 2. Best and worst predictive performances for the Music (top) and
Parkinson’s (bottom) data for |#| = d, ..., 1 classes (ordered by com-
plexity), where |9| = d is equivalent to 1C, and |0] = 1 (super) class is
equivalent to Cp. The values for all possible combinations were obtained
for a single train/test split using SVMs as a base classifier, with the best
and worst displayed on the graph. Note that there is, of course, only a
single combination possible with |#| = 1 and |9| = d. See Section 6.1
for details on CLASS ACCURACY and EXAMPLE ACCURACY.

best performance on the Music data is obtained with
|6| =2 super-classes. The best performance for Parkinson’s
is obtained for |0| = 4.

However, it is also clear that just trying to determine a
good number of super-classes for the partition is not enough.
Rather, it is fundamental to choose a good partition if we
hope to achieve better accuracy than just using either IC
or CP. If we choose a partition randomly, it could perform
worse than both these methods.

Hence, the first objective for creating a super-class clas-
sifier is to find a good partition. The main obstacle is the
sheer size of the space of possible partitions, which for d
classes is the dth Bell number B;, where B; =1 and

d—1

B; = Z(d;l)Bk

k=0

M

for d classes. That is, 203 possible partitions for the rela-
tively modest dimension of d = 6 and already 115, 975 for
d =10.

In the following, we describe a way to score partitions
in multi-dimensional data by measuring conditional class
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dependencies, and then how we use this score to search
through the space of possible partitions.

3.1 Modelling class dependencies

There are two types of class dependence. We can consider
unconditional dependence which looks at the probability of
one class given another irrespective of the associated data
instances, i.e., if:

p(Yj, Yi) #p(Yjpp(Yr)

then there is unconditional dependence between the jth and
kth classes. There is conditional dependence between these
classes given x if:

p(Yj, Yilx) # p(Yi)p(Yk|x)

which can be measured by learning from the data instances.
A good review of dependence (in the multi-label context)
is given in [7].

In the multi-label literature, there already exist
approaches for creating partitions 6 by measuring
unconditional dependence. [21] computes a chi-squared
(x?) score from the relative frequencies of pairs of classes
and proposes a x2-dependency ensemble where a large
number of labelset partitions are generated randomly, and
a score is computed for each partition by summing the x2
score for all pairs in the same set, and subtracting from it
the score of all pairs in different sets:

2

ES S

7(0): :(

o) @

q.r|7S:{q,r}CS

Xﬁk) - (

The indices j, k represent all pairs found together in some
set S € 0, and g, r are all pairs of labels in separate sets (there
are @ pairs in total). The top M partitions (a user param-
eter) are then used to build an ensemble. This method can
evaluate labelset partitions very rapidly because it does not
rely on building and evaluating internal models. However,
this means the method only measures unconditional label
dependence. While conditional and unconditional depen-
dence may be related, there is no guarantee that they are [7],
and ultimately it is conditional dependence which is more
relevant to classification accuracy, since that is where the
data instance dimension is considered.

The authors of [21] also present a method for combin-
ing labels based on conditional dependence; beginning with
IC and then iteratively joining the most dependent pair of
labels (again using Eq. (2)) but this time builds and evalu-
ates the model and accepts it iff its predictive performance
improves on that of the previously accepted model. Because
this method takes into account the instance space (when it
builds the classifier) it gives an indirect measure of condi-
tional dependence. The main problem with this approach is
that it is too slow. In the worst case, this method builds By
possible models (see Eq. (1)) before arriving at a CP model
(a single partition), although, since it searches in a greedy
fashion, it is unlikely to reach the optimal partition at all.
Furthermore, there is no definitive evidence that even a
model with a good partition could compete with an ensem-
ble of several CP-based models (such as [17], [23]) in the
literature.
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A related multi-label approach is offered by [11], where
linear correlation coefficients (rather than x2) are measured
between each pair of classes, and classes are split up into
two groups: independent classes, which are trained using
IC, and dependent classes which are trained all-together
by a single CC classifier. This method assumes that each
label is either independent, or correlated with all other
non-independent labels, and does not consider conditional
dependence.

All these methods are multi-label approaches that do
not deal with multi-dimensional learning and the prob-
lems associated with it, namely a potentially much higher
number of class-value combinations which makes it more
difficult to get a good estimate of any measure of correlation
from finite data.

For constructing a Bayesian network, [26] provides an
efficient way of measuring pairwise conditional dependence
in multi-label data, based on the fact that maximising
the likelihood of the data is equivalent to minimising the
mutual information between the data instances and the
error. We modify this measurement strategy for multi-
dimensional data; formulated as follows.

Given training examples {(x(i),y("))}fi ; and IC classi-
fier h; we can obtain the vector of errors for the ith
example as:

e =1y h(x™) ®)
€ ey = Ay ), I ey,

where € € {0, 1}¢ (I(a, b) is an indicator function returning
1if a =b and 0 if a # b). We can then say that the jth and
kth classes are conditionally dependent iff the errors €; and
are not independent on each other.

The original Bayesian-network inspired multi-label
method as presented by [26] measures three types of errors
for each label: false positive (1 predicted instead of 0),
false negative (0 predicted instead of 1), or the correct
label predicted (no error). This means an error space of
3 x 3 for each pair of labels j, k. In a multi-dimensional
setting, this would correspond an error space of K; x K
(including the non-error, i.e., the correct classification). This
means many degrees of freedom and, clearly, without very
large amounts of data, it will be difficult to get good
estimates of the dependency between classes. To make
the method more appropriate for multi-dimensional data
we instead consider the three types of errors e = 1,2,3
for each pair of class values j from Yj, and k from Y,
and calculate the measured and expected frequencies for
each e as

e measured frq. f.(j,k) expected frq. E.(j,k)
N (i) (G N (i N (i
0 % 3‘\?1 5;)612) ' %Zi:l 65)'%2%:1 el(c)
LoyXhg o4)  1-(BGk) +BGE)
N i) N i N i
2 % i=1 '€ T % D i1 e % > im1 T,

where & is the logical exclusive OR operation, and — is the
logical negation.



READ ET AL.: MULTI-DIMENSIONAL CLASSIFICATION WITH SUPER-CLASSES

Algorithm 1 CONDDEP(h, D) Obtaining a conditional depen-
dency matrix
Input:
o trained IC classifier h = (hy,...,hq)
o test instances D = { (X9, yO)A (with true classifica-
tions); N = |D|
Algorithm:
e Fori= 1,...,N:
1) calculate each error € = I(y® h(x(®)) as in
Eq. 3)
o For all pairs {(j, k)};j <k,j €V, ke Vi
1) calculate x7,, as in Eq. (4)
2) offset X7, ¢ X7, — X¢ as in Eq. (5)

Output:

e X2 the matrix of all pairwise conditionally dependent
significance values

We can then calculate the conditional-dependence chi-
squared statistic for these three types of errors:

S (fo(j. k) — Ec(j. k))?
X',k = Z B 3
! ee{0,1,2} Ee(j. k)

4)

where we add the bar to the notation to distinguish the fact
that this is a conditional dependence score (unlike Eq. (2)
from [21]).

Finally, similarly to [21], we offset each statistic with the
critical value:

K< X — X6 ®)
where we use )'((23 as the critical value for two degrees of
freedom with a p-value of 0.10. If % > 0 then the class
values j and k can be considered conditionally dependent.

Algorithm 1 describes the process of creating a matrix
of pairwise conditionally-dependent significance values x2
for all class pairs.

Given the )_(2 statistic for all of class pairs, we can calcu-
late a score for any class-set partition 0 = {Sq, ..., Sjg|} like
in Eq. (2).

The score we have obtained here is based on the con-
ditional label dependence, as we have taken into account
the input space. This calculation is much faster than other
methods that measure conditional class dependencies such
as building and evaluating a model for each 6 (as in [21]).

This calculation is fast enough to be able to try many
different partitions, but the potentially huge number of pos-
sible partitions means that it will still be infeasible to search
through them iteratively in many cases. On the other hand,
a random search (as suggested by [21] for unconditional
dependencies) does not take advantage of the relationship
between partitions: if 8 = {(0, 3), (2), (1)} is good, then it
makes sense to next try, for example, 6’ = {(0, 3, 2), (1)} or
0" =1{0,3), 2, D}

Therefore, we use a simulated annealing scheme [13];
starting with a random partition 6, and progressively
mutating it over a series of steps, and gradually reducing
the probability for “uphill” moves. To mutate a partition

1725

0={S1,...,Sjg)} into 6’ (i.e, a Markov step within the
partition space) with p(6’|6), we select some j € U{1, ..., d}
and some [ € U{1,...,10]}; if j € S; then we move it into a
new set {j}, else we move j into the existing set S;.

Simulated annealing is not guaranteed to find a global
optimum, but in our experience it will usually find a
good local optimum in this scenario. Furthermore, through
empirical exploration we found that usually there are many
(although quite different) good possible partitions, and that
it is much more effective to make use of several good
partitions than to invest in trying to find a single good one
that may be slightly better. This leads to the introduction
of an ensemble scheme, which we present in Section 5.

The most expensive part of Algorithm 1 requires 3(d(d —
1)/2) operations over the error data (each of the 3 types
of error is assessed for all pairwise combinations. Due to
the computational simplicity of these operations, even for
relatively large values of 4 (100 or so), this will not present
an obstacle (and only requires storing (d(d — 1)/2) values)
compared with the relatively much higher complexity in
building a classifier.

As an optional second part to the algorithm, we can fine
tune the partition # with internal validation; based on the
idea that an actual trained model will provide the most
accurate gauge of final performance. We already explained
that internal building and validation is too slow to explore
the partition space in most cases, but we can assume that
our simulated annealing scheme brings us close to a maxi-
mum (or at least a good local maximum), and uses a much
smaller number of iterations to ‘fine tune’ the partition. In
this phase we mutate the set in the same way as before, but
this time we use the internal train/test split to build and
evaluate the model, and we always accept it if it is better
than the previous.

Algorithm 2 details the full algorithm for creating a
super-class classifier (SC) from a given training set. Any
multi-dimensional classifier can be used to learn the super-
classes as if they were ordinary classes. IC is an obvious
option, but any multi-dimensional method can be applied,
such as a classifier chain (CC). T 4+ T’ is the total number
of partitions we look at. If T" > 0 (in the second step using
internal validation), then we denote this as SC’.

The super-class method should perform better than
either IC or CP. However, because of our method’s close
relation to CP (training several classes as a single class) it
may suffer from some of the same problems, depending
on the size of the super-classes, such as overfitting, and
running-time issues. In the following section we introduce
a filter for any multi-dimensional dataset (or class-subset
thereof) which improves both the predictive and time
performance of CP-like methods, and makes super-class
classifiers more applicable to many real-world problems.

4 A NEAREST-NEIGHBOUR REPLACEMENT
FILTER FOR MULTI-DIMENSIONAL TRAINING
DATA

A major issue with super-classes, particularly in the multi-

dimensional domain, is the number of possible values they

can take. Combining two classes will create up to K; x K
possible values. This means that some of the disadvantages
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Algorithm 2 Super-class classifier (SC) construction; produc-
ing hy parameterised by 6
Input:
e A training set D = {(xV),y@)}N
o A function p(#’|0) which mutates 6
o A function 7(f) which evaluates § according to x?, see
Eq. (2) . ~
o A function g(hy, D) which evaluates hy on D (required
only when 77 > 0)
Algorithm:
¢ Create internal train Dygin C D and test Digst C D sets
(where D = Dyrain U Dhest)
o Train a standard IC classifier h on Dyygin
o Create matrix X2 = CONDDEP(h, Diegt)
o Randomly generate an initial partition 6
o fort=1,...,T:
D 0"~ p(6'|0)
2) draw a uniform random number u ~ U([0, 1])
3) if min [1,exp(\7r(o') — 7)) > w

¢
— 0+ 0"/ accept
e iIfT">0
1) Train hy on Dgin
o fort=1,...,T"
1) ¢~ p(0]0;)
2) Train hy, on Dygin
3) if q(hg, Diest) > q(hg, Drest):
— hy < hy // accept
e Train hy on D
Output:
o Super-class classifier hy

pertaining to CP are still relevant: fewer examples per value
which leads to higher complexity, overfitting, and difficulty
in learning a concept.

To make training super-classes feasible, we use a nearest-
neighbour replacement filter (NNR) to reduce the number of
values associated with each class in the training data. A
related mechanism was introduced in [17] called “pruning
and subsampling”, but this is only suitable for multi-label
data. Here we develop a more advanced version which is
suitable for multi-dimensional data.

The NNR filter can be applied on any multi-dimensional
dataset D, or a column-wise class subset of this original

dataset, i.e., having classes S C {1, ..., d}. However, for sim-
plicity and generality, we just refer to D in the following
explanation.

The idea of NNR is straightforward: identify all p-
infrequent class-values and replace them with their n-most-
frequent nearest neighbours.

Definition 1. The frequency of a class-value y in D is:

N .
Z I(y, y?).
i=1
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Definition 2. A class value y is p-infrequent in D if:

N .
DIy y =p.
i=1

Algorithm 3 outlines the NNR filter. Basically, it replaces
any examples (x,y) that have an infrequent y, with exam-
ples (x,y1), ..., (X, y») where each y; is frequent in the data
and has a Hamming distance from y by at most 1. Each of
these new examples is given a weight of % (not shown in
the pseudo-code).

This means that noise is introduced at a cost of reducing
the number of class values. However, we expect classifica-
tion to improve, since we introduce only one bit of noise
for each new example created and, as we explain in the
following section, some noise is not necessarily a problem
and can even be beneficial. That is to say, the increased
learning ability of the classifier by having a higher ratio
of data instances to class values will counteract the small
amount of noise while at the same time, the complexity of
the classifier is greatly reduced.

Fig. 3 shows the effect of p and n in practice. With p, the
number of instances stays relatively constant, whereas the
number of class values drops rapidly (and with it — running
time). In this case, accuracy stays constant or increases until
around p = 7 and best results are obtained between p = 3
and p = 6. Any value n > 0 (for fixed p = 3) exceeds the
original accuracy, whereas the effect on running time is less
influential: It is negligibly increased until n > 4 (thereupon
the maximum number of possible neighbours is reached).
In this example it is clear that NNR is beneficial, both in
terms of speed and accuracy.

It is possible to choose p to control the number of dis-
tinct class values (that have a frequency of 1). And thus
enforce a maximum complexity of this number instead of
O(min(N, K%)). However, in practice, we have not found
the need for this, since even small values of p will greatly
reduce the number of classes and thus the running time of
whichever base classifier is used.

Recall that in the super-class context, we have a partition
of the class space 0 = {S1, ..., S5/} where each S represents
a set of classes. Then we define the dataset containing only
these classes as Ds = {(x?, y(s'))}fi 1- This is the dataset used
to build hg. Before training each individual super-class clas-
sifier we first pass the data through NNR prior to training;
such that for each S € 6:

hs:Xi, ..., Xy — DISTINCT(NNR({yS, ..., y &), p, m)}

%y51 X--~Xy5|5|v (6)

where NNR(D, p, n) is the set of all y from a dataset pro-
cessed by NNR (Algorithm 3). N’ is the number of examples
in the output dataset D’, not necessarily the same as N.
Given some super-class classifier hy = hg,,..., hg, and
data D, we train each hs on data NNR(Ds, p, n).

There are possible scenarios where NNR will appear to
have difficulty. Referring back to the toy dataset in Table 1,
imagine that we have a super-class Y 3 (modelling income
and profession together as a single variable). If there is a
single entry {student, high}, NNR with p =3,n =1 will
replace it with a new example, such as {student, low}.
This has clearly introduced the wrong concept. However
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Algorithm 3 The NNR filter (NNR). Examples with p-
infrequent class combinations are replaced with their n-most-
frequent nearest neighbours in a dataset; where DIST is a
Hamming distance function: DIST(y',y) = Z?Zl I(y5,y5)-

Input:
o A dataset D
o p parameter defining the p-frequency
o n parameter defining the number of nearest neighbours
to use
Algorithm:
1) build ¢(y) := a map which returns the frequency of y
in D
2) D'+ {}
3) for (x,y) € D:
e if ¢(y) <p (ie.,y is p-infrequent in D):
- V= (yllw"vy:))
where Vy’ : 3(x’,y’) € D,Di1sT(y,y’) < 1 (is
in D and like y) and
where V1 < ¢ <7 < o:¢(y;) > é(y,) (sorted
by frequency)
- V « Vj., take the top n elements
- VyeV:D + DUy
o else:
- D+ DU(x,Yy)
Output:
o Dataset D’

we probably have lots of examples for {student, low} (we
are guaranteed to have at least p), and the wrong informa-
tion will just become noise. If we, for some reason, had
many examples of {student,high}, it would not have
been pruned in the first place!

If a rare kind of instance occurs in the test data, it is still
possible to make a correct classification by way of a voting
scheme. We introduce such a scheme in the following sec-
tion, based on the principles of the well-known bootstrap
aggregation (Bagging) procedure [4].

As a final remark on NNR, note that it is more suited to
super-class partitions than not having partitions: the more
dependent class variables are on each other the more likely
the super-class values are to pertain to a few core combi-
nations, and the super-class partitions are based precisely
upon class dependence.

5 AN ENSEMBLE OF SUPER-CLASS
CLASSIFIERS

Ensembles are known for increasing the power of base
classifiers, and have been used prolifically in the multi-
label literature (e.g., [18], [23], [25]). They are also ideal for
reducing overfitting when the base classifier is particularly
affected by relatively small variations in the training data.
This is the case in our super-class methods, with respect
to class dependencies ( ¥?), as well as our NNR filter with
respect to the frequency of certain class-value combinations.
In particular, we cannot expect a single super-class partition
to represent all the class dependencies in a dataset; how-
ever an ensemble of these, each with a slightly different
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Fig. 3. Top: NNR on the Parkinson’s dataset for varying values of p
(horizontal axis), for n = 2. At p = 0 NNR is disabled; all other
values (accuracy, running time, etc.) are plotted as proportional to those
obtained at p = 0. In this example, we consider a single super-class
of all 5 class variables. Bottom: same, but for varying values of n
(horizontal axis), for p = 3.

partition, can arrive much closer to this goal. Hence, we
look at ensembles of super-classes classifiers (ESC).

A Bagging ensemble [4] involves creating M new train-
ing sets; each training set is formed by sampling with
replacement from the original training data N’ times (typ-
ically N" = N, but not necessarily so). That is to say, some
examples will probably be duplicated in the new dataset
of N examples. NNR, as described in the previous section,
already samples with replacement (whenever class combi-
nations are infrequent) and thus we already benefit from
the advantages associated with Bagging. For this reason, we
only take a random cut of the original training set for each
ensemble member without replacement, knowing that NNR
will duplicate some examples. We take specifically 67%;
but note that this number is not directly in relation with
the 63.2% expected number of duplicate examples under
Bagging where N = N, rather it is our experience that
this number (or thereabouts) tends to yield approximately
N ~ N’ in practice, as in Fig. 3.

It also common in ensembles to introduce variation into
the individual models. In our case, we use a different ran-
dom seed (and thus start with a different initial partition)
for each super-class; and in NNR we use model parameter
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p~Ufl,...,5} (a random value between 1 and 5 inclusive
for each model).

Each model of a multi-dimensional ensemble classifier
returns a probability mass distribution for each jth class,
for any test instance x. For the mth model and the jth class,
we get a vector, which in the probabilistic case is

such that w](? = p(Y; = v|x) (or approximation thereof, if
the base classifier is not probabilistic), i.e., the probability
that the jth class takes value v € {1,..., Kj} according to
the mth model. As the final classification for the jth class
for a test instance, we simply assign the value which m =
1,..., M models, to predict

M
- (1m)
y] = argmax Z w]-gv .
v=1,..., Kj m=1

This voting process is particularly helpful for offsetting
effects of any noise introduced by NNR in our super-
class scheme. Although NNR may purge a low-frequency
example from the training data, the ensemble can recover
this combination for a test instance by votes for any of
its parts. Continuing the example at the end of Section 4,
{student, high} could be recovered by strong voting for
combinations involving either of these class values.

That said, this prediction-phase is a generic procedure
for any multi-dimensional ensemble method. It is similar
to probabilistic method that [1] found to work well for
Bagging ensembles in a single-dimensional context.

6 EXPERIMENTS

We conduct an empirical evaluation on a range of real-
world datasets, comparing our methods with the baseline
independent classifiers (IC) as well as competitive meth-
ods from the literature, under two contrasting measures
of predictive performance, and an analysis of running
times.

We used the MEKA framework (http://meka.source
forge.net): an open-source Java framework based on the
WEKA framework for machine learning [10], adding sup-
port for multi-label and multi-dimensional classification
and evaluation. The source code for all methods in this
evaluation will be made available within MEKA. We also
used the CLUS framework for one of the algorithms from
the literature, although we ported these results into MEKA's
evaluation.

In all experiments we randomise the order of instances
in the datasets and carry out 5-fold cross-validation.

6.1 Evaluation Metrics

We evaluate the predictive performance of methods using
two metrics; example accuracy, which considers a vector of
class values as a single classification (that can either be fully
correct or incorrect):

N
1 o
S 1@, y®
EXAMPLE ACCURACY = N — I(y Yy )
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TABLE 2
Sample of Multi-Dimensional Datasets and Their Associated
Statistics: Number of Examples N, Number of Classes d,
Number of Values per Target K, and Number of Attributes m

N d K m
Solar Flare 323 3 5 10z
Bridges 107 5 2-6 Tz
Thyroid 9172 7 2-5  7Tn, 200, 1z
Parkinson’s 488 5 3 18n, 1b, 39z
Music 593 6 2 2n
Scene 2407 6 2 294n
Yeast 2417 14 2 103n
Enron 1702 53 2 10016
TMCO07 28596 22 2 5006

n, b, and = indicate numeric, binary, and nominal attributes, respectively.

We have separated the multi-label datasets (where K = 2) with a horizontal line.

and class accuracy, which is the average accuracy of each
class (scored separately):

d N
1 1 ~G) ()
CLASS ACCURACY = 3 El N ‘21 I(y]- Y ),
= 1=

where I(a, b) is the indicator function as used also earlier.

A relatively high result for EXAMPLE ACCURACY means
that class dependencies are being taken into account. On the
other hand, a relatively high result for CLASS ACCURACY
means that each dimension is being predicted well indi-
vidually, but the combinations of all predicted classes may
contain conflicting results. Generally, we would expect IC
to perform relatively better under CLASS ACCURACY, since
EXAMPLE ACCURACY tends to reward CP-like methods. This
is exactly what we saw in Fig. 2.

Many evaluation metrics commonly used in multi-label
evaluation (such as F-measure metrics) are not suitable for
the multi-dimensional domain where outputs are not nec-
essarily binary, nor can be thought of as being ‘retrieved’
or not.

We also consider running time (training testing time) in
seconds. All experiments are run on Intel Xeon 3.16GHz
CPUs allowing up to 2GB of RAM in each case.

6.2 Datasets

Table 2 displays the datasets we use. Solar Flare (categoris-
ing solar flares), Bridges (estimating bridge properties from
certain constraints) and Thyroid (estimating types of thy-
roid problems given patient attributes) are from the UCI
collection [9]. Parkinson’s (determining the classes of dis-
abilities incurred by Parkinson’s patients) was used by [3].
Unfortunately, there are not yet many publicly available
standardised multi-dimensional datasets, so we boost our
collections with some of the datasets most commonly used
in the multi-label literature: Music (labelling tracks with
emotions), Scene (labelling images with scene concepts),
Yeast (genes are associated with multiple biological func-
tions), Enron (Labelled e-mail messages from the Enron
corpus), and TMCO7 (aviation reports diagnosed with mul-
tiple problems); used and described in, for example, [6],
[17], [19], [23].
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The three target attributes of Solar Flare correspond to
types of solar flares seen in a 24 hour period. In Bridges,
bridge design properties are predicted based on speci-
fication properties. Thyroid and Parkinson’s are medical
datasets. In Music, pieces of music are associated with vari-
ous emotions. Scene is an image annotation problem. Yeast
is a biological dataset where genes are associated with
(potentially multiple) biological functions.

6.3 Methods and Parameters

From the novel material in this paper we setup the follow-
ing methods:

1) ECP: an ensemble of 10 class-powerset classifiers,
using NNR for tractability

2) ESC: an ensemble of 10 super-class classifiers with
NNR, T = 1000, T' =

3) ESC": an ensemble of 10 super-class classifiers with

NNR, T = 1000, T" = 10
all with p ~U{1,...,5} and n = 2 for each instantiation of
NNR, with a cut of 67%.

We compare to [25]'s ensembles of Bayesian classifier
chains (EBCC); [14]'s EPCT: a Bagging ensemble of pre-
dictive clustering decision trees; and to ECC (ensembles
of classifier chains) from [19]. Additionally, we compare
to some well-known methods from the multi-label litera-
ture (where appropriate, on the multi-label datasets): [23]'s
RAKEL and [5]’s Instance-Based Logistic-Regression method
(IBLR).

A variant of EPCT and ECC (which we mentioned in
Section 2.1) were recently rated among the highest perform-
ing in the multi-label literature by the extensive empirical
evaluation of [15]. As it happens, both methods are directly
applicable to multi-dimensional data, and thus make an
ideal comparison for our experiments. EBCC is one of the
few methods focussing exclusively on multi-dimensional
data.

Note that [14]'s PCT method performs best under a ran-
dom forest paradigm, at least in the comparison of [15].
We use a standard bagging scheme so as to compare
directly with the other ensemble methods in comparison
(which are all bagging schemes). In any case, we found
that the difference between bagging and random forest
is marginal compared to difference between the differ-
ent methods used in our comparison (see the results and
following discussion).

Additionally, by comparing to ECP, we will be able to see
if our super-class methods (ESC and ESC’) are justifiable;
and furthermore, ECP provides a good approximation of
the baseline class powerset method CP, which is otherwise
not a viable option due to its computational complexity.

We use both Support Vector Machines (SVMs) and Naive
Bayes as the base multi-class classifier? on all problem-
transformation methods. Note that this naturally excludes
the algorithm-adaptation methods EPCT (decision trees)
and IBLR (instance-based logistic regression).

2. Using the implementations provided in the WEKA framework
with default parameters; binary SVMs are made multi-class capa-
ble with a pair-wise implementation — it is recommended to tune
parameters for maximum performance.
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Fig. 4. Score (see Eq. (2)) of the partition in selection at each step t =
1,..., T of our simulated-annealing scheme, on the Music data. Note
that the partition space is explored more liberally at first, before settling

in to a maximum.

We use M = 10 models in each ensemble (as found to
work well in, for example, in [19]), except for EBCC where
the authors specifically recommend using d models (where
the j-th class node is the root in the j-th model). We use the
probabilistic voting scheme described in Section 5.

6.4 Results

Tables 3 and 5 display the mean results for predictive
performance with the rank for each method per dataset, and
their average rank over all datasets, for multi-dimensional
and multi-label datasets respectively. We conducted the
Nemenyi test [8] (with a significance level of p = 0.1) on
these rankings, and display the results as a > b, indicating
that algorithm 4 is found to have statistically better per-
formance than algorithm b. Table 4 displays the average
running times of all methods.

Fig. 4 shows the progress of one of ESC’s model’s sim-
ulated annealing search on a particular run on Music. We
remark that ESC’ updated the partition twice out of the
T' = 10 additional internal validation steps.

Table 6 illustrates some of the individual contributions
of the different steps in our approach.

Table 7 shows the partitions found by a SC and sc’
model for five cross-validation folds of the data, on a
selection of datasets.

6.5 Discussion

Both ESC and ESC’ obtain the best average ranks over all
evaluation measures, and they consistently outperform the
baseline IC and the competing methods (an improvement
which is statistically significant in several cases).

ECP is arguably the third-strongest method. This tells us
that our NNR mechanism works well, although our super-
class methods provide better — and, at least for ESC, faster
— performance. The exceptions to this are on Solar, Music
and Parkinson’s; but of these, two are much faster under
ESC than ECP.

Our methods regularly outperform methods from the lit-
erature (ECC, EBCC, EPCT) on all but two datasets; EBCC
is best on Bridges and EPCT is best on Thyroid. The
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TABLE 3
Average Results for Multi-Dimensional Datasets Over 5-fold Cross-Validation with Rankings

(a) EXAMPLE ACCURACY - SVMs

Dataset BR ECC EBCC EPCT ECP ESC ESC’
Solar 0.817 (2) 0.808 (6) 0.817 (2) 0.796 (7) 0.820 (») 0.817 (2) 0.817 (2)
Bridges 0.186 (3) 0.159 (5) 0.168 (4) 0.120 (7) 0.131 (6) 0.187 (2)  0.206 (%)
Thyroid 0.781 (7) 0.785(2) 0.782(5) 0944 (») 0.782(5) 0.784 (3) 0.784 (3)
Parkinson’s  0.164 (6) 0.172 (5) 0.154 (7) 0.201 (4) 0.224 (2) 0.234 (») 0215 (3)
avg. rank 4.50 4.50 4.50 4.75 3.50 2.00 2.25
(b) CLASS ACCURACY - SVMs

Dataset BR ECC EBCC EPCT ECP ESC ESC’

Solar 0919 4) 0917 (6) 0919 @) 0912 (7) 0924 (») 0923 (2) 0.923 (2)
Bridges 0.705 (x) 0.688 (5) 0.689 (4) 0.678 (6) 0.648 (7) 0.705 (») 0.703 (3)
Thyroid 0.966 (2) 0.966 (2) 0.966 (2) 0.990 (x) 0.966 (2) 0.966 (2) 0.966 (2)
Parkinson’s  0.677 (6) 0.696 (5) 0.670 (7) 0.702 3) 0.702 (3) 0.718 (x)  0.715 (2)
avg. rank 3.25 4.50 4.25 4.25 3.25 1.50 2.25

(c) EXAMPLE ACCURACY - NAIVE BAYES
Dataset BR ECC EBCC EPCT ECP ESC ESC’
Solar 0.777 (6) 0.786 (5) 0.774 (7) 0.796 (») 0.792 (2) 0.789 (3) 0.789 (3)
Bridges 0.197 (5) 0216 (») 0.216 (») 0.120 (7)  0.149 (6) 0.216 (») 0.216 (»)
Thyroid 0.587 (6) 0.625 (5) 0.581 (7) 0.944 (») 0.821 (2) 0.818 (4) 0.819 (3)
Parkinson’'s  0.195 (6) 0.199 (5) 0.193 (7) 0.201 (4) 0.209 (3) 0.211 (») 0.211 (%)
avg. rank 5.75 4.00 5.50 3.25 3.25 2.25 2.00
(d) CLASS ACCURACY - NAIVE BAYES

Dataset BR ECC EBCC EPCT ECP ESC ESC’

Solar 0.893 (5) 0.888 (6) 0.878 (7) 0912 (%) 0911 (2) 0910@3) 0.905 (4)
Bridges 0.718 (2) 0.712 (3) 0.722 (») 0.678 (4) 0.663 (5) 0.663 (5) 0.663 (5)
Thyroid 0.925 (6) 0.935(5) 0923 (7) 0990 (») 0970 (2) 0.969 (4) 0.970 (2)
Parkinson’s  0.677 (5) 0.676 (6) 0.642 (7) 0.702 (x) 0.700 (2) 0.696 (4)  0.697 (3)
avg. rank 4.50 5.00 5.50 1.75 2.75 4.00 3.50

Best values are marked with a (x).
TABLE 4

Average Running Times, in Seconds, for All Problem-Transformation Methods Under SVMs Except Enron (C4.5 Decision Trees)
and TMCO07 (Naive Bayes); and EPCT

Ic ECC EBCC EPCT ECP ESC ESC’
Solar 0.2 1.1 1.3 0.1 0.8 4.3 17.8
Bridges 0.3 2.1 2.5 0.1 2.7 17.2 75.0
Thyroid 353 189.2 196.8 3.7 136.2 155.5 730.7
Parkinson’s 2.0 10.1 17.3 04 65.5 19.8 91.3
Music 0.3 2.8 0.5 1.2 30.1 8.2 65.9
Scene 17.2 54.5 90.2 19.3 232 52.5 195.7
Yeast 9.4 79.0 28.1 130.0 325.2 119.5 457.6
Enron 95.2 6135 203.2 102.3  5902.7 3400.2 21610.7
TMCO07 333 2990 11855 152.5 538.8 869.4 5091.9

Fastest times are marked in italics.

classification paradigm has a big effect on predictive per-
formance depending on the problem domain. Decision
trees are clearly the better option for the Thyroid data,
and Naive Bayes on Bridges. The algorithm adaptation
methods (EPCT, IBLR) perform relatively strongly against
the transformation methods when the latter employ Naive
Bayes; as is to be expected. If SVMs are not used in the
problem-transformation methods, other methods such as
EPCT appear much more attractive, particularly in view of
its good time performance. This aside, other trends between
Tables 3 (SVMs) and 5 (Naive Bayes) are the same: the ESC

methods perform strongly, and consistently outperform the
classifier-chains methods.

As a side note, it is interesting to see the difference
between classifier-chain and super-class methods on sev-
eral of the datasets (e.g., Enron, TMC07) under Naive Bayes
(the chain methods performing noticeably poorer).

ESC/ improves on ESC in some cases; thus the extra
computational time invested in fine-tuning the class par-
titions by this method can offer some benefit. On the other
hand, ESC’ does not always improve on ESC, for exam-
ple on the Parkinson’s data and under CLASS ACCURACY
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TABLE 5
Average Results for Multi-Label Datasets over 5-fold Cross-Validation with Rankings

(a) EXAMPLE ACCURACY - SVMs

Dataset BR ECC EBCC EPCT RAKEL IBLR ECP ESC ESC’

Music 0270 9) 0.324(5) 0323 (6) 0313(8) 0345((2) 0316(7) 0343 (3) 0.338(4) 0.356 (%)
Scene 0.527 (9) 0.641 (4) 0567 (7) 0.565 (8) 0.606 (6) 0.637 (5) 0.698 (3) 0.702 (2) 0.705 ()
Yeast 0.149 9) 0204 (4) 0.177(7) 0.153(8) 0.184 (6) 0.199 (5) 0.248 (3) 0.256 (x)  0.256 (%)
Enron 0.108 (8) 0.112 (6) 0.117(5) 0.124 (4) 0.109 (7) 0.084 (9) 0.166 (%) 0.149 (2) 0.149 (2)
TMCO7 0.287 (6)  0.302 (2) DNF 0.249 (7) 0290 (4) 0.233(8) 0.301 (3) 0.288 (5) 0.306 (%)
avg. rank 8.20 4.20 6.25 7.00 5.00 6.80 2.60 2.80 1.20

Nemenyi signif.: ECP>BR; ESC>BR; ESC’ »BR; ESC’ »=EBCC; ESC’ »EPCT; ESC’ >=IBLR;
(b) CLASS ACCURACY - SVMs

Dataset BR ECC EBCC EPCT RAKEL IBLR ECP ESC ESC’

Music 0.809 (7) 0.811(6) 0.814 (3) 0.806 (9) 0.818 (x) 0.812(4) 0.809 (7) 0.812(4) 0.816 (2)
Scene 0.894 (8) 0.905(5) 0.893(9) 0900 (7) 0903 6) 0910@) 0917 (») 0916 (2) 0916 (2)
Yeast 0.801 (2) 0.798 (5) 0.793 (8) 0.789 (9) 0.797 (6) 0.799 (4) 0.796 (7)  0.801 (2) 0.802 (%)
Enron 0.939 (7) 0947 (5) 0939 (7) 0951 (3) 0940 (®6) 0.939(7) 0950 4) 0953 (») 0.953 (%)
TMCO7 0.942 (x)  0.872 (8) DNF 0931 (6) 0939 (2) 0929 (7) 0937 3) 0935() 0.936 (4)
avg. rank 5.00 5.80 6.75 6.80 4.20 5.20 4.40 2.80 2.00

(c) EXAMPLE ACCURACY - NAIVE BAYES
Dataset BR ECC EBCC EPCT RAKEL IBLR ECP ESC’ ESC
Music 0.189 (9) 0214 (7) 0211 (8) 0313 (2) 0.248 (6) 0316 (») 0.287 (4) 0.250 (5) 0.294 (3)
Scene 0.171 (9) 0.179(7) 0.173 (8) 0.565 (2) 0.524 (6) 0.637 (») 0.558 (3) 0.549 (5) 0.550 (4)
Yeast 0.096 (9) 0.113 (6) 0.101 (8) 0.153(5) 0.110 (7)  0.199 (3) 0.205 (2) 0.196 (4) 0.206 ()
Enron 0.002 (9) 0.005 (7) 0.003 (8) 0.124 (4) 0.009 (6) 0.084 (5) 0.166 (») 0.153 (3) 0.154 (2)
TMCO7 0.121 (7)  0.119 (8) 0.116 (9) 0.249 (4) 0.212(6) 0.233(5) 0.309 (») 0.308 (2) 0.308 (2)
avg. rank 8.60 7.00 8.20 3.40 6.20 3.00 2.20 3.80 2.40
Nemenyi signif.: EPCT>BR; IBLR>BR; IBLR>EBCC; ECP>BR; ECP>EBCC; ESC>BR; ESC>EBCC;
(d) CLASS ACCURACY - NAIVE BAYES

Dataset BR ECC EBCC EPCT RAKEL IBLR ECP ESC ESC’

Music 0.743 (9) 0.749 (7) 0.746 (8) 0.806 (2) 0.771 (6) 0.812 (%) 0.779 (3) 0.778 4) 0.778 (4)
Scene 0.759 (9) 0.764 (7) 0.760 (8) 0.900 (2) 0.877 (3) 0910 (») 0.870 (4) 0.867 (5) 0.867 (5)
Yeast 0.699 (8) 0.702 (7) 0.694 (9) 0.789 (2) 0.739(6) 0.799 (») 0.774 (3) 0.773 (4)  0.769 (5)
Enron 0.809 (8) 0.824 (7) 0.809 (8 0951 (») 0926 (6) 0939 (5) 0948 (2) 0944 (3) 0943 4)
TMCO7 0.879 (7) 0.872(9) 0.874 (8) 0.931 (4) 0921 (6) 0929 (5) 0.937 (») 0936 (3) 0.937 (%)
avg. rank 8.20 7.40 8.20 2.20 5.40 2.60 2.60 3.80 3.80

Nemenyi signif.: EPCT>BR; EPCT>ECC; EPCT>EBCC; IBLR>BR; IBLR>EBCC; ECP>BR; ECP>EBCC;

Best values are marked with a (x).

(the latter case is not surprising since the extra inter-
nal step of ESC’ is set to maximise EXAMPLE ACCURACY,
although this could obviously be changed). Using internal
folds of cross-validation (rather than a simple train/test
split) may give improved results for ESC’, although this
would lead to longer training times, and this method is
already the slowest overall. It is arguable that the parti-
tion choice of ESC is sufficient and, for most real-world
applications, ESC’ is probably not worth the extra com-
putational expense. This is also clear from Table 7: the
partition found by SC is typically minimally changed by
the second-stage internal-validation iterations of SC’. This
is of course a positive result; it tells us that our CONDDEP
method is an efficient and effective way to model con-
ditional dependencies and create partitions based upon
them.

EPCT obtains very fast running times, since each ensem-
ble model is only a single tree model for all classes. The
difference is particularly noticeable on the larger datasets.

ESC can perform slower than ECP, however, the fact
it can also be faster is impressive considering the extra
overhead carried out by ESC: it builds an IC classifier
internally for each ensemble model, calculates all pairwise
dependency significance values and uses them to score 1000
random partitions. It is clear, then, that our super-class
approach can have a significant effect in reducing time com-
plexity. On Yeast we see that the time taken by ESC is only a
third of that of ECP, and on Enron we also see an important
reduction.

Table 6 provides a detailed view of the individual con-
tributions to our final approach. We see that a random
partition is worse in this case than just using CP (as
expected). However, forming good partitions recovers this
lost accuracy, while at the same time being more efficient.
In fact, even after adding T" = 10 extra internal-validation
iterations SC is still (marginally) faster than CP — although
not in an ensemble. Again we see that perhaps these T’
extra iterations are not actually worth the computational
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TABLE 6
Individual Contribution of Different Aspects of Our Approach
Compared to Baseline 1C: CP (No Partitions), SC7_g (Random
Partitions, NNR filter), sSCT_10gg (Partitions Created Under

the Simulated Annealing Scheme of T = 1000 lterations),
T'=10

SCT 21000 (Additionally Fine-Tuned with T’ =10 lterations of

Internal Validation), and Finally in an Ensemble: ESC’
(also in Tables 3 and 5)

Music
EXAMPLE AccC. CLASS AccC. TIME (s)
Ic 0.270 + 0.061  0.809 = 0.015  0.315 & 0.128
cp 0.345 £ 0.072  0.803 = 0.022  4.882 =+ 0.608
SCr—g 0.287 + 0.072  0.784 £ 0.019  0.560 =+ 0.167
SCr—1000 0346 £0.072  0.797 +0.023  0.515 £ 0.139
scT’=10 0351 4+ 0.084  0.805 + 0.024  3.448 + 0.565
sc’ 0.356 + 0.032  0.816 = 0.011  65.232 + 5.768
Parkinson’s
EXAMPLE AcCcC. CLASS AccC. TIME (s)
Ic 0.164 £ 0.023  0.677 &= 0.012  1.995 & 0.269
cp 0.211 £+ 0.025  0.699 £ 0.030  37.039 + 6.380
SCr=o 0.143 £ 0.051  0.672 £0.016  9.491 + 0.835
SCr—1000  0.207 & 0.038  0.688 + 0.027  8.998 + 1.761
scI'510 0209 £ 0.030  0.690 + 0.024 34351 + 6.525
sc’ 0.215 + 0.031  0.718 £ 0.015 91.328 + 6.125
TABLE 7

Partitions Discovered in Each of Five Folds at Steps for sC
(After T = 1000 lterations of Simulated Annealing) and s’
(After an Additional T’ = 10 lterations of Internal Validation)

Models
Music
Partition 6 of SC |#]  Partition 6 of SC’ 10
12503 @#H 4 a5 @03 5
05 234 () 3 015234 2
@025 MG 4 (CONCAIR(ONIOREI N
3O52HD) 4 (24) 05 3@ 4
1250 @G 4 (125 &) © 3 4
Parkinson’s
Partition 6 of SC  |#|  Partition 6 of sC’  |0|
01234 1 01342 2
01234 1 0234) 1) 2
(1234)(© 2 (124)(03) 2
01234 1 01342 2
(01234 1 (134)(02) 2
Yeast
Partition 6 of SC 0]

01)(2345678910) (11 12) (13) 4
(2345678 (01)(9101112)(13) 4
(13)(019101112) 2345678) 3
(01910)(23456781112) (13) 3
(01)(©910)(23451112)(678) (13) 5

Partition 6 of sc’ 10|

0112)(2345678910) (11 13) 3
2345678)(011213)(91011) 3
(12) (011011) (23456789) (13) 4
2
5

(0191013) (234567811 12)
(0) (19 10) (2345812)(611) (7 13)

expenditure, particularly reflecting upon the minimal dif-
ference between ESC and ESC’ in Table 3, with the former
being much faster.
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An additional advantage of our SC methods is that
they provide an indication of relationships between classes.
Note, for example, how for Music in Table 7 class vari-
ables 1, 2 and 5 are grouped together. These correspond
in the data to labels happy-pleased, relaxing-calm,
angry-aggressive. Also, 2 and 4 (corresponding to
relaxing-calm and sad-lonely) often occur together,
whereas 3 (quiet-still) often occurs alone. We can
speculate that (1 2 5) is based on a mutually exclusive
relation (with 5), whereas (2 4) is a strong co-occurrence
relation. In Yeast, labels 2, 3, 4, and 5 are insepara-
ble throughout (this could be interpreted by a domain
specialist).

7 CONCLUSION

We presented a method for multi-dimensional classifi-
cation which creates “super-classes” from a partition in
the original set of classes. This is done by using con-
ditional dependence information to efficiently and effec-
tively searching space of possible partitions. In order
to make this even more efficient, we presented a filter
mechanism to reduce the number of class-combinations
in each super-class training set prior to training. This
is an important adaptation for working with multi-
dimensional data. Finally we created an ensemble of
super-class classifiers, and carried out an experimental
evaluation on a variety of multi-dimensional data with
state-of-the-art methods from the literature. Our meth-
ods convincingly performed best overall, and also exhib-
ited competitive running time performance. Additionally
our results facilitated an analysis of class conditional
dependencies.
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