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Microarray Analysis of Autoimmune Diseases
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Abstract—Microarray-based global gene expression profiling,
with the use of sophisticated statistical algorithms is providing new
insights into the pathogenesis of autoimmune diseases. We have
applied a novel statistical technique for gene selection based on ma-
chine learning approaches to analyze microarray expression data
gathered from patients with systemic lupus erythematosus (SLE)
and primary antiphospholipid syndrome (PAPS), two autoimmune
diseases of unknown genetic origin that share many common fea-
tures. The methodology included a combination of three data dis-
cretization policies, a consensus gene selection method, and a mul-
tivariate correlation measurement. A set of 150 genes was found to
discriminate SLE and PAPS patients from healthy individuals. Sta-
tistical validations demonstrate the relevance of this gene set from
an univariate and multivariate perspective. Moreover, functional
characterization of these genes identified an interferon-regulated
gene signature, consistent with previous reports. It also revealed
the existence of other regulatory pathways, including those regu-
lated by PTEN, TNF, and BCL-2, which are altered in SLE and
PAPS. Remarkably, a significant number of these genes carry E2F
binding motifs in their promoters, projecting a role for E2F in the
regulation of autoimmunity.

Index Terms—Antiphospholipid syndrome, DNA microarrays,
gene profiling, machine learning, systemic lupus erythematosus.

I. INTRODUCTION

DNA MICROARRAY technology [1] offers the possibility
to simultaneously analyze the expression of hundreds to
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thousands of genes [2]. This approach has been applied suc-
cessfully to better classify many cancers and to understand
the molecular pathways involved in several pathologies [3].
Genome-wide gene expression profiles of autoimmune diseases,
such as systemic lupus erythematosus, rheumatoid arthritis, or
Sjogren’s syndrome have also been obtained [4]. These stud-
ies have identified genes with a dysregulated expression in au-
toimmune diseases. Further application of microarray analyses
should facilitate the identification of pathways that are common
in autoimmunity, but more importantly, genes and pathways
that uniquely define patients with a particular disease pheno-
type, which could be useful for the development of specific
treatments [5].

Despite the demonstrated power of high-throughput gene ex-
pression profiling approaches, some important limitations have
been noted. DNA microarray analyses are typically hypothesis-
driven, in the sense that the experiments are designed to address
a scientific question [6], an approach that could lead to a biased
interpretation of the results. Additionally, because microarrays
are inherently noisy, they impact on data quality [7]. Moreover,
present microarray studies usually include a very low number
of samples under study. In this context, the reliability of a single
data mining technique is no guarantee at all. Clear evidence of
these effects is the differences found within the results of data
analysis techniques for the same microarray data [8].

The discipline of machine learning, in combination with data
mining techniques has been very useful in diverse fields of re-
search, including the bioinformatics discipline, to overcome the
technology-intrinsic data noise and to obtain relevant knowledge
out of a high volume of data [9]. An important feature of this
method relies on the fact that no prior knowledge of the system
under study is necessary to run the analysis, thus constituting a
blind process for which the final results are only based on the
characteristics of the raw data. Due to this blindness, a strict val-
idation of the results needs to be tackled: statistical relevance,
laboratory qPCR validation, bibliographic revision, regulatory
activity evaluation, and dysregulation of transcription factors,
among others.

We have now applied machine learning procedures to DNA
microarray data derived from samples of patients suffering from
systemic lupus erythematosus (SLE) and primary antiphospho-
lipid syndrome (PAPS), two autoimmune conditions with over-
lapping immunological features, in order to obtain an unbiased
identification of genes that could be relevant to the pathogene-
sis of these diseases. We propose that the computational tools
employed in this paper add robustness to the microarray-based
identification of biomarkers.
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The paper is divided into four main sections. Section II
presents the materials and methods used in this research giv-
ing as much technical information as possible for each tackled
stage. The results and their validations are gathered and dis-
cussed in Section III. This section is divided into two sections
(Section III-A and III-B), each of which focus on the statistical
and the biological validation, respectively. Brief conclusions are
finally provided in Section IV.

II. MATERIALS AND METHODS

A. Study Participants

After informed consent, patients and controls provided a pe-
ripheral blood sample, and peripheral blood mononuclear cell
(PBMC) were isolated from whole blood by ficoll gradient pu-
rification (GE Helathcare Bio-Sciences, Piscataway, NJ, USA).
All patients were Caucasian women, and had physician-verified
SLE or PAPS. Data on age, clinical characteristics, disease ac-
tivity, and current medication are summarized in the online
supplementary content.1 Disease activity in SLE patients was
determined using systemic lupus erythematosus disease activity
index (SLEDAI) score [10].

B. Sample Processing and Chip Hybridization

For microarray experiments, four patients with SLE, two pa-
tients with primary APS, and five healthy individuals were used
(see supplementary content). RNA was extracted from PBMC
using triZOL (Invitrogen, Carlsbad, CA, USA) followed by
RNeasy cleanup (Qiagen, Hilden, Germany). The isolated RNA
was amplified and labeled as described in the GeneChip Expres-
sion Analysis Technical Manual (Affymetrix, CA, USA), and
subsequently hybridized to HG-U133A Genechip microarrays
(Affymetrix, CA, USA) and scanned according to the manufac-
turer’s recommendations. The labeling, hybridization and scan-
ning procedures were carried out in Progenika (Derio, Spain).

C. Data Acquisition and Preprocessing

After scanning the arrays, Affymetrix microarray suite
(MAS) 5.0 software was used for the compilation and initial
analysis of the raw datasets. Four different quality values were
measured in order to evaluate the reliability of the microarrays
that were used in the experiment: spike control BioB, house-
keeping control GAPDH, P-call percentage, and array outlier
percentage. Only the arrays that complied with the reliability
criteria [11] were considered for further analysis.

Affymetrix is a one-channel technology [1] that only includes
one sample on each microarray. To study the intensity change
shown by each probe between test and reference samples, com-
parisons were made between the reference and the test microar-
ray. On the basis of these comparisons, a second filter level
was constituted: all probes showing an absent detection value
in both microarrays were discarded from the analysis. Microar-
ray internal control sequences were also removed, and the final

1Supplementary data and results for this study is available at: http://www.
sc.ehu.es/ccwbayes/members/ruben/sle/

amount of probes under study was set at 8,808. The known
logRatio between the two channel values was computed for
each of the 8,808 probes, producing a total of 40 instances or
comparisons (healthy versus healthy; SLE versus healthy; PAPS
versus healthy).

D. Relevant Gene List Identification

From the statistics and data mining fields, the expression level
of each gene is represented as a random variable of a probabilis-
tic process. A great number of machine learning methods are
designed to deal only with discrete data, so, it becomes neces-
sary to translate the microarray data from continuous to discrete
value domains. However, this process can bias the original data
and degrade their original quality. In order to amplify the robust-
ness of the knowledge discovery process, and to overcome this
possible bias, the use of a set of different discretization tech-
niques is suggested [12]. Thus, beginning with a microarray
dataset discretized in different ways, we search for a consensus
result with larger reliability and robustness than usual single-
discretization modeling. Due to the small sample sizes of gene
expression databases, the community of researchers was rapidly
aware about the potentialities of model consensus approaches
to improve the robustness and stability of final discriminative
rules [13], [14].

The consensus procedure that was put forward comprises the
best techniques used in various data analysis fields. First, a set
of discretization policies, namely: equal width [15], equal fre-
quency [16], and entropy [17]. Given a number of bins, b, equal
width simply sorts the values a feature can take and divides the
observed range into b equally sized intervals. Equal frequency
divides the range into b bins that gather the same number of
occurrences. As a usual criterion in this field [18], [19], our
assumption is that a gene could be in three possible states, using
the idea of over-, under- or baseline activity, so the number of
bins is set to three. For its part, entropy discretization makes
use of the phenotype distribution over the data, in conjunction
with a minimum description length-based algorithm [20]. For
each feature independently, this technique finds the appropriate
cutoff points in such a way that the phenotype entropy within
each resulting interval is minimum, while balancing this by in-
troducing as few cutoff points as possible.

Second, a filter-like selection procedure to detect differen-
tially expressed genes among the studied phenotypes (correla-
tion feature selection) [21]. CFS belongs to the filter optimal
subset selection techniques [22], it addresses two fundamental
issues: avoid both redundancy and irrelevancy in the selected
subset of genes. Making use of the uncertainty coefficient [21]
and a classical forward greedy hill-climbing search strategy,
CFS is able to identify the genes most correlated with the phe-
notype distribution keeping the redundancy among them mini-
mum. Bear in mind that there can be genes with a high phenotype
correlation coefficient that are not included in the subset finally
selected, so a third stage to amplify the relevant gene set is
mandatory.

And third, a statistical coexpression measure (a classical prob-
ability theory metric—mutual information— [23]). At this last
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ARMAÑANZAS et al.: MICROARRAY ANALYSIS OF AUTOIMMUNE DISEASES BY MACHINE LEARNING PROCEDURES 343

Fig. 1. Machine learning data flow to identify the relevant gene set: identifying the prototype genes and the genes mostly correlated with them.

stage, we look for those possible genes that, having a biolog-
ically relevant role in the problem, have not enough statistical
power to be considered as a separate prototype. Notice that,
using the mutual information metric, and due to the fact that
it has no sign consideration, the relationships found could be
direct and inverse in the gene profiling. Thus, it can cover a key
biological process: positive or negative transcription regulation.

Formally, let the discrete datasets S1 , . . . ,SN be the re-
sult of different discretization policies of the original O mi-
croarray dataset. N different feature subset selections are per-
formed on the basis of these Si discrete datasets, producing
the following subsets of genes: G1 , . . . , GN . The consensus
gene subset Γ (hereafter statistical prototypes) will be the
intersection between all of them, that is Γ =

⋂N
i=1 Gi , with

| Γ |= m ≤ mini=1,...,N | Gi |. In order to amplify the final
output gene set, for each statistical prototype gene, its q most
univariately correlated genes are also selected. Fig. 1 graphically
exemplifies the whole information flow.

The objective of the overall process was to enhance the ro-
bustness of the final solution. The use of different discretization
procedures adds independence from a specific discretization
task, and obtains a compact and biologically meaningful gene
set Γ =

⋂N
i=1 Gi . The posterior enlargement of this statistical

outcome can add information contained in each of the starting
gene sets. The complete formulation of this novel combination
of techniques and their comparison with other state-of-the-art
approaches can be widely reviewed in [12].

E. Quantitative PCR

DNA purified from six healthy donors, three SLE patients,
and five PAPS patients (see supplementary content), all of them
different from those used in microarray experiments, was re-
versed transcribed into cDNA.

Quantitative TaqMan PCR analyses were performed for the
following genes: H1F0, PPIA, GNLY, SSB, and SP100. In addi-
tion, qPCR of TBP was performed on all samples, which served
as internal control. The primers and TaqMan probes for all the
genes were obtained from Applied Biosystems (ABI, Foster
City, CA, USA). The reactions were run by triplicate on an ABI
7900HT fast real-time PCR system from Applied Biosystems at
the Genomics Facility of the University of the Basque Country,
using standard cycling conditions. Results were analyzed with
the sequence detection system (SDS) Software v2.0 (Applied
Biosystems) to obtain the Ct values for each sample.

A DCt value was calculated reflecting the difference between
the average Ct of the replicate samples obtained for the control
gene (TBP) and the average Ct of the replicate samples obtained
for the test gene to be validated. Using these DCt values as the
raw expression value in the qPCR experiment, we first deter-
mined the median DCt for all the healthy control samples. Next,
we calculated the difference between the DCt of each test sam-
ple and the DCt values of the healthy controls, thus obtaining a
set of DDiff values for each phenotype and gene.

III. RESULTS AND DISCUSSION

SLE is an autoimmune disease characterized by the produc-
tion of autoantibodies with specificity for a wide range of self-
antigens, resulting in injury to various organ systems, including
skin, joints, kidney, and central nervous system [24]. PAPS is a
related autoimmune disease characterized by recurrent thrombo-
sis and miscarriages, associated with antiphospholipid autoanti-
bodies (aPL) directed against phospholipid-binding plasma pro-
teins as well as with other autoantibodies shared with SLE [25].

The antiphospholipid syndrome can manifest on its own, in
the absence of lupus symptoms (primary APS, PAPS), or can
develop secondarily in a subset of lupus patients, implying that
some pathogenic pathways are common to both autoimmune
diseases. To identify genes that discriminate SLE or PAPS
patients from healthy controls, a novel set of computational
tools was used based on a machine learning approach using the
logRatio data from DNA microarrays, as indicated in Section II.
A total of 150 probes (hereafter genes) out of an original set con-
taining more than 22,000 genes were detected as the relevant
genes whose differential expression confidently discriminates
among SLE patients, PAPS patients, and healthy controls.

The complete list of relevant genes, including the Affymetrix
probe ID, the gene symbol, their locus, and their relative gene
expression in SLE or PAPS patients, and a short description
are available online through the Supplementary content page.
The significantly different expression profile exhibited by these
genes in patients samples relative to samples of healthy con-
trols could contribute to the pathogenesis of the autoimmune
conditions analyzed in this paper.

The sample labeled as LB10 corresponds to an SLE pa-
tient who developed secondary APS. We wished to determine
whether the gene expression profile of this individual was more
similar to primary APS or whether it maintained an SLE pat-
tern of gene expression. To this end, hierarchical clustering
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Fig. 2. Clustering of the illness instances (SLE and PAPS). Branches colored
in blue belong to SLE-class-labeled instances, while branches in red belong to
PAPS instances. The expression profiles of each test sample were compared
separately with the expression profiles of control samples, resulting in five
comparisons for each SLE or PAPS sample. The five instances generated by
sample LB10 flawlessly behave as the rest of SLE instances, being all clustered
in the same group.

analysis was carried out considering the most common cluster-
ing parameters: Pearson correlation and average linkage. This
analysis clearly showed that LB10 is clustered with the rest
of SLE patients and not with PAPS patients (see Fig. 2). Fur-
thermore, clustering of all SLE patients was very similar and
homogeneous, implying that a secondary acquisition of an an-
tiphospholipid syndrome does not modify significantly the tran-
scriptional profile that characterizes SLE.

Many of the genes identified in our study have not been previ-
ously implicated in SLE or PAPS, and represent new biomarkers
of these diseases. Interestingly, a link with autoimmunity, and
in particular to lupus, has already been established for a signifi-
cant number of the genes included in this group of dysregulated
genes. Such is the case of the genes SSB, SP100, H1F0, all
of which are lupus autoantigens [26]–[30] or TAP-1, a trans-
porter gene with polymorphisms showing genetic association
with SLE [31] and [32], among others.

A. Statistical Analysis

From the 150 total genes returned by the machine learning
stage, there were a total of eight statistical prototypes (CPSF1,
SLC25A12, UQCRB, NADK, MICAL2, KIAA0776, PARL,
and CECR1). It is mandatory to note that prototype genes are
the result of a statistical process and their aim is to comprise
the statistical axes of the problem. Although a direct biological
translation could be made, it would have no biological link to
the statistical and biological interpretations: the prototype genes
could not have any special biological contribution in the domain
of the diseases under study.

The statistical analysis of the selected genes was performed in
two ways: by measuring the relevance of the selected genes, and
the estimated prediction accuracy in a supervised class predic-

TABLE I
POSITIONS OF THE STATISTICAL PROTOTYPES OVER THE CONSENSUS

RANKINGS FOR THE THREE DISCRETE SETS (EF, EW, AND ENTROPY)

tion procedure. For these two validations, the supervised target
dataset was comprised of three different classes or phenotypes
and 40 instances: 10 PAPS instances, 20 SLE instances, and 10
control instances (see Section II-C). A priori, the selected genes
should be relevant to the problem, showing a high correlation
degree with the phenotype distribution.

Using the Elvira platform [33], and on the basis of the three
discrete datasets, seven different univariate filter rankings [34]
were calculated. Each of these seven metrics computes the corre-
lation coefficient of each gene with respect to the class variable.
In order to obtain an average ranking for each dataset, each
gene was weighted with a coefficient proportional to the rela-
tive positions shown in each ranking. The consensus rankings
are accessible through the online supplementary content page,
presenting a list of the 8,808 (924 in the case of entropy dis-
cretization) genes ordered by their correlation level with respect
to the problem class label.

Table I shows the positions of each statistical prototype in
the consensus rankings of each discrete dataset. It is easy to
check that the selected genes appear in the top positions of the
rankings, with average positions of 29.5, 43.5, and 50.1 for equal
frequency (EF), equal width (EW), and entropy discretization,
respectively. Such average positions significatively differ from
the ones obtained if a random selection is made: 4004.5, 4004.5,
and 462.5, respectively.

The second aspect of the statistical analysis comprised the
estimation of the prototypes’ strength when classifying a new
instance not included in the original set. This strength was eval-
uated on the basis of different classifier performance tests. Due
to the great difference between the number of genes (predictive
variables) and the instances of each experiment, many distinct
and equally effective classifiers may exist for the same training
set [34]–[37]. This fact led us to consider four different clas-
sification models instead of only one. Furthermore, and trying
to cover a wide range of classical paradigms, the four models
chosen come from different classification families and are com-
monly used in DNA microarray class prediction studies [36].

1) Logistic Regression—Logistic regression [38] has become
a very widely used classification paradigm in life sciences
because its parameters can be interpreted as risk factors.
Logistic regression is based on the logistic function and
it allows an interpretation in probability terms. A set of
parameters has to be estimated from the problem data, usu-
ally known as regression coefficients. Usually, regression
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coefficients are estimated using the maximum likelihood
estimation method, but there are adaptations that penalize
this maximum likelihood with other factors. The logistic
regression model used in this paper penalizes the like-
lihood estimation with an estimator known as the ridge
estimator [39].

2) k-Nearest Neighbor—The k-NN algorithm [40] proceeds
with the classification task in terms of similarity: unla-
beled examples are classified based on their distance to
the examples in the training set. k-NN is a classification
paradigm with no explicit classification model. In other
words, there is no learning stage at which a mathemati-
cal model is induced, and from which the categorization
stage is tackled. It finds the k closest features in the data
and assigns them to the class that most frequently appears
within the k-subset. In this work, k-NN is computed with
Euclidean distance and a k value of three.

3) Naı̈ve Bayes—Continuous naı̈ve Bayes [41] belongs to
the Bayesian classifier family. This family is based on
the Bayes formulation of conditional dependencies [42].
Bayesian classifiers need to specify a structure, and then,
a series of a priori and conditional probabilities, or model
parameters. The simplest structure is the naı̈ve Bayes
structure based on the assumption of the conditional inde-
pendence between the predictor variables given the class.
The model parameters are estimated with a factoriza-
tion based on the normal distribution assumption for each
variable.

4) Random Forest—This classification paradigm belongs to
the tree-like classification family. Random forest [43]
builds a forest composed of t random trees. When build-
ing these trees, a random variable selection is performed.
The random tree set is learnt using a bootstrap instance
selection, and the built trees are not pruned. For our paper,
no variable selection is configured at the induction step,
because a feature selection has already been performed.
Thus, using all the predictive variables provided, ten ran-
dom trees are built for each forest.

In order to obtain a fair estimation of each classifier per-
formance, a crucial task arose: the choice of the most suit-
able accuracy estimation method in the context of the microar-
rays. Classical methods such as hold-out, simple, or leaving-
one-out cross validations [44] have been demonstrated not to
fit on the intrinsic microarray dimensionality problem [45],
[46]. Nowadays, there are two main approaches commonly ac-
cepted as the best estimation techniques: the corrected boot-
strap estimator [47] and nested stratified cross validation
[48].

For the present study, we chose the use of a nested strati-
fied cross-validation scheme as the accuracy estimation method.
This method comprises the performance of two different stages:
one internal (or inner) loop in which the parameters of the clas-
sification methods are estimated; and an external (or outer) loop
in which the classifiers are induced and validated against previ-
ously unseen instances. In our specific case, the feature selection
methods were run throughout the inner loop and the different
classifiers were induced on the basis of these selected features.

TABLE II
ESTIMATED ACCURACIES OBTAINED FOR THE TEN TIMES FOLD

CROSS-VALIDATION ON EACH CLASSIFICATION PARADIGM

This classifier is tested over instances not previously seen on the
induction stage.

The next parameter to adjust was the number of times that
all this process is done for each classifier and for each feature
selection method. Taking advantage of previous studies, it is
proven that the ten times repetition of ten of these stratified
cross validations obtains suited accuracy estimations [46], [49].
This validation scheme is usually known as ten times tenfold
cross validation.

As for the study of the prototype’s classification strength, we
performed the validation over four different gene sets: the in-
termediate genes selected by the correlation feature selection
over the three different discretized data sets, and the consensus
prototype genes. The number of selected genes and estimated
accuracies are gathered in Table II. All the induction and valida-
tion processes were computed using the WEKA framework [50].

To assess the significance and reliability of the consensus
genes in comparison with each one of the intermediate gene sets,
a corrected repeated k-fold cv test [49] was performed. This sta-
tistical test has been proven as one with the most suited relation
between the type I and II errors [49], [51] and a high replica-
bility degree [49]. The test compares the differences between
two different classification algorithms by a special corrected
t-test. The null hypothesis is that both algorithms have the same
classification behavior; the alternative hypothesis states that one
algorithm outperforms the classification degree of the other.

For each base classifier, the accuracy of each single dis-
cretization policy was compared with respect to the consensus
approach. For all the 12 comparisons, only four of them (val-
ues with a � symbol on Table II) rejected the null hypothesis
for an α = 0.05 significance level. For a 0.01 level, none of
them showed statistical differences—the null hypothesis was
not rejected in any of them. These results let us state that, while
suffering a decrease on the classification accuracies, the dif-
ferences between the use of the consensus prototypes and the
intermediate selected gene sets are not statistically significant
in many comparisons.

B. Biological Analysis

1) Verification of Microarray Hybridization by Quantita-
tive RT-PCR Analysis: For verification of hybridization sig-
nals, quantitative TaqMan PCR analysis was performed for five
selected genes. Two of these genes (H1F0 and SP100) are IFN-
regulated genes previously associated with SLE [29], [30]. Our
microarray data showed that both genes were upregulated in

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on April 24,2024 at 13:14:58 UTC from IEEE Xplore.  Restrictions apply. 



346 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 13, NO. 3, MAY 2009

TABLE III
qPCR OUTPUT VALUES AND EXPECTED ACTIVITY FOR FIVE GENES FROM

THE RELEVANT GENELIST

Fig. 3. qPCR validation summary for five genes from the relevant genelist.

SLE patients, but only H1F0 expression was increased in PAPS,
whereas SP100 expression was downregulated.

SSB, also called La autoantigen, is a ribonucleoprotein in-
volved in chromatin metabolism, and is known to elicit autoan-
tibody responses in SLE [28]. Its expression in SLE samples
was similar to controls, but was downregulated in PAPS. The
remaining two genes (GNLY and PPIA) that were selected for
PCR analysis are known to have a role in the execution of im-
mune functions [52]–[54] and were found to be downregulated
in PAPS samples.

In order to perform a rigorous validation, we used a sec-
ond cohort of SLE and PAPS samples, a total of 14 new blood
samples not used in the microarray analyses. The qPCR sam-
ple distribution was as follows: six healthy controls, three SLE
samples, and five PAPS samples. Detailed information of each
sample is gathered online.

For each gene and phenotype, DDiff values were calculated
(see Section II), and the median values of these DDiff, to-
gether with the expected gene expression activities are shown in
Table III. As a dispersion measure of the results, the values
for the first and third quartile of each group of values are also
shown. Fig. 3 graphically summarizes the results obtained for
each gene within the qPCR validation.

Fig. 4. Gene ontology biological process (level 3) annotations that are signif-
icantly overrepresented in the list of dysregulated genes. Annotations with an
incidence level lower than 5% are not shown.

As a criterion, a median DDiff value between −1 and 1 was
considered a baseline activity, that is, unchanged with respect to
healthy controls. Median values higher than 1 reflect an upreg-
ulated activity, while values lower than −1 reflect a downreg-
ulated activity. Clearly, the expected gene expression profiling
as measured by microarray quantitation is fully validated by the
qPCR experiment.

As a final validation criterion for the expected gene expres-
sion activities, a statistical test was performed comparing the
DDiff expression values between the control samples and either
SLE or PAPS samples. Column p-value in Table III gathers the
output of a nonparametric Mann–Whitney hypothesis test [55],
showing that all the values of over or underexpression are statis-
tically significant for a 90%; confidence level. In addition, the
p-values for the baseline activities show no statistically signifi-
cant differences between these cases and the control expression.
Thus, all these results are consistent with the expected expres-
sion activity for each gene.

2) Functional Characterization of the Relevant Genes in SLE
and PAPS: To check whether the results made sense from a bi-
ological point of view, we have analyzed the list of dysregulated
genes with the FatiGO+ tool [56]. FatiGO+ can be used to
search for the GO annotations2 that are overrepresented in a list
of genes. The significance of the overrepresentation is assessed
by means of a Fisher exact test. From the 150 dysregulated
genes identified, only 112 have GO annotations. Fig. 4 shows
the results obtained with this tool (for terms in the level 3 of
GO biological process annotations). As we can see in the figure,
immune-system-related annotations, such as defense response
or immune system process, are overrepresented in the list of
dysregulated genes.

A comparison with previous studies on microarray analyses
revealed a notable similarity in the functional categories of the
genes found to be dysregulated in our analysis [57], confirming
their importance in the pathogenesis of the disease IV. Such

2Gene Ontology Consortium http://www.geneontology.org
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TABLE IV
SOME OF THE GO FUNCTIONAL GROUPS IDENTIFIED FROM THE RELEVANT

GENELIST AND THE GENES THAT BELONG TO EACH GROUP

is the case of the categories defense response, immune system
process, death, cell communication, or response to chemical
stimulus. In addition, our analysis revealed other relevant func-
tions, including metabolism, establishment of localization, or
regulation of biological processes that have not been previously
associated with SLE or PAPS, and that may provide important
clues about the pathogenesis of these diseases.

3) Regulatory Pathways Dysregulated in SLE and PAPS: It
is believed that mutations in susceptibility genes that contribute
to the pathogenesis of a given disease result in an altered expres-
sion and/or activity of genes regulated by them, thus revealing
a particular molecular signature of the disease [58]. Taking this
idea into account, we searched for factors that could be regulat-
ing the genes whose expression is altered in SLE and/or PAPS.
For each of the 150 genes identified in the original set, and using
the ingenuity pathways analysis tool,3 the factors that could be
involved in the regulation of their expression or activity were
identified. Only those genes with known regulators were consid-
ered for subsequent analyses. Furthermore, genes regulated by
other genes included in the original set were discarded because
it is not possible to know whether these genes are dysregulated
due to a mutation in the genes that regulate their expression or
because their regulators are dysregulated themselves.

The resulting filtered set includes a total of 129 genes (out
of 150), and the gene set known to regulate them contains a
total of 299 genes. Only the genes regulating three or more

3For a detailed description of ingenuity pathways analysis, visit:
http://www.ingenuity.com

TABLE V
LOCATION OF THE DETECTED REGULATOR GENES

target genes were considered, which resulted in a final num-
ber of 17 regulatory genes controlling the expression of a total
of 45 dysregulated genes (see Table V). Finally, their loca-
tion within the genome was sought. Remarkably, nearly half of
them (8 out of 17) were found to be located in chromosome
regions previously reported as susceptibility regions for SLE
[59]–[66].

Recent microarray reports have suggested that the interferon
regulatory pathway could be an important contributor of SLE,
based on the dysregulated expression of numerous interferon-
inducible genes in lupus samples [67]–[69]. Remarkably, our
analyses revealed that three of the regulatory genes are interferon
proteins (IFNG, IFNA1 and IFNA2), regulating the expression
and/or activity of nine genes identified in the microarray experi-
ments. Seven of these nine genes were overexpressed in SLE pa-
tients, consistent with previous findings. Moreover, three more
regulator proteins (IL15, MYC, TNFSF10) are also known to
be regulated by IFNs. These results indicate that the IFN path-
way regulates nearly half of the regulatory genes identified in
our analysis, either directly or indirectly, corroborating the im-
portance of the interferon signature in SLE, and suggesting an
important role for this pathway also in PAPS pathogenesis.

Other regulatory genes with a known or suspected role in
autoimmunity were also present in the search. Such is the case
of PTEN, a phosphatase involved in the regulation of the PI3K
pathway [70], TNF, tumor necrosis factor [71], or the antiapop-
totic protein Bcl-2 [72]. It will be worth examining these regu-
latory networks in more detail, to determine their contribution
to the pathogenesis SLE or PAPS, as well as their usefulness as
markers of these diseases.

4) Analysis of Transcription Factor Binding Sites in the Pro-
moters of Genes Relevant for SLE and PAPS Identification:

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on April 24,2024 at 13:14:58 UTC from IEEE Xplore.  Restrictions apply. 



348 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 13, NO. 3, MAY 2009

TABLE VI
DEREGULATED TRANSCRIPTION FACTORS FOUND IN BASIS OF THE IDENTIFIED RELEVANT GENE SET

Genes that participate in a particular pathway often share a
common transcription factor binding site. We next explored the
possibility that the dysregulated genes in SLE and PAPS could
be regulated by common transcription factors involved in the
development of autoimmunity. We reasoned that if a significant
number of dysregulated genes in SLE and PAPS were regu-
lated by a common transcriptional factor, then this factor could
somehow be associated with the disease.

We made use of the transcription element listening sys-
tem [73], also known as TELiS, to identify transcription factor-
binding motifs (TFBM) that are overrepresented in the promot-
ers of a given gene set. This analysis considers two variables
for any binding motif: 1) the frequency of this motif per gene: a
comparison is made between the average frequency within the
whole microarray and the frequency in the genes of the relevant
list; 2) the number of genes exhibiting this motif in the relevant
list compared to the whole microarray. Using these values, it
is possible to compute a z-value statistic [74] and to perform a
two-tailed hypothesis test based on a Bernouilli-set trial that ex-
amine these TFBMs that are overrepresented in the test list with
respect to the expected occurrence computed from the original
microarray list.

In our case, the parameters for the genome scan were as fol-
lows: the promoter search interval was fixed between −1000
and +200 bp, and the stringency of the test is fixed to a
0.9 value. TELiS analysis identified a total of 115 genes
from the total of 141 mapped genes in the relevant gene set.
Within these parameters, TELiS reported a total number of
seven overrepresented transcription factor binding motifs (see
Table VI). Importantly, two interferon response elements (IRF1
and IRF2) appeared as overrepresented, again revealing the im-
portance of the IFN-regulated pathway in these autoimmune
diseases. The binding sites for SP1 and P300 were also sig-
nificantly overrepresented, particularly with regard to the fre-
quency of binding sites per gene. However, the increase in
frequency as well as in incidence were minimal with respect
to the reference control, and it is unlikely to be biologically
meaningful.

PAX2 and MEF2 are transcription factors that are known to be
involved in cellular differentiation and organ development [75].
The finding that their binding sites are overrepresented in our
analysis suggests that factors regulating differentiation also play
a role in autoimmunity. Remarkably, E2F binding sites were

found overrepresented in this analysis. E2F constitutes a family
of transcription factors involved in the transcriptional regulation
of genes necessary for cell cycle control [76]. Recently, func-
tional inactivation of E2F2, a member of this family, has been
found to promote a lupus-like autoimmune disease in a mouse
model, linking cell cycle regulation to autoimmunity [77]. Ad-
ditionally, reduced expression of E2F2 has been reported in SLE
patients [68]. These findings project a role for E2F in the reg-
ulation of autoimmunity, and suggest that modulation of E2F
levels could be beneficial in these diseases.

IV. CONCLUSION

Consensus approaches are alternative techniques that try to
overcome the technology-intrinsic data noise in microarray
experiments. In the present paper, we applied a supervised
consensus gene selection method, aiming to add robustness
to the biomarker identification procedures by means of DNA
microarrays.

Microarray studies must deal with “the curse of dimension-
ality” and “the curse of sparsity” [78]: in a problem with a huge
number of variables (features or genes), there are only a small
number of instances (cases or samples) whereas there are sev-
eral thousand variables. Therefore, their results must be strictly
proven to assess reliability over the given statements. Through-
out this paper, in-depth statistical and biological validations have
been successfully carried out.

Readers should note the importance of being conservative
when dealing with findings coming from a low number of sam-
ples. Within some rare diseases, such as SLE and PAPS, it is
very difficult for physicians and clinics to find samples cohorts.
Therefore, studies in these fields must be able to deal with these
adversities while they bring some light into the present genomic
research. Throughout this paper, from the starting feature selec-
tion to the final biological validations, we have exposed a battery
of techniques, both from statistics and biology, to add reliability
and proofs to the results of such researches. Authors consider
of special importance the posterior validation of the findings
by means of qPCR analysis with outer samples not used in the
previous statistical stages.

Among these findings, the statistical techniques applied have
corroborated the importance of the IFN pathway in SLE and
PAPS, and have also revealed the existence of other gene
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signatures that could be playing an important role in the patho-
genesis of these diseases. Future clinical and/or biological tests
over the presented results could throw light on the molecular
basis of SLE and PAPS diseases.
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[9] P. Larrañaga, B. Calvo, R. Santana, C. Bielza, J. Galdiano, I. Inza,
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