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Thanks to their inherent properties, probabilistic graphical models are one of the prime
candidates for machine learning and decision making tasks especially in uncertain
domains. Their capabilities, like representation, inference and learning, if used effectively,
can greatly help to build intelligent systems that are able to act accordingly in different
problem domains. Bayesian networks are one of the most widely used class of these mod-
els. Some of the inference and learning tasks in Bayesian networks involve complex opti-
mization problems that require the use of meta-heuristic algorithms. Evolutionary
algorithms, as successful problem solvers, are promising candidates for this purpose. This
paper reviews the application of evolutionary algorithms for solving some NP-hard optimi-
zation tasks in Bayesian network inference and learning.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Probability theory has provided a sound basis for many of scientific and engineering tasks. Artificial intelligence, and
more specifically machine learning, is one of the fields that has exploited probability to develop new theorems and algo-
rithms. A popular class of probabilistic graphical models (PGMs), Bayesian networks, first introduced by Pearl [105], combine
graph and probability theories to obtain a more comprehensible representation of the joint probability distribution. This tool
can point out useful modularities in the underlying problem and help to accomplish the reasoning and decision making tasks
especially in uncertain domains. The application of these useful tools has been further improved by different methods pro-
posed for PGM inference [86] and automatic induction [23] from a set of samples.

Meanwhile, the difficult and complex problems existing in real-world applications have increased the demand for effec-
tive meta-heuristic algorithms that are able to achieve good (and not necessarily optimal) solutions by performing an intel-
ligent search of the space of possible solutions. Evolutionary computation is one of the most successful of these algorithms
that has achieved very good results across a wide range of problem domains. Applying their nature-inspired mechanisms,
e.g., survival of the fittest or genetic crossover and mutation, on a population of candidate solutions, evolutionary approaches
like genetic algorithms [59] have been able to perform a more effective and diverse search of the vast solution space of dif-
ficult problems.
antana@
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Some of the most relevant inference and learning problems in Bayesian networks are formulated as the optimization of a
function. These problems usually have an intractable complexity and therefore are a potential domain for the application of
meta-heuristic methods. The aim of this paper is to review how evolutionary algorithms have been applied for solving some
of the combinatorial problems existing in the inference and learning of Bayesian networks.

The paper is organized as follows. Section 2 introduces Bayesian networks and reviews some of the inference and learning
methods proposed for them. Section 3 presents the framework of evolutionary algorithms and discusses how they work. The
main review of how evolutionary algorithms are used in Bayesian network learning and inference is given in Section 4. Fi-
nally, Section 5 concludes the paper.

2. Bayesian networks

This section gives an introduction to Bayesian networks and how they are used for representing probability distributions
in discrete, continuous, and hybrid environments. It then briefly reviews some of the methods for inference and learning of
Bayesian networks. The terminology and concepts adopted and introduced in this section are later used in the presentation
of evolutionary algorithms for learning and inference in Bayesian networks. For more information on Bayesian networks and
PGMs in general, see Koller and Friedman [74], and Larrañaga and Moral [83].

2.1. Probability-related notations

Let X = (X1, . . ., Xn) be a vector of random variables and x = (x1, . . ., xn) a possible value combination for these variables. xi

denotes a possible value of Xi, the ith component of X, and y denotes a possible value combination for the sub-vector
Y ¼ ðXJ1 ; . . . ;XJk

Þ, J = {J1, . . ., Jk} # {1, . . ., n}.
If all variables in X are discrete, P(X = x) (or simply P(x)) is used to denote the joint probability mass of a specific config-

uration x for the variables. The conditional probability mass of a specific value xi of variable Xi given that Xj = xj is denoted by
P(Xi = xijXj = xj) (or simply P(xijxj)). Similarly, for continuous variables, the joint density function will be denoted as p(x) and the
conditional density function by p(xijxj). When the nature of variables in X = (X1, . . ., Xn) is irrelevant, q(x) = q(x1, . . ., xn) will be
used to represent the generalized joint probability. Let Y, Z and W be three disjoint sub-vectors of variables. Then, Y is said to
be conditionally independent of Z given W (denoted by I(Y, ZjW)), iff q(yjz, w) = q(yjw), for all y, z and w.

2.2. Bayesian network definition

A Bayesian network (BN) BðS;HÞ for a vector of variables X = (X1, . . ., Xn) consists of two components:

� A structure S represented by a directed acyclic graph (DAG), expressing a set of conditional independencies [30]
between variables.

� A set of local parameters H representing the conditional probability distributions for the values of each variable given
different value combinations of their parents, according to the structure S.

Fig. 1a shows an example of a BN structure for a problem with six variables. For each variable Xi, i = 1, . . ., n, structure S
represents the assertion that Xi and its non-descendants, NDðXiÞ, excluding its parents are conditionally independent given
its parents, Pai: i.e., IðXi;NDðXiÞ n PaijPaiÞ. This property is known as the Markov condition of BNs. Therefore, a BN encodes a
factorization for the joint probability distribution of the variables
Please
tasks,
qðxÞ ¼ qðx1; . . . ; xnÞ ¼
Yn

i¼1

qBðxijpaiÞ; ð1Þ
Fig. 1. An example of a Bayesian network structure and the parameters for one of its variables (X4) assuming that ri = i + 1.

cite this article in press as: P. Larrañaga et al., A review on evolutionary algorithms in Bayesian network learning and inference
Inform. Sci. (2013), http://dx.doi.org/10.1016/j.ins.2012.12.051

http://dx.doi.org/10.1016/j.ins.2012.12.051


P. Larrañaga et al. / Information Sciences xxx (2013) xxx–xxx 3
where pai denotes a possible value combination for the parents Pai. Eq. (1) states that the joint probability distribution of the
variables represented by a BN can be computed as the product of each variable’s univariate conditional probability distribu-
tions given the values of its parents. These conditional probability distributions are encoded as local parameters hi in the BN.

A related notion in BNs is the so-called Markov blanket (MB) [107] of the variables. The MB of a variable in a BN consists of
its parents, its children and the parents of its children (spouses). The important property of this subset is that a variable in
the BN is only influenced by its MB. In other words, given its MB, a variable is conditionally independent of all other variables
(excluding its MB): IðXi;X nMBðXiÞjMBðXiÞÞ.

In discrete domains, when a variable Xi has ri possible values, fx1
i ; . . . ; xri

i g, and, according to structure S, its parents Pai

have qi possible combinations of values, pa1
i ; . . . ;paqi

i

� �
, then PB xk

i jpaj
i

� �
� hijk denotes the probability of Xi being in its

kth value given that its parents are in their jth value combination. Since all variables are discrete, the number of possible
value combinations for the parents can be easily computed as qi ¼

Q
Xm2Pai

rm. The local parameters of the BN for the ith var-
iable can be represented by hi ¼ ððhijkÞri

k¼1Þ
qi
j¼1. Fig. 1b shows an example of a conditional probability table for a discrete var-

iable in a BN.

2.3. Bayesian networks in machine learning

2.3.1. Supervised learning
In recent years, there has been a sizable increase in published research using BNs for supervised classification tasks [82].

Bayesian classifiers compute the class value with the highest posterior probability (c⁄) to be assigned to each configuration of
predictor values (x1, . . ., xn):
Please
tasks,
c� ¼ arg max
c

PðC ¼ cjX1 ¼ x1; . . . ;Xn ¼ xnÞ ¼ arg max
c

qðX1 ¼ x1; . . . ;Xn ¼ xnjC ¼ cÞPðC ¼ cÞ: ð2Þ
Different Bayesian classifiers can be obtained depending on the factorization of q(X1 = x1, . . ., Xn = xnjC = c). Fig. 2 shows
examples of some Bayesian classifiers. Naïve Bayes (NB) [94] (Fig. 1a) is the simplest Bayesian classifier. It is built on the
assumption that the predictor variables are conditionally independent given the class value
qðx1; . . . ; xnjcÞ ¼
Yn

i¼1

qðxijcÞ: ð3Þ
Fig. 2. Examples of different types of Bayesian classifier structures.
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The semi-naïve Bayes (SNB) classifier [104] (Fig. 1b) considers a new variable type to avoid the conditional independence
assumption of classical NB. These variables are formed by joining the original predictor variables, and their values are
obtained from the Cartesian product of the values of the constituent variables. Pazzani [104] proposed a greedy wrapper
approach for building a SNB classifier, where the irrelevant variables are removed from the model and the correlated variables
are joined with their Cartesian product. The tree augmented naïve Bayes (TAN) classifier [43] (Fig. 1c) extends the structure of
NB classifier by constructing a tree structure between predictor variables to account for their relationships. The k-dependence
Bayesian (kDB) classifier [122] (Fig. 1d) also extends NB classifier with a more general structure allowing each variable to have
k parents from the predictor variables. Bayesian classifiers can also be defined using the MB of the variables. Specifically, the
MB of the class variable specifies the set of predictor variables affecting its posterior probability computation:
Please
tasks,
PðCjX1; . . . ;XnÞ ¼ PðCjMBðCÞÞ: ð4Þ
2.3.2. Unsupervised learning
Another major area of machine learning employing BNs is unsupervised learning or clustering. The clustering of the data of

an n-dimensional random variable X = (X1, . . ., Xn) should consider the structural constraint assumptions imposed by the data
generation mechanism. In the case of BNs, the constraint states that there should be an edge from the random variable rep-
resenting the cluster, C, to every predictor variable Xi. Thus, the factorization of the joint probability distribution for the
(n + 1)-dimensional random variable (C, X) is given by
qBðc; xÞ ¼ PBðcÞ
Yn

i¼1

qBðxijc;paiÞ: ð5Þ
Notice that this is similar to the factorization considered for BNs in supervised classification. The main difference, however, is
that the value of variable C is unknown in clustering problems and has to be estimated using techniques like the expectation–
maximization (EM) algorithm [33].
2.4. Inference in Bayesian networks

The BN paradigm is mainly used to reason in domains with intrinsic uncertainty. The reasoning inside the model, that is,
the propagation of evidence through the model, depends on the structure reflecting the conditional independencies between
the variables. Cooper [24] proved that this task is NP-hard in the general case of BNs with multiply connected structures.
Generally speaking, the propagation of evidence involves assigning probabilities to the values of a subset of non-instantiated
variables when the values of some other variables are known. The methods proposed for this task can be divided into two
categories: (a) exact algorithms [86,107], and (b) approximate algorithms which include deterministic methods [13,38,65]
and methods based on simulating samples from the BN [14,18,58,124]. For detailed information about these methods the
reader can refer to [16,29,66].

Lauritzen and Spiegelhalter [86] proposed one of the most popular algorithms for exact inference. The first step of this
algorithm is to moralize the network structure. In this step all variables with a common child are linked together and then
all edge directions are removed. The resulting graph is called a moral graph. The second step of the algorithm is the so-called
triangulation of the moral graph. A graph is triangulated if any cycle of length greater than 3 has a chord. This step is con-
sidered as the toughest step (in terms of computational complexity) of Lauritzen and Spiegelhalter’s algorithm. The resulting
structure is then used for evidence propagation and probability computation. For further explanation and details of this algo-
rithm, see Lauritzen and Spiegelhalter [86].

The basic technique for triangulating a moral graph (see also Fig. 3) is through successive elimination of graph nodes. Be-
fore eliminating a node and its incident edges, we check that all of its adjacent nodes are directly connected to each other by
adding the required edges to the graph. The nodes are chosen for elimination according to a given order of the variables. The
quality of triangulation is measured by the weight of the triangulated graph St
wðStÞ ¼ log2

X
C

Y
Xi2C

ri

 !
; ð6Þ
where C denotes a maximal clique of the triangulated graph St composed of vertices Xi, each with ri possible different states.
The quality of triangulation is evidently fully determined by the order in which the nodes are eliminated. Hence, the search
for an optimal triangulation is equivalent to the search for an optimal node elimination sequence, i.e., the search for an opti-
mal permutation of nodes. Wen [136] demonstrated that the search for an optimal triangulation is NP-hard. Kjærulff [72]
performed an empirical comparison of triangulation methods, obtaining the best results with the simulated annealing
algorithm.

Instead of finding the probability of a subset of the variables in the BN, we sometimes need to find a value combination of
these variables that results in the highest probability. The following two inference tasks are directly related to this
requirement.
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Fig. 3. An example of the triangulation algorithm. Nodes are eliminated in order: X1, X5, X3, X4, X2, X6 and it is assumed that ri = i + 1, i = 1, . . ., 6. (a) Initial
DAG. (b) Related moral graph. (c) Eliminate X1: C1 = {X1, X2, X3, X4}, added edges: {X2, X3}, {X3, X4}. (d) Eliminate X5: C2 = {X4, X5}. (e) Eliminate X3: C3 = ;. (f)
Eliminate X4: C4 = {X2, X4, X6}, added edges: {X2, X6}. (g) Eliminate X2: C5 = ;. (h) Eliminate X6: C6 = ;. (i) Total weight of the triangulated graph: log2(2
� 3 � 4 � 5 + 5 � 6 + 3 � 5 � 7) = log2255.
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2.4.1. Total abductive inference
Also known as the most probable explanation (MPE) problem [106], this type of inference finds the most probable value of

each unobserved variable of the BN, given a set of observations (XO = xO). More formally, if XU = XnXO is the set of unobserved
variables, then the aim is to obtain the configuration xU

⁄ for XU such that
Please
tasks,
x�U ¼ arg max
xU

qðxU jxOÞ: ð7Þ
Searching for the MPE is just as complex (NP-hard) as probability propagation [125]. In fact, the MPE can be obtained by
using probability propagation algorithms, where summation is replaced by a maximization operator in the final marginal-
ization step [101].

2.4.2. Partial abductive inference
Also known as the maximum a posteriori (MAP) problem, this type of inference outputs the most probable configuration

for just a subset of the variables in BN, known as the explanation set. If XE � XU is used to denote the explanation set, then the
aim is to obtain the configuration xE

⁄ for XE such that
x�E ¼ arg max
xE

qðxEjxOÞ: ð8Þ
This problem can be reformulated using an MPE problem, and marginalizing over all variables in XR = XUnXE. Hence, finding
the MAP is more complex than the MPE problem since it can have an intractable complexity (NP-hard) even for cases in
which the MPE can be computed in polynomial time (e.g., polytrees) [103].

2.5. Learning Bayesian networks

The structure and conditional probabilities necessary for characterizing a BN can be provided either externally by experts,
which is time consuming and prone to error, or by automatic learning from a database of samples. The task of learning a BN
can be divided into two subtasks:

� structural learning, i.e., identification of the topology of the BN, and
� parametric learning, estimation of the numerical parameters (conditional probabilities) for a given network topology.

The different methods proposed for inducing a BN from a dataset are usually classified by modeling type into two
approaches [10,28,56,100]:

1. methods based on detecting conditional independencies, also known as constraint-based methods, and
2. score+search methods.
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2.5.1. Constrained-based methods
The input of these algorithms is a set of conditional independence relations between subsets of variables, which they use

to build a BN that represents a large percentage (and, whenever possible, all) of these relations [129]. The PC algorithm [128]
is a well-known example of these methods. Typically, hypothesis tests are used to find conditional independencies from a
dataset. Once the structure has been learned, the conditional probability distributions, required to fully specify the BN model
are estimated from the dataset. The usual method for estimating the parameters is maximum likelihood estimation,
although Laplace estimation and other Bayesian estimation approaches based on Dirichlet priors are also common.

2.5.2. Score+search methods
Constraint-based learning is quite an appealing approach as it is close to the semantics of BNs. However, most of the

developed structure learning algorithms fall into the score+search method category. As the name implies, these methods
have two major components:

1. a scoring metric that measures the quality of every candidate BN with respect to a dataset, and
2. a search procedure to intelligently move through the space of possible networks, as this space is enormous (see below for

further discussion).

Scoring metrics. Most of the popular scoring metrics are based on one of the following approaches: (i) penalized maxi-
mum likelihood, and (ii) marginal likelihood. In discrete domains, Penalized maximum likelihood is computed as follows:
Please
tasks,
PBðDÞ ¼
Yn

i¼1

Yqi

j¼1

Yri

k¼1

Nijk

Nij

� �Nijk

� f ðNÞdimðBÞ; ð9Þ
where D is a dataset of N samples each consisting of n variables, Nij is the number of samples in this dataset that have the jth
value combination for the parents of the ith variable, and likewise Nijk is the number of samples with the ith variable in its
kth state and its parents in their jth configuration. dimðBÞ is the dimension (number of parameters needed to specify the
model) of the BN. If the number of different states for the ith variable is given by ri and the number of possible configurations
for its parents is given by qi, then the dimension of BN can be computed as dimðBÞ ¼

Pn
i¼1qiðri � 1Þ. f(N) is a non-negative

penalization function depending on the size of the dataset. Popular scoring metrics like Akaike’s information criterion
(AIC) [1] and the Bayesian information criterion (BIC) [123] differ as to their choice for this penalization function with values
f(N) = 1 and f ðNÞ ¼ 1

2 log N, respectively.
Assuming certain prior distributions for the parameters in the BN, the marginal likelihood of a specific network structure S

given a dataset of samples, PBðSÞðDÞ, can be computed in closed form [23,57]. A common prior probability assumption is the
Dirichlet distribution with parameters aijk, resulting in the following scoring metric (and assuming a uniform prior distribu-
tion for the structures) also known as the Bayesian Dirichlet equivalence (BDe) metric [57]:
PBðSÞðDÞ ¼
Yn

i¼1

Yqi

j¼1

CðaijÞ
CðNij þ aijÞ

Yri

k¼1

CðNijk þ aijkÞ
CðaijkÞ

; ð10Þ
where C(v) is the Gamma function which for v 2 N is given by C(v) = (v � 1)! and aij ¼
Pri

k¼1aijk. In the specific case where all
Dirichlet distribution parameters are uniformly set to aijk = 1, the resulting scoring metric is usually called K2 metric, initially
proposed for use in the K2 algorithm (see below).

Minimum description length (MDL) score [50,114] is another type of scoring metric based on information theory and
data compression. This score, which is justified by Occam’s razor principle favoring less complex models, is closely re-
lated to the logarithm of the penalized maximum likelihood score. In simple terms this metric can be described as fol-
lows. Suppose that the cost of encoding a dataset D with a model B is equal to the cost of describing the model plus the
cost of describing the data with this model: CostðBÞ þ CostðDjBÞ. Then the MDL score tries to select the model with
the least total cost of description. Usually, the cost is expressed in terms of the number of bits required to represent
the description.

A feature of scoring metrics that can greatly help the search algorithm is decomposability. With a decomposable metric,
the score of a BN can be computed as the combination of scores obtained for smaller factors (e.g., a single variable). This
property will allow the search algorithm to measure the effect of operations involving each factor independently of the effect
of other network factors. The metrics introduced here are all decomposable.

Spaces and search methods. Most of the proposed score+search algorithms search the space of DAGs, which represent fea-
sible BN structures. The number of possible structures in this space for an n-dimensional variable is given by the following
recursive formula [115]:
f ðnÞ ¼
Xn

i¼1

ð�1Þiþ1 n

i

� �
2iðn�iÞf ðn� iÞ;

f ð0Þ ¼ 1; f ð1Þ ¼ 1:

ð11Þ
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In fact it has been shown that searching this huge space for the optimal structure (according to a scoring metric) is NP-hard,
even with a constrained maximum number of parents for each node [19–21]. Therefore, greedy local search techniques like
K2 algorithm [9,23], as well as many heuristic search methods such as simulated annealing [57], tabu search [8] and evolu-
tionary computation (see Section 4) have been frequently employed for this purpose in the literature.

The K2 algorithm receives as input a total ordering of the variables which can have a big influence on its result. Thus,
finding a good ordering of the variables is crucial for the algorithm success. On this ground, the space of variable orderings
(permutations), rather than the space of DAGs, can be searched to obtain orderings that can result in higher-scoring
networks.

Besides the previous two spaces, another possibility is to search the space of equivalence classes of BNs [22], when the scor-
ing metric complies with the equivalence property. Two DAGs are said to be Markov equivalent if they encode the same sta-
tistical model, i.e., the same set of conditional independence statements. This model can be represented by a partial DAG
(PDAG), where some of the edges are undirected. A metric that assigns equal scores to Markov equivalent BNs is said to com-
ply with the equivalence property. Using this algebraic relation (which is reflexive, symmetric and transitive), the space of
equivalence classes can be searched for the best BN. The BDe metric mentioned above is a Markov equivalence-compliant
scoring metric.
3. Evolutionary algorithms

Over the last few decades several types of evolutionary algorithms (EAs), like genetic algorithms (GAs) [59], evolutionary
strategies (ESs) [112], evolutionary programming (EP) [42] and genetic programming (GP) [27,75] have been proposed. They
are considered as important meta-heuristic algorithms for solving many real-world problems. Fig. 4 shows the common
framework of a typical evolutionary algorithm.
3.1. Genetic algorithms

GAs are perhaps the most well-known and widely used EAs. Since their introduction [59], they have received an increas-
ing amount of attention and interest, and numerous works have studied their different aspects. A typical GA works by evolv-
ing a population of candidate solutions to the problem across a number of generations in order to obtain better solutions.
Solutions are usually represented as binary strings, the same as the representation of information in machine language.
The algorithm selects a subset of fitter solutions from the population according to a selection mechanism, e.g. tournament
selection, as the parents. These parent solutions are used to reproduce new offspring solutions by applying genetic operators
like crossover and mutation. The newly generated solutions then compete with the solutions in the population for survival
according to their fitness.

The simple and easy to understand mechanism of GAs with their simple solution representation method, has led them to
be heavily utilized for optimization in a vast variety of domains, from engineering tasks [46] to medicine [2]. They have been
also extensively used in multi-objective [32], uncertain and dynamic [47] domains under the general term of evolutionary
algorithms. Despite their simple mechanics, several works have also studied the performance of these algorithms from a
theoretical point of view [53,60]. For further information on these algorithms see [48,49].
3.2. Genetic programming

The objective of GP is to evolve functions or computer programs to obtain a desired functionality. The main difference of
GP and GA is in the way that the solutions are represented. The usual representation used to encode the solutions in GP is
tree structures, where operations are shown as intermediate nodes and operands as terminal nodes of the tree. GP evolves a
Fig. 4. Flowchart of a typical evolutionary algorithm.
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population of these trees in the general framework of EAs, trying to generate programs that can better achieve the required
functionality. In a broader perspective, GP can be used for automatic generation of new content.

To deal with program tree representation of solutions, the genetic operators used to reproduce new solutions should be
adapted accordingly. Crossover usually involves switching the compatible branches of two solutions. In mutation the values
of specific tree nodes or a branch of the tree is changed (while respecting the compatibility of the whole solution). Therefore,
the solutions in the population can have different sizes. GP and EP are closely related and usually used interchangeably, with
the latter putting more emphasis on mutation in the generation of new solutions. The interested reader is referred to the
series of books by Koza [75–78].

3.3. Estimation of distribution algorithms

A relatively new paradigm in evolutionary computation is the use of probabilistic modeling in the EA framework for opti-
mization. The resulting algorithms which are usually called estimation of distribution algorithms (EDAs) [81,96], replace the
traditional reproduction mechanism of EAs, i.e. genetic operators, with probabilistic model estimation, followed by sampling
individuals from the estimated model. Implicitly, EDAs assume that it is possible to model the promising areas of the search
space, and use this model to guide the search for the optimum. The probabilistic model learnt in EDAs captures an abstract
representation of the features shared by the selected solutions. Such a model can capture different patterns of interactions
between subsets of the variables and can conveniently use this knowledge to sample new solutions.

Probabilistic modeling gives EDAs an advantage over other non-model based EAs by allowing them to deal with problems
containing important interactions among the problem components. This, together with their capacity to solve different types
of problems in a robust and scalable manner [90,108], has popularized these algorithms, which are sometimes even referred
to as competent GAs [49,109] to differentiate them from traditional GA algorithms.

A common way of categorizing EDAs is according to the complexity of the probabilistic models they use. Based on this
criterion, EDAs are usually classified as follows:

� Univariate EDAs: all variables are considered to be independent during model estimation. Some of the algorithms in this
class include: compact GA (cGA) [54], population based incremental learning (PBIL) [3] and univariate marginal distribu-
tion algorithm (UMDA) [96].
� Bivariate EDAs: only mutual dependencies are considered between variables when estimating the probabilistic model.

Mutual information maximizing input clustering (MIMIC) [31] and combining optimizers with mutual information trees
(COMIT) [4] are examples of the algorithms in this class.
� Multivariate EDAs: the probabilistic model used in the algorithm, can potentially consider any number of dependencies

between the variables. Factorized distribution algorithm (FDA) [95] and estimation of Bayesian network algorithm
(EBNA) [39] are some of these algorithms.

It is important to note that the more flexible modeling offered in multivariate EDAs comes at the cost of a greater com-
putational effort. Although probabilistic models were first built into GAs, the idea was soon adopted by other types of EAs,
like GP.

3.4. Complementary methods

In order to improve the performance of EAs in optimization, several methods have been proposed which modify or add to
the general framework of EAs. Here we briefly introduce two methods which are used in some of the works related to BN
learning and inference, presented later on.

3.4.1. Hybridization
Hybridization of an algorithm usually refers to the case where this algorithm is used in conjunction with a different type

of method, and thus can cover various types of hybridization between different algorithmic frameworks. The most likely type
of hybridization for EAs, is to use a local search method for improving new solution reproduction, which is sometimes re-
ferred to as memetic algorithms [55]. In these algorithms, after generating a new solution using genetic operators, its local
neighborhood is searched for fitter solutions using a local search method like hill climbing. This type of hybridization can
improve the exploitation ability of EAs in search for optimal solution(s).

3.4.2. Cooperative coevolution
Co-evolutionary algorithms are an extension to the original EAs and are specially designed for optimization problems in

complex systems. In coevolution, the fitness of each solution is determined by the way it interacts with other solutions in the
population. Basically, two types of coevolution can be considered: competition and cooperation. In competitive coevolution
[131], the increase in the fitness of an individual negatively affects the fitness of other solutions. Cooperative coevolution, on
the other hand, rewards those solutions that have better collaboration with other solutions [111]. In this type of coevolution,
usually the problem is decomposed into a number of subproblems and the individuals in the population represent solutions
to these subproblems. Therefore these sub-solutions need to cooperate with each other to obtain complete solutions with
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higher fitness values. The sub-solutions can be either evolved in different populations or in a single population, known as
Parisian approach [102].
4. Evolutionary algorithms in Bayesian network inference and learning

4.1. Triangulation of the moral graph

As mentioned in Section 2.4, the output of the triangulation algorithm used in the exact inference of BNs depends entirely
on the order in which the graph nodes are eliminated. The problem of searching for an optimal node elimination sequence
resembles the much researched traveling salesman problem (TSP). The aim of both problems is to find an optimal variable
ordering. One important difference, however, is that only the relative order is important in the standard TSP, whereas the
absolute order also matters in the node elimination problem. Taking these ideas, Larrañaga [80] applied a GA with crossover
and mutation operators adapted for the TSP path representation. They achieved competitive results compared to simulated
annealing, the best method to date [72].

More sophisticated recombination operators are a way to enhance the search for optimal variable ordering. Wang et al.
[135] proposed an adaptive GA able to self-adapt the crossover and mutation operators probabilities, and provided a rank-
ing-based selection operator that adjusts the pressure of selection according to the population evolution. Recently, Dong
et al. [37] proposed a new GA based on a new rank-preserving crossover operator and a twofold mutation mechanism that
utilizes the minimum fill weight heuristic.

Another alternative to improve search efficiency for this problem has been to use probabilistic modeling. Romero and Lar-
rañaga [119] proposed an approach based on recursive EDAs (REDAs) for both discrete and continuous representation of the
variables. REDAs partition the set of vertices (that are to be ordered) into two subsets. In each REDA call, the vertices in the
first subset are fixed, whereas the other subset of variables is evolved with a standard EDA. In the second call, the subsets
switch roles.

Several criteria are proposed for searching for the optimal node elimination order, from which most of the works try to
minimize the weight of the corresponding triangulated graph (Eq. (6)). According to the abovementioned works, GAs can
obtain results comparable with simulated annealing, for which very good results have been reported. A very close behavior
is seen when using REDAs, with improved convergence speed. The comparison with other types of optimization algorithms
that use other optimization criteria also show that GAs minimizing graph weight can find better node elimination orders,
provided that proper operators and parameters are used.

4.2. Total and partial abductive inference

EAs have also been used to search for the MPE in a BN. Gelsema [45] used a GA where each individual is a configuration of
the unobserved variables, i.e., a string of integers. Rojas-Guzmán [118] employed a GP where each individual represents the
whole BN with all the nodes in the explanation set instantiated to one of their possible states. Mengshoel [93] used a GA
coupled with his proposed probabilistic crowding replacement to perform a more efficient search for the MPE. Sriwachirawat
and Auwatanamongkol [130] proposed a GA for solving the more complex problem of finding the k MPEs [101].

de Campos et al. [12] proposed a GA for approximate partial abductive inference (MAP) given an evidence set. The indi-
viduals in the GA population represent a possible configuration only for the variables in the explanation set (a subset of
unobserved variables). The proposed algorithm is also able to find the k MPEs of the explanation set. Discrete EDAs with dif-
ferent degrees of model complexity (UMDA, MIMIC and EBNA) are also used to find the MAP [11].

The common trend in finding the k MPEs is to search in the space of possible value combinations for unobserved variables.
The reported results show that if these value combinations are represented on the original BN structure, better results can be
obtained with evolutionary search in less time. GAs can reach high probable explanations faster than conventional methods
Table 1
Application of evolutionary algorithms to inference in Bayesian networks.

Task Reference Representation Algorithm

Triangulation Larrañaga et al. [80] Permutation of variables GA
Wang et al. [135] Permutation of variables GA
Romero and Larrañaga [119] Permutation of variables REDA
Dong et al. [37] Permutation of variables GA

MPE Gelsema [45] Value combination for variables GA
Rojas-Guzmán and Kramer [118] Graph GP
Mengshoel [93] Value combination for variables GA
Sriwachirawat and Auwatanamongkol [130] Value combination for variables GA

MAP de Campos et al. [12] Value combination for variables GA
de Campos et al. [11] Value combination for variables UMDA, MIMIC, EBNA
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like max flow propagation [101]. Furthermore, the probabilistic modeling of EDAs can speed up the convergence compared
to GA, especially when using probabilistic models with high descriptive abilities (e.g. EBNA) [11]. Table 1 summarizes the
algorithms for some BN inference tasks.

4.3. Structure search in Bayesian network learning

Finding the correct BN structure is an important part of the learning process which also directly affects BN parameter
learning. Heuristic search algorithms and especially EAs can be a promising approach to this problem as the cardinality of
search space is huge. The reviewed methods are divided into three categories depending on the space where they perform
the search for finding the best network. The methods are also listed in Table 2.

4.3.1. DAG space
Larrañaga et al. [85] proposed a GA that encodes the connectivity matrix of the BN structure in its individuals. The algo-

rithm, which uses a marginal likelihood metric to score the network structures, considers two different approaches. In the
first approach there is a total ordering assumption between the variables (parents before children), and thus the variation
operators (one-point crossover and bit mutation) are closed operators. This reduces the cardinality of the search space. In
the second approach, there is no such assumption, and the algorithm should deal with a larger space. In this case, a repairing
operator is needed to ensure that the variation operators are closed.

To overcome the requirement for a repairing operator, [40] used the fuse-DAGs algorithm [92] to guarantee that the
crossover operator satisfies the closure property. Larrañaga et al. [84] hybridized two versions of a GA with a local search
operator to obtain better structures. Myers et al. [99] extended the use of GAs for BN learning to domains with missing data,
simultaneously evolving the structure of the BN and the missing data in separate populations. At each generation the new
solutions generated in both populations are used to compute the BDe score of each network structure.

cotta and Muruzábal [25] built phenotypic information into gene-based and allele-based recombination operators in a GA
to search for the best structure according to a penalized marginal likelihood scoring metric. Using guidelines on how GAs
work [53] and van Dijk et al. 35] designed a GA where the recombination operator tries to prevent the disruption of the good
BN substructures obtained so far in the population. The algorithm uses an MDL metric as the fitness function for scoring the
network structures, and a repairing operator to ensure that structures are acyclic.

Blanco et al. [6] compared the performance of GAs with two univariate EDAs, namely, UMDA and PBIL, using three dif-
ferent scoring metrics. The reported results, both with and without a total ordering assumption between variables, showed
that EDAs are able to obtain better or comparable network structures. Kim et al. [71] used fitness sharing in an EA to obtain a
Table 2
Application of evolutionary algorithms to learning Bayesian networks.

Space Reference Representation Algorithm

DAGs Larrañaga et al. [85] Connectivity matrix GA
Larrañaga et al. [84] Connectivity matrix GA+local search
Etxeberria et al. [40] Connectivity matrix GA
Myers et al. [99] Connectivity matrix GA
Wong et al. [137] Graph EP
Tucker et al. [134] Edge-time tuples EP
Cotta and Muruzãbal [25] Connectivity matrix GA
van Dijk et al. [35] Connectivity matrix GA
Blanco et al. [6] Connectivity matrix GA, PBIL, UMDA
Tucker et al. [133] Set of spatial points GA
Wong and Leung [139] Connectivity matrix EP
Wong et al. [138] Connectivity matrix Cooperative coevolution
Kim et al. [71] Connectivity matrix GA
Mascherini and Stefanini [91] Connectivity matrix GA
Jia et al. [68] String of possible parents Immune GA
Ross and Zuviria [121] String of possible parents Multiobjective GA
Hanzelka [52] Connectivity matrix GA+local search
Barrie~re et al. [5] Connectivity matrix Cooperative coevolution

PDAGs Muruzãbal and Cotta [98] Graph EP
Cotta and Muruzãbal [26] Graph EP
van Dijk and Thierens [34] Connectivity matrix GA+local search
Jia et al. [67] Connectivity matrix Immune GA

Orderings Larrañaga et al. [79] Permutation GA
Habrant [51] Permutation GA
Hsu et al. [61] Permutation GA
Romero et al. [120] Permutation UMDA, MIMIC
Kabli et al. [69] Chain permutation GA
Lee et al. [88] Permutation+connectivity matrix GA
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diverse population of BN structures. The BNs learnt at the end of evolution are then combined according to Bayes’ rule for
providing a more robust inference.

Hanzelka [52] also proposed a hybridization of GA with local search methods performed on single solutions under the
term of Lamarckian evolution. It uses a Chi-squared test to determine the edge that should be removed for repairing the struc-
ture. After GA terminates, an exhaustive search is conducted in the most promising search subspace obtained.

Barrière [5] proposed an EA which uses a cooperative co-evolution strategy to evolve a population of conditional indepen-
dence assertions. The scoring criteria is the Chi-squared test. At the end of evolution, the best conditional independence
assertions found (partly stored in an archive) are used to build the structure of the BN.

The EP algorithm proposed by Wong et al. [137] is based on a set of mutation operators and uses the MDL metric to search
for good BN structures. Because of its flexibility in representing the structures without any encoding, no further assumptions
on the ordering of the variables are needed in order to apply the mutation operators. The proposed algorithm is extended by
first introducing a merge operator and then hybridizing it using the two-phase constraint-based method [139]. In the depen-
dency analysis phase, conditional independencies among the variables are used to reduce the size of the DAG search space. In
the search phase, good BN models are generated using an EA. Replacement of the EA with a cooperative co-evolution algo-
rithm is also studied in [138].

Most of the works that consider learning BNs by searching in the space of possible DAG structures use a string represen-
tation of the connectivity matrix. In this representation the order of variables is important or else a repair operator will be
necessary to ensure valid DAG structures after applying genetic operators. Because of this, some methods simultaneously
search for variable orderings and topology of BN whereas some others use structure-aware operators to ensure the validity
of the resulting DAGs. A similar representation is the list of parents of each variable, leading to solutions of varying sizes. If
GP is used, DAG structures can be directly evolved and the reported results show better performance of this approach, in
terms of the final structure score, its closeness to the original structure and computational time needed for the search [137].

Another point is the importance of local search or in general higher exploitation which is shown to result in better BN
structures. Significant improvement has been reported when the initial search space is reduced by incorporating information
about the conditional independencies between variables [139]. These information is gathered in a pre-evolution phase by
performing conditional independence tests, usually with small order to keep the computational complexity of the whole
algorithm small. Comparison of different EAs with some standard methods like K2 algorithm or simple deterministic meth-
ods like hill climbing show that, especially when the size of the learning datasets increases, EAs are able to estimate better
structures and usually have a faster convergence.

4.3.2. Equivalence class space
To eliminate redundancy in the DAG space, van Dijk and Thierens [34] extended their initial representation to PDAGs to

perform the search in the equivalence class space. They also studied the effect of hybridizing the algorithm with local search
methods. Jia et al. [67] proposed an immune GA, hybridizing principles of artificial immune systems (based on immunology)
[17] with GAs, to search this space. They employed conditional independence tests for extracting variables independence
information prior to the evolutionary search of GA and use it (as immune vaccines) in order to reduce the search space.

Muruzábal and Cotta [98] proposed an EP algorithm to perform the search in the equivalence class space. The algorithm
uses some mutation operators to move between Markov equivalent classes [22] according to a BDe metric. Cotta and Mur-
uzábal [26] compared three versions of EP algorithms that perform the search in the equivalence class space, either directly
or with a restriction on the operators (inclusion boundary [15]).

Two milestone works have paved the way for most other approaches proposed for searching in equivalence space: the
equivalence class aware operators that allow moving between different classes when applied to any PDAG member of that
class; and the inclusion boundary property of the operators which when preserved can prevent the search from falling into
local optima. The greedy search in this space results in faster convergence compared with searching in the DAG space. How-
ever, the size of search space is still exponential in the number of variables. Many of the EAs that are proposed for performing
the search in this space involve converting back and forth PDAGs to DAGs which is a computationally expensive operation.
Hybridizing EAs with local search has been reported to improve the results [34].

4.3.3. Ordering space
Larrañaga et al. [79] used the TSP-inspired permutation representation (Section 4.1) to search for the best ordering

between the variables with a GA. The K2 algorithm was applied on each ordering to evaluate the quality of different order-
ings. They compared the performance of different combinations of crossover and mutation operators. Using the same rep-
resentation and evaluation scheme, Habrant [51] proposed improved mutation and crossover operators to search for the
best BN structure in the real-world problem of time series prediction in finance. Similarly, Hsu et al. [61] proposed a GA
based on the order crossover operator to search in the permutation space. The fitness of each BN obtained by the K2 algorithm
from an ordering is measured according to its inference quality (using cross-validation).

The chainGA [69] assumes a chain structure between the variables in the ordering which it evaluates using the K2 metric
in order to bypass the need for the time-consuming K2 algorithm. At the end of evolution however, the K2 algorithm is
applied to the best orderings to obtain a good structure. The algorithm is also applied to the real-world problem of prostate
cancer management [70]. Lee et al. [88] proposed a novel representation of BN structure composed of dual chromosomes: a
node ordering chromosome and a connectivity matrix chromosome according to its dual (ordering). They applied the
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proposed GA, with the special crossover and mutation operators developed for this representation, to a number of real-world
problems involving learning BNs.

Romero et al. [120] applied two types of discrete- and continuous-encoded EDAs (UMDA and MIMIC) to obtain the best
ordering for the K2 algorithm. For discrete encoding they used a bijective mapping to represent possible orderings of n vari-
ables with n � 1 random variables. The simulation step is adapted in order to output a valid permutation of the variables.
This adaptation is not necessary for continuous encoding, where each n-dimensional real vector can be transformed into
a valid permutation of the n variables.

An important decision to make when performing the search in the space of orderings is how to evaluate different candi-
date orderings. Some of the proposed methods use the K2 algorithm for this purpose which results in a high fitness evalu-
ation cost. Approximating the quality of a solution with a less computationally expensive method, can greatly reduce the
overall running time of the algorithms (e.g. as in chainGA). However, this can also cause the quality of the learned BNs to
reduce. The reported results on datasets with small number of variables show that the evolutionary search with GA obtains
results comparable to those of exhaustive search of all possible orderings, while only visiting a small percentage of the whole
solution space.
4.4. Learning other types of Bayesian networks

BNs have also been used for reasoning in continuous domains. In this type of domains it is usually assumed that the vec-
tor of variables follow a Gaussian distribution, and therefore the resulting BN is called a Gaussian Bayesian network (GBN)
[44]. GBNs differ from discrete BNs only in the way they represent the parameters. A further extension is to use BNs for
domains with mixed variables, i.e. containing both discrete and continuous variables. The resulting BN is called a conditional
Gaussian Bayesian network (CGN) [87]. Special precautions have to be taken when dealing with domains consisting of both
discrete and continuous variables to ensure certain conditions for the structure and parameters of the learned CGN. In this
domain, Mascherini and Stefanini [91] proposed a mixed GA to search for the optimal CGN, where invalid structures are cor-
rected by deleting inadmissible arcs at random. An extension of the BDe metric is used to measure the fitness of the model
for the mixed domain dataset.

In another application, BNs have been used to model time series data. Basically, a natural choice for modeling time series
data is to use directed graphical models which can appropriately capture the forward flow of time. If all arcs of the model are
directed, both within and between different time slices while the structure is unchanged, the resulting model is called a
dynamic Bayesian network (DBN) [97]. Several works have used EAs to learn DBN structures from data. Tucker et al. [134]
use an EP algorithm to seed the population of a GA that evolves over the structures of DBNs. Zuviria [121] use a multi-
objective GA, where the multi-objective criteria are network likelihood and structural complexity scores. Tucker et al.
[133] propose evolutionary and non-evolutionary operators for learning BN structures from spatial time series data. Jia
et al. [68] apply their immune GA for learning DBNs.

Many of the methods proposed for learning the structure of normal BNs can be adapted to learn DBNs. Simplifying
assumptions, e.g. no edges between the nodes in the same time slice, can greatly reduce the computational complexity of
learning DBNs. The BNs learned with simple GAs are not so satisfactory, sometimes worse than hill climbing. Because of this,
complementary techniques have been employed in the reported works, including generating non-random initial population
with GP, incorporation of additional operators in the recombination process, like the add vaccine of immune GA, and per-
forming a multi-objective search instead of single objective to take into account several criteria when learning DBNs. All
of these complementary techniques have been reported to yield better DBNs in terms of the scoring metric or structural
accuracy compared with simple GA.
4.5. Learning Bayesian network classifiers

Finding an appropriate subset of predictor variables by removing redundant and irrelevant variables can be remarkably
helpful for classification using BNs. EAs are one of the search techniques extensively used for this task, which is usually called
feature subset selection (FSS). Liu et al. [89] used GAs to search for an optimal subset of predictor variables for their improved
NB classifier, whereas Inza et al. [62] applied EBNA for FSS in a number of different datasets. They also compared the pro-
posed method with two GA-based and two greedy search algorithms [63]. PBIL and a dependency tree-based EDA (COMIT)
are used for FSS in the problem of predicting the survival of cirrhotic patients, and the results are compared with two ver-
sions of a GA [64]. Blanco et al. [7] used EDAs for gene selection in cancer classification problem using a NB classifier.

The reported results show that both GA and EDA versions perform better than simple deterministic hill climbing algo-
rithms like forward selection and backward elimination. A comparison between EDAs also show that using more powerful
probabilistic models allow selecting better feature subsets which for many of the tested data sets are also better than the
feature subsets found by GA.

Robles et al. [116] used EDAs in their interval estimation NB classifier to search for proper class and conditional proba-
bilities within their respective confidence intervals. An EDA with a continuous representation is used to search for the best
combination of probability values in these intervals. They also used EDAs to improve the search for new hybrid variables in
the SNB classifier [117]. A comparison with standard techniques like forward selection and joining of variables, or backward
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Table 3
Learning Bayesian classifiers with evolutionary algorithms.

Reference Classifier Algorithm

FSS Inza et al. [62] Naïve Bayes EBNA
Liu et al. [89] Naïve Bayes GA
Inza et al. [63] Naïve Bayes EBNA, GA, greedy search
Inza et al. [64] Naïve Bayes PBIL, COMIT, GA
Blanco et al. [7] Naïve Bayes EDA

Classification Sierra and Larrañaga [126] Markov blanket GA
Sierra et al. [127] Markov blanket GA
Robles et al. [117] Naïve Bayes, semi-Naïve Bayes EDA
Kline et al. [73] General Bayesian network GA
Flores et al. [41] Naïve Bayes UMDAC

Zhu et al. [140] Markov blanket GA
Reiz et al. [113] TAN GA
Dong et al. [36] TAN GA
Peña et al. [110] Bayesian network UMDA
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elimination and joining of variables [104] show that EDA-based search and joining of variables can find significantly better
classifiers, though at a higher computational complexity.

Flores et al. [41] proposed the use of UMDAC to search for the optimal discretization of all predictor variables simulta-
neously for the NB model. Reiz et al. [113] employed Prüfer numbers to encode TAN Bayesian classifiers and search for
the optimal structure using GAs. AIC, BIC and Hannan-Quinn information criteria were employed as fitness measures. Dong
et al. [36] designed genetic operators to evolve TAN structures with the objective of maximizing the likelihood function.

Sierra and Larrañaga [126] used GAs to search for the optimal MB of the class variable for a real-world classification
problem. They compared the resulting MB-based classifiers with NB classifier and a Bayesian classifier learned by likelihood
maximization and show that the MB-based classifiers have higher classification accuracy. This method was employed in a
multi-classifier schema to classify intensive care unit patient data [127]. Zhu et al. [140] proposed a MB-embedded GA
for gene selection in microarray datasets and showed that using GA to search for the MB of the class variable results in higher
classification accuracy. Kline et al. [73] showed the use of GAs to search for the most accurate BN structure to predict venous
thromboembolism according to gathered data.

Also in the field of BN classification, Peña [110] applied UMDA to search for the optimal dependency structure between
predictor variables in unsupervised learning using a specific representation of BNs. Table 3 shows these methods along with
the classifiers and EAs they used.
5. Conclusions

Bayesian networks are an important class of probabilistic graphical models, which have proven to be very useful and
effective for reasoning in uncertain domains. They have been successfully used in machine learning tasks like classification
and clustering. They are studied at length over the last three decades and many methods have been proposed to automate
their learning and inference. Nevertheless, many of these methods involve difficult combinatorial search problems that
directly affects their widespread use, especially for large problem instances, and thus require advanced search techniques
like meta-heuristics.

Evolutionary algorithms, are general-purpose stochastic search methods inspired from natural evolution and have been
frequently applied to solve many complex real-world problems. Different types of solutions from bit strings to program trees
can be evolved within this framework in search for better solutions. A relatively new type of these algorithms, estimation of
distribution algorithms, uses probabilistic modeling (and possibly Bayesian networks) to capture problem regularities and
use them for new solution generation. They have been shown to solve problems that are considered challenging for tradi-
tional evolutionary algorithms.

Because of their advantages, different types of evolutionary algorithms have been used in Bayesian networks learning and
inference tasks. A wide range of tasks like triangulation of the moral graph in Bayesian network inference, abductive infer-
ence, Bayesian network structure learning in difference search spaces, Bayesian classifier learning and learning dynamic
Bayesian networks from stream data have employed evolutionary algorithms, which has led to significant improvements
in the computational time and performance.

This topic is still an active field of research and with the intrinsic complexity of Bayesian network tasks, evolutionary
algorithms are always a potential competitor. Especially, estimation of distribution algorithms with their ability to account
for the interactions between variables seem to be a promising approach for further study. So far, several works have empir-
ically compared the conventional approaches to Bayesian network tasks (see for example [132] for a comparison between
several Bayesian network learning methods). An interesting future work that can complement this review is to perform sim-
ilar empirical comparison of the evolutionary approaches presented here, on standard datasets.
Please cite this article in press as: P. Larrañaga et al., A review on evolutionary algorithms in Bayesian network learning and inference
tasks, Inform. Sci. (2013), http://dx.doi.org/10.1016/j.ins.2012.12.051

http://dx.doi.org/10.1016/j.ins.2012.12.051


14 P. Larrañaga et al. / Information Sciences xxx (2013) xxx–xxx
Acknowledgements

This work has been partially supported by TIN2010-20900-C04-04, TIN-2010-14931, Consolider Ingenio 2010-CSD 2007-
00018, and Cajal Blue Brain projects (Spanish Ministry of Science and Innovation), the Saiotek and Research Groups 2007–
2012 (IT-242-07) programs (Basque Government), and COMBIOMED network in computational biomedicine (Carlos III
Health Institute).

References

[1] H. Akaike, A new look at the statistical model identification, IEEE Transactions on Automatic Control 19 (1974) 716–723.
[2] J.T. Alander, An Indexed Bibliography of Genetic Algorithms in Medicine, Technical Report 94-1-MEDICINE, University of Vaasa, Finland, 2012.
[3] S. Baluja, Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning,

Technical Report CMU-CS-94-163, Carnegie-Mellon University, Pittsburgh, PA, 1994.
[4] S. Baluja, S. Davies, Using optimal dependency-trees for combinational optimization, in: 14th International Conference on Machine Learning, Morgan

Kaufmann Publishers Inc., 1997, pp. 30–38.
[5] O. Barrière, E. Lutton, P.H. Wuillemin, Bayesian network structure learning using cooperative coevolution, in: 11th Annual Conference on Genetic and

Evolutionary Computation (GECCO ’09), ACM, New York, NY, USA, 2009, pp. 755–762.
[6] R. Blanco, I. Inza, P. Larrañaga, Learning Bayesian networks in the space of structures by estimation of distribution algorithms, International Journal of

Intelligent Systems 18 (2003) 205–220.
[7] R. Blanco, P. Larrañnaga, I. Inza, B. Sierra, Gene selection for cancer classification using wrapper approaches, International Journal of Pattern

Recognition and Artificial Intelligence 18 (2004) 1373–1390.
[8] R.R. Bouckaert, Bayesian Belief Networks: From Construction to Inference, Ph.D. thesis, Universiteit Utrecht, Faculteit Wiskunde en Informatica, 1995.
[9] W. Buntine, Theory refinement on Bayesian networks, in: B. D’Ambrosio, P. Smets (Eds.), 7th Annual Conference on Uncertainty in Artificial

Intelligence (UAI ’91), Morgan Kaufmann, San Francisco, CA, USA, 1991, pp. 52–60.
[10] W. Buntine, A guide to the literature on learning probabilistic networks from data, IEEE Transactions on Knowledge and Data Engineering 8 (1996)

195–210.
[11] L.M. de Campos, J.A. Gámez, P. Larrañaga, S. Moral, T. Romero, Partial abductive inference in Bayesian networks: an empirical comparison between

GAs and EDAs, in: [81], 2001, pp. 323–341.
[12] L.M. de Campos, J.A. Gámez, S. Moral, Partial abductive inference in Bayesian belief networks using a genetic algorithm, Pattern Recognition Letters 20

(1999) 1211–1217.
[13] A. Cano, S. Moral, A. Salmerón, Novel strategies to approximate probability trees in penniless propagation, International Journal of Intelligent Systems

18 (2003) 193–203.
[14] G. Casella, E.I. George, Explaining the gibbs sampler, The American Statistician 46 (1992) 167–174.
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