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This paper introduces a signal classification framework that can be used for brain–computer interface

design. The actual classification is performed on sparse autoregressive features. It can use any well-

known classification algorithm, such as discriminant analysis, linear logistic regression and support

vector machines. The autoregressive coefficients of all signals and channels are simultaneously

to the variable selection capability of the group lasso, the framework can drop individual autoregressive

coefficients that are useless in the prediction stage. Also, the framework is relatively insensitive to the

chosen autoregressive order. We devise an efficient algorithm to solve this problem. We test our

approach on Keirn and Aunon’s data, used for binary classification of electroencephalogram signals,

achieving promising results.

Crown Copyright & 2013 Published by Elsevier B.V. All rights reserved.
1. Introduction

Brain–computer interfaces (BCIs) establish a direct commu-
nication between the brain and some external device, where brain
activity is decoded to control the device. This is a very promising
application of machine learning techniques that, for example, can
help to greatly improve the quality of life of disabled people.

Of BCI technologies, non-invasive BCIs, which use neuroima-
ging inputs collected without entering the body, are of particular
interest. Some of the possible data sources are electroencephalo-
graphy (EEG) data, magnetoencephalography (MEG) data and
functional magnetic resonance imaging (fMRI) data. In this paper,
we focus on binary classification with EEG inputs. Therefore, data
usually consist of a set of signals, each collected from a specific
location on the scalp (called a channel). For a general review of
EEG-based classification, see, for example, [1].

Usually, some feature extraction procedure is used to assemble
the classifying predictors from the raw signals. To number a few
possibilities, we have time–frequency features [2], power spectral
density values [3] or the fitted autoregressive (AR) coefficients [4].
We focus on AR coefficients.

We assume that each instance of the data set is constituted by
a signal or a simultaneously recorded set of signals (each corre-
sponding to a different channel). Typically, a vector of AR linear
coefficients is estimated separately for each single signal by, for
013 Published by Elsevier B.V. All
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example, least squares or Burg’s algorithm [5]. These coefficients
would be the inputs for the subsequent classifier. When more than
one channel is available, the AR coefficients for all channels are
concatenated to build a single instance. Hence, if a p-order AR model
is fitted for each signal, we have p predictors per channel. Alter-
natively, the signal can be divided into various segments so that a
p-order AR model is fitted for each segment. In this case, we would
have a number of predictors equal to p multiplied by the number of
segments, multiplied by the number of channels. This is done
separately for each instance.

Huan and Palaniappan [6] compare these two methods,
estimating the AR coefficients using both the least squares
method and Burg’s algorithm. All their estimates are of sixth-
order AR coefficients, which have been reported in the literature
to empirically produce good results. They use either linear
discriminant analysis or a multilayer perceptron for the binary
classification step, concluding that the best feature extraction
approach is the simplest least squares method of fitting AR
models for entire signals. No variable selection is performed.
Unfortunately, this type of methods entails two major drawbacks.
First, the order of the AR models is fixed beforehand, without
considering the data. Also, the same order is used for all channels.
Second, the AR coefficients are estimated by exclusively minimiz-
ing the AR prediction error, regardless of the classification
performance.

This paper aims to overcome these pitfalls by choosing an
initial arbitrarily high AR order and then looking for a sparse AR
solution. This way, there is no need for specifying an exact AR
order and the relevant predictors in the autoregressive model are
automatically selected in a flexible way. The lasso [7] is a popular
rights reserved.
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method for simultaneous regression and variable selection. Hsu
et al. [8] apply the lasso to AR models.

The novelty of our approach is that, instead of making a
separate AR estimate for each signal, we estimate the AR coeffi-
cients for all signals altogether. The objective is to discard (or
select) the same variables for all signals. The selected variables
can be different for each channel. We use the group lasso [9],
which can discard or select entire groups by means of a block
L1-penalization, to generate a sparse solution.

There are efficient algorithms to solve the group lasso, either
finding the whole regularization path [9] or computing the
solution for a grid of different regularization parameter values
[10]. In this paper, we devise an efficient LARS-type algorithm
[9,11] based on multiresponse linear regression that provides
computational advantages for this particular problem. Whatever
algorithm we use, we select the group lasso solution that max-
imizes some classifier-related measure. Since the classifier some-
how guides the AR coefficient estimation, it is with the second
aforementioned issue that we are concerned here.

Our method can be deemed a wrapper method. Wrapper
methods are often computationally expensive. In this case,
though, the number of predictors (selected AR coefficients) is
moderate, so the computational cost is affordable.

The rest of the paper is organized as follows. Section 2
introduces the spirit of the methodology. Section 3 details the
simplest case, when there is only one channel. Section 4 extends
the method to the multiple channel scenario. Section 5 introduces
a LARS-type algorithm to efficiently approximate the solution of
the proposed problem. Section 6 deals with some computational
details. Section 7 describes the set of experiments used to test the
algorithm. Finally, Section 8 sums up the paper.
2. Basic methodology

We consider N signals zi ¼ ðzi1, . . . ,ziT Þ
t , iAf1, . . . ,Ng, each

labeled as ciAf0,1g. Let us denote the class vector as cAf0,1gN .
We want to obtain a classifier that assigns any future signal zi,
i4N, to a class in f0,1g.

The autoregressive p-order model presumes, for each signal zi,
that

zij ¼ bi0þ
Xp

k ¼ 1

bikziðj�kÞ þEj, jAfpþ1, . . . ,Tg, ð1Þ

where Ej is Gaussian white noise. Given some estimator
b̂i ¼ ðb̂ i0,b̂ i1, . . . ,b̂ ipÞ

t , the squared sum of autoregressive errors is
defined for zi as

SSEðb̂i,ziÞ ¼
XT

j ¼ pþ1

zij�b̂ i0�
Xp

k ¼ 1

b̂ikziðj�kÞ

 !2

: ð2Þ

Now, let us consider a classifier c and a function fcð�,�Þ, which
returns some classifier-related fitness measure, and whose argu-
ments are, respectively, a set of inputs and a set of responses. Let
the N � p matrix B¼ ½b̂

t

1, . . . ,b̂
t

N� stack the N sparse vectors of
autoregressive coefficients, and let Jð�Þ be some function mono-
tonic on the complexity of B.

Given a sufficiently high order p, we can formulate a multi-
criterion problem to jointly estimate B, whose criteria are the
classifier accuracy, the autoregressive SSE and the complexity of
B. For some lk0, which denotes a componentwise inequality, a
scalarized version of this problem is given by

B̂ ¼ argmin
B
�l1fcðB,cÞþl2

XN

i ¼ 1

SSEðb̂ i,ziÞþl3JðBÞ: ð3Þ
By choosing Jð�Þ to promote sparsity, we will expect to discard
those coefficients that are useless for the estimation. The dis-
carded coefficients should be the same for all vectors b̂ i,
iAf1, . . . ,Ng.

Solving for all lk0 we obtain all the Pareto optimal solutions
to the multicriterion problem (and also some non-optimal solu-
tions). From the Pareto optimal set of solutions, that forms the
optimal trade-off surface, we would select, for example, the
solution that maximizes the classification accuracy over some
separated (validation) data set. So, B̂ is the input of the classifier
and is chosen to optimize the expected classification accuracy.

For l140, the scalarized problem (3) is in general non-convex.
In addition, we need to evaluate it for a 2D grid of values of k

(note that the relative magnitudes of the components of k are all
that matters). This approach is computationally unaffordable.
Instead, we resort to the more restricted problem

B̂ ¼ argmin
B

XN

i ¼ 1

SSEðb̂ i,ziÞþlJðBÞ, ð4Þ

where we let l1 ¼ 0 and l¼ l3=l2. From the set of solutions
corresponding to different values lZ0, we will select the best
solution according to fcðB,cÞ. With this approach, we only need to
search in a one-dimensional grid of l hyperparameters, and, also,
the problem is convex for a proper choice of Jð�Þ.

Note that, even when the set of Pareto optimal solutions given
by problem (4) is only a subset of the set of Pareto optimal
solutions given by problem (3), this approach, unlike state-of-the-
art methods, still considers fcð�,�Þ for the estimation of B.
Although in this paper we do not follow this road, a complete
search on the optimal trade-off surface given by problem (3)
could be conducted for moderate size problems and specific
choices of the classifier c that preserve convexity. For further
details about multicriterion optimization, see, e.g., [12].

In what follows, we give the specifics about the proposed
method, including the choice of Jð�Þ.
3. Single channel classification

Let us define the following elements:

y¼ ðz1ðpþ1Þ, . . . ,z1T , . . . ,zNðpþ1Þ, . . . ,zNT Þ
t ,

X ¼

1 z11 . . . z1p 0 0 . . . 0 . . . 0 0 . . . 0

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

1 z1ðT�pÞ . . . z1ðT�1Þ 0 0 . . . 0 . . . 0 0 . . . 0

0 0 . . . 0 1 z21 . . . z2p . . . 0 0 . . . 0

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

0 0 . . . 0 1 z2ðT�pÞ . . . z2ðT�1Þ . . . 0 0 . . . 0

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

0 0 . . . 0 0 . . . 0 . . . . . . 1 zN1 . . . zNp

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

0 0 . . . 0 0 . . . 0 . . . . . . 1 zNðT�pÞ . . . zNðT�1Þ

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

,

bn
¼ ðb10,b11, . . . ,b1p, . . . ,bN0,bN1, . . . ,bNpÞ

t ,

where vector bn is the concatenation of the elements of B.
Therefore, if we include the intercept as an additional predictor
for each signal, we have yARNq, XARNq�Nðpþ1Þ and bnARNðpþ1Þ,
where q¼ T�p. Otherwise, we have yARNq, XARNq�Np and
bnARNp. In this paper, we choose to include the intercept.

Assuming that the N signals are independent, we can establish
the linear relation

y¼ Xbn
þe , ð5Þ

where e ¼ ðE1ðpþ1Þ, . . . ,E1T , . . . ,ENðpþ1Þ, . . . ,ENT Þ
t is Gaussian

white noise.
We can impose an L1-penalty that would drive some AR coeffi-

cients to zero (depending on some regularization parameter l).
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However, since we are interested in discarding the same coefficients
for each signal, we use a group lasso penalty instead. The proposed
formulation allows us to define p groups hk ¼ ðb

n

1k, . . . ,bn

NkÞ
t ,

kAf1, . . . ,pg, to estimate b̂n as the minimizer of

Jy�Xbn
J2

2þl
Xp

k ¼ 1

JhkJ2, ð6Þ

where Jð�Þ is given by a sum of L2-norms, and, thus, provides sparsity
at a group level driving some groups hk to exactly zero for all their
components [9]. The intercepts ðb10, . . . ,bN0Þ are not penalized.

This is a usual group lasso problem [9], and the complete exact
regularization path can be obtained by group LARS [9,11] if X is
orthogonal. Otherwise, the group LARS provides an approxima-
tion, which serves our purposes. From this approximated regular-
ization path, we will select the solution b̂

n

that minimizes the
estimated expected error with regard to c.

However, even though group LARS is a very efficient method,
X can become a huge matrix and computation can be expensive
unless we exploit its sparse structure. Similar arguments have
been followed in the multiresponse regression literature. Below,
we introduce a forward selection approach that considers this
structure. This algorithm is based on group LARS and the multi-

response sparse regression algorithm [13].
Linear discriminant analysis (LDA) logistic regression (LR) or

support vector machines (SVMs) are the options that we consider
for the classifier c; see [14] for a general review. LDA and LR are
linear in the most basic version, whereas SVM reaches nonlinear-
ity by constructing a linear boundary in a transformed version of
the feature space.

For LDA, fcðB̂,cÞ is naturally defined as the log-likelihood
function

fcðB̂,cÞ ¼
XN

i ¼ 1

�b̂
t

i R̂
�1

l̂ci
þ

1

2
l̂t

ci
R̂
�1

l̂ci
þ log p̂ci

� �
, ð7Þ

where l̂ci
is the mean of those vectors bi whose class is ci, R̂ is the

common covariance matrix of B̂ and p̂ci
is the estimated a priori

probability of class ci. We can estimate pci
as Nci

=N, where Nci
is

the number of instances whose class is ci. To compute (7), we
remove the coefficients that correspond to dropped groups (since
b̂

n

i is sparse by groups). Note that this is necessary to compute R̂.
Otherwise, matrix B̂ has columns with all elements equal to zero
and is not full rank.

For LR, fcðB̂,cÞ can also be the log-likelihood function, defined
as

fcðB̂,cÞ ¼
XN

i ¼ 1

ðciŵt b̂i�logð1þe
^

wt b̂ i ÞÞ, ð8Þ

where ŵARp is the estimated vector of logistic regression
coefficients, computed by the iteratively reweighted least squares
(IRLS) algorithm.

In order to avoid overfitting, we select the solution of Eq. (6)
that minimizes a penalized version of fcðB̂,cÞ. In particular, since
Eqs. (7) and (8) are loglikelihood functions, we can employ the
Akaike information criterion [15]

AIC ¼�
2

N
fcðB̂,cÞþ2

df

N
, ð9Þ

where df is the number of columns of B̂ with non-zero
coefficients.

Finally, for SVM, fcðB̂,cÞ can be defined as some margin
maximizing loss function. For convenience, we redefine the class
to be in f�1,1g. One possible formulation of the SVM estimates
the separating hyperplane parameters wARpþ as the minimizer
of

XN

i ¼ 1

1�cihðbiÞ
tw

� �
þ
þaJwJ2, ð10Þ

where ð�Þþ indicates the positive part, hð�Þ is some mapping
function, pþ is the dimension of the expanded feature space
and a40 is the regularization cost parameter. Hence, function
hð�Þ gives the nonlinear power to the SVM. Typically, a kernel
function that computes the distance between any two points in
the expanded feature space defined by hð�Þ is all we need for an
efficient computation. In this paper, we use a radial basis function
kernel, whose corresponding feature space is a Hilbert space of
infinite dimensions.

The entire regularization path for Eq. (10) can be computed
with a small multiple of the computational cost of fitting an SVM
model for a single a parameter [16]. From this regularization path,
we select the model that minimizes the K-fold cross-validated
error. Here, fcðB̂,cÞ can be the value of the left term of Eq. (10)
that corresponds to the selected model. Since we use a cross-
validated estimation of the loss function, we do not need to use a
penalization such as AIC in Eq. (9).

Whereas the LDA formulation can be used for multiclass
classification, the LR and SVM expressions are for binary classi-
fication but can be easily generalized. See [17], for example, for
details about the multiclass SVM.
4. Multiple channel classification

An instance is usually defined as a group of signals instead of
just one signal. For instance, an EEG instance is usually a set of
signals recorded from different points on the scalp, that is, from
different channels. Here, it makes sense to consider that the same
AR coefficients are perhaps not appropriate for all channels.

Let us modify the above notation to accommodate this
problem. We consider N sets of signals, each with M channels,
and labeled as cAf0,1gN as before. Now, each signal is denoted as
zil ¼ ðzil1, . . . ,zilT Þ, iAf1, . . . ,Ng, lAf1, . . . ,Mg. We define

y¼ ðz11ðpþ1Þ, . . . ,z11T , . . . ,z1Mðpþ1Þ, . . . ,z1MT , . . . ,zNMðpþ1Þ, . . . ,zNMT Þ
t ,

Xil ¼

1 zil1 . . . zilp

^ ^ ^ ^

1 zilðT�pÞ . . . zilðT�1Þ

0
B@

1
CA,

X ¼

X11 . . . 0 . . . 0 . . . 0

^ ^ ^ ^ ^ ^ ^

0 . . . X1M . . . 0 . . . 0

^ ^ ^ ^ ^ ^ ^

0 . . . 0 . . . XN1 . . . 0

^ ^ ^ ^ ^ ^ ^

0 . . . 0 . . . 0 . . . XNM

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

,

bn
¼ ðb111, . . . ,b11p, . . . ,b1M1, . . . ,b1Mp, . . . ,bNM1, . . . ,bNMpÞ

t ,

where yARNMq, XilARq�pþ1, XARNMq�NMðpþ1Þ and bnARMNðpþ1Þ.
As before, q¼ T�p. The same linear relation as Eq. (5) can be
applied here.

Now, we have two choices to define the groups. We can either
define p groups as

hk ¼ ðb11k, . . . ,b1Mk, . . . ,bN1k, . . . ,bNMkÞ
t , kAf1, . . . ,pg, ð11Þ

or Mp groups as

hlk ¼ ðb1lk, . . . ,bNlkÞ
t , lAf1, . . . ,Mg, kAf1, . . . ,pg: ð12Þ

Eq. (11) defines the same AR coefficients for all the channels,
whereas Eq. (12) defines adaptive AR coefficients for each chan-
nel. The group lasso formulation in Eq. (6) is unchanged in the
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first case. In the second case, it becomes

Jy�Xbn
J2

2þl
Xp

k ¼ 1

XM
l ¼ 1

JhlkJ2: ð13Þ

The solutions can be used as inputs for the classifier c as before,
and the solution b̂

n

that maximizes fcðB̂,cÞ is selected. B̂ is defined

as ½b̂
T

1 , . . . ,b̂
T

N�, where b̂i ¼ ðbi10,bi11, . . . ,bi1p, . . . ,biM0,biM1, . . . ,biMpÞ
t ,

iAf1, . . . ,Ng.
Since there is no reason to assume that all the channels

contribute equally, we prefer the second grouping approach.
5. An efficient LARS-type algorithm

In this section, we briefly describe the group LARS [11] and the
multiresponse sparse regression algorithm [13]. We then intro-
duce an efficient algorithm to find an approximate regularization
path for Eqs. (6) and (13). Although we define the method for Eq.
(13), it can be straightforwardly adapted to Eq. (6). We assume
centered data (no intercepts) for notation simplicity.

The group LARS algorithm is an iterative procedure that adds a
set of predictors, or group, to the model at each step. The group
LARS starts with no groups. Firstly, it adds the group that is most
correlated with the response to the active set of groups A. The
response is regressed on this group, moving the coefficients of
this group towards the least squares solution until a new group
reaches the same correlation with the vector of residuals as the
active set. This new group is added to the active set A. Now, the
vector of residuals is regressed on the groups in A, moving their
coefficients towards the joint least squares solution until a new
group reaches the same correlation with that vector of residuals
as the active set. When the number of instances is greater than
the number of predictors, this procedure is repeated until all
predictors are in the model. With a small modification, the group
LARS can find the entire regularization path of a group lasso
problem if the design matrix is orthogonal. Otherwise, it provides
an approximate solution.

The multiresponse sparse regression algorithm extends the
(group) LARS algorithm to multiresponse linear regression by
modifying the correlation criterion between the predictors and
the current residual, which depends on multiple outputs.

In this paper, we derive an algorithm based on group LARS and
multiresponse sparse regression for efficiently computing an
approximate set of solutions of Eqs. (6) and (13). In the sequel,
we will use the notation Xil, iAf1, . . . ,Ng, lAf1, . . . ,Mg, defined in
Section 4. Groups are defined in Eq. (12). The active set A is thus
defined by a set of pairs (l,k), lAf1, . . . ,Mg, kAf1, . . . ,pg. We also
define yil ¼ ðzilðpþ1Þ, . . . ,zilT Þ

t and bil ¼ ðbil1, . . . ,bilpÞ
t .

The algorithm follows the group LARS steps described by Yuan
and Lin [9], with some modifications. First, we devise a new
correlation measure. We define the correlation of the lk-th group
with the current residual as

rlk ¼
XN

i ¼ 1

ðrt
ilX
ðkÞ
il Þ

2, ð14Þ

where XðkÞil is the k-th column of Xil and rilARq is the current
residual for the i-th signal and the l-th channel, defined as

ril ¼ yil�Xilb̂il: ð15Þ

Second, the joint least squares solution dilARp is computed
separately for the i-th signal and the l-th channel. Setting to zero
the elements of dil that are not in A, we compute the remainder as

dAil ¼ ðX
At

il XAil Þ
�1XA

t

il ril, ð16Þ
where XAil denotes the columns of Xil indexed by the active set A.
Hence, the regression coefficients for the i-th signal and the l-th
channel are updated at each step as

bil ¼ bilþgdil, ð17Þ

where the gA ½0,1� constant is computed as

g¼min
glk

s:t:

XN

i ¼ 1

½XðkÞ
t

il ðril�glkXildilÞ�
2 ¼

XN

i ¼ 1

½Xðk0Þ
t

il0
ðril0�glkXil0dil0 Þ�

2: ð18Þ

Here, ðl0,k0Þ are a pair of indexes arbitrarily chosen from A. Basic
algebraic manipulations lead to

gil ¼
�vþv07

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2þv02�2vv0�4ubþ4u0b0

p
2ðu�u0Þ

, ð19Þ

where we define

u¼
XN

i ¼ 1

ðXðkÞ
t

il XildilÞ
2, u0 ¼

XN

i ¼ 1

ðXðk0Þ
t

il0
Xil0dil0 Þ

2,

v¼ 2
XN

i ¼ 1

ðXðkÞ
t

il rilÞðX
ðkÞt

il XildilÞ, v0 ¼ 2
XN

i ¼ 1

ðXðk0Þ
t

il0
ril0 ÞðX

ðk0Þt

il0
Xil0dil0 Þ,

b¼
XN

i ¼ 1

ðXðkÞ
t

il rilÞ
2, b0 ¼

XN

i ¼ 1

ðXðk0Þ
t

il0
ril0 Þ

2:

Thus, the indexes ðl,kÞ=2A that minimize Eq. (18) correspond to
the group that is added to the active set in the next iteration. As
with group LARS, we now update the residual

ril ¼ yil�gXilbil 8il: ð20Þ

This procedure is repeated until g¼ 1.
It turns out that the group LARS solution is the same yielded

for the multiresponse sparse regression algorithm. The same
connection holds for the algorithm that we propose. Unlike group
LARS, however, we do not need to store an NMq� NMðpþ1Þ
matrix in memory (in the multiple channel case), speeding up the
computations. Since X is not an orthogonal matrix, this solution is
only approximated. At the cost of storing the entire matrix X in
memory, an exact group lasso regularization path can be com-
puted following the algorithm described in recent work by
Friedman et al. [18]. In this paper, however, we do not follow
this approach.
6. Further computational issues

Sometimes a fast algorithm is needed to run in a real-time
(online) environment with very limited computational resources
available. Some BCI applications are of this type. Such an
approach can be hard to apply in the high-dimensional setting.
However, offline (previously stored) data can be used to simplify
the online task. Offline data are usually available in the BCI field,
where the device has to be trained for each subject prior to its real
use. For instance, we can run the algorithm on the offline data set
so as to select which channels and AR coefficient indexes are
relevant. Afterwards, in the online phase, we can use least squares
to estimate the AR coefficients that correspond to the previously
selected channels and AR coefficient indexes.

This two-step procedure follows the spirit of the relaxed
lasso [19]. The relaxed lasso firstly discovers the sparsity pattern
by lasso. Then, either least squares or the lasso, with a small
penalty (i.e., with no variable selection), is used just on the
selected variables. Among other nice theoretical properties, the
relaxed lasso is less biased than the original lasso.
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7. Experiments

To test the proposed framework, we use the EEG data recorded
by Zak Keirn at Purdue University [20]. The data is a collection of
experiments on seven different subjects. Each subject is told to
perform five different mental activities, say: stay relaxed, solve a
mathematics problem, write a letter, mentally rotate a geometric
figure and count a series of made-up numbers. Each subject
repeats each task for a number of trials. Specifically, subjects 1,
3, 4 and 6 perform ten trials, subjects 2 and 7 perform five trials
and subject 5 performs fifteen trials. Each trial lasts ten seconds
with a sampling frequency of 250 Hz, that is, it has a total of 2500
sample points per channel. EEG signals were recorded from seven
channels, from positions C3, C4, P3, P4, O1, O2 and EOG. The
positions are defined by the 10–20 system of electrode place-
ment. Recordings were made with reference to electrically linked
mastoids A1 and A2. Keirn and Aunon [20] describe the collection
procedure in more detail.

We use these data to test our signal classifier on the 10
possible pairwise activity combinations, that is, on ten binary
classification problems. The ten pairwise combinations are listed
in the first column of Table 1. Binary classification was performed
on these data for example by Keirn and Aunon [20] and Huan and
Palaniappan [6]. In both papers, the trials are divided into
subperiods that make up the instances for classification. Keirn
and Aunon [20] use two-second subperiods and train a unique
model for all subjects. Huan and Palaniappan [6], instead, use
half-second subperiods, and have 20 available instances for each
subject, trial and activity, with 2500=20¼ 125 sample points per
channel. Huan and Palaniappan [6] estimate individual models for
each subject, using ten trials. Subjects performing only five trials
are ignored, as are the last five trials of the subject who performs
fifteen trials.
Table 1
Summary of the classification accuracy for each combination of activities and methods

Activities Accuracy 7std. deviation

sLDA sLR sSVM

Relax,maths 0.7070.07 0.7370.06 0.7370

Relax,letter 0.6270.08 0.6370.09 0.6870

Relax,rotate 0.7170.10 0.7470.06 0.7870

Relax,count 0.6470.12 0.6570.05 0.7170

Maths,letter 0.6570.10 0.6670.07 0.7370

Maths,rotate 0.6970.07 0.6970.09 0.7370

Maths,count 0.6770.08 0.6870.09 0.7070

Letter,rotate 0.7570.12 0.7470.10 0.8370

Letter,count 0.6670.08 0.7070.10 0.7370

Rotate,count 0.6570.10 0.6570.10 0.7170

Table 2
Accuracy of the best combination of activities for each five-trials set.

Subject Accuracy Method Activities

1a 0.9370.05 sSVM Maths,rotat

1b 0.8570.06 sSVM Relax,rotat

2a 0.9270.08 sSVM Relax,rotat

3a 0.8670.05n sSVM Letter,rotat

3b 0.9370.12n sSVM Letter,rotat

4a 0.9470.20n sLR Relax,math

5a 0.9970.02n sSVM Letter,rotat

5b 0.8170.06n sLDA Letter,rotat

5c 0.7570.60 sLR Maths,coun

6a 0.8870.10 sSVM Relax,rotat

6b 0.9670.20 sLDA Relax,rotat

7a 0.9270.02 sSVM Relax,rotat
In this paper, like [6], we train individual models for each
subject. To be able to use all available data in equilibrated
conditions, we consider each group of five trials as a different
data set. Thus, there are thirteen five-trials sets: two for subjects
1, 3, 4 and 6, one for subjects 2 and 7 and three for subject 5. We
omitted one set (from subject 4) due to missing data. Therefore,
for each pair of activities (each binary classification problem), we
obtain twelve different, individual models.

We divide each trial into ten one-second subperiods of 250
sample points. This way, we have ten instances per trial. Since we
have five trials for each of two activities, we have 100 instances
for training and testing for each experiment. We use a maximum
AR order of 15. Using the notation from previous sections, we
have T¼250, N¼100, M¼7, p¼15 and q¼ T�p¼ 235. In this
setting, we test the basic methodology explained in Section 4,
using Eq. (13), and the algorithm devised in Section 5. We
compare our approach (using also this setting) with the best
feature extraction method reported by [6], that is, the sixth-order
AR coefficients computed by least squares. For the classification
methods, we use LDA, LR and SVM.

On the one hand, Table 1 shows the mean classification
accuracy for each method and each combination of activities,
averaging across all thirteen five-trials sets. These results give an
idea of the global performance of each method for each binary
classification problem. On the other hand, Table 2 gives the best
accuracy for each five-trials set, reporting which pairwise combi-
nation of activities and classification algorithm produced this
result. The left columns show the best of our methods, and the
right columns show the best of Huan and Palaniappan’s methods.
In a practical scenario, the pairwise combination of activities and
the algorithm that best discriminate for a given subject would be
chosen to implement the customized BCI device for this subject.
All results are obtained by 5-fold cross-validation.
.

LDA LR SVM

.10 0.7070.06 0.6970.05 0.7370.08

.10 0.6370.07 0.5970.07 0.6870.08

.10n 0.7070.09 0.6770.07 0.7370.10

.10 0.6670.09 0.6570.07 0.7070.08

.10 0.7170.06 0.6770.05 0.7370.07

.08 0.7070.06 0.6570.04 0.7370.10

.10 0.6670.09 0.6470.10 0.6970.08

.12n 0.7470.10 0.7070.10 0.7770.14

.12 0.6570.07 0.6170.07 0.7170.08

.10 0.6770.11 0.6470.08 0.7270.10

Accuracy Method Activities

e 0.8570.06 LDA Relax,count

e 0.8970.05 LR Relax,maths

e 0.9270.06 SVM Letter,rotate

e 0.7170.11 LR Relax,maths

e 0.8270.08 SVM Letter,rotate

s 0.8770.09 SVM Relax,rotate

e 0.8670.10 SVM Letter,rotate

e 0.7370.09 LDA Maths,letter

t 0.7770.08 SVM Relax,rotate

e 0.9570.04n SVM Letter,rotate

e 0.970.04 SVM Relax,rotate

e 0.970.08 SVM Letter,rotate
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In both tables, the methods related to our approach are
referred to as sparse LDA (sLDA), sparse logistic regression (sLR)
and sparse SVM (sSVM). The methods related to the AR coeffi-
cients feature extraction approach are referred to as LDA, LR and
SVM. Best results are highlighted. Statistical significance is
checked by means of the t-test, so that the symbol n is added
when the difference between the best and the second best
method is statistically significant with a significance level of
0.05. In Table 2, each five-trials set is identified by a number
indicating the subject (1,y,7) and a letter (a, b) indicating the
five-trials set within this subject.

As observed, the devised method outperforms the best method
reported by [6] in most experiments. The biggest differences can
be observed in Table 2, where the best pair of activities and
method is selected for each five-trials set. Interestingly, the SVM
classifier offers the best results, possibly indicating that, in this
scenario, the classification can be enhanced by appropriate non-
linear modeling and variable (channel) interaction.
8. Discussion

In this paper, we have proposed a new feature extraction
method based on sparse autoregressive features for multiple
signal classification. We have applied the method, together with
different classification algorithms, to an EEG signal classification
problem, and compared its performance to a state-of-the-art AR
feature extraction approach.

The performance benefits from the fact that model selection is
guided by some classification-related measure. Moreover, we do
not need to previously estimate the order of the AR models,
because, starting from a high enough order, model selection is
completely data driven. Finally, thanks to regularization, our
approach is applicable to data sets with few instances, whereas
other methods might suffer from overfitting in the same scenario.

Note that the proposed approach can be classed in the semi-
supervised classification paradigm. In semisupervised classifica-
tion, there is typically a considerable amount of data, but only a
portion is labeled. To make the most of the data, it is beneficial to
also use the information provided by the unlabeled data. In our
particular case, if we have a collection of unlabeled EEG signals,
they can be included in the group lasso estimation of the AR
coefficients (Eqs. (6) and (13)), even though the posterior model
selection relies on a fully supervised classification algorithm, that
is, only on the labeled data.
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[10] L. Meier, S. van de Geer, P. Bühlmann, The group lasso for logistic regression,
J. R. Stat. Soc. Ser. B 70 (2008) 53–71.

[11] B. Efron, I. Johnstone, T. Hastie, R. Tibshirani, Least angle regression, Ann. Stat.
32 (2) (2004) 407–499.

[12] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press,
2004.
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