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Abstract—This paper proposes a new multi-objective estima-
tion of distribution algorithm (EDA) based on joint probabilistic
modeling of objectives and variables. This EDA uses the multi-
dimensional Bayesian network as its probabilistic model. In
this way it can capture the dependencies between objectives,
variables and objectives, as well as the dependencies learnt
between variables in other Bayesian network-based EDAs. This
model leads to a problem decomposition that helps the proposed
algorithm to find better trade-off solutions to the multi-objective
problem. In addition to Pareto set approximation, the algorithm
is also able to estimate the structure of the multi-objective
problem. To apply the algorithm to many-objective problems,
the algorithm includes four different ranking methods proposed
in the literature for this purpose. The algorithm is first applied
to the set of walking fish group (WFG) problems, and its
optimization performance is compared with a standard multi-
objective evolutionary algorithm and another competitive multi-
objective EDA. The experimental results show that on several of
these problems and for different objective space dimensions the
proposed algorithm performs significantly better and achieves
comparable results on some other, when compared with the
other two algorithms. The algorithm is then tested on the set
of CEC09 problems, where the results show that multi-objective
optimization based on joint model estimation is able to obtain
considerably better fronts for some of the problems comparing
with the search based on conventional genetic operators in the
state-of-the-art multi-objective evolutionary algorithms.

Index Terms—Estimation of distribution algorithm, Joint
objective-variable modeling, Many-objective problem, Multi-
objective optimization, Objectives relationship.

I. INTRODUCTION

MULTI-OBJECTIVE problems (MOPs) comprise several
criteria that should be satisfied simultaneously, none of

which can be preferred over others. Let F = {f1, . . . , fm} be
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the set of objective functions. Then, given an MOP of the form

min
x

q = (f1(x), . . . , fm(x))

subject to x ∈ D ⊆ Rn,
(1)

the goal of a multi-objective optimization algorithm is to
search for solutions that satisfy all or obtain an optimal
trade-off between objectives. Note that here, without loss of
generality, it is assumed that all objective functions should to
be minimized.

Multi-objective evolutionary algorithms (MOEAs) [1]–[5]
are considered as promising optimizers that have been success-
fully applied to a variety of MOPs. These algorithms use their
nature-inspired operators to evolve a population of candidate
solutions. This population-based optimization parallelizes the
algorithm which can then simultaneously optimize several
areas of the search space to arrive at several compromise
solutions, as it is necessary when solving MOPs.

It is well known that in the presence of specific problem
properties, traditional evolutionary algorithms (EAs) have dif-
ficulties in optimization [6]. Estimation of distribution algo-
rithms (EDAs) [7]–[10] are a relatively new computational
paradigm proposed to overcome these difficulties. EDAs have
also been applied to solve MOPs [11]–[14]. Instead of genetic
operators, these algorithms generate new candidate solutions
from a probabilistic model, which is learnt from a set of
promising solutions. The probabilistic model captures certain
statistics about the values of problem variables and the impor-
tant dependencies existing between these variables.

An important issue concerning MOEAs is how well they
scale as the number of objectives in the MOP increases
[15], [16]. This is especially important because real-world
problems usually have many criteria that can be formulated
as a many-objective problem. One way of accounting for
this is to consider the relationships between objectives and
explicitly reduce the number of objectives according to these
relationships. Different methods, like correlation and principal
component analysis [17]–[21], extending the definition of con-
flicting objectives [22], and linear programming [23] have been
proposed for this purpose. These methods reduce optimization
complexity by searching for a minimum subset of objectives.

In this study, we propose learning a joint probabilistic model
of both objectives and variables within the context of EDAs.
This allows the algorithm not only to capture the dependencies
between variables, as in other EDAs, but also to learn the
relationships between objectives and between objectives and
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variables. The learnt relationships can have more complex
patterns of interaction than just linear correlation. These
relationships are then implicitly used by the algorithm to
generate new solutions in the search space. In addition to the
approximated Pareto set, the joint probabilistic model learnt in
this EDA provides the decision maker with an approximation
of the MOP structure, i.e., the relationships among variables
and objectives in MOP.

A preliminary study of this notion was presented in [24],
discussing the incorporation of objectives into EDA model
building. In this paper, we extend the study by using a spe-
cific probabilistic modeling adapted from a multi-dimensional
Bayesian network (MBN), usually used for multi-dimensional
classification tasks [25], [26]. In this type of problems, each
instance or data point can have several class labels. The
goal of learning a probabilistic model is then to predict the
class labels of new unseen data points. On the other hand,
in multi-objective optimization with EDAs, each solution in
the search space has several objective values, and the goal is
to generate new solutions from the probabilistic model that
have better objective values. Clearly, there are similarities
between the two problems that motivate the use of an MBN
to capture the relationships between variables and objectives.
For this purpose, the objectives are modeled as class vari-
ables in the probabilistic model and the dependencies learnt
between objectives and variables in the model are exploited to
generate new solutions. Using this type of model estimation,
the structure of the MOP can be approximated systematically,
and the proposed algorithm can be applied to many-objective
problems. This paper examines how this algorithm performs
on many-objective problems, using different ranking methods,
and studies some of the MOP structures obtained by the
algorithm.

The use of Bayesian network classifiers as the probabilistic
model of an EDA has been previously reported for single-
objective optimization in the evolutionary Bayesian classifier-
based optimization algorithm (EBCOA) [27], [28]. However,
there are several key differences between EBCOA and the
algorithm presented in this paper. First, the presence of mul-
tiple objectives in an MOP increases the information about
the quality of solutions (possibly contradictory) that should be
addressed during modeling. Second, instead of classifying the
solutions into disjoint classes, which may blur the differences
in the quality of the solutions, here the continuous objective
values are directly used in model learning. Third, in contrast to
a fixed dependency between the objectives and variables, the
algorithm presented here dynamically learns the relationships
between the objectives and variables. In this way, the model
can select a subset of variables that has more influence on
each objective.

The rest of this paper is organized as follows. Section II
briefly reviews some background required to follow the dis-
cussions in the paper. The proposed EDA based on joint mod-
eling of objectives and variables is described in Section III.
Section IV presents the numerical results of applying the
algorithm on two sets of MOPs and analyzes the results. A
study of the possible MOP structures learnt by the algorithm
is presented in Section V. Finally, the paper is concluded in

Fig. 1. An example of a multi-dimensional Bayesian network structure.

Section VI and some lines of future research are proposed.

II. PRELIMINARIES

A. Multi-dimensional Bayesian Network Classifiers

Bayesian networks [29] are multivariate probabilistic graph-
ical models, consisting of two components:
• the structure, represented by a directed acyclic graph

(DAG), where the nodes are the problem variables and
the arcs are conditional (in)dependencies between triplets
of variables, and

• the parameters, expressing for each variable Xi the con-
ditional probability of each of its values, given different
value-settings of its parent variables (Pa(Xi)) according
to the structure, i.e.,

p(xi | pa(Xi)),

where pa(Xi) is a value-setting for the parent variables
in Pa(Xi).

By introducing a special node C into the network as the
class node, Bayesian networks can be used for classification
tasks to obtain the posterior probability of a class value c,
given feature values x1, . . . , xn, i.e., p(c | x1, . . . , xn). Several
types of Bayesian network classifiers have been proposed in
the literature: naı̈ve Bayes, seminaı̈ve Bayes, tree augmented
naı̈ve Bayes, etc.

If a data point can simultaneously belong to several (say m)
classes, then a multi-dimensional Bayesian network (MBN)
can be learnt to perform multi-dimensional classification,
where the posterior probability is now given by

p(c1, . . . , cm | x1, . . . , xn).

Fig. 1 shows an example of the structure of an MBN used
for multi-dimensional classification. In this type of model,
the nodes are organized in two separate layers: the top layer
comprises class variables and the bottom layer contains feature
variables. The set of arcs in the structure is partitioned into
three subsets, resulting in the following subgraphs:
• the class subgraph, containing the class nodes and the

interactions between them,
• the feature subgraph, comprising the feature variables and

their relations, and
• the bridge subgraph, depicting the one-way links from

class nodes to feature nodes.
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This probabilistic model can answer several types of ques-
tions: the class labels of a given data point, the most probable
feature values for a given combination of class labels, and the
most probable values for a subset of features or classes given
the value of the others. Considering the similarity between
multi-dimensional classification and MOPs, the respective
questions will be: what are the estimated objective values of a
given solution, what is the most probable solution resulting in
a specific value-setting for the objectives, and, having found
the values of some objectives or variables, what will be the
most probable values of the others. Also, worthy of note is
that the existence of specific types of decomposability in the
MBN structure can make these types of inference questions
simpler to answer [26].

B. Gaussian Bayesian Networks

In domains with continuous-valued variables, it is usually
assumed that the variables follow a Gaussian distribution.
The Bayesian network learnt for a set of variables, having
a multivariate Gaussian distribution p(x) = N (µ,Σ) as
their joint probability function, is called a Gaussian Bayesian
network (GBN). Here, µ is the mean vector and Σ is the
covariance matrix of the distribution.

The structure of a GBN is similar to any other Bayesian
network. However, for each node the conditional probability
represented by the parameters is a univariate Gaussian distri-
bution for the variable corresponding to that node, which is
determined by the values of the parent variables [30], [31]

p
(
xi | pa(Xi)

)
= N

(
µi+

∑
Xj∈Pa(Xi)

wij(xj − µj), ν2i
)
, (2)

where µi is the mean of variable Xi, νi is the conditional
standard deviation of the distribution, and regression coeffi-
cients wij specify the importance of each of the parents. These
are the parameters stored in each node of a GBN. xj is the
corresponding value of Xj in pa(Xi).

C. Estimation of Distribution Algorithms

Conventional genetic operators used for generating new
solutions in evolutionary algorithms usually provide good and
efficient exploration of the search space. However, it has
been shown that these operators can disrupt the good sub-
solutions found during evolution, affecting the effectiveness
of the search for optimal solutions [32]. This disruption is
more likely to occur as the correlation between problem
variables increases, rendering the algorithm inefficient for such
problems. Estimation of distribution algorithms (EDAs) make
use of probabilistic models to replace the genetic operators in
order to overcome this shortcoming of traditional evolutionary
algorithms.

Fig. 2 shows the basic steps of a typical EDA. The set of
selected solutions St serves as a training dataset to estimate
the probabilistic model and leads the search towards regions
with better fitness values (represented by the selected solu-
tions). The set of new solutions Ut is generated using the
probabilities encoded in the probabilistic model in accordance
with the statistics collected from the solutions in St. The

Inputs:
Representation of solutions
Objective function f

1 P0 ← Generate initial population according to the given representation
2 F0 ← Evaluate each individual x of P0 using f
3 t← 0
4 while termination criteria are not met do
5 St ← Select a subset of Pt according to Ft

6 ρ̂t(x)← Estimate the probability density of solutions in St

7 Ut ← Sample from ρ̂t(x) according to the given representation
8 Ht ← Evaluate Ut using f
9 Pt+1 ← Incorporate Ut into Pt according to Ft and Ht

10 Ft+1 ← Update Ft according to the solutions in Pt+1

11 t← t+ 1
12 end while

Output: The best solution(s) in Pt

Fig. 2. The basic steps of an estimation of distribution algorithm

choice of probabilistic model can have a major influence
on the performance and efficiency of EDAs. For example,
some probabilistic models can also encode the dependencies
between the variables, and use it to identify and preserve these
dependencies in the sampling process. Bayesian networks are
one of these probabilistic models that can encode dependencies
between any number of variables. Thus EDAs using this
probabilistic model can be applied to problems with high order
of relationships between variables and a complex structure
[10].

In the context of multi-objective optimization, when there
is more than one objective function in the problem, Ft will
be a matrix with m columns instead of a vector. A successful
strategy adopted by many MOEAs (including multi-objective
EDAs) [33], [34] is to modify the solution selection and re-
placement mechanisms but use the same solution reproduction
approach (model learning and sampling for EDAs) as in single
objective optimization. However, as we discuss later, more
objectives in the problem can also affect how the new solutions
are being generated. In the remainder of this section we review
some of methods proposed in literature for multi-objective
optimization based on model estimation. A summary of multi-
objective EDAs is given in TABLE I.

D. A Survey of Multi-objective Optimization with Probabilistic
Modeling

In several multi-objective EDAs proposed in the litera-
ture, a Bayesian network is estimated as the probabilistic
model. Pareto Bayesian optimization algorithm [35] inte-
grates the Pareto strength-based solution ranking method [33]
into Bayesian optimization algorithm (BOA) [56] for multi-
objective optimization. In a similar study, the non-dominated
sorting algorithm [57] is used in BOA [36]. Bayesian multi-
objective optimization algorithm (BMOA) [48] uses an ε-
Pareto dominance based ranking method to select a subset
of solutions for estimating a Bayesian network model. Deci-
sion tree based multi-objective EDA (DT-MEDA) [49] uses
regression decision tree with Gaussian kernels in its leaves
as the probabilistic model. It uses a slightly modified version
of non-dominated sorting algorithm for selecting a subset of
solutions in each generation.
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TABLE I
SUMMARY OF THE MULTI-OBJECTIVE EDAS WITH THEIR RANKING METHODS AND PROBABILISTIC MODELS USED TO SEARCH IN THE SPACE OF

CANDIDATE SOLUTION.

Name Probabilistic Model Mixture Hybridized Ranking Method External Archive
Pareto BOA [35] Bayesian network Pareto dominance, •

Pareto strength,
Domination count

mBOA [36] Bayesian network Pareto dominance,
Crowding distance

MIDEA [37] Univariate distribution, • Domination count,
Tree-structured distribution Spread in objective space

SDR-AVS-MIDEA [38] Multivariate Gaussian distribution • Domination count, •
Spread in objective space

MOPEDA [39] Gaussian and Cauchy kernel • Pareto dominance,
Crowding distance

VEDA [40] Geometric distribution with uniform noise • Pareto dominance, •
Crowding distance

mohBOA [41] Bayesian network • Pareto dominance,
Crowding distance

meCGA [42] Marginal product model • Pareto dominance,
Crowding distance

moPGA [43] Univariate marginal product model • Pareto dominance, •
Crowding distance

dp-MrBOA [44] Product of Gaussian Bayesian networks • Pareto dominance,
Domination count,
Modified crowding distance

RM-MEDA [13] Linear combination of principal components • Pareto dominance,
with Gaussian noise Crowding distance

MORBM [45] RBM network • Pareto dominance,
Crowding distance

MB-GNG [46] Univariate Gaussian distribution • Hypervolume indicator
MARTEAD [47] Univariate Gaussian distribution • Hypervolume indicator estimation
BMOA [48] Bayesian network ε-Pareto dominance,

Domination count
DT-MEDA [49] Gaussian Bayesian network Pareto dominance,

Crowding distance
Tabu-BOA [50] Bayesian network • Pareto dominance •
MOHEDA [51] Univariate distribution • • Weighted sum
EDA-PSO [52] Univariate Gaussian distribution • Pareto dominance,

Crowding distance
PLREDA [53] RBM network • • Pareto dominance,

Crowding distance,
Probabilistic dominance

hNSEA, hMOEA/D [54] RBM network • Pareto dominance,
Crowding distance

Decomposition with Tchebycheff method
UMEGS, UMSA, UMHC [55] Univariate distribution • Decomposition with Tchebycheff method

Some of the proposed EDAs explicitly estimate a mixture
of probability distributions by means of a clustering method
to obtain a well-spread approximation of the Pareto solutions.
Multi-objective mixture-based iterated density estimation evo-
lutionary algorithm (MIDEA) [37] clusters the selected solu-
tions into several groups in the objective space and learns a
separate component for each group of solutions. Probabilistic
models with different orders of complexity (e.g. encoding
univariate, bivariate or multi-variate dependencies) are tested
as the components of the mixture. The proposed algorithm
is also further improved by maintaining an ε-Pareto archive
and introducing adaptive variance scaling to prevent premature
convergence in continuous MOPs [38].

Multi-objective Parzen-based EDA (MOPEDA) [39] applies
a Parzen estimator to learn a mixture of kernel functions in
order to reduce the variance of the probability distribution
estimation. Both Gaussian and Cauchy kernels are used alter-
natively during evolution. Voronoi-based EDA (VEDA) [40]

constructs a Voronoi diagram by considering the inferior solu-
tions in addition to good solutions in each generation. It also
uses principal component analysis to reduce the dimensionality
of the objective space.

In multi-objective hierarchical BOA (mohBOA) [41] each
component of the mixture is a Bayesian network. To obtain a
well-distributed approximation of Pareto front, approximately
equal shares are allocated to the mixture components during
model sampling. In the multi-objective extended compact
genetic algorithm (meCGA) [42] a marginal product model is
used for each component of the mixture. The algorithm is later
improved by using an ε-Pareto dominance based clustering
and algorithm parameters are dynamically computed during
evolution [43].

In addition to clustering the solutions, the diversity pre-
serving multi-objective real-coded Bayesian optimization algo-
rithm (dp-MrBOA) [58] decomposes the problem variables by
estimating a Gaussian Bayesian network. It employs a diver-
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sity preserving selection method which uses adaptive sharing
and dynamic crowding methods [44]. Regularity model-based
multi-objective EDA (RM-MEDA) [13] estimates a piece-
wise continuous manifold using the local principal component
analysis algorithm. Each mixture component is an affine plus
a Gaussian noise.

In restricted Boltzmann machine (RBM)-based EDA [45]
each mixture component is an RBM, a stochastic neural net-
work with hidden neurons. Model building growing neural gas
(MB-GNG) algorithm [46] uses a specific single-layer neural
network, called growing neural gas, to determine the location
of mixture components which are Gaussian distributions. The
approach is further extended in [47] by using the adaptive
resonance theory and employing a hypervolume indicator-
based selection method [59].

There are also some approaches which have combined the
EDA search method with other search heuristics. In multi-
objective hybrid EDA (MOHEDA) [51] an EDA based on a
mixture of univariate models is hybridized with a local search
method that is applied to the solutions generated from the
probabilistic model of EDA. Tabu-BOA [50] uses the tabu lists
maintained in tabu search to improve multi-objective BOA.
Gao et al. [52] proposed an algorithm which hybridizes an
EDA based on univariate distributions with a particle swarm
optimization (PSO) algorithm. Very recently, the RBM-based
EDA has also been hybridized with PSO for noisy multi-
objective optimization [53].

While most of the multi-objective EDAs use selection
methods based on Pareto dominance, there are also some
works which have studied EDAs in other multi-objective
optimization frameworks. Shim et al. [54] proposed a multi-
objective optimization algorithm with dynamic combination
of operators in genetic algorithms, differential evolution and
EDAs during search. The proposed algorithm is tested when
using both Pareto dominance-based and decomposition-based
selection methods. They have also used decomposition-based
selection in an algorithm which hybridizes EDA based on
univariate distributions with several local search methods [55].

Although in EDAs probabilistic models are used to estimate
the values for problem variables and to generate new solutions
based on these estimations, probabilistic modeling has also
been used for estimating the values of objective functions.
Zhang et al. [60] proposed a decomposition-based MOEA
which uses Gaussian processes to estimate surrogate models
of the objective functions in MOPs with computationally
expensive (cost or time) objectives.

III. MBN-EDA

A. Joint Modeling of Variables and Objectives

It is common practice in most of EDAs to estimate a
probabilistic model of only the problem variables encoding
the characteristics of the selected solutions St (see Algorithm
2). The sampling algorithm is then expected to generate a
new set of solutions Ut from this model according to the
statistics collected from the solutions in St. Apart from this,
there is no requirement for the solutions in Ut to have better
or comparable objective values to those in St.

Using this solution generation scheme, exploration of the
search space, driven by the characteristics encoded in the
probabilistic model, is usually good. To extend the scheme in
order to account for objective values, the objectives can also
be encoded in the model. In this way, preferences concerning
objective values (obtained from the selected solutions) can
be encoded in the model. This applies especially to MOPs,
where because of having several objectives more information
about the quality of the solutions is available. In this study,
we show that this type of information, handled by expressive
probabilistic models, turns out to be useful for solving multi-
objective problems.

The joint learning of objectives and variables also suggests
a new way for estimating the relationships between MOP
variables and objectives. These relationships can be exploited
by the optimization algorithm to facilitate the search, focusing
only on variables that influence the values of an objective.
Thus, an implicit variable selection is taking place for each
of the objectives. Moreover, the relationships between the
objectives are also captured, helping to identify how the values
of some objectives might change against the values of some
others, using the relationships encoded in the model.

B. An EDA based on MBN Estimation

The probabilistic model used in this paper for joint model
learning is an MBN. The variables are modeled as feature
nodes and objectives as continuous-valued class nodes. The
feature subgraph encodes the dependencies between problem
variables like the models learnt by other EDAs that use
Bayesian networks as their probabilistic model [35], [36], [41],
[48], [50], [58]. The bridge and class subgraphs, however,
encode new types of dependencies. The bridge subgraph shows
the relationships between each objective and the variables, and
the class subgraph represents the direct interactions between
objectives.

Let (X,Q) = (X1, . . . , Xn, Q1, . . . , Qm) denote the joint
vector of problem variables and objectives respectively (of
size n + m). Then, like any other Bayesian network, the
learnt MBN encodes a factorization of the joint probability
distribution of its constituent variables. This will give an
implicit decomposition of the MOP corresponding to this joint
vector. The joint probability distribution of this MBN is given
by

p (x1, . . . , xn, q1, . . . , qm)

=

n∏
i=1

p(xi|pa(Xi)) ·
m∏
j=1

p(qj |pa(Qj)), (3)

where Pa(Xi) ⊆ {X ∪Q \ Xi} and Pa(Qj) ⊆ {Q \ Qj}
respectively are the parents of each variable and objective
node, and pa(Xi) and pa(Qj) represent one of their possible
value-settings. q = (q1, . . . , qm) denotes a possible value-
setting for the objective variables Q = (Q1, . . . , Qm).

The proposed algorithm, which is called MBN-EDA, uses
this probabilistic model to capture the characteristics of se-
lected solutions and their objective values, and generates
new candidate solutions to the MOP at hand in search for



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

Fig. 3. An overview of the proposed MBN-EDA

the Pareto optimal solutions. Fig. 3 shows the algorithm
layout. After selecting a subset of solutions according to a
selection mechanism, e.g., non-dominated sorting + truncation
selection, the solutions are joined with their objective values to
form extended solutions. These extended solutions, comprising
values for both variables and objectives, are used to serve
as a dataset for estimating an MBN. The model sampler
generates new candidate solutions from the learnt MBN, taking
into consideration the values of both objectives and variables.
Finally, these new solutions are added to the population based
on a replacement strategy. The following sections provide
more details about the algorithm.

C. Solution Ranking for Elitist Selection

In contrast to single objective optimization, where the objec-
tive values can be used directly to rank solutions, the existence
of multiple objectives in MOPs necessitates the application of
an intermediate function of the form

G : Q ⊆ Rm 7→ T ⊆ R,

whose output will be used to rank the solutions. One of the
most commonly used techniques in multi-objective optimiza-
tion is the non-dominated sorting algorithm [57], which sorts
the solutions into non-dominated Pareto fronts and then sorts
the solutions within each front according to their crowding
distances in the objective space. However, it has been shown
that the effectiveness of this ranking method decreases as the
number of objectives increases [61]–[63].

Finding efficient ranking methods for many-objective op-
timization (i.e. when there are more than three objectives)
is the topic of ongoing research, and several methods have
been proposed in the literature. In this study, we adopt four
methods, which have been reported to show better performance
for evolutionary many-objective optimization comparing with
several other methods [64]–[67], to rank the solutions in the
MBN-EDA selection step.

Let q = (q1, . . . , qm) =
(
f1(x), . . . , fm(x)

)
and r =

(r1, . . . , rm) =
(
f1(y), . . . , fm(y)

)
be the objective values

obtained for two solutions x and y, where x,y ∈ D ⊆ Rn,
and assume all objectives are to be minimized. Then the
employed ranking methods are as follows:
• Weighted sum of the objectives, using a weight vector
w = (w1, . . . , wm) showing the importance of each
objective:

GWS(q) =

m∑
i=1

wiqi. (4)

• Distance to the best objective values b = (b1, . . . , bm),
using some distance measure d(·, ·) in the objective space
(e.g., Euclidean distance):

GDB(q) = d(b, q). (5)

When the best objective values are not known beforehand
(which is usually the case), the best objective values
achieved so far (considering each objective individually)
in the current population (Ft in Algorithm 2) can be used,
i.e., the best value bi for objective fi is

bi = min
q∈Ft

{qi}.

• Global detriment or the total gain lost by each solution
against other solutions in the population:

GGD(q) =
∑

∀r∈Ft,r 6=q

gain(r, q), (6)

where the function gain(·, ·) computes the gain obtained
in the objective values by a solution q compared to
another solution r:

gain(q, r) =
m∑
i=1

max{0, ri − qi}. (7)

• Profit of the gain obtained from each solution against
other solutions in the population:

GPG(q) = max
r∈Ft,r 6=q

gain(q, r)

− max
r∈Ft,r 6=q

gain(r, q), (8)

where the definition of gain(·, ·) is equal to (7) above.
Applied to the objective values obtained for the MOP

candidate solutions, these ranking methods will result in an
ordered set, which is then used to select a subset of solutions.
Any selection mechanism can be simply applied on the ordered
set. MBN-EDA uses truncation selection where the best τ ·N
solutions (according to the ranking method) of the population
are selected for a given τ ∈ (0, 1), where N is the number of
solutions in the population.

D. Solution Reproduction based on Probabilistic Modeling

1) Estimating the Probabilistic Model: A search+score
strategy [68]–[70] is used in MBN-EDA to learn the MBN
from the data. In this strategy, a search algorithm is employed
to explore the space of possible MBN structures to find a
structure that closely matches the data. The quality of different
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MBN structures obtained in this search process is measured
using a scoring metric, usually computed from data. Although
using a search algorithm (structure search) within another
search algorithm (solution search) may appear to be circular,
note that the aim of the structure search algorithm is to find a
structure that adequately represents data characteristics rather
than finding the optimum structure. For further discussion refer
to [71].

A greedy local search algorithm is used to learn the structure
of MBN (Fig. 4). In each iteration, this algorithm weighs all
possible arc addition, removal and reversal operations that will
map the current network structure to a new valid structure
(according to the MBN structural constrains) in a single step
and then applies the operation that will result in the highest
increase in the network score [72]. The structure search is
restarted from a new random structure after reaching a local
optimum of the scoring function up to a maximum number of
node score evaluations. The algorithm finally returns the high-
est scoring network in all these sub-searches. The Bayesian
information criterion (BIC) [73] is used to score possible MBN
structures. This score is based on a penalized log-likelihood
measure

N∑
k=1

( n∑
i=1

log
(
p
(
xki | pak(Xi)

))
+

m∑
j=1

log
(
p
(
qkj | pak(Qj)

)))

−1

2
log (N)

( n∑
i=1

|Pa(Xi)|+
m∑
j=1

|Pa(Qj)|

+ 2(n+m)
)
,

(9)

where xki and qkj are the values of variables Xi and Qj in the
kth extended solution, respectively. Similarly, pak(Xi) and
pak(Qj) are respectively the value-settings for the parents of
variables Xi and Qj in the kth extended solution. |Pa(Xi)| ≤
n+m−1 and |Pa(Qj)| ≤ m−1 respectively show the number
of parents of Xi and Qj , according to the MBN structure.

The second term in (9), which is the penalizing term,
is computed assuming that MBN is implemented in con-
tinuous domains as a GBN. The parameters of this type
of MBN are computed from the mean vector and covari-
ance matrix of the multivariate Gaussian distribution (MGD)
estimated for the joint vector of variables and objectives:
N (µ̂<1×(n+m)>, Σ̂<(n+m)×(n+m)>). Usually the maximum
likelihood (ML) estimation is used to estimate the parameters
of MGD (the mean vector and covariance matrix) from the
data. However, when the dataset is small comparing to the
number of parameters that should be estimated, this method
cannot obtain a robust estimation of the parameters and espe-
cially the covariance matrix which should be symmetric and
positive-definite. In our case, since the solutions are extended
by appending the objective values, this problem becomes even
worse.

Regularization techniques [74], [75] are one of the methods
that can be used to overcome this problem. MBN-EDA uses
the covariance shrinkage method [76] to obtain a better estima-

Input: A joint dataset of variables and objectives A

1 M← Regularized ML estimation of MGD from A
2 g ← −∞
3 while termination criteria are not met do
4 S ← Randomly generate a valid MBN structure
5 b0 ← Compute the score of S from M using (9)
6 t← 0
7 repeat
8 T ← All possible valid* edge addition, removal and reversal

operations on S
9 S ← ∅

10 B ← ∅
11 for all operations u ∈ T do
12 S′ ← Apply operation u on S
13 b′ ← Compute the score of S′ from M using (9)
14 B ← B ∪ {b′}
15 S ← S ∪ {S′}
16 end for
17 t← t+ 1
18 bt ← maxb′∈B b′

19 S ← The structure in S with score bt
20 until bt is equal to bt−1 or termination criteria are met
21 if bt > g then
22 Sb ← S
23 g ← bt
24 end if
25 end while
26 Θ← Compute the parameters of the conditional probabilities of every

node in Sb from M � The triple (µi,wi, νi) for node i

Output: Best found MBN (Sb,Θ)

* A valid operation on an MBN structure is the one that respects both
the acyclicity condition and the edge restrictions imposed by the bridge
subgraph of MBN.

Fig. 4. The greedy MBN learning algorithm

tion of MGD for the joint vector of variables and objectives.
In this method, the ML estimation of the covariance matrix
is linearly combined with a simpler target matrix, which has
a smaller number of parameters and thus can be estimated
more accurately. More specifically, a diagonal matrix with
zeros in all off-diagonal entries is used as the target to enforce
shrinkage towards sparser matrices while leaving the diagonal
elements (variances) intact, preventing early loss of diversity:

Σ∗ = (1− λ)Σ̂ + λT . (10)

Here, T represents the target matrix and λ is the shrinkage
intensity (also called regularization parameter), which can be
computed analytically. In practice, the ML estimation of the
correlation matrix is used to compute the shrinkage inten-
sity for the specified diagonal target matrix in a data-driven
manner, minimizing a mean square error loss function. The
regularized estimation in (10) leads to a statistically more ef-
ficient covariance matrix that is well-conditioned and positive-
definite, which is necessary for computing the parameters of
MBN. For more details on applying regularization techniques
to the model learning of continuous EDAs, see [77].

2) Generating New Solutions: New candidate solutions to
the MOP can be sampled from the probability distribution
encoded in the MBN. Probabilistic logic sampling [78], also
known as forward sampling, is the method frequently used
for sampling Bayesian networks. This method first obtains
an ancestral or topological ordering of the network nodes.
In this ordering, each node appears after its parent nodes
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Inputs:
An MBN (S,Θ)
Number of new solutions to generate N
Problem variables X and their domain D

1 π ← Topological ordering of the nodes in S
2 A← ∅
3 for k ← 1 . . . N do
4 y ← 0
5 µ← 0
6 i← 1
7 repeat
8 B ← Parents of node πi in S � Pa(πi)
9 w ← Parents weight vector of node πi in Θ

10 µi ← Mean value of node πi in Θ
11 m← µi +wT (yB − µB)
12 ν ← Standard deviation of node πi in Θ
13 yi ← Sample a random value from N (m, ν2)
14 i← i+ 1
15 until all of the nodes in π are sampled
16 yk ← yX � Remove the sampled objective values
17 yk ← Fix the values in yk which are out of the domain D
18 A← A ∪ {yk}
19 end for

Output: Set of sampled solutions A

Fig. 5. The sampling algorithm used in MBN-EDA for continuous domains.

according to the Bayesian network structure. Consequently, all
objective nodes appear before variable nodes in the topological
ordering obtained for an MBN, due to the restrictions imposed
by the bridge subgraph in model learning. New solutions are
generated by sampling the conditional probability distributions
estimated for each node in the MBN according to the com-
puted ancestral ordering. Since all parents of node i appear
before node i in the ordering, all of its parent nodes will be
already sampled at the time of sampling node i and therefore
the parameters of the conditional distribution of this node can
be computed.

Thanks to the joint modeling of objectives and variables
in the MBN that has encoded the dependencies between the
variables and objectives, any information about good objective
values can be inserted and propagated in the network in the
sampling process, increasing the probability of generating
variable values that will result in similar objective values.
Moreover, the restrictions imposed by the direction of the arcs
in the MBN bridge subgraph decrease the number of generated
solutions that are inconsistent with the inserted evidence [79].

The approach adopted in this paper treats the objective
nodes as normal nodes, and new dummy values (since they
are not computed from the objective functions) are generated
for these nodes using the probabilities encoded in the MBN.
In this way the interactions that are captured during model
learning between objectives are also taken into account in
the sampling process. When a variable node that has some
objective nodes as its parents is being sampled, these dummy
objective values are used to compute the parameters of the
conditional distribution. The values generated for the objec-
tives are an approximation of the characteristics encoded in
the model for the objective values of the selected solutions.
Therefore, this method can increase the conformity of the
sampled solutions with the learnt MBN. Fig. 5 shows the
details of the sampling method adopted in MBN-EDA.

3) Example: Consider the MBN structure shown in Fig.1.
Such an MBN can be learnt in MBN-EDA for an MOP
with five variables and four objectives. For each node of
this probabilistic model, the learning algorithm estimates the
mean and variance of the conditional probability densities in
Equation (2). In addition to these two parameters, a regression
coefficient is also estimated for each of the parents of every
node (last line of Fig. 4). For example, five parameters are
stored in the node corresponding to variable X2: its mean and
variance, and the coefficients corresponding to variable X1

and objectives Q1 and Q2.
At the time of sampling, first an ancestral ordering

of the nodes is computed, which for example can be:
(Q1, Q3, Q4, Q2, X1, X2, X4, X5, X3). To generate a new ex-
tended solution, the variable or objective corresponding to each
node is sampled in turn according to this ordering. When it
is the turn to generate a value for variable X2, the values of
variable X1 and objectives Q1 and Q2 are already generated,
and thus a new value for variable X2 can be obtained by
sampling the Gaussian distribution when replacing the sampled
values of the parent nodes in Equation (2) (lines 11–13 of
Fig. 5). This procedure is repeated as many times as new
offspring solutions are needed.

4) Discussion: By estimating a probability distribution
from a set of selected solutions, EDAs try to model the regions
of the search space that are represented by these solutions. In
doing so, these algorithms assume that the selected solutions
represent promising regions of the search space, and that
further exploration and exploitation of these regions (which
in EDAs are interchanged automatically based on the distri-
bution of the solutions) will guide the search toward optimal
solutions. Using probabilistic models will allow EDAs to both
discover and take advantage of the useful regularities in the
set of selected solutions for better optimization.

In a typical EDA, all of the solutions used for estimating
the probabilistic model are equally weighted and are treated in
the same way. In other words, the quality of solutions are not
taken into consideration in the probabilistic modeling of the
search space. Instead, it is the density of the selected solutions
in the search space that drives model estimation and therefore
the algorithm will be completely blind to the quality of the
new candidate solutions sampled from the estimated model.

When the quality information of the solutions is inte-
grated into model estimation, it adds another extent to the
probabilistic model concerning the regions of the objective
space that correspond to the objective values of the selected
solutions. Since the solutions are often selected for model
learning according to their objective values, the estimated
model encodes the best found regions of the objective space.
Hence, the new candidate solutions sampled from the joint
probabilistic model are more likely to fall in these regions of
the objective space, essentially helping the algorithm to find
better candidate solutions in each generation. Moreover, iso-
lated solutions with good objective values have a better chance
of reproduction when estimating a joint probabilistic model.
This is because such a model can encode the relationships
between the promising regions in the objective and search
spaces, and thus sampling different regions of the search
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space will be influenced (i.e. controlled) by their approximated
qualities.

The employment of similar approaches in a few single-
objective EDAs like EBCOA [27], [28] and DEUM [80] is
already shown to help achieving better optimization results.
However, with the existence of more than one objective in
multi-objective optimization, the joint probabilistic model esti-
mation should account for several, possibly conflicting quality
values of the solutions. Using an expressive probabilistic
model like MBN allows to capture the relationships between
different objectives at a manageable complexity when model-
ing promising regions of the objective space. Therefore MBN-
EDA can adaptively combine the distinct quality information
available and use them for a more effective generation of
new candidate solutions at the time of sampling the esti-
mated probabilistic model. Furthermore, regularized model
estimation employed in MBN-EDA helps to discard irrelevant
information about the role of, and the relationships among,
variables and objectives.

IV. EXPERIMENTS

To study the performance of MBN-EDA in multi-objective
optimization and to see how the proposed scheme for solution
reproduction works, this algorithm is tested on two sets of
MOPs, namely the WFG problems and the CEC09 benchmark.
The following sections give more details of these MOPs, al-
gorithm implementations, experimental design and the results
of applying the algorithms on these MOPs with discussion of
the results

A. WFG Problems

In [81], Huband et al. reviewed many of the available MOP
benchmarks in the literature, based on which they proposed a
set of MOPs called the walking fish group (WFG) problems.
These problems encompass a diverse set of properties that can
be found in real-world MOPs and, therefore, raise substantial
obstacles for any multi-objective optimization algorithm. Each
of the objective functions fj of an MOP in this benchmark
takes the following form

min
z

fj(z) = D · zm + Sj · hj(z1, . . . , zm−1), (11)

where D and Sj are scaling factors and the functions hj(·)
together determine the shape of the Pareto optimal front (e.g.,
concave, convex, etc.) for that MOP. z is an m-dimensional
vector obtained by applying a number of transformation func-
tions, like shifting, biasing or reduction, to the n-dimensional
input solution x ∈ D and is composed of two parts: the first
m− 1 parameters, z1, . . . , zm−1, are obtained from the first k
variables of the input solution, and the last parameter (zm)
is obtained from the last l variables of the input solution,
where n = k+ l. To simplify the application of transformation
functions in the input solution, k is assumed to be a multiple
of m− 1 and l should be an even number.

The number of both objectives and variables can be scaled
in this benchmark, which consists of nine MOPs. All WFG
problems, except the first three, have a concave Pareto optimal
front. WFG1 has a mixed convex-concave optimal front,

WFG2 has a disconnected convex front, and WFG3 has a
degenerated one-dimensional linear front. For most of these
MOPs, the optimal solution of objectives is shifted away
from zero to neutralize any bias of the optimization algorithm
towards smaller values of the variables. Moreover, in many
of the WFG problems, the objective functions are inseparable,
requiring the optimization algorithm to consider the relation-
ships between variables.

The number of objectives considered in the experiments
with these WFG problems are 3, 5, 7, 10, 15 and 20, whereas
the number of variables is set to 16 (with some exceptions).
In this way, we will be able to investigate the performance
of the algorithms against an increasing number of objectives
with an unchanged solution space size.

1) Implementation Details and Experimental Design:
MBN-EDA is implemented with the help of Matlab toolbox
for EDAs (Mateda-2.0) [82], and the implementation of the
MBN learning algorithm is adapted from the code provided
for GBN learning [83]. Before learning the MBN, training data
(extended solutions) are first standardized to have a mean of
zero and a standard deviation of one, in order to simplify the
learning process by reducing the number of parameters in each
node.

To get a better assessment of the optimization performance
of MBN-EDA, the results are compared against two other
algorithms: a multi-objective evolutionary algorithm (MOEA)
and a multi-objective EDA. The MOEA uses simulated binary
crossover [84] and polynomial mutation [85] in continuous
domains as its genetic operators to generate new solutions, and
is used as a standard reference algorithm in many evolution-
ary multi-objective optimization studies [5], [86]. The multi-
objective EDA, namely the regularity-model based multi-
objective EDA (RM-MEDA) [13] has been demonstrated to
outperform many MOEAs on several benchmark functions.
RM-MEDA assumes a certain type of smoothness for the
optimal Pareto set and iteratively applies local principal com-
ponent analysis to build a piece-wise continuous manifold of
dimension m−1 (m is the number of objectives). This is then
used with Gaussian noise to generate new solutions.

The four ranking methods mentioned in Section III-C
(Equations (4)–(6) and (8)) are implemented within an indi-
vidual selector engine which is plugged into each of these
algorithms. Since in a black-box optimization scenario, none
of the objectives takes precedence over others, equal weights
are used for all of the objectives in the weighted sum ranking
method (GWS). To allow combining the values of different
objectives with possibly different ranges, all objective values
are normalized before applying a ranking method. In the
replacement step of MBN-EDA and MOEA, first an aggre-
gation of both population and offspring solutions is formed
and then they are ranked with the same ranking method used
for selection to select the best N solutions, where N is the
population size. The replacement step of RM-MEDA, on the
other hand, does not need any raking of the solutions as the
newly generated offspring solutions completely replace the
whole population.

Each algorithm is applied with each ranking method sep-
arately to each WFG problem with different numbers of
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objectives. Therefore, there will be 3 × 4 × 9 × 6 possible
combinations in the experiments. The additive epsilon indi-
cator [86], [87] is used to measure the quality of the results
obtained by each of the algorithms because of its tractable
computational complexity for many-objective problems. This
indicator is based on the notion of epsilon efficiency [88], and
the corresponding relation of epsilon dominance that is defined
as

∀x,y ∈ D,
x �ε+ y ⇐⇒ ∀fi ∈ F fi(x) ≤ ε+ fi(y). (12)

The additive epsilon indicator between two approximations A
and B of the Pareto set is defined as the smallest epsilon value
that allows all the solutions in B to be ‘ε+’-dominated by at
least one solution in A:

Iε+(A,B) = max
ε∈R+
{A �ε+ B}, (13)

where

A �ε+ B ⇐⇒ ∀y ∈ B, ∃x ∈ A | x �ε+ y.

According to this definition, the additive epsilon indicator
for an approximation A of the Pareto set is obtained using a
reference set R

Iε+(A) = Iε+(A,R). (14)

This definition implies that smaller values of the epsilon
indicator are better. A good choice for the reference set R
is an approximation of the Pareto optimal set. However, the
size of a good approximation of the Pareto optimal set should
increase exponentially with the number of objectives in the
MOP to offer a good coverage of the Pareto optimal front.
Therefore, this choice of reference set is impractical for many-
objective problems. The reference set considered in this paper
is composed of the endpoint solutions, obtained by setting one
of the objectives to its minimum value and the others to their
maximum value, plus the solution representing an approximate
compromise between the values of all objectives (e.g., the
mean value in the objectives range). The size of this reference
set grows only linearly with the number of objectives, and the
inclusion of endpoints favors those Pareto set approximations
that result in a more scattered Pareto front.

2) Results: Fig. 6–8 show the epsilon indicator value
obtained for the Pareto set approximations of each of the
algorithms, averaged over 20 independent runs. All of the
algorithms stop after reaching a maximum number of gen-
erations, which is set to 300. The population size is equal for
all algorithms and is gradually incremented as the number of
objectives increases according to TABLE II. In each genera-
tion, 50% of the solutions in the population are selected for
reproduction (i.e., τ = 0.5).

Table III shows the statistical analysis of the results for
the algorithms with different ranking methods on each of
the MOPs with different numbers of objectives. The non-
parametric Friedman test [89] is used to check for the statis-
tical differences of the algorithm performance. When the null
hypothesis that all the algorithms have an equal average rank

TABLE II
THE POPULATION SIZE USED FOR DIFFERENT NUMBER OF OBJECTIVES

AND VARIABLES.

No. Objectives 3 5 7 10 15 20

No. Variables 16 16 16 15 16 21

Population Size 50 100 150 200 250 300

is rejected for a specific problem configuration with a p-value
less than 0.05, the entry related to the algorithm with the best
Friedman rank is shown in bold. The numbers in parentheses
show the results of pairwise comparisons using Bergmann-
Hommel’s post-hoc test with a significance level of α = 0.05.
The first number shows how many algorithms are significantly
worse than the algorithm listed in this column, and the second
number shows how many algorithms are significantly better.

The objectives in WFG1 are unimodal and biased for
specific regions of their input. For this problem, MBN-EDA
is able to obtain significantly better Pareto set approxima-
tions than the other two algorithms. The performance of the
algorithm is very similar when using the different ranking
methods tested in these experiments (Fig. 6, left column).
Even though there are more interdependencies between the
variables in WFG2, MBN-EDA is able to obtain significantly
better results for this problem, evidencing the advantage of its
probabilistic model for guiding the solution space search. The
difference in the optimal front of the MOP problems does
not significantly affect MBN-EDA’s optimization ability as
observed for WFG3, which is very similar to WFG2 except for
the shape of the Pareto optimal front. Moreover, approximating
the degenerated front in this problem requires good search
process exploitation, which, according to the results for this
problem, MBN-EDA is better able to do than the other two
algorithms.

For WFG4 (Fig. 7, left column), where all of the objectives
are multi-modal, the optimization results obtained by MBN-
EDA with different ranking methods are significantly better
in most of objective space dimensions. For some of the
ranking methods, MOEA and MBN-EDA performances are
comparable as the number of objectives increase, suggesting
the usefulness of genetic operators if there are a large number
of optima in a problem. When objective multi-modality is
combined with deception, as in WFG5, MBN-EDA perfor-
mance significantly deteriorates. In fact this algorithm has the
worsted optimization performance compared with the other
two algorithms for this problem, where it obtains significantly
worse Pareto set approximations with all the tested ranking
methods, and specially for larger objective space dimensions.
A possible explanation for this behavior is that the relation-
ships between deceptive objectives do not provide sufficient
information to help the algorithm generate good trade-off
solutions in the search space.

The interdependencies between variables in WFG6 are more
complex than in the WFG2 and WFG3 problems. Therefore,
we find that the choice of the ranking method used in so-
lution selection, which provides the training data for model
estimation, will play a major role. In this MOP, the results
obtained by MBN-EDA with the GPG and GGD ranking



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

3 5 7 10 15 20
0.5

1

1.5

2

2.5

3
WFG1 − Weighted Sum ordering

E
ps

ilo
n 

In
di

ca
to

r

# of objectives

 

 

MBN−EDA
MOEA
RM−MEDA

3 5 7 10 15 20
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

WFG2 − Weighted Sum ordering

E
ps

ilo
n 

In
di

ca
to

r

# of objectives
3 5 7 10 15 20

10
−20

10
−15

10
−10

10
−5

10
0

10
5

WFG3 − Weighted Sum ordering

E
ps

ilo
n 

In
di

ca
to

r

# of objectives

3 5 7 10 15 20
0.95

1

1.05

1.1

1.15

1.2

1.25
WFG1 − Profit of Gain ordering

E
ps

ilo
n 

In
di

ca
to

r

# of objectives
3 5 7 10 15 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
WFG2 − Profit of Gain ordering

E
ps

ilo
n 

In
di

ca
to

r

# of objectives
3 5 7 10 15 20

10
−0.6

10
−0.5

10
−0.4

10
−0.3

10
−0.2

WFG3 − Profit of Gain ordering

E
ps

ilo
n 

In
di

ca
to

r

# of objectives

3 5 7 10 15 20
0.8

1

1.2

1.4

1.6

1.8

2

2.2
WFG1 − Global Detriment ordering

E
ps

ilo
n 

In
di

ca
to

r

# of objectives
3 5 7 10 15 20

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

WFG2 − Global Detriment ordering

E
ps

ilo
n 

In
di

ca
to

r

# of objectives
3 5 7 10 15 20

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

WFG3 − Global Detriment ordering

E
ps

ilo
n 

In
di

ca
to

r

# of objectives

3 5 7 10 15 20
0.5

1

1.5

2

2.5

3
WFG1 − Distance to Best ordering

E
ps

ilo
n 

In
di

ca
to

r

# of objectives
3 5 7 10 15 20

10
−20

10
−15

10
−10

10
−5

10
0

10
5

WFG2 − Distance to Best ordering

E
ps

ilo
n 

In
di

ca
to

r

# of objectives
3 5 7 10 15 20

10
−15

10
−10

10
−5

10
0

10
5

WFG3 − Distance to Best ordering

E
ps

ilo
n 

In
di

ca
to

r

# of objectives

Fig. 6. The average epsilon indicator values for WFG1 (left column), WFG2 (middle column) and WFG3 (right column) problems.

methods are significantly better than for the other algorithms,
whereas the results are comparable or significantly worse with
the other two ranking methods when the number of objectives
is increased. This also shows that the gain function defined in
(7) can be a good measure of solutions superiority in this type
of MOP.

In WFG7 and WFG8, the optimum value of each variable
is biased based on the values of other variables. All of the
algorithms find it very difficult to deal with this property
of the problem. Again, we see (Fig. 8, left and middle
columns) that the choice of ranking method has a significant
influence on algorithm performance. With some of the ranking

methods (e.g., GPG and GGD), MBN-EDA is able to obtain
significantly better approximations of the Pareto optimal set
for these two problems according to the quality indicator
values. The last problem (WFG9) combines many of the
properties found in the previous WFG problems. Specifically,
apart from variable optimal values being biased, many of the
objectives are deceptive as in WFG5. As described previously
for WFG5, this prevents MBN-EDA from being able to per-
form considerably better than the other two algorithms, despite
the additional information it collects from data. Nevertheless,
the performance of MBN-EDA for this problem is comparable
to the other two algorithms, and, with some ranking methods
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Fig. 7. The average epsilon indicator values for WFG4 (left column), WFG5 (middle column) and WFG6 (right column) problems.

(GWS and GDB), is significantly better.
In general, the results suggest that there are several factors

affecting the optimization performance of the tested algorithms
on the selected set of MOP problems. According to the
selected quality indicator, MBN-EDA is able to obtain better
approximations of the Pareto set than the other two algorithms
for many of the tested MOPs featuring different properties
and on different objective space dimensions. MBN-EDA finds
some specific MOP properties, like deception in the variable
values, difficult to deal with.

For some of the tested MOPs, the choice of the ranking
method plays a crucial role in algorithm performance and

some algorithms tend to be more compatible with specific
ranking methods. For example, MBN-EDA performed better
than the other algorithms for most MOPs using G<PG> as
the ranking method. Since the solution selection mechanism
is similar in all algorithms (as they use similar ranking
methods), a significant difference in the performance between
one algorithm and the others can be attributed to its solution
reproduction mechanism. Therefore, the better optimization
results for MBN-EDA may be related to model estimation
and sampling being better, as they concern both objectives
and variables. Moreover, although the choice of probabilistic
model in an EDA is important, it should be noted that the
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Fig. 8. The average epsilon indicator values for WFG7 (left column), WFG8 (middle column) and WFG9 (right column) problems.

difference between MBN-EDA and RM-MEDA performance
is not only due to the difference in their probabilistic models.
We have previously shown [24] that the incorporation of
objectives into the same probabilistic model can result in
significantly better performance.

In some of the problem instances (e.g., WFG6 with GPG),
with the increase in the objective space dimension, the al-
gorithms seem to obtain better Pareto set approximations
that result in lower quality indicator values (meaning better
approximations). Note, however, that like the algorithms,
the computation of quality indicator values is also affected
by the increase in the objective space dimension. In larger

objective spaces, the Pareto set approximations obtained by
the algorithms will become sparser, as they are using small
populations. Also since a small reference set is used to evaluate
the algorithms, the differences in the performance of an
algorithm in different objective space dimensions will not be
clear. However, since an equal reference set is used for each
specific objective space dimension, the indicator values can
be used to compare the performance of different algorithms in
that dimension.



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14

TABLE III
THE RESULTS OF STATISTICAL DIFFERENCE TESTS FOR DIFFERENT WFG PROBLEMS WITH DIFFERENT NUMBER OF OBJECTIVES AND FOUR DIFFERENT

RANKING METHODS. THE BOLD ENTRIES SHOW THE ALGORITHM OBTAINING THE BEST RANKING ACCORDING TO THE STATISTICAL TEST. THE
NUMBERS IN THE PARENTHESES SHOWS THE NUMBER OF ALGORITHMS THAT ARE SIGNIFICANTLY WORSE AND BETTER THAN EACH ALGORITHM,

RESPECTIVELY, CONSIDERING A 0.05 SIGNIFICANCE LEVEL (REFER TO THE TEXT FOR MORE DISCUSSION OF THE STATISTICAL TEST).
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TABLE IV
CHARACTERISTICS OF THE UNCONSTRAINED MOPS USED IN CEC09

BENCHMARK.

Name No. Objectives No. Variables F ∗ Size

UF1 2 30 1000
UF2 2 30 1000
UF3 2 30 1000
UF4 2 30 1000
UF5 2 30 21
UF6 2 30 1000
UF7 2 30 1000
UF8 3 30 10000
UF9 3 30 10000
UF10 3 30 10000
DTLZ2 5 30 5000
DTLZ3 5 30 5000
WFG1 5 30 5000

B. CEC09 Unconstrained Problems

In this section we compare the performance of the proposed
algorithm on the 13 unconstrained problems of the CEC09
benchmark [90] with two other state-of-the-art MOEAs. The
first 7 problems of this benchmark are bi-objective, the next
three are three-objective and the last three contain five objec-
tives. Two of the five-objective problems are modified versions
of DTLZ2 and DTLZ3 problems [15], and the other five-
objective problem is the previously studied WFG1. In CEC09
benchmark, solutions of size n = 30 are considered for all of
these problems (TABLE IV).

1) Implementation Details and Experimental Design:
The MOEAs used for comparison in this section are the
decomposition-based MOEA (MOEA/D) [64] and a hyper-
volume indicator-based MOEA [59] which we call MOEA-
HypE in this paper. In MOEA/D the MOP at hand is
decomposed into several single-objective problems using a
number of weight vectors and a decomposition method. Here,
the Tchebycheff method is used for MOP decomposition in
MOEA/D. The choice of weight vectors which should be
given in advance to the algorithm is very important and can
influence its performance. For two- and three-objective MOPs,
we have used the weight vector generation method proposed
in the original paper by setting the number of different weight
levels to respectively H = 99 and H = 19, resulting in
population sizes of N = 100 and N = 210, respectively.
For five-objective MOPs, the method proposed in [91] is used
to generate a well distributed set of weight vectors with a
population size of N = 300 and a random pool of 15000
weight vectors. The rest of algorithm parameters are set to
their default values according to the original paper.

The MOEA-HypE algorithm uses a sample of points in the
objective space to obtain an estimation of the hypervolume
in the objective space dominated by each solution. These
estimated hypervolume values are then used to rank the
solutions and select a subset as parents with a tournament
selection strategy (with a tournament size of 5) for offspring
generation. In the replacement step, population and offspring
solutions are aggregated and sorted into a number of non-

dominated sets, using the non-dominated sorting algorithm
[57]. However, instead of computing the crowding distances
of solutions within each non-dominated set, the estimated
hypervolume values of the solutions are used to select the elite
solutions for forming the population of the next generation.
In this study we have used a sample of 10000 points for
hypervolume estimation as it is suggested in the original paper.
The rest of algorithm parameters are set to their default values.

Both of the MOEAs considered here use the same genetic
operators as the ones used by MOEA in Section IV-A1
(simulated binary crossover and polynomial mutation) for
generating new solutions. However, MOEA-HypE generates
N/2 new offspring solutions in each generation, whereas
MOEA/D generates N new offspring solutions by evolving
all of the solutions in the population. This means that dur-
ing optimization, MOEA/D processes twice the number of
solutions that is searched by MOEA-HypE. Therefore, to
have a fair comparison between the algorithms we impose
a similar maximum number of fitness evaluations for both of
the algorithms by setting the population size of MOEA-HypE
to twice the size of population in MOEA/D.

MBN-EDA is tested with three different ranking methods
in these experiments. From the ranking methods introduced
in Section III-C, we have selected GDB and GGD. In order
to extend the diversity of solutions when using GDB , a
tournament selection strategy similar to that used by MOEA-
HypE is adopted for this ranking method. In addition to these
two ranking methods, MBN-EDA is also tested when using
HypE method for ranking and selecting the solutions to be
able to compare joint modeling in MBN-EDA with genetic
operators in MOEAs. Other parameters of MBN-EDA, like
population size, are set equal to those of MOEA-HypE.

The quality indicator suggested in CEC09 benchmark for
comparing the results is the inverted generational distance
(IGD) [92]. This indicator accounts for the diversity of the
approximated Pareto front as well as its convergence to the
optimal Pareto front. Given a sample of points F ∗, well-
covering the optimal Pareto front of an MOP, the IGD value
for an approximated Pareto front F is computed as:

IGDF∗(F ) =

∑
s∈F∗ min{d(s, s′),∀s′ ∈ F}

|F ∗|
(15)

where d(·, ·) gives the Euclidean distance between two points.
A smaller value for this indicator means a better approxima-
tion. The size of the sample set provided in CEC09 benchmark
for the optimal Pareto front of each of the MOPs is shown in
TABLE IV.

In addition to this quality indicator, we have also evaluated
the approximated fronts with epsilon and hypervolume indi-
cators. The sample of the optimal Pareto front, F ∗, is used as
the reference set when computing the epsilon indicator. The
hypervolume of each approximated Pareto front is computed
with respect to a point in the objective space which should be
worse than all of the points in the approximated fronts, usually
referred to as the nadir point. This point is equally set for all
of the algorithms to 10000 in all of the objective dimensions
and for all of the problems. A higher value for this indicator
implies a better approximation.
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2) Results: Fig. 9–12 show the results of these indicators
for the fronts approximated by each of the algorithms on
each of the problems, in 20 independent runs. The maximum
number of generations is equally set for all of the algorithms
to 300.

The results show that the algorithms have different behav-
iors on each of the tested MOPs. In general it seems that
the problems in CEC09 benchmark are better optimized when
using the decomposition method in MOEA/D for guiding
the search. With this method, each of the subproblems will
guide the search into a different subspace of the objective
space, depending on the weight vector which is used for
decomposition. Therefore the algorithm is able to search
different regions of the objective space even until the final
stages of the evolution.

However, for some of the MOPs in this benchmark, like
UF1, UF3, UF6 and UF7, where the optimal Pareto set and
its corresponding optimal Pareto front have almost similar
geometry, the other dominance-based algorithms are able to
obtain better approximations of the Pareto optimal front. Es-
pecially on problems UF1 and UF7, MOEA/D is outperformed
by the HypE method for solution ranking, whether using
genetic operators or joint model estimation for generating
new solutions. An explanation for this behavior is that using
decomposition on some of the MOPs causes the algorithm
to miss certain information about the promising areas of the
search space, thus reducing the effectiveness of this method.

It can be observed that the overall performance of MBN-
EDA with HypE selection method is superior to the perfor-
mance observed with the other two ranking methods, accord-
ing to the values of quality indicators. This suggests that the
hypervolume indicator estimation provides a better solution
ranking than GDB and GGD methods. A closer look at the
quality of the approximated fronts along different generations
of the evolution has also revealed that HypE is less affected
by the specific geometry of the search space. Again, there are
some problem instances like UF5, UF6 and UF10 for which
GDB provides a better solution ranking than HypE, resulting
in better approximate fronts according to the indicator values.

The comparison between MOEA-HypE and MBN-EDA-
HypE indicates that for some of the tested MOPs like UF1,
UF8, DTLZ2 and WFG1, which cover MOPs with different
number of objectives, the non-dominated fronts obtained by
MBN-EDA-HypE are better according to the indicator values.
Since both of these algorithms are using similar selection
methods, this improvement in the results can be directly
attributed to the better solution search in MBN-EDA with
joint modeling. Our investigation of the populations evolved
in MOEA-HypE and MBN-EDA-HypE suggests that joint
modeling in MBN-EDA allows the algorithm to rapidly
improve its approximated front in early generations of the
search, whereas with the genetic operators in MOEA-HypE
usually the improvement of the approximated front is slower.
However, the diversity of the population in MBN-EDA may
not be preserved very well during evolution and the algorithm
can enter a stagnation state. On the other hand, the with
genetic operators in MOEA-HypE more diverse populations
are generated during search and except for some of the MOPs,

the algorithm can constantly improve its approximated front.
A point that should be noted here is that when using

HypE selection method, the algorithms are directly optimizing
the hypervolume indicator. Thus, using the same indicator to
evaluate their achieved results may not properly reflect their
performances, especially because the hypervolume indicator
may overrate certain regions of the approximated fronts [33].
For the algorithms with HypE selection method, the results
provided by IGD and epsilon indicators are a better reference
of their performance.

V. MOP STRUCTURE ESTIMATION

A major concern of this study is to analyze the MOP
structures estimated by MBN-EDA in the course of evolution.
These structures are important not only because they can
improve optimization by providing information about different
types of (in)dependencies existing in the problem (as shown in
Section IV-A2), but also because they can give decision makers
more control over the selection of the desired information
from the Pareto set approximations [93] and better insight into
the way different variables influence the objectives or how
objectives interact [94]. MBN-EDA’s ability to retrieve the
MOP structure is tested in different case studies by examining
the structures learnt for the WFG1 problem with five objectives
and 16 variables, which has an already known MOP structure.
To include the factor of different training data for estimating
the MOP structure in the analysis, two of the previously
introduced ranking methods in Section III-C, i.e., GPG and
GDB , are used with MBN-EDA in the study.

In the first case study, nine irrelevant variables are added
to the problem and uniformly distributed among other vari-
ables. These variables do not affect the outcome of objective
functions in the MOP. Fig. 13 shows the absolute weight of
the links encoded in the MBN’s bridge substructure between
objectives and variables along the evolution path of MBN-
EDA. The weights are averaged over 20 independent runs. We
found that MBN-EDA is able to clearly distinguish between
relevant and irrelevant variables in the studied MOP. The low
weight of the links between objectives and irrelevant variables
in the estimated MBNs is because either the objectives and
these variables have been encoded as conditionally indepen-
dent of the other variables and objectives or any existing
link has been assigned a very small weight, allowing the
algorithm to bypass the noise introduced by these variables
to the problem. Although the models are learnt from different
initial populations in different runs, the structural information
encoded between objectives and variables is very similar. It is
also shown that the populations selected according to the GPG
ranking method help to better distinguish between relevant and
irrelevant variables especially in the final generations where
the algorithm focuses on specific regions of the search space.

The second case study analyzes the structures learnt for
an eight-objective WFG1 problem with three pairs of similar
objectives. Fig. 14 compares the absolute weight of the arcs
between similar objectives and between dissimilar objective
pairs, encoded in the class substructure of MBN in different
generations of MBN-EDA. The results are averaged over 20
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Fig. 9. The IGD, epsilon and hypervolume indicators values for UF1–UF4 problems in CEC09 benchmark.
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Fig. 10. The IGD, epsilon and hypervolume indicators values for UF5–UF8 problems in CEC09 benchmark.
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Fig. 11. The IGD, epsilon and hypervolume indicators values for UF9, UF10, DTLZ2 and DTLZ3 problems in CEC09 benchmark.
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Fig. 12. The IGD, epsilon and hypervolume indicators values for WFG1 problem in CEC09 benchmark.
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Fig. 13. The average weight of the links from objectives to variables in 5-objective WFG1 problem with irrelevant variables.
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Fig. 14. The average weight of the links between objectives in 8-objective WFG1 problem with three pairs of similar objectives.

independent runs. The relatively high weights between similar
objectives show that MBN-EDA is correctly encoding a strong
dependency between these objectives compared with other de-
pendencies in the class subgraph. Note that a closer inspection
of the models learnt in different runs with different initial
populations has revealed that such a dependency between
similar objectives is encoded in the model in all runs, i.e.,
100% of the time. We also find that the information about
objectives similarity in the MBN class subgraph is better
captured from the populations selected according to the GDB
ranking method.

Based on the observations from the above two case studies,
the third case study directly inspects the structures learnt
by MBN-EDA for the WFG1 problem. In the five-objective
WFG1 problem considered in the case studies reported in
this section, the first k = 4 variables determine the position
of a given solution in the objective space using different
shape functions hj . This is then linearly combined with a
distance parameter, obtained from the last l = 12 variables.
A simplified definition of the five objective functions in this
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Fig. 15. Part of the structure learnt for the 5-objective WFG1 problem showing the most significant arcs and their corresponding nodes.

problem can be given as follows [81]:

f1(x) = a+ 2 · h1
(
g2(x1), g2(x2), g2(x3), g2(x4)

)
f2(x) = a+ 4 · h2

(
g2(x1), g2(x2), g2(x3), g2(x4)

)
f3(x) = a+ 6 · h3

(
g2(x1), g2(x2), g2(x3)

)
(16)

f4(x) = a+ 8 · h4
(
g2(x1), g2(x2)

)
f5(x) = a+ 10 · h5

(
g2(x1)

)
,

where a = g1(x5, . . . , x16), and functions g1(·) and g2(·) rep-
resent a composition of transformations on the input variables.

Fig. 15 shows part of the structure learnt for this problem,
consisting of significant arcs and their corresponding nodes
that have an average absolute weight value greater than a
threshold set to w ≥ 0.1 (constituting about 7% of the
most significant arcs). While there are many links capturing
the obscure (in)dependencies between variables (not depicted
here), it is evident that MBN-EDA places more importance
on the links between objectives in the class subgraph, and
between the objectives and the first four variables in the
bridge subgraph. Moreover, these dependencies conform to
the function definitions given in (16). For example, the link
between objective nodes Q2 and Q4, which is captured using
both of the tested ranking methods, is supported by the fact
that h2 is a multiplication of h4 and two other factors obtained
from variable nodes X3 and X4. Another example is the
relationship between objective node Q1 and the four variable
nodes, either directly or through the relationship with other
objectives, since all four variables influence the value of the
first objective.

An important point to note here is the significance of the
information provided by the dependencies between objectives
and between objectives and variables in multi-objective op-
timization from MBN-EDA’s point of view. There are some
studies in the literature that analyze how the dependencies
between variables are represented in probabilistic models [95].
But, to the best of our knowledge, the importance of the
dependencies involving objectives have not been considered so
far in other EDAs used for multi-objective optimization. Such
dependencies allow the proposed MBN-EDA to approximate
how the variables can affect objective values, which is used
to generate new solutions with better objective values.

VI. CONCLUSIONS

The similarity between multi-dimensional classification and
multi-objective optimization motivates the use of MBNs in the
context of EDAs to solve MOPs. This paper proposes a new
modeling approach in multi-objective EDAs that uses MBN
estimation to learn a joint model of objectives and variables
while at the same time differentiating their role in the network.
This model can capture not only the relationships between
variables like other EDAs, but also the relationships between
variables and objectives, and between objectives. The proposed
MBN-EDA is able to deal with many-objective problems by
exploiting these new types of relationships encoded in the
MBN and implicitly obtaining a decomposition of the MOP,
which is used to generate new solutions.

MBN estimation is incorporated into continuous EDAs
using Gaussian Bayesian networks where each network node
encodes a conditional Gaussian distribution. To obtain a more
robust estimation of the model parameters, MBN-EDA em-
ploys regularization techniques, previously applied only to
single-objective EDAs. This helps the algorithm to obtain a
sparser structure, avoiding the effect of possible noise in the
data and simplifying many-objective optimization.

The algorithm is tested on two sets of benchmark prob-
lems and its results are compared with several state-of-the-art
algorithms. The exhaustive experiments of applying MBN-
EDA with different ranking methods to the WFG problems
with a different number of objectives, show that, according
to the epsilon quality indicator and compared with two other
algorithms, a standard MOEA and a competitive EDA, this
algorithm is able to obtain significantly better approximations
of the Pareto set for many of these MOPs, with a significance
level of α = 0.05. We found that the choice of ranking meth-
ods has a major influence on the performance of the algorithms
for some of the problems, as they determine the population
used for model estimation and offspring reproduction. The
results also show that the proposed MBN-EDA was unable to
satisfactorily deal with some MOP properties, like deception
in the values of the variables. The results of the second set of
experiments on the CEC09 unconstrained problems show that
on some of the MOPs in this benchmark, the joint modeling in
MBN-EDA allows to find considerably better fronts according



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

22

to three different quality indicators.

The proposed joint model learning approach suggests a way
of obtaining the MOP structure that can be used for decision
making. An analysis of the structures learnt by MBN-EDA
along the evolution path show that the proposed algorithm is
able to distinguish between relevant and irrelevant variables,
performing a type of variable selection for the objectives
encoded in the model. It can also capture stronger dependen-
cies between similar objectives. The analysis of the specific
structures learnt for the five-objective WFG1 problem shows
that MBN-EDA is able to obtain a very good approximation of
this MOP structure and that the information provided by the
dependencies between variables and objectives and between
objectives, which other EDAs completely overlook, can be
very important for multi-objective optimization.

In summary, the key difference between the algorithm
proposed in this paper and other MOEAs is in its ability to
incorporate objectives information for generating new candi-
date solutions. By learning a probabilistic model that consists
of both variables and objectives the algorithm will not only
gain the advantages of multi-objective EDAs over traditional
MOEAs, but it is also able to obtain an estimation of the MOP
structure discovering the relevant/irrelevant variables for each
objective, and the relationships between objectives. This type
of new information used in the algorithm is proven to be useful
in the optimization of some of the MOPs.

Another point of algorithm strength is its use of a multi-
variate probabilistic model, namely a type of Bayesian net-
work, which gives it an advantage over other multi-objective
EDAs that use simpler type of models. The algorithm also uses
a regularization method to improve estimation of probabilistic
model parameters. Similar to other Bayesian network-based
multi-objective EDAs, the use of such probabilistic model
comes at a cost. Estimating a Bayesian network from a dataset
is usually time-consuming and thus the running time of the al-
gorithm also increases greatly in comparison to other MOEAs.
Because of this complexity, the algorithm can be considered
for application on MOPs as a higher level algorithm, when
simpler algorithms fail to obtain good solutions, if more insight
to the MOP structure is required or if the decision maker is
not only interested in a set of solutions for the MOP.

There are many ways to extend this work. This new mod-
eling method provides a promising platform for the experts or
decision makers to incorporate preference information [96],
[97] into the model as conditional (in)dependency relations
between objectives and variables, as well as preferable val-
ues for some objectives. The dependencies learnt between
objectives in the MOP structure can be used to analyze
relationships like conflict or redundancy between sets of
objectives. Another interesting study is to integrate problem
decomposition methods and joint modeling in MBN-EDA
and compare its performance with the current decomposition-
based MOEAs. The application of MBN-EDA to real-world
problems with unknown structures and to check how the
captured relationships meet decision-maker expectations are
also potential future areas of research.
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and E. Lutton, Eds. Berlin: Springer, 2010, vol. 5975, pp. 146–157.

[67] M. Garza-Fabre, G. Toscano Pulido, and C. A. Coello Coello, “Two
novel approaches for many-objective optimization,” in IEEE Congress
on Evolutionary Computation (CEC’10) – IEEE World Congress on
Computational Intelligence (WCCI 2010), 2010, pp. 4480–4487.

[68] G. Cooper and E. Herskovits, “A Bayesian method for the induction of
probabilistic networks from data,” Machine Learning, vol. 9, no. 4, pp.
309–347, 1992.

[69] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning Bayesian
networks: The combination of knowledge and statistical data,” Machine
Learning, vol. 20, no. 3, pp. 197–243, 1995.

[70] W. Buntine, “A guide to the literature on learning probabilistic networks
from data,” IEEE Transactions on Knowledge and Data Engineering,
vol. 8, no. 2, pp. 195–210, 1996.

[71] M. Pelikan, Hierarchical Bayesian Optimization Algorithm: Toward a
New Generation of Evolutionary Algorithms, 1st ed., ser. Studies in
Fuzziness and Soft Computing. Springer, 2005, vol. 170.

[72] W. Buntine, “Theory refinement on Bayesian networks,” in 7th
Annual Conference on Uncertainty in Artificial Intelligence (UAI ’91),
B. D’Ambrosio and P. Smets, Eds. San Francisco, CA, USA: Morgan
Kaufmann, 1991, pp. 52–60.

[73] G. Schwarz, “Estimating the dimension of a model,” Annals of
Statistics, vol. 6, no. 2, pp. 461–464, 1978.

[74] R. Tibshirani, “Regression shrinkage and selection via the Lasso,”
Journal of the Royal Statistical Society, Series B (Methodological),
vol. 58, no. 1, pp. 267–288, 1996.

[75] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd ed., ser.
Springer Series in Statistics. New York: Springer, 2009.
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