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Protein Folding in Simplified Models With
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Abstract—Simplified lattice models have played an important
role in protein structure prediction and protein folding problems.
These models can be useful for an initial approximation of the pro-
tein structure, and for the investigation of the dynamics that govern
the protein folding process. Estimation of distribution algorithms
(EDAs) are efficient evolutionary algorithms that can learn and
exploit the search space regularities in the form of probabilistic
dependencies. This paper introduces the application of different
variants of EDAs to the solution of the protein structure prediction
problem in simplified models, and proposes their use as a simu-
lation tool for the analysis of the protein folding process. We de-
velop new ideas for the application of EDAs to the bidimensional
and tridimensional (2-d and 3-d) simplified protein folding prob-
lems. This paper analyzes the rationale behind the application of
EDAs to these problems, and elucidates the relationship between
our proposal and other population-based approaches proposed for
the protein folding problem. We argue that EDAs are an efficient
alternative for many instances of the protein structure prediction
problem and are indeed appropriate for a theoretical analysis of
search procedures in lattice models. All the algorithms introduced
are tested on a set of difficult 2-d and 3-d instances from lattice
models. Some of the results obtained with EDAs are superior to the
ones obtained with other well-known population-based optimiza-
tion algorithms.

Index Terms—Estimation of distribution algorithm (EDAs),
hydrophobic-polar (HP) model, protein folding, protein structure
prediction.

I. INTRODUCTION

P ROTEINS play a fundamental role in nature. These struc-
tures made of amino acids participate in many important

tasks that guarantee the correct functioning of living cells. The
protein structure is the result of the so-called protein folding
process in which the initially unfolded chain of amino acids is
transformed into its final structure. Under suitable conditions,
this structure is uniquely determined by the sequence.
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The complex and challenging nature of the protein folding
process is highlighted by the Levinthal paradox [1]. If an
unfolded protein were to attain its corrected folded configu-
ration by sequentially sampling all possible configurations,
then it would require a huge time exponential in the number
of residues. This happens because each molecule could adopt
an astronomical number of configurations. Nevertheless, pro-
teins in nature can fold very quickly, often within a matter of
seconds. Obviously, the protein folding does not proceed as an
exhaustive search. Therefore, it is fundamental to understand
how proteins attain their native configuration. However, the
exact laws that govern the protein folding process are unknown,
and the problem of finding the 3-d native structure of the protein
given its sequence of amino acids is open.

Protein modeling and the computational simulation of pro-
tein mechanisms have proved to be valuable tools to answer
the questions posed in the biological domain. Since it is diffi-
cult to scale modeling to a fine level of detail, some simplified
models have been proposed in order to study, to different ex-
tents, the protein folding process. In this paper, we concentrate
on a class of coarse-grained models that have been extensively
used to study approximations of the protein folding problem.
Using this model, we propose the use of estimation of distri-
bution algorithms (EDAs) for two related problems: to find the
native structure of the protein from its sequence, and to simulate
the protein folding mechanism.

Most of the application results for EDAs on discrete prob-
lems have been achieved for problems with binary representa-
tion. Theoretical analysis of the EDA behavior for discrete prob-
lems is also mainly constrained to problems with binary repre-
sentation. The use of protein coarse-grained models as a testbed
for EDAs can help to advance the understanding of EDAs and to
investigate their performance when applied to nonbinary prob-
lems. Coarse-grained models have also been 6treated with a va-
riety of optimization methods, allowing us to evaluate the per-
formance of EDAs in comparison with these algorithms.

The protein model of choice is the hydrophobic-polar (HP)
model [2], which is based on the fact that hydrophobic interac-
tions are a dominant force in protein folding. The HP model has
arisen as a suitable benchmark for cross-disciplinary studies in-
volving domains such as computational biology, statistical and
chemical physics, and optimization. This research has revealed
different but related facets of the protein folding problem. In
computational biology, the HP model has served to study se-
quence-structure mapping in proteins [3], to analyze the role of
local structures in protein folding [4], and to study aspects re-
lated to protein design [5]. In statistical and chemical physics,
the HP model has been used for exhaustive generation and anal-
ysis of protein conformations [6]. More recently, it has also

1089-778X/$25.00 © 2007 IEEE
Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on December 04,2023 at 11:53:05 UTC from IEEE Xplore.  Restrictions apply. 



SANTANA et al.: PROTEIN FOLDING IN SIMPLIFIED MODELS WITH ESTIMATION OF DISTRIBUTION ALGORITHMS 419

been used for doing folding and unfolding simulations [7] and
to study density and ground states of the protein folding model
[8], [9].

In the optimization domain, the search for the protein struc-
ture is transformed into the search for the optimal configuration
given an energy function that takes into account the HP inter-
actions that arise in the model. The problem of finding such a
minimum energy configuration is NP-complete for the bidimen-
sional (2-d)[10] and tridimensional (3-d) [11] lattices. Perfor-
mance-guaranteed approximation algorithms of bounded com-
plexity have been proposed to solve this problem [12], but the
error bound guaranteed is not small enough for many applica-
tions.

The number of optimization heuristics applied to the HP
model is extensive [13]–[19] with a significant number of
the contributions made in recent years [20]–[30]. Work on
evolutionary search applied to protein structure prediction
and protein folding for lattice models and real proteins has
been surveyed in [31]. A well documented review of current
approaches to protein structure prediction is provided in [32].

In an early and very influential paper [19], Unger and Moult
described a genetic algorithm (GA) application that used
heuristic-based crossover and mutation operators to solve the
HP model. The GA was able to outperform a number of variants
of Monte Carlo methods at different sequences. Remarkably,
the authors identified GAs as being particularly suited to repro-
ducing some aspects of the protein folding process.

Although other GAs have been proposed to address the
problem of structure prediction in the HP model, the difficulties
of crossover operators to deal with this type of problem have
been acknowledged [16], [33]. Particularly, it has been pointed
out that one-point and uniform crossover do not perform well
for this problem, and a number of explanations for this have
been proposed [33]. Even if the GA results have been shown to
improve by employing more sophisticated operators, another
more general alternative is the conception of evolutionary
algorithms able to learn and use the relevant interactions that
may arise between the variables of the problem.

EDAs [34]–[37] are evolutionary algorithms that construct
an explicit probability model of a set of selected solutions. This
model can capture, by means of probabilistic dependencies,
relevant interactions among the variables of the problem. The
model can be conveniently used to generate new promising
solutions. In [27], an EDA that uses a Markov probabilistic
model outperformed other population-based methods when
solving the 2-d protein folding problem. In the present paper,
we further improve and generalize the results achieved in [27]
by considering other types of probabilistic models, and by
treating the more challenging class of 3-d simplified protein
folding models. On the other hand, we investigate the use of
EDAs as a simulating tool for the protein folding mechanism.
Starting from current biological approaches to the protein
folding process, and based on EDA capabilities to save and
update probability models of the search, we provide evidence
showing that EDAs can mimic the protein folding process to a
certain extent, and more consistently than GAs.

This paper is arranged as follows. In Section II, we briefly
review the biological concepts related to protein folding, and
introduce the HP model and the functional model protein.

Section III reviews a number of previous approaches to the
solution of simplified models using evolutionary and Monte
Carlo-based algorithms. Section IV presents the class of EDAs.
Section V introduces the problem representation and discusses
how the probability model can capture the regularities that
may arise in the HP problem. In Section VI, the probabilistic
models and the EDAs used for the protein structure problem
are introduced. This section also presents the EDA model of
protein folding. In Section VII, the experimental benchmark is
introduced and numerical results of our experiments are pre-
sented. Finally, in Section VIII, the conclusions of our research
are given, and further work is discussed.

II. PROTEIN FOLDING

We will briefly recall some of the main biological concepts
related to the protein folding problem that are relevant to our
discussion.

Proteins are macromolecules made out of 20 different amino
acids, also referred to as residues. An amino acid has a peptide
backbone and a distinctive side chain group. The peptide bond
is defined by an amino group and a carboxyl group connected to
an alpha carbon to which a hydrogen and side chain group are
attached.

Amino acids are combined to form sequences which are
considered the primary structure of the peptides or proteins.
The secondary structure is the locally ordered structure brought
about via hydrogen bounding mainly within the peptide back-
bone. The most common secondary structure elements in
proteins are the alpha helix and the beta sheet. The tertiary
structure is the global folding of a single polypeptide chain.

Under specific conditions, the protein sequence folds into a
unique native 3-d structure. Each possible protein fold has an as-
sociated energy. The thermodynamic hypothesis states that the
native structure of a protein is the one for which the free en-
ergy achieves the global minimum. Based on this hypothesis,
many methods that search for the protein native structure de-
fine an approximation of the protein energy and use optimiza-
tion algorithms that look for the protein fold that minimizes this
energy. These approaches mainly differ in the type of energy ap-
proximation employed and in the characteristics of the protein
modeling.

The achievement of the protein native structure is the result
of the so-called protein folding process. The laws that govern
protein folding are unknown. Therefore a number of ideas have
emerged that try to answer this question: how do amino acid
sequences specify proteins 3-d structure?

There are two main approaches to protein folding, commonly
referred as the “classical” and “new” views. The “classical”
view considers folding as a defined sequence of states leading
from the unfolded to the native state. This sequence is called the
pathway [38]. In the “new” view approach, folding is seen as
the progressive organization of an ensemble of partially folded
structures through which the protein passes on its way to the
folded structure [39]. This approach emphasizes the idea of each
state being an ensemble of rapidly interconverting conforma-
tions. One of the main differences between both approaches is
that the “new” view allows for a more heterogeneous transition
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Fig. 1. Schematic representation of the “classical” (left) and “new” (right)
views of protein folding.

state than the “classical” view, which concentrates on a single,
well-defined folding pathway [40].

Fig. 1 shows one schematic representation of the “classical”
(left) and “new” (right) views of protein folding. In the figure,
each possible protein configuration is represented as a circle,
and arrows represent possible transitions between configu-
rations. In both approaches, the native state (filled circle) is
achieved when the energy is minimized.

A. The “New” View of Protein Folding

The EDA-based model of protein folding presented in this
paper adopts the second view. Therefore, we must study in
greater detail some of the aspects related to it.

In the “new” view approach, the energy landscape of a folding
protein resembles a partially rough funnel. The local roughness
of the funnel reflects transient trapping of the protein configu-
rations in local free energy minima. Another important role is
played by frustration.

There are two main sources of frustration in a protein [41]: en-
ergetical and topological. We will focus on energetical frustra-
tion which is associated with the amino acid sequence in the pro-
tein. It occurs when incorrect contacts are formed as the chain
folds, when the sequence forces mismatched residues to be in
contact in the native state or when there is competition between
the protein interactions (i.e., not all of them can be simultane-
ously satisfied). The importance of frustration due to competing
interactions and its influence in the emergence of highly multi-
modal search landscapes, which are difficult to optimize using
GAs, have been studied in [42].

The emergence of frustration and other properties of proteins
can be analyzed by using order parameters or progress coordi-
nates which help to describe and quantify the protein ensembles
during the protein folding process. They are used to explore the
connection between the folding process and the topology of the
protein native state. A parallel can be traced between the role
of order parameters in protein folding and the role of param-
eters commonly used to describe the behavior of evolutionary
algorithms (e.g., average fitness of the population at each gen-
eration, convergence and diversity measures, etc.) for functions
of different difficulty.

Examples of order parameters are the contact order and
the volume of the protein. Another quantifying measure is the

folding rate. The contact order of the protein is the average
sequence separation between residues that make contact in the
three-dimensional structure. The volume is a measure of the
degree of folding of the protein, allowing distinction between
compact and extended conformations. The folding rate is the
amount of time the protein takes to fold.

In the case of small proteins, other measurements of the
folding reactions can be made. Among them are the distribution
of structures in the transition state ensemble, and the structure
of the native state. The fraction of native contacts that exist
in the current conformation [43] can be used as a measure of
frustration. For a given conformation, varies between 0 and
1, with the native conformation at . It is also possible to
compute the total free energy as a function of

(1)

where is the average internal energy of conformations
with native contacts, is the temperature of the system, and

is the corresponding conformational entropy (the log-
arithm of the number of accessible conformations with native
contacts) [40].

We enumerate a number of facts commonly accepted and ex-
plained in the “new” view of protein folding [39], [40], [43],
[44]. Some of these issues will be investigated through simula-
tion of the EDA-based model.

• The folding rates of small proteins correlate with their con-
tact order. Proteins with a large fraction of their contacts
between residues close in sequence tend to fold faster than
proteins with more nonlocal interactions.

• Protein folding rates and mechanisms are largely deter-
mined by the protein native topology. Proteins with sim-
ilar native states are expected to exhibit a similar protein
folding behavior.

• Local interactions are more likely to form early in folding
than nonlocal interactions.

• During the folding process, the energy of the structures will
decrease on average as they become more and more similar
to the native structure of a natural protein.

• Folding is not only determined by properties of the folded
state but also by the energetic difference between the
folded and unfolded ensembles of states.

• The geometrical accessibility of different native contacts is
different, and therefore some are more easily formed than
others.

• Some contacts may be topologically required (or at least
be more likely) to be formed before others during folding.

B. The HP and Functional Model Protein

This section briefly introduces the HP and functional model
protein.

The HP model considers two types of residues: hydrophobic
(H) residues and hydrophilic or polar (P) residues. A protein
is considered a sequence of these two types of residues, which
are located in regular lattice models forming self-avoided paths.
Given a pair of residues, they are considered neighbors if they
are adjacent either in the chain (connected neighbors) or in the
lattice but not connected in the chain (topological neighbors).
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Fig. 2. One possible configuration of sequence����������� in the
HP model. There is one �� (represented by a dotted line with wide spaces),
one �� (represented by a dashed line) and two �� (represented by dotted
lines) contacts.

The total number of topological neighboring positions in the
lattice is called the lattice coordination number.

For the HP model, an energy function that measures the in-
teraction between topological neighbor residues is defined as

and . The HP problem con-
sists of finding the solution that minimizes the total energy. In
the linear representation of the sequence, hydrophobic residues
are represented with the letter H and polar ones with P. In the
graphical representation, hydrophobic proteins are represented
by black beads and polar proteins, by white beads. Fig. 2 shows
the graphical representation of a possible configuration for se-
quence . The energy that the HP model
associates with this configuration is 1 because there is only
one contact, arisen between the second and fifth residues.

Although more complex models have been proposed
[45]–[48], the HP model remains a focus of research in compu-
tational biology [3], [5], [6], [49] and chemical and statistical
physics [7]–[9]. In evolutionary computation [17], [22], [26],
[27], [29], [33], [50], the model is still employed given its
simplicity and its usefulness as a testbed for new evolutionary
optimization approaches.

The functional model protein is a “shifted” HP model. The
name comes from the fact that the model supports a significant
number of proteins that can be characterized as functional. This
model has native states, some of which are not maximally com-
pact. Thus, in some cases, they have cavities or potential binding
sites, a key property that is required in order to investigate ligand
binding using these models [51]. The energy values associated
with the model contain both attractive and repulsive
interactions ( , , and ). Again, the ob-
jective is to minimize the total energy. For example, the energy
that the functional model protein associates with the configura-
tion shown in Fig. 2 is 1 because there is one (represented
by a wide dotted line), one (represented by a dashed line)
and two (represented by dotted lines) contacts.

III. REVIEW OF PREVIOUS EVOLUTIONARY METHODS

Previous population-based approaches to simplified protein
folding include the use of nature-inspired and Monte Carlo
methods [52]. Some versions of these methods are compared
with EDAs in the experiments section.

Since the publication of the Unger and Moult paper [19] on
the use of GAs for protein structure prediction, new issues have
arisen along with new points of view on the protein folding
problem. However, GA applications to the HP problem are
many and varied. In [15], a search strategy called pioneer search
was used together with a simple GA. Although the algorithm
improved some of the results achieved in [19], it was unable to

find the optimal solutions for the longest instances considered.
In [30], a GA with specialized genetic operators was used to
solve HP sequences up to 50 residues. The algorithm found the
best solutions for the six sequences tried, but increasing the GA
efficiency was acknowledged to be a requirement for solving
longer sequences.

In [21] and [53], evolutionary algorithms for the 3-d HP
problem are proposed. While in [53] a simple GA showed no
better results than those achieved in [19], a more sophisticated
approach is presented in [21]. By using a backtracking-based
repairing procedure, the latter algorithm guarantees that the
search is constrained to the space of legal solutions. Since the
number of self-avoided paths on square lattices is exponential
in the length of the sequence [19], generating legal solutions
with a backtracking algorithm is a feasible alternative.

The multimeme algorithm (MMA) for protein structure pre-
diction [17] is a GA combined with a set of local searches. From
this set, the algorithm self-adaptively selects which local search
heuristic to use for different instances, states of the search, or in-
dividuals in the population. This algorithm was used to find so-
lutions of the functional model protein. A relevant issue of this
algorithm is the use of a contact map memory as a way to collect
and use important problem information. Contact maps abstract
the geometric details of the structures, keeping only the essen-
tial topological features of the configurations. In [26], MMA
was extended by the incorporation of fuzzy-logic-based local
searchers. The modifications led to obtain a more robust algo-
rithm that improved previous MMA results in the protein struc-
ture prediction problem. Memetic algorithms were also com-
bined with a population of rules [29] to solve the HP model in a
two-dimensional triangular lattice. The algorithm proposed out-
performed simple versions of GAs and memetic algorithms.

Different variants of immune algorithms (IAs) [22], [23], [50]
have been proposed for the HP problem. These evolutionary al-
gorithms inspired in the theory of clonal selection, use hyper-
macromutation and aging as important operators to proceed the
search. In [50], the algorithm found the optimal configurations
of the regular 2-d HP model for the smallest problems. The al-
gorithm failed to find the optimum for the longest instances. In
[22], the original IA is developed to include a memory mecha-
nism that improves results for the 2-d regular lattice. Recently,
IA has been used with very good results to solve HP problems on
the 3-d lattice and instances from the functional protein model
[23].

Traditional Monte Carlo methods that use Markov chains
sample from the protein folding space one point at a time. Due
to the rugged landscape, these methods tend to get trapped in
local minima. New Monte Carlo methods have been proposed
to cope with these problems [54]. Among the alternatives
proposed, two main classes of the strategies used by the Monte
Carlo methods can be distinguished: to use chain growth algo-
rithms [13], or to sample the space with a population of Markov
chains in which a different temperature is attached to each
chain [55]. Chain growth algorithms [25], [56]–[58] such as the
pruned-enriched Rosenbluth method (PERM) [25] are based
on growing the sequence conformation by successively adding
individual particles, guiding the growth towards configurations
with lower energies, and using population control to eliminate
bad configurations and increase good ones [58].
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Although chain growth methods have achieved some of the
best results for HP models in regular 2-d and 3-d lattices, it is
important to emphasize that algorithms such as PERM combine
the process of constructing the solutions with the evaluation step
of the solutions. Even if this strategy allows one to use more
information about the HP fitness function, it lacks generality
because it cannot be applied to problems where subsolutions
cannot be independently evaluated.

All the above-mentioned algorithms either use genetic oper-
ators or Markov chain transitions. They do not use any model
of the search space. An algorithm that incorporates, to a certain
scale, the modeling step is the ant colony optimization (ACO)
method presented in [18] and [28]. In this approach, the sim-
ulated ants construct candidate conformations for a given HP
protein sequence, apply a local search to achieve further im-
provement, and update a probability value based on the quality
of the solutions found. In ACO terminology, this value is called
the pheromone trail.

Additionally, we mention that there are several examples of
the application of GAs and other evolutionary algorithms to pro-
tein structure prediction problems using more complex protein
models. For a review on evolutionary algorithms and other op-
timization methods applications to protein problems, [59], [60]
can be consulted. We briefly analyze some connections between
the use of evolutionary algorithms for simple and more complex
protein models.

While more complex protein folding models (e.g., rotamer-
based protein models [45]) can provide more realistic results in
some protein folding and protein design studies, they are of lim-
ited use for other tasks (e.g., the exhaustive generation and anal-
ysis of protein configurations for many instances). Similarly,
there are successful applications of EDAs to rotamer-based pro-
tein models [61], [62], but the complexity of these models would
not allow one to conduct the sort of detailed analysis that will
be presented in Section V. To summarize, the decision of using
the HP or more complex protein models will depend on the type
of optimization or simulation tasks addressed.

However, the application of GAs to more complex models can
provide clues for the simulations done with simpler models. In
[63], an evolutionary algorithm is applied to de novo all-atom
folding of a protein comprising 60 aminoacids. The authors use
the concept of “native content” of the population of solutions
to evaluate convergence of the algorithm. A related idea will
be presented in Section VII-E1, where we use the number of
native contacts to investigate the way in which our evolutionary
algorithm samples the energy landscape of the function.

In [64], a GA is used for protein structure prediction of 28
fragments of protein structures up to 14 residues long. The
search is done in the torsion space of the protein atoms. The
GA protocol is successful in finding a lower energy than the
corresponding minimized structure in 26 out of the 28 cases
examined. The high computational cost of the algorithm is
attributed by the authors to the difficulty of finding acceptable
crossover conformations. We notice that one of the advantages
of EDAs is their ability to avoid the disruption caused in the
structure of the solutions by crossover operators.

Results achieved in [62]–[64] also show that in the case of
protein structure prediction with complex models the addition

of local optimization techniques to GAs and EDAs may be a
requirement for attaining realistic protein conformations.

Even though this short overview has focused on Monte Carlo
and nature inspired methods, we emphasize that there are sev-
eral applications of heuristic algorithms to the protein structure
problem that are beyond the scope of this paper.

IV. ESTIMATION OF DISTRIBUTION ALGORITHMS

The results of the GAs for the protein structure problem
can be improved by designing heuristic-based genetic op-
erators. However, the improvements are constrained by the
narrow scope of application of these types of knowledge-based
operators. A more robust solution is the use of evolutionary
algorithms able to use probabilistic models of the search space.

EDAs replace the traditional crossover and mutation opera-
tors used in GAs by probabilistic models. These algorithms con-
struct, in each generation, a probabilistic model that estimates
the probability distribution of the selected solutions. The prob-
abilistic model must be able to capture, in the form of statis-
tical dependencies, a number of relevant relationships among
the variables. Dependencies are then used to generate solutions
during a simulation step. It is expected that the generated solu-
tions share a number of characteristics with the selected ones. In
this way, the search leads to promising areas of the search space.

EDAs can be seen as a development of GAs. By recombining
a subset of selected solutions, GAs are able to process the infor-
mation learned during the search, and to orient the exploration
to promising areas of the search space. Nevertheless, it has been
proved that GAs experience limitations in their capacity to deal
with problems where there are complex interactions between
different components of the solutions [65], [66]. In these sce-
narios, EDAs can exhibit a better performance. The success of
EDAs in the solution of different practical problems has been
documented in the literature [34].

The general scheme of the EDA approach is shown in Algo-
rithm 1. The selection method employed can be any of those tra-
ditionally used by GAs. In the literature, truncation, Boltzmann,
and tournament selection are commonly used with EDAs. A key
characteristic and crucial step of EDAs is the construction of the
probabilistic model. These models may differ in the order and
number of the probabilistic dependencies that they represent.

Algorithm 1: Main scheme of the EDA approach

1. Generate individuals randomly

2.

3. do {

4. Select individuals from according
to a selection method

5. Estimate the joint probability of
selected individuals

6. Sample individuals (the new population)
from

7. } until A stop criterion is met
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TABLE I
THE DENSITY OF THE DIFFERENT ENERGY LEVELS �� AND �� CORRESPONDING TO

THE HP AND FUNCTIONAL MODEL PROTEIN OF SEQUENCE �����������

Different classifications of EDAs can be used to analyze
these algorithms. Relevant to our research is the classification
according to the complexity of the models used to capture
the interdependencies between the variables [67]. Considering
methods of learning is done in the probability model, EDAs can
be divided into two classes. One class groups the algorithms
that do a parametric learning of the probabilities, and the
other comprises those algorithms that also undertake structural
learning. Parametric and structural learning are also known as
model fitting and model selection. To the first class, belong
population-based incremental learning (PBIL) [68], compact
GA (cGA) [69], the univariate marginal distribution algorithm
(UMDA) [36], and the factorized distribution algorithm that
uses a fixed model of the interactions in all the generations
(FDA) [66]. Among EDAs that do a structural learning of
the model, are the mutual information maximization for input
clustering algorithm (MIMIC) [70], the extended compact GA
(EcGA) [71], and EDAs that use Bayesian networks [72]–[74].

V. DEPENDENCIES IN THE SIMPLIFIED PROTEIN MODELS

In this section, we show evidence on the emergence of regu-
larities in the search space of the HP model. In order to achieve
this goal, we employ the Boltzmann probability distribution. We
start by introducing the problem representation.

A. Problem Representation

Let be the sequence length. We use to represent a dis-
crete random variable. A possible value of is denoted .
Similarly, we use to represent an -dimen-
sional random variable and to represent one
of its possible values. For a given sequence and lattice, will
represent the relative move of residue in relation to the pre-
vious two residues.

Taking as a reference the location of the previous two residues
in the lattice, takes values in , where
is the number of movements allowed in the given lattice. These
values, respectively, mean that the new residue will be located
in one of the numbers of possible directions with respect
to the previous two locations. Therefore, values for and
are meaningless. The locations of these two residues are fixed. A
solution can be seen as a walk in the lattice, representing one
possible folding of the protein. The codification used is called
relative encoding, and has been experimentally compared with
absolute encoding in [16], showing better results.

We use 2-d and 3-d regular lattices. For regular -dimensional
lattices, , where is the lattice dimension.

Fig. 3. Best solutions of the functional model protein (left) and HP model
(right) for sequence����������� . The optimal energy values are�4
and�2 for the functional and HP model, respectively.�� contacts are shown
using dotted lines with wide spaces.

B. Regularities and Dependencies in the HP Model

We illustrate the emergence of regularities in the search space
of the HP model using the sequence, in-
troduced in [51]. For this sequence, and using the representation
previously introduced, we find all possible solutions and eval-
uate them according to the HP and functional protein energy
functions. The number of solutions evaluated are .
Of these configurations, 8658 are not self-avoiding and they are
assigned a very high energy equal to 100. In Table I, de-
notes all the possible values that the two evaluated energy func-
tions can reach for sequence . and

, respectively, indicate the number of solutions where the
corresponding value of has been achieved for the HP and
functional protein energy functions.

It is important to highlight that there is not a one-to-one
mapping between each solution and each state of the sequence.
The reason is that one state can have more than one solu-
tion representation, i.e., the representation is redundant. For
instance, while there exists only one optimal state for the
functional model protein, in our representation, this optimal
state has two possible representations corresponding to sym-
metrical configurations. In the case of the HP model, there are
16 optimal solutions. Fig. 3 shows optimal configurations for
the functional model protein and the HP model.

To associate a probability value with every point of the search
space, we will use a theoretical benchmark based on the Boltz-
mann distribution. In this benchmark, the probability of each
solution is equal to the Boltzmann distribution calculated from
the energy evaluation

(2)

where is the energy of and is the temperature.
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TABLE II
MARGINAL PROBABILITY DISTRIBUTIONS FOR �� �� �� � CALCULATED

FROM THE BOLTZMANN DISTRIBUTIONS FOR HP AND THE FUNCTIONAL

MODEL PROTEIN FOR SEQUENCE �����������

Equation (2) shows the expression of the Boltzmann dis-
tribution. We set the temperature at 1, but can be changed
to simulate different experimental conditions. The Boltzmann
distribution is a natural candidate for the fitness distribution.
From a theoretical point-of-view, the Boltzmann distribution
allows one to associate probabilistic independence properties
between the variables of the problem with certain characteris-
tics of the energy function [66]. It exhibits another convenient
feature: higher probabilities are associated with points of
the search space with better function evaluation. Therefore,
these probabilities describe the desired performance of an
ideal optimization algorithm: better points are visited with a
higher probability. The Boltzmann distribution has also been
used together with Monte Carlo-based methods for HP model
optimization [55].

From the Boltzmann distribution, it is possible to compute the
marginal probability distribution of any subset of variables by
marginalization. This process is feasible in our case because the
total number of configurations is relatively small. There-
fore, we calculate the marginal probability distributions corre-
sponding to variables for probability distributions

and , which are shown in Table II. The table shows the
marginal probabilities of the configurations (from 000 to 222)
of variables .

In Table II, the lowest probability values are bold-faced, while
the highest values are underlined. The two configurations with
zero probability1 are shown in Fig. 4, where the direction of the
sequence is represented as an arrow between the first and second
residue of the sequence. Not surprisingly, these are the only two
self-intersecting configurations that can be formed with three
contiguous moves. Any solution that contains subchains 000
or 222 is not self-avoiding, and therefore receives a very low
probability.

The two configurations with the highest probabilities are
shown in Fig. 5. These are two symmetrical helices. In the

1Strictly speaking, the probabilities are never zero but they approximate this
value.

HP and functional model protein, these type of substructures
can give an important contribution to the final energy. Helices
are present in the optimal solutions for both models, shown in
Fig. 3.

A remarkable difference between the marginal probabilities
corresponding to the HP and functional model protein is related
to the probabilities given to the helices. The difference between
the probabilities of the best and second best configurations is
0.012 for the HP model, and 0.06 for the functional model pro-
tein. This gives an idea of the difference due to the energy func-
tion used.

One conclusion from this experiment is that if we assume that
subsolutions with highest probabilities in the model are those
that represent optimal problem substructures (i.e., those likely to
be present in the optimal solutions), then we can identify optimal
substructures by inspecting the marginal distributions from the
search distribution. These substructures are likely to be present
in those population-based optimization algorithms able to re-
spect the relevant interactions between the variables. In EDAs,
the mapping between the problem structure and the probabilistic
dependencies represented in the structure and parameters of the
probabilistic models allows the use of the models as a source of
information about the problem.

We investigate the effect that disregarding the potential
interactions between variables may have on the modeling
of the problem. In the next experiment, a univariate prob-
ability approximation of is calculated. First,
univariate marginal distributions are calculated for the three
variables, . Afterwards, the approxima-
tion is computed as the product of the univariate
marginals . The approxima-
tion is shown in Table III.

As in Table II, the lowest probability values are bold-faced,
while the highest values are underlined. Due to the effect of
rounding, some other configurations appear in the table with
equal (rounded) probabilities than the lowest (respectively,
highest) ones.

In Table III, it can be observed that the best and worst con-
figurations do not agree with the ones obtained using the whole
three-variate marginal probability distribution. The univariate
approximation is not able to capture the structural features of
the problem represented in Table II. This experiment illustrates
the convenience of using higher order interactions to capture
relevant features of the problem structure. As it has been
analyzed in previous sections, traditional crossover operators
do not respect these interactions. Furthermore, as explicit mod-
eling of the search space is missing in most of nature-inspired
algorithms, it is impossible to detect, represent, and store these
regularities efficiently. In the following sections, we show
how different probability models can detect and exploit this
information.

The experiments presented in this section have been con-
ducted using a single HP instance. Obviously, there are other
factors that influence the marginal probability distributions cor-
responding to the different energy models. We have focused on
showing the way in which structural regularities are exposed by
the probability models learned. The analysis of other factors is
beyond the scope of this paper.
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Fig. 4. Self-intersecting short paths: configurations with zero probability.

Fig. 5. Short helices: configurations with the highest probability.

TABLE III
UNIVARIATE APPROXIMATION OF THE MARGINAL PROBABILITY OF

�� �� �� � CALCULATED FROM THE BOLTZMANN DISTRIBUTIONS FOR HP
AND FUNCTIONAL MODEL PROTEIN FOR SEQUENCE �����������

VI. EDAS FOR PROTEIN STRUCTURE PREDICTION

The existence of regularities in the search space, expressed
in probabilistic dependencies between subsets of variables nat-
urally leads to the convenience of using EDAs to take advantage
of these regularities by capturing the dependencies. Probability
models used by EDAs are built from the selected set of solutions.
Therefore, the type of selection method used also influences the
number and strength of the interactions learned by the model.
Similarly to the Boltzmann distribution analyzed before, selec-
tion methods assign higher selection probabilities to solutions
with higher fitness value.

In this section, we detail the main contributions of this paper:
the introduction of EDAs to face the solution of the protein
structure prediction problem, and the definition of the EDA-
based model of protein folding. The section starts by introducing
the probability models used by EDAs and explaining the ra-
tionale behind our choice. Finally, we define the EDA-based
model of protein folding and describe the analogies between this
model and some of the known behavioral characteristics of pro-
tein folding.

A. Probabilistic Models and Algorithms

We propose three types of probabilistic models to be applied
to the protein structure prediction problem. In every case, solu-
tions are represented using the vector representation introduced
in Section V-A. Probabilistic models are presented together with
the EDA that uses the model. EDAs are named according to the
probability model that they use.

The first model considered is a -order Markov model in
which the configuration of variable depends on the configu-
ration of the previous variables, where is a parameter
of the model. The joint probability distribution can be factorized
as follows:

(3)

The pseudocode of the Markov EDA is
shown in Algorithm 2. The main step is the parametric learning
of the probabilistic model. Since the structure of the Markov
model is given, this step comprises to calculate the frequencies
from the set of selected individuals and to compute the mar-
ginal and conditional probabilities. To sample a solution, first
variables in the factor are generated and the rest
of variables are sampled according to the order specified by the
Markov factorization.

Algorithm 2: Markov-EDA

1. Generate individuals randomly

2.

3. do {

4. Select individuals from according
to a selection method

5. Compute the marginal and conditional probabilities
corresponding to each factor of factorization (3)

6. Sample individuals (the new population) from
the -order Markov model

7. } until A stop criterion is met

The second probabilistic model is based on a tree where each
variable may depend on no more than one variable that is called
the parent. A probability distribution that is conformal
with a tree is defined as

(4)

where is the parent of variable in the tree, and
when , i.e., when is the

root of the tree. The distribution itself will be called
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a tree model when no confusion is possible. Probabilistic trees
are represented by acyclic connected graphs.

The pseudocode of the tree-based EDA (Tree-EDA) is shown
in Algorithm 3.

Algorithm 3: Tree-EDA

1. Generate individuals randomly

2.

3. do {

4. Select individuals from
according to a selection method

5. Compute the univariate and bivariate marginal
frequencies and of

6. Calculate the matrix of mutual information using
the univariate and bivariate marginals

7. Calculate the maximum weight spanning tree from
the matrix of mutual information

8. Compute the parameters of the model

9. Sample individuals (the new population)
from the tree

10. } until A stop criterion is met

As presented in Algorithm 3, the bivariate probabilities are
initially calculated for every pair of variables. From these bi-
variate probabilities, the mutual information between variables
is found. To construct the tree structure, an algorithm introduced
in [75], that calculates the maximum weight spanning tree from
the matrix of mutual information between pairs of variables is
used. To sample the solutions from the tree, we have used prob-
abilistic logic sampling (PLS) [76], first the root variable is in-
stantiated, and following the tree structure each variable is sam-
pled conditioned on its parent.

The third model considered is a mixture of trees [77]. A mix-
ture of trees is defined as a distribution of the form

(5)

with , , .
In this case, the tree distributions are the mixture compo-

nents. The trees may have different structures and different
parameters.

is the name given to the EDA that uses a mix-
ture of trees, being the number of components in the mixture.

’s pseudocode is shown in Algorithm 4.
To learn a mixture of trees that gives a good approximation

of the selected individuals we use an expectation-maximization
(EM) mixtures of trees learning algorithm that was originally
introduced in [77]. The idea underlying the EM algorithm is to
compute and optimize the expected value of a likelihood func-
tion which is the log-likelihood of both, the observed and the

unobserved data, given the current model estimate. The EM al-
gorithm alternates the expectation and maximization steps until
one stop condition is satisfied. To learn the structure of each
component, the tree learning method used by Algorithm 3 is
employed. More details about the mixture of trees learning al-
gorithm can be found in [77] and [78]. To sample the solutions
from each component the PLS method is used.

Algorithm 4: Mixtures of Trees EDA

1. Generate individuals randomly

2.

3. do {

4. Select individuals from according
to a selection method

5. Compute a mixture of trees using the EM algorithm.

6. Compute the parameters of the model

7. Sample individuals (the new population) from

8. } until A stop criterion is met

The probability models used by the previous EDAs can be
separated into two classes according to the part of the problem
structure that they exploit. The first class of probability models
is based on the existence of connected neighbors. The assump-
tion behind the use of Markov models is that the most important
source of problem interactions comes from the connected neigh-
bors. Markov models have been used in computational biology
to identify coding regions in proteins, to align sequences, and to
predict the protein secondary structure.

The second class of models allows for the existence of arbi-
trary connections between the variables of the problem subject
to the representation constraints determined by the probabilistic
models. This choice of the models tries to capture interactions
arising from both, connected and topological neighbors. There-
fore, algorithms that learn the structure of the model from the
data [75], [77] are incorporated. Models that belong to this class
differ in the type of structural constraints they represent.

Initial results of an EDA based on the Markov model, for the
solution of 2-d lattice problems, were presented in [27]. These
EDAs make a parametric learning of the model. An EDA called
combining optimizers with mutual information trees, which
searches for probabilistic models that can be represented using
tree-shaped networks was introduced in [65]. MT-EDA was
originally presented in [78]. All these algorithms have mainly
been applied to binary problems. Poor results for preliminary
experiments conducted using EDAs based on unconstrained
Bayesian networks [72] determined to discard these algorithms
from our experimental benchmark.

B. Implementation

In the chosen representation, there might be invalid vectors
that correspond to self-intersecting sequences. To enforce the
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validity of the solutions, we employ a variation of the back-
tracking method used in [21]. A solution is incrementally re-
paired in such a way that the self-avoidance constraint is ful-
filled. At position , the backtracking call is invoked only if
self-avoidance cannot be fulfilled with any of the possible as-
signments to . The order in which values are assigned to each
variable is random. If all the possible values have been checked,
and self-avoidance is not fulfilled yet, backtracking is invoked.

On the other hand, if the number of backtracking calls have
reached a prespecified threshold, the repair procedure is aban-
doned. This is a compromise solution for situations in which
the repair procedure can be too costly in terms of time. The
threshold for the number of backtracking calls was set to 500
and this value was determined empirically. Further details about
the original backtracking algorithm can be found in [21].

In our implementation of EDAs,2 the truncation selection of
parameter is used. Let be the population size. In this
type of selection, the best individuals, according to
their function evaluations, are selected. We use best elitism, a re-
placement strategy where the population selected at generation

is incorporated into the population of generation . Thus,
only individuals are generated at each generation ex-
cept the first one. All the EDAs have been implemented in C++
language. All the experiments have been executed in a Pentium
III processor with 933 MHz.

C. Computational Cost of the Algorithms

In this section, we analyze the computational cost of the
different steps of the EDAs proposed for the protein structure
prediction problem. The complexity of some of the steps are
common to all the algorithms. Since the complexity of the
algorithms depends on the cardinality of the variables, we use

to represent the highest cardinality
among the variables.

1) Initialization: The initialization step of all the algorithms
consists in randomly initializing all the solutions in the first pop-
ulation. It has complexity .

2) Evaluation: The computational cost of this step is
problem dependent. It will depend on the function implementa-
tion. Let be the running time associated to the evaluation
of function , the running time complexity of this step is

.
3) Selection: The complexity of the selection step depends

on the selection method used. Truncation selection consists on
selecting the best individuals of the population. In the worst
case, the complexity of this step is .

4) Probabilistic Model Learning Algorithms: The cost of the
learning step changes for each algorithm.

• : Computing the marginal probabilities used
by implies computing the marginal
probability tables from the selected population, it has com-
plexity .

• Tree-EDA: Computing the bivariate marginal probabil-
ities used by Tree-EDA has complexity . The

2The EDAs programs are available from the authors upon request.

calculation of the mutual information has complexity
. The step that returns the maximum weight

spanning tree has complexity . The total complexity
of Tree-EDA is .

• : The running time of EM for mixtures of
trees was calculated in [77]. The total time complexity is

. Notice that, as expected, the com-
plexity is equal to the complexity or learning a tree scaled
by the number of components .

5) Sampling: The cost of the sampling step changes for each
algorithm. : Sampling individuals from the
Markov models has a complexity order .

Tree-EDA: Sampling individuals with a tree has a com-
plexity order .

: Sampling individuals with a mixture of
trees has a complexity order .

6) Total Computational Costs of the Algorithms: The total
computational costs of algorithms , Tree-EDA,
and are, respectively,

, ,
and ,
where the population size and the number of generations
change according to the difficulty of the problem. While the cost
of scales linearly with the number of variables,
the costs of Tree-EDA, and have a quadratical
scaling.

D. EDAs as a Model of the Protein Folding Mechanism

The existence of a number of analogies between the “new”
view of the protein folding mechanism and the way EDAs be-
have motivate us to analyze EDAs as a model of protein folding.
Basically, we highlight these coincidences, drawing parallels
between both entities, and investigating to what extent each of
the entities can provide answers to questions arisen in the other
domain.

To explain our model of the protein folding process, we will
use the same representation introduced in Section V-A. We will
assume that all solutions are feasible (i.e., self-intersecting paths
are repaired). At first, during the real folding process, a protein
can only be in one state at each time . However, in EDAs, at
each time more than one configuration can be part of the popu-
lation. To cover this gap, we will assign the main role in mod-
eling to the EDA probabilistic model. This resembles the “new”
view of protein folding, where proteins are seen as an ensemble
of rapidly interconverting conformations. At each time, a prob-
ability can be associated with every possible configuration

of the sequence. This probability is related to the energy of the
configuration, usually using the Boltzmann distribution defined
in (2).

Consider that a given EDA shall model the protein folding
process. Each generation of the EDA will be considered a time
step of the folding process. We will assume that the probability
of the sequence to fold to a given conformation is equal to the
probability given to the same configuration by the probabilistic
model of the EDA constructed at generation .
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Starting from this assumption, we advance the following
statements.

• Both the “new” view and the EDA define a sampling of the
space of configurations.

• The sampling processes pursue to sample the sequence
configurations with a probability dependent of the quality
of their respective energy function evaluations.

• The goal of the EDA and the protein folding process is
achieved when , where is the protein native
state.

• Both entities tend to preserve local favorable conforma-
tional features through successive generations (time steps).

In principle, some of the features presented above are not ex-
clusive attributes of EDAs. For instance, other population-based
methods (e.g., GAs) can be used to sample the space of se-
quence configurations. The preservation of local favorable con-
figurations, that may correspond to autonomous folding units
in the real protein folding process, can also be accomplished
to a certain extent by different evolutionary methods. However,
the advantage of EDAs is that the probability model which they
employ treats phenomena such as solution disruption and frus-
tration, which may arise in the protein folding process, more
effectively. Although in GAs a probability distribution of the
solutions is implicitly used for the search, this probability dis-
tribution is explicitly learned and used in EDAs.

As explained in previous sections, traditional crossover oper-
ators tend to disrupt the construction of relevant subsolutions.
The probabilistic model used by EDA matches to the statistical
nature of the ensemble of conformations. This model is a con-
densed description of the selected population and, under suit-
able conditions, it also matches well with the EDA population
at time . The main advantage of an EDA model of protein
folding is that it can provide not only global statistical informa-
tion, but also information about the local conformations in the
ensemble. This information can be appropriately combined to
avoid the disruption of relevant subsolutions.

Let us exemplify this with the frustration problem. In frus-
trated systems, there are contacts that are locally unfavorable
but that exist in the optimal solution, or there are favorable con-
tacts that first must be broken to reach the optimal solution [43].
Analogous to a frustrated system would be a population-based
method that tries to optimize a frustrated function.

Let be a function that can be decomposed into the sum
of local functions defined on (possibly overlapping) subsets of
its variables. is said to exhibit frustration when the point
where its global optimum is reached does not maximize one or
more of the local functions.

These types of functions are difficult to optimize because
finding the optima of the local subfunctions does not guarantee
that the global optimum will be found by the combination of
these optima. The role of frustration as a source of hardness for
evolutionary algorithms has been discussed in [42]. In [66], it
is shown that taking into account the interactions that arise be-
tween the variables of the problem, EDAs can optimize frus-
trated functions. Although the capacity of EDAs to deal with
frustration also depends on the probability model employed, we

emphasize (in this respect) the suitability of using EDAs over
GAs.

In the section of experiments, devoted to the simulation of the
protein folding process using EDAs, we investigate some of the
features exhibited by the EDA-model that mimic the behavior
of the protein folding process. The issues considered are the
following.

1) Whether there is a correlation between the successful rate
of EDAs and the contact order of the protein models.

2) Whether there is a relationship between the generation con-
vergence of EDAs for the HP model, and the contact order
of the optimal solution.

3) Whether there are differences in the rate of formation of
native contacts, and if these differences are associated with
their contact separation.

In our simulations, we will employ some of the order param-
eters commonly used to investigate the protein folding process,
but adapted to the simplified models. For the functional model
protein, the contact order is calculated as the average sequence
separation of the contacts in the corresponding solution.
For example, the contact order of the configurations shown in
Figs. 2 and 3 (left) are, respectively, 3 and 6.

VII. EXPERIMENTS

In this section, we present experiments on the use of the EDAs
introduced in this paper. The section is divided into three main
parts. First, the problem instances used for the HP model, and
the benchmark used for the functional model protein are pre-
sented. In the second part, we present results on the protein
structure prediction problem in the 2-d and 3-d regular lattices.
Finally, this section presents the results of the study through
EDA simulations of some factors related to the protein folding
process.

A. Problem Benchmark

The HP instances used in our experiments, and shown in
Table IV, have previously been used in [13], [18], [19], [21],
[27], [28], and [79]. The values shown in Table IV correspond
to the best-known solutions for the 2-d regular lattice.
It is important to highlight that most randomly generated amino
acid sequences do not behave like natural proteins, because the
latter are products of natural selection. Likewise, most randomly
generated sequences of H and P residues in the HP model do not
fold to a single conformation [3].

We have used the functional model protein for the experi-
ments with the EDA-based model and for evaluating EDAs as
optimization algorithms. The existence of a unique native state
for the instances of this model is a desired attribute, particu-
larly for the experiments done using the EDA-based model. For
this type of experiment, we employed a set of 15 545 functional
model proteins3 that were optimally embedded on a 2-d square
lattice [51]. For each instance, the benchmark provides the en-
ergy of the unique native state, together with the energy value
and number of structures that are in the first excited state (best
suboptimum). The length for each sequence is 23.

3http://www.cs.nott.ac.uk/~nxk/HP-PDB/2dfmp.html.
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TABLE IV
HP INSTANCES USED IN THE EXPERIMENTS. THE SEARCH SPACE OF EACH

INSTANCE IS � , WHERE � IS THE SIZE OF THE INSTANCE

For the optimization experiments using the functional model
protein, we have selected a subset of 11 instances from the
benchmark. The selected instances have been previously used
as testbed of optimization algorithms in [17] and [23]. The set
of instances selected and their minimal energy values are shown
in Table V.

B. Results for the HP Model in the Two-Dimensional Lattice

The first experiment consists of finding the optimum of
sequences shown in Table IV using EDAs with different
probability models. The EDAs described in Section VI
( , Tree-EDA, and ) are used in
our experiments. All the algorithms use a population size of
5000 individuals and a maximum of 5000 generations. The
results of the experiments are shown in Table VI, where is
the percentage of times the best solution has been found in
50 experiments, and is the average number of generations
needed to find the optimum. Since we use best elitism (the
whole selected population is passed to the next population), the
average number of function evaluations needed to reach the
optimum can be calculated as . Using
truncation selection , the average number of function
evaluations is .

The first remarkable result is that all EDAs are able to find
the optimum solution for sequences . All the algorithms

TABLE V
FUNCTIONAL MODEL PROTEIN INSTANCES

TABLE VI
RESULTS OF EDAS FOR HP INSTANCES IN THE �� � LATTICE. �: PERCENTAGE

OF TIMES THE BEST SOLUTION HAS BEEN FOUND, ��: AVERAGE NUMBER OF

GENERATIONS NEEDED TO FIND THE OPTIMUM

find the second best solution for sequence , the best or second
best for sequence , and very good solutions for the rest of
the longer sequences. There are two facts that help to put these
results in perspective: EDAs do not use local optimizers that
could improve the results, and the parameters of the algorithms
have not been tuned for every instance.

1) Deceptive Instances for EDAs: Instance is deceptive
for EDAs. We investigate in detail the performance of the EDAs
for this instance. Detailed research on the dynamics of EDAs
for deceptive problems throws light on the limitations of these
methods and could contribute to their improvement.

The optimum of sequence is 36. There are many sub-
optimal solutions with value 35. Fig. 6, lower left, shows the
optimum solution that cannot be found by the EDAs. The rest of
the solutions are the suboptimal ones found by
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Fig. 6. Optimal solution (bottom left) and three suboptimal solutions for the
�� sequence.

the EDAs. A clear difference between the optimal and the rest
of the solutions shown in the figure is the number of short he-
lices. The optimum has fewer short helices than the other solu-
tions. Most of the energy contributions come from interactions
between a central cross-shaped structure and the neighboring
residues. As the optimal solution cannot be constructed from the
combination of the good substructures present in the other so-
lutions, the EDA cannot reach it. As a hypothesis for the reason
of this deceptive behavior, we advance the existence of isolated
optimal solutions with components that are not present in the
suboptimal solutions.

To validate this empirical conclusion, we calculate different
Markov probabilistic models from the 5375 so-
lutions with energy between 33 and 35. Using these models,
the probabilities corresponding to each of the data base solutions
and to the optimal solution shown in Fig. 6 are calculated. The
models indicate the probability for the solutions to be present at
the new EDA generation.

Results can be appreciated in Table VII. In this table, ,
, , and , respectively, corre-

spond to the probabilities given by the models with different
values (from 0 to 3) to the optimum of the problem, the max-
imum, mean, and minimum probabilities given by the models to
the 5375 solutions. Similarly, is the number
of solutions with a probability higher than the probability of the
optimum.

The most revealing fact is that the probability given to the
optimal solution by probability models with and is
zero. This fact means that the optimal structure does not share
some of its substructures with any of the other 5375 suboptimal
solutions. The analysis of the model revealed that in the case of

, only one of the substructures was absent in the other
solutions, while when , four substructures were absent.

TABLE VII
STATISTICAL INFORMATION EXTRACTED FROM �-ORDER MARKOV

PROBABILISTIC MODELS �� � � � �� OF THE 5375 SOLUTIONS

OF THE �� SEQUENCE WITH ENERGY LOWER THAN �32

TABLE VIII
RESULTS ACHIEVED BY DIFFERENT SEARCH HEURISTICS

FOR THE HP INSTANCES

This experiment shows that deception also arises in the case
of the HP model, and that deceptive instances for the EDAs can
be found and described as those which do not share a number
of good substructures with most of the closest suboptimal solu-
tions. These substructures cannot be captured by the probability
models used.

2) Comparison With Other Algorithms: The performance of
EDAs is compared now with the best results achieved with other
evolutionary and Monte Carlo optimization algorithms. The re-
sults are shown in Table VIII. The results of GA [19] and MMA
[17] correspond to the best solution found in five runs. The re-
sults of ACO and NewACO [28] are based on 20–700 tries for
the former algorithm and 300–500 for the latter [28]. PERM
[25] reports 20–200 tries for sequences and ; the other
instances have been faced in [28]. Results for other optimiza-
tion methods [15], [22], [50] were not displayed because either
they were unable to find the best results achieved by EDAs or
the number of functions evaluations required to find them was
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Fig. 7. Average of the best solution at each generation for different EDAs in
sequence ��.

much higher. All the results shown for EDAs are obtained from
50 runs.

A first conclusion is that none of the algorithms are able to
outperform the rest of algorithms for all the instances. PERM
is one of the best contenders in all cases except in which
its results are consistently very poor. In comparison with the
NewACO, EDA reaches equal or better results in all instances
except one. It should be noted that NewACO applies local op-
timization techniques. In this sense, a fairer comparison would
be between EDAs and ACO. In such a comparison, EDA is the
clear winner. Analysis shows that none of the other algorithms
achieves similar results.

3) Dynamics of the Algorithms: Another relevant issue re-
lated to EDAs concerns their particular dynamics for the HP
models. The existence of a model of the search space enables
a compact representation of characteristic features of the best
solutions but also determines the particular way in which the
optimal solutions are constructed.

In the next experiment, we analyze the convergence dynamic
of the three types of EDAs employed in our experiments, in the
optimization of sequence . The average of the best solutions
at each generation is calculated by running each algorithm 50
times. The population size and the rest of the parameters were
the same as in previous experiments. The results are shown in
Fig. 7. It can be appreciated from the figure that, for all EDAs,
a small number of generations are enough to find the optimal
solutions. Nevertheless, there are differences in the dynamics
of the algorithms. reaches better solutions ear-
lier than the other algorithms, but in the experiments conducted,

reached the optimum more often. Tree-EDA is the
slowest algorithm.

C. Results of the HP Model in the Three-Dimensional Lattice

In the following experiments, we investigate the behavior of
EDAs in the solution of the HP model in the regular 3-d lat-
tice. EDAs are compared with the hybrid GA that uses a fea-
sible-space approach with relative encoding [21] and with re-
sults achieved using the IA [23]. A maximum number of

evaluations was set in the experiments presented in [21] and
[23]. Therefore, we imposed the same restriction and in our
comparison EDAs with two possible instantiations of the pa-
rameters were used: A population size with
generations, and a population size with gen-
erations. Since we use elitism with parameter (i.e., the
best individual is passed to the next generation), the maximum
number of evaluations is slightly smaller than . The results
of the experiments are shown in Table IX, where average and
fitness values are computed from 50 runs for each algorithm.
For each instance, the first row shows the results of EDAs with

and the second those for . Best and av-
erage results of the EDAs are in bold whenever they are equal
or better than those achieved by the hybrid GA and the IA.

It can be seen in Table IX that in terms of the average fitness of
the solutions, the results reached by all EDAs are strictly better
than those achieved with the other two algorithms for instances
s1, s2, s3, and s6. For instances s5, s7, and s8, the IA clearly
outperforms all the EDAs in terms of the average fitness. For
instance s4, the Tree-EDA and the that use a pop-
ulation size of 2500 outperform the IA. For instances s6 and s8,
EDAs are able to achieve best new solutions.

We hypothesized that the best solutions found by the algo-
rithms for some of the instances may be far from optimal. EDAs
that use a constrained population size cannot reach these op-
timal solutions. To validate this hypothesis, and in order to eval-
uate the capacity of EDAs to reach better solutions when more
evaluations are allowed, we used a population size of 5000 in-
dividuals and a maximum of 1000 generations. In this case, we
employ the best elitism strategy. We also run experiments for
the hybrid GA allowing a maximum of evaluations. The
IA program was not available for conducting new experiments.
The results are shown in Table X.

Since in this case we could collect the best result achieved
in each run for all the algorithms, we could determine whether
differences between the algorithms are statistically significant.
We have used the Kruskal–Wallis test to accept or reject the
null hypothesis that the samples have been taken from equal
populations. The test significance level was 0.01. For all the in-
stances considered, significant statistical differences have been
found between the hybrid GA results and those achieved by
the Markov and mixture EDAs.
Significant statistical differences between the hybrid GA and the
Tree-EDA have been detected only for instances , , , and

. All the EDAs have a better average of solutions, showing
that the algorithm clearly outperforms the hybrid GA. Further-
more, as can be observed in Table X, EDAs find new best solu-
tions for sequences , , and . Notice that the average re-
sults for instances and degrade with regard to those shown
in Table IX. We consider this fact may be due to the effect of the
best elitism strategy that for small instances may lead to an early
convergence of the algorithm. The average number of evalua-
tions needed by EDAs before convergence was between
for the shortest instances and for the longest ones.

D. Results for the Functional Model Protein

We have conducted experiments with the functional model
protein in the two-dimensional lattice.
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TABLE IX
RESULTS OF THE EDAS, THE HYBRID GA, AND THE IA IN THE THREE-DIMENSIONAL LATTICE

TABLE X
RESULTS OF THE EDAS AND THE HYBRID GA IN THE THREE-DIMENSIONAL LATTICE

Initial results for the functional model protein instances [17]
considered the number of fitness evaluations required by the
best run for a given instance as a metric for comparing the per-
formance of the algorithms. In [23], the success rate and the
number of fitness evaluations are used to compare different vari-
ants of the IA. We follow the second approach and compare
the results of EDAs with three of the variants of the IA pre-
sented in [23]. The variants of the IA selected were: IA with
elitist aging, IA with pure aging, and IA using memory cells
( , ). The other two variants for which re-
sults are shown in [23] do not improve the results of the IA vari-
ants selected.

For EDAs, we use a scheme conceived for situations wh2ere
early convergence of the algorithm is detected. This scheme

works as follows: When the selected population is too ho-
mogenous (the number of different individuals is below a
given threshold), all the individuals except the best solution are
randomly generated. This scheme allows one the use of smaller
population sizes. We use a population size , and the
minimal number of different individuals allowed was 50. As in
[23], a maximum of evaluations were allowed to all the
algorithms and 30 runs were done for each instance. Results
are shown in Table XI.

In Table XI are shown, for all the algorithms, the success rate
percentage and the average number of evaluations, which are
the criteria we use to compare the algorithms. An initial anal-
ysis of the results shown in the table reveals that IA with elitism
aging and IA with memory cells have the worst results among
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TABLE XI
RESULTS OF THE EDAS AND THE IA FOR THE FUNCTIONAL MODEL PROTEIN IN THE TWO-DIMENSIONAL LATTICE. �: PERCENTAGE OF TIMES

THE BEST SOLUTION HAS BEEN FOUND, ��: AVERAGE NUMBER OF FITNESS EVALUATIONS NEEDED TO FIND THE OPTIMUM

all the algorithms tested. However, there is not a clear winner
among the rest of algorithms. has the highest suc-
cess rate of all the algorithms but for many instances it needs a
higher number of function evaluations than IA with pure aging,
which is the best of all the IA variants. Differences between
EDAs are less evident. The and Tree-EDA only
fail for one instance and the for two. Some of
the results shown in Table XI have been improved by using
the (data not shown). The results achieved for
the functional model protein in the two-dimensional lattice
show that for this type of problem, EDAs are very competitive
algorithms.

E. Results of the Protein Folding Simulations

In this section, we present results on the use of EDAs to simu-
late the protein folding in the HP model. We investigate to which
extent EDAs are able to mimic some characteristic features of
the protein folding mechanism. For all the simulation experi-
ments, we use . In all the experiments, the popu-
lation size was set at 2000 and the maximum number of gener-
ations was 20.

1) Energy Landscape of the Model: In the first experiment,
we investigate the energy landscape of the function for one of the
15 545 functional model protein instances available. The goal of
this experiment is to build some intuition about the fitness land-
scape of the functional model protein. Particularly, to illustrate
the fact that as solutions share more of the protein native con-
tacts, their fitness (energy) decreases.

The experiments consist of executing the EDA and storing
all the conformations visited during the search. Sequence

was chosen
for the experiment. For every conformation visited during the
search, the total number of contacts and the number of na-
tive contacts are calculated. We classify the conformations
using these two parameters, and calculate the average energy
of all conformations that share the parameters . The

Fig. 8. Energy landscape of the functional model protein corresponding to
sequence ����������������������� as sampled by
��� ��� .

native state of the sequence has nine native contacts. Therefore,
, .

Fig. 8 shows the average energy of all the sampled conforma-
tions grouped using the different values of and . The figure
reveals that, as the number of native contacts increases in the
conformations, the average energy decreases.

Throughout the evolution, is able to explore
the different regions of the energy landscape. Not only those
regions with high energy which are abundant in the search space,
but also those corresponding to low-energy values where the
number of conformations is scarce. For example,
is able to locate the optimum which is unique.

To appreciate the characteristics of this landscape in detail,
Fig. 9 shows the contour graph corresponding to the same ex-
periment. Sets of conformations with similar average energy are
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Fig. 9. Energy landscape contour graph of the functional model protein cor-
responding to sequence ����������������������� as
sampled by ��� ��� .

joined in the graph by the same contour lines. Regions with
lower energy are those with many native contacts.

The samples obtained by make it possible to
observe the correlation between the presence of native contacts
in the conformations and the quality of the folding (low energy).
This fact is expected in proteins that have evolved to diminish
the degree of frustration and achieve a fast folding rate. How-
ever, it does not mean that, for every simplified energy function,
the EDA will be able to move in the direction of the native con-
figuration by augmenting the number of native contacts. First,
the definition of realistic protein folding energy functions such
that their only significant basin of attraction is the native state
has been recognized as a very difficult task [38]. Second, the
phenomenon of frustration can arise in the functional model pro-
tein and other energy functions, moving the away
from the native state.

2) Influence of the Contact Order in the Protein Folding
Process: We investigate whether the EDA can reflect the
influence of the contact order parameter in the protein folding
process. As discussed in Section II-A, proteins with a large frac-
tion of their contacts between residues close in sequence tend to
fold faster than proteins with more nonlocal interactions. This
section shows how the contact order of the functional model
protein instances influences on the success rate and average
number of generations needed by to solve the
problem.

As a preprocessing step, 100 executions of are
done for each of the 15 545 functional model proteins instances.
The goal of this step is to determine the easier instances for the
EDA, and to calculate, for all instances, a set of statistics from
the best solutions found at each run. Of the 15 545 instances,

was able to find the optimum in 12 588 instances
at least once. For 703 instances, the algorithm found the op-
timum at least in 95 runs, and for 176 it found the optimum in
100 runs.

To evaluate the relationship between the contact order of the
sequences and the average number of generations needed to

Fig. 10. Relationship between the contact order of the sequences where
��� ��� has a success rate above 95 in 100 experiments and the average
number of generations needed to convergence.

solve them, we consider those instances for which
has a success rate higher than or equal to 95. The choice of this
set is determined by the need to have an accurate estimate of the
average number of generations. From this set of instances, the
Spearman’s rank correlation coefficient is calculated between
the contact order and the average number of generations. The
Spearman’s rank correlation is the statistic of a nonparametric
test usually employed to test the direction and strength of the
relationship between two variables.

With a confidence level of 0.01, the test accepted the hypoth-
esis that the two measures have a positive correlation equal to
0.3939. In Fig. 10, the average generation and contact order for
the set of selected instances are plotted. Additionally, the figure
shows the average number of generations calculated from in-
stances with similar contact order. It can be seen in the figure
that the number of generations needed to solve the problem
grows with the contact order.

Using the test based on the Spearman’s rank correlation co-
efficient with the same confidence level, we have evaluated the
relationship between the contact order of the sequences where

found the optimum at least once, and the success
rate achieved by the algorithm for these instances. The test re-
jected the hypothesis that the observed correlation was due to
random effects. The parameter of the correlation provided by
the test was equal to 0.2848. This means that, as the contact
order of the instance grows, the success rate of the algorithm di-
minishes. Fig. 11 shows the average success rate for instances
with similar contact order.

The analysis of the EDA-based protein folding model has
shown that similarly to the real protein folding process, low con-
tact order optimal conformations are easier and faster to find.
This behavior has been observed in other optimization algo-
rithms such as Rosetta [48], which is one of the best algorithms
for protein folding in the CASP competitions. In Rosetta, the
structures sampled by local sequences are approximated by the
distribution of structures seen for short sequences and related
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Fig. 11. Relationship between the contact order of the sequences where
��� ��� found the optimum at least once, and the success rate achieved
by the algorithm for these instances.

sequences in known protein structures. Using Rosetta, high con-
tact order proteins can take up to six orders of magnitude longer
to fold than do low contact order proteins [80].

3) Difference in the Contact Accessibility: In the following
experiment, we investigate whether the EDA-based protein
folding model is able to reproduce the difference in the rate
of formation for different native contacts. Particularly, we will
investigate whether the distance between contacting residues
has an effect on their formation. As discussed in Section II-A,
local interactions are more likely to form earlier in the real
folding process than nonlocal interactions.

Given a protein instance that is optimized using
, the experiment consists of computing, at each

generation, the frequency of each native contact of the protein
from the selected set of the EDA population. The frequency is
calculated as the fraction of all selected solutions that contain
that contact. The EDA is executed 100 times for each of the
176 instances for which had previously found a
100% of success.

From the information obtained from the 17 600 experiments,
the frequencies of the contacts with the same contact separa-
tion (C.S.) at the same generation are averaged. The results are
shown in Fig. 12. By selecting a set of instances, we intend to
show that the observed effect are not particular of one single
instance. On the other hand, by choosing the 176 instances for
which had previously found a 100% of success
rate, it is guaranteed that the native state will be reached in all
the runs with a very high probability.

Fig. 12 shows the evolution of the probabilities along the gen-
erations. Two aspects can be appreciated. First, the probability
of contacts with low contact separation is higher
than the other probabilities since the first set of individuals is
selected. Second, the difference in the rate of convergence deter-
mined by the contact separation is evident. While contacts with
low contact separation rapidly increase their probability, those
contacts with a higher contact separation grow at
a slower rate.

Fig. 12. Relationship between the different contact separations and the evo-
lution of their probabilities along the evolution of ��� ��� for instances
where it had a 100% of success rate.

The behavior of our model is once again consistent with what
is observed in the real protein folding. Moreover, these results
can support hypotheses that help to explain the correlation be-
tween the contact order of proteins and the success rate and av-
erage number of generations needed to find them. As the in-
crease of the probability of contacts with high contact separation
is slower, it will take a longer time to obtain native states with
higher contact order. Additionally, it will also be more difficult
to find the optimum for this type of instances as the algorithm
will tend to get trapped in suboptimal solutions with lower con-
tact order.

VIII. CONCLUSION AND FURTHER WORK

The approach of using probabilistic dependencies to improve
search efficiency has a strong theoretical basis. Its operational
simplicity and applicability make it an advantageous method in
relation to other widely applied evolutionary algorithms. The
results of the experiments shown in this paper confirm that the
EDA is a feasible alternative for the protein structure prediction
problem. Particularly, we recommend the use of probabilistic
models for the solution of coarse-grained protein folding prob-
lems, where Monte Carlo methods exhibit a poor performance.

There exist evolutionary and deterministic algorithms that ex-
hibit similar or better results than EDAs for some of the HP and
functional protein instances used in this paper. Some of these
algorithms have been tuned for each of the instances or they im-
plement local optimizers together with the main evolutionary
method used. This is certainly an alternative that could be fol-
lowed for EDAs too and might provide better results than those
presented in the paper. Nevertheless, we have put the emphasis
in the investigation of those factors that explain the behavior
achieved by EDAs, and in which way problem knowledge can
be obtained by inspecting the solutions found by the algorithms.
We investigate the influence that different factors of the HP in-
stances have on the behavior of the algorithm. The decision of
not including other optimizers was also due to the interest to
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simplify the analysis of the role played by probabilistic mod-
eling in the search.

On the other hand, in comparison to other optimization
algorithms such as PERM, which has only been applied to
the HP-model, EDAs are general optimization strategies that
have been extended to solve protein problems with more
complex protein models [61], [62], [81]. Nevertherless, this
work and other recent successful applications of EDAs in
bioinformatics [27], [82]–[85] refer to the use of EDAs as
optimization methods. One of the aims of this paper has been to
highlight that EDAs can also be employed as simulation tools
of biological processes.

The most distinguished feature of the EDA model of pro-
tein folding lies in its ability to represent, by means of proba-
bility models, relevant interactions between the protein confor-
mations. This representation can be used in broader contexts.
For instance, in the Rosetta algorithm, short fragments of known
proteins are assembled by a Monte Carlo strategy to yield na-
tive-like protein conformations. While Monte Carlo sampling
of only one fragment at a time allows the native structures to
be smoothly constructed, the existence of probability depen-
dencies between the different local conformations seems clear.
These dependencies could be exploited during the search ap-
plying probability models in a context similar to EDAs.

We have shown that EDAs can mimic some features of the ac-
tual protein folding process. Our approach to the protein folding
process in the HP simplified model has paid attention to how
the order parameters such as the contact order influence on the
behavior of EDAs. Such an analysis is scarce in previous na-
ture-inspired approaches to the HP problem.

The experiments that simulate the protein folding process
presented in this paper have only investigated a number of the
potential issues that can be studied with the model. The analysis
of EDA simulations lead to the study of other features exhib-
ited by the model. One example is the emergence of nucleation
events in protein folding.

It is generally accepted that some sort of nucleation event is
a key to the protein folding mechanism. This means that some
local partial structures are generally formed before the con-
figuration of the whole protein. However, there are different
ways to explain how this mechanism operates. Two opposite
explanations are the “many delocalized nuclei” and the “spe-
cific nucleus” ideas. The former states that each conformation
in the ensemble contains a different locally structured region.
The second idea suggests that the transition state ensemble is
comprised of conformations that share the same set of essential
contacts, which form a compact core inside the native state (the
specific nucleus) [40].

Emergence of nucleation events in protein folding can be ap-
proached by the study of the marginal probability distributions
associated with the local configurations. By adding a priori in-
formation about the local structure configurations to the proba-
bilistic model, the EDA protein folding model can also be har-
nessed to test the “specific nucleus” or “many delocalized nu-
clei” hypothesis.

While the application of the model to real folding problems
is clearly constrained by the nature of the HP energy model and
the specificities of EDAs, we recall that different applications

of protein models require different levels of accuracy. Some
models can be used to study catalytic mechanisms, while other
are more suitable to find functional sites by 3-d motif searching
[86]. Furthermore, as shown in this paper, simple models can be
analyzed in detail over a wide range of instances and parameters.

Finally, we point out that measures associated with the pro-
tein folding process, such as the contact order and the degree
of frustration in proteins, are of interest for the design and study
of hardness measures (e.g., fitness distance correlation, epistasis
variance, etc., [87]) for evolutionary algorithms.
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