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a b s t r a c t

The intention is to provide a Bayesian formulation of regularized local linear regression,
combined with techniques for optimal bandwidth selection. This approach arises from the
idea that only those covariates that are found to be relevant for the regression function
should be considered by the kernel function used to define the neighborhood of the
point of interest. However, the regression function itself depends on the kernel function.
A maximum posterior joint estimation of the regression parameters is given. Also, an
alternative algorithm based on sampling techniques is developed for finding both the
regression parameter distribution and the predictive distribution.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Consider p independent covariates {X1, . . . , Xp} and a response variable Y . Let X and y = (y1, . . . , yN)t be, respectively,
anN×p datamatrix and a continuous-valued vector, so that each row xi is i.i.d. related to a continuous response yi bymeans
of some unknown (nonlinear) functionm(·):

yi = m(xi)+ ei,

wherem(·) is assumed to be sparse and have continuous second-order derivatives and ei is the irreducible error term, with
E[ei|xi] = 0. Therefore, E[yi|xi] = m(xi). We denote the elements and the columns of X , respectively, as xij and X·j.

The objective is to estimate the response at a point of interest x = (x1, . . . , xp)t using a sparsity assumption: only a subset
of the covariates is indeed relevant for the estimation.We denote as X∗ the datamatrix X centered at x and augmentedwith
a first column of ones, so that x∗

i0 = 1 for all i = 1, . . . ,N . In our approach, the homoscedasticity assumption is not strictly
necessary, so we can generically define the variance of ei as Var[ei|xi] = s2(xi) = σ 2

i . However, as will be apparent below,
we make the homoscedasticity assumption σ 2

i = σ 2,∀i, for computational reasons.
Multivariate local regression (Cleveland and Devlin, 1988; Loader, 1999) estimates a multivariate regression function

valid for some neighborhood of x. This function is often linear, corresponding to a first-order Taylor approximation of m(·)
at x, and it can be defined on the original covariates or on some set of basis functions defined on the original covariates. We
consider for simplicity the first case, although the generalization is straightforward. Local regression is appealing from both
theoretical and practical sides. On the one hand, it is known to enjoy 100%minimax efficiency for some choice of bandwidth
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and kernel (Fan, 1993; Ruppert and Wand, 1994). On the other hand, it is computationally fast, easy to implement, flexible,
and robust to data design (Hastie and Loader, 1993).

The neighborhood is defined by a kernel function, which assigns weights w = (w1, . . . , wN)
t to the data points in the

data set on the grounds of their distance to x. The kernel function has a bandwidth parameter, which strongly influences the
estimation. High bandwidths increase the bias and decrease the variance of the estimate; low bandwidths do the opposite.
The simplest approach is to use a single-value bandwidth for all regressors, and themost general setting is to use a full-matrix
bandwidth, which provides flexible smoothing on all orientations.While the first usually leads to a severely biased estimate,
the second can imply the estimation of a large number of parameters. A convenient compromise is a bandwidth vector or
diagonal bandwidth, denoted as h = (h1, . . . , hp)

t , which permits adaptive smoothing at each coordinate direction. The
kernel function is defined as

w2
i = Kh(xi − x) =

p
j=1

1
hj
K


xij − xj

hj


=

p
j=1

1
hj
K


x∗

ij

hj


, i = 1, . . . ,N, (1)

where K(·) is a univariate, symmetric, and non-negative function with a compact support, such that

K(t)dt = 1. In this

paper, we use the well-known Gaussian kernel K(t) = (2/π)1/2 exp(−t2/2).
Then, the estimated local linear regression function g(·) is defined by a vector of local regression coefficients β̂(x) =

(β̂1(x), . . . , β̂p(x))t and an intercept term β̂0(x). For simplicity of notation, in the followingwe denote, unless it is necessary
to do otherwise, β̂0(x) as β̂0 and β̂(x) as β̂. Then, we have

ŷi = g(xi) = β̂0 + xti β̂.

Since the data is centered at x, we have ŷ = g(x) = β̂0. In the following, we denote (β̂0, β̂) as β̂
∗

. We can linearly estimate
β̂

∗

as

β̂
∗

=

X∗

t
WX∗

−1X∗
t
Wy,

where W = diag(w2). We can interpret β̂ as an estimate of the gradient (∂m(x)/∂X1, . . . , ∂m(x)/∂Xp)
t . For estimates of

second derivatives, we would need at least a second-order fit.
Therefore, the cornerstone of (linear) local regression is the estimation of a suitable bandwidth. We focus on the

multivariate case, where a direct estimation is not straightforward. This estimation implies unknown functionals which
themselves depend on the bandwidth. Typically, the bandwidth is set by direct (plugin) computation (Wand and Jones,
1994; Yang and Tschernig, 1999), selected by cross-validation (Sain et al., 1994; Hall et al., 2007), or found within some
type of suboptimal search (Lafferty andWasserman, 2008). It is known that a suitable plugin estimate of h can improve the
cross-validated estimate. In this paper, we work on the basis of a plugin diagonal bandwidth estimate, which, as mentioned
above, is a reasonable tradeoff between a scalar bandwidth and a full-matrix bandwidth.

We state that the kernel estimate in the local regression framework should account for the importance of each variable. In
other words, if a variable is absolutely irrelevant for the regression function, or noisy, it should not participate in theweights
calculation (Vidaurre et al., 2012). Since the best rate of convergence in non-parametric regression is N−4/(4+p) (Györfi et al.,
2002), to exploit the sparse nature ofm(·) is extremely convenient.

The approach taken by Lafferty andWasserman (2008), so-called regularization of derivative expectation operator, or rodeo,
also uses a diagonal bandwidth, and is of special interest to us because they consider sparsity inm(x). Specifically, they use
the estimated gradient of the regression function with respect to the bandwidth, ∂m(x)/∂h, to conduct a greedy search,
considering that a high value of ∂m(x)/∂hj is indicative of the relevance of variable Xj. In other words, this gradient tells
how the regression function varies with infinitesimal changes of the bandwidth. If it varies little, then the variable is con-
sidered to be irrelevant and will be assigned a relatively large bandwidth. Favoring computational speed and applicability
in high-dimensional settings, this approach does not generalize for arbitrary nonlinearities. This method assumes a known
value of σ 2. If σ 2 is unknown, it has to be separately estimated.

In this paper, we take a adaptive regularizedmultivariate local regression approach by defining appropriate distributions
over the parameters, combining it with an efficient bandwidth estimationmethod.We call it sparse bandwidth selector (sbase
for short). The method includes the estimation of σ 2 and considers sparsity by analyzing the estimated bandwidths at each
step. Several elements of the method are analogous to other approaches (which do not consider sparsity explicitly), as for
example the work by Yang and Tschernig (1999). We expect that a suitable application of adaptive ridge regularization will
further improve the bias–variance tradeoff of the estimation. We also propose an estimation of the regression coefficients
though sampling methods, so that we obtain an estimate of the posterior distribution of the response.

The rest of the paper is organized as follows. Section 2 introduces the Bayesian hierarchicalmodel. Section 3 describes the
bandwidth selection procedure. Section 4 details how to obtain amaximum a posteriori (MAP) estimate of the response and
the parameters. Section 5 introduces how to obtain a posterior distribution of the regression parameters and the response.
Section 6 discusses the complexity of the algorithms. Section 7 provides some empirical examples of the performance of the
proposed methods. Finally, we draw some conclusions in Section 8.
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2. Hierarchical model

We first define the distribution of the response,

y|β∗, σ 2
∼ N


β0, σ

2, (2)

which does not imply homoscedasticity because it only concerns the point of interest x. We show below, nevertheless, how
the homoscedasticity assumption makes the algorithm more applicable in high dimensions.

Next, we define a non-isotropic Gaussian prior distribution over β:

β|α2
∼ N


0,6


, (3)

with parameter 6 = diag(α2) and α2
j > 0, j = 1, . . . , p. We choose a Gaussian prior as it is the conjugate of the Gaussian

density, so that the problem is analytically tractable. From the frequentist perspective, this is equivalent to imposing an
adaptive L2-penalty on the regression coefficients, where the regularization parameters play the role of the diagonal matrix
σ 26−1. Then, α2 adaptively tunes the regularization for each parameter βj.

Considering non-informative improper prior densities over σ 2 and α2
j , given respectively by 1/σ 2 and 1/α2

j , along with
a non-informative prior over β0, we complete the hierarchical representation of the model.

3. Bandwidth selection

In this section,we assume thatσ 2 andα2 are knownquantities.We also assume the setΩ to contain the relevant variables
for the estimation. We denote its cardinality as |Ω|. The optimal estimate of h is given by the minimization of the weighted
mean integrated squared error (MISE) statistic

MISE(h) = E


(m(x)− g(x))2fX (x)z(x)dx


,

where fX (·) is the design density function and z(·) is some weighting function, provided to allow the design density fX (·) to
be not compactly supported. In practice, z(·) can be, for example, an indicator of the support ofm(·) or an indicator of some
neighborhood of the point of interest x.

Let us define, for j, j′ ∈ Ω , the Hessian matrix 3(x)with elements

λjj′(x) =
∂2m(x)
∂Xj ∂Xj′

. (4)

An asymptotic approximation of the MISE-optimal bandwidth ĥ is defined for example in Yang and Tschernig (1999).
Particularizing for the Gaussian kernel, we have

ĥ =


∥K∥

2p
2 ψ(s)

Nϕ(K)

(1/p+4)

exp


φ(C(m))

2


,

where ∥K∥2 =

K 2(t)dt and ϕ(K) =


t2K(t)dt . If the support is infinite, then ∥K∥2 = 1/

√
π and ϕ(K) = 1.

Under the homoscedasticity assumption, the functional ψ(s) is defined as

ψ(s) =


s2(x)z(x)dx = σ 2


z(x)dx. (5)

The elements of the non-negative definite matrix C(m) ∈ R|Ω|×|Ω| are defined as

cjj′(m) =


λjj(x)λj′j′(x) fX (x)z(x)dx ≃

1
N

N
i=1

λjj(xi)λj′j′(xi),

where the approximation assumes that z(·) is an indicator of the support of m(·). Note that, since our bandwidth estimate
is diagonal, we only need the diagonal elements of 3(x). We define φ(M) as the solution of the unconstrained optimization
problem

φ(M) = argmin
v

1
4
exp(v)tM exp(v)+ exp


p

j=1

−vj

2


,

which can be proved to be convex because both terms are positive definite, and, thus, theHessianwith respect to v is positive
definite. Then, this problem can be easily solved for example by a standard application of the Newton–Raphson algorithm.
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Finally, if required, a kernel density estimate of fX (xi) can be obtained as

fX (xi) =
1
N

N
i′=1

Kh(xi′ − xi).

Yang and Tschernig (1999) proposed finding an approximation of 3(xi) by performing, for each variable, a local cubic
estimation with several cross-terms left out. This approximation itself requires a scalar pilot bandwidth which also depends
on unknown functionals that need to be estimated. Although these approximations are low biased, if N is not high enough,
they can have a big variance even for moderate values of p. In this paper, we use a simpler approximation of the diagonal
Hessian 3(x) based on numerical differentiation that may be more adequate in a high-dimensional setting,

λ̂jj(xi) =
β̂j(xi + ϵj)− β̂j(xi − ϵj)

2ϵ
, (6)

where ϵ > 0 is some small constant and ϵj is a p-length vector whose jth element is ϵ and the rest are zero. The estimation
β̂j(xi + ϵj) is obtained as the (j + 1)th element of the vector

σ 26−1
+ X∗

t
WX∗

−1X∗
t
Wy,

where the diagonal matrix W has elements Kh(xi′ − xi − ϵj), i′ = 1, . . . ,N . The estimation of β̂j(xi − ϵj) is analogous.
Hence,we need 2p simple first-order Taylor expansions for estimating3(xi). Although this approach is based onwell-known
numerical approximation techniques, it is novel for bandwidth estimation to the extent of our knowledge. Also, for a known
σ 2, ψ(s) is directly estimated by Eq. (5).

Note that this Hessian estimate is suboptimal, because we apply the current estimated bandwidth for x to all data points
involved in Eq. (4), and the curvature ofm(·) at these points can differ from that at x. However, sincewe seek a local estimate
of the bandwidth, we can take z(xi) = 1 if xi is within some neighborhood of x and z(xi) = 0 otherwise. Then, we only need
to estimate the Hessian in this neighborhood and, assuming thatm(·) is not verywiggly, the current estimate ĥ is reasonable
for this purpose.

Sparsity is considered here in the sense of Lafferty and Wasserman (2008): to discard a variable Xj amounts to using a
sufficiently high bandwidth hj. Then, its contribution for the calculation ofw becomes negligible. Note that, for infinite data,
the optimal bandwidth for an irrelevant covariate is ∞. The optimal bandwidth of a relevant covariate, on the other hand,
will be finite (it will typically be small or moderate).

In this paper, we use the converse argument for detecting sparsity: if the contribution of Xj to the computation of w is
insignificant, then we can safely drop Xj. Whereas (Lafferty and Wasserman, 2008) consider the changes in the estimate
ŷ = g(x), we take a more direct approach by considering the changes onw, on which ŷ ultimately depends.

Hence, for Xj to be dropped, we can use the criterion

K(0)− K(ηj/hj)

K(0)
< ε, (7)

where ηj = maxNi=1 |xj − xij| and ε > 0 is some small constant. The left-hand side of Eq. (7) is thus the percentage of decay of
K(·) along this direction. If Eq. (7) holds for certain small ϵ > 0 and direction j, then K(·) is almost constant in this direction,
and Xj can be dropped. From Eq. (7), we can derive the following threshold:

τj =


−

η2j

2 log(1 − ε)
,

so thatΩ is updated to contain only those variables that hold ĥj < τj. Variables not included inΩ will have their bandwidths
clamped to τj and can be removed from the above-described computations.

Fig. 1, left, illustrates the value K(ηj/hj)/hj for several hj = 0.1, . . . , 4.0 and |xj − xij| within the unit support; each line
represents a different hj. The value K(ηj/hj) has been normalized so that

 1
0 K(t)dt = 1. The thick red line corresponds to

hj = 4.0. Fig. 1, right, shows the left-hand side of Eq. (7) for hj = 0.1, . . . , 4.0. Constant ε = 0.1 is represented by the
dashed horizontal line. For ε = 0.1, we have τj = 1.089, represented by the dotted vertical line.

As we shall show below, the proposed algorithm typically increases the bandwidth of the irrelevant variables at each
iteration. In an ideal situation, this will occur unlimitedly, so that hj → ∞ and we can choose ϵ → 0. However, because
real data are finite, the bandwidth of irrelevant variables will not probably increase further than to a certain limit. Then,
a reasonably small value, such as ϵ = 0.1, is adequate. Note that smaller values of ϵ imply more computational cost. In
summary, this is a natural variable selection rule based on the definition of the bandwidth.
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Fig. 1. Left, values K(ηj/hj)/hj for hj = 0.1, . . . , 4.0 and ηj = 1.0. Right, left-hand side of Eq. (7) for hj = 0.1, . . . , 4.0; ε = 0.1 is represented by the
dashed horizontal line and τj = 1.089 is represented by the dotted vertical line.

4. MAP estimation

In this section, we derive an expectation–maximization algorithm to obtain the parameters β∗, σ 2 and α2. Let us
assume that by now we have an estimate of the optimal diagonal bandwidth ĥ, and, hence, we have weight values
wi, i = 1, . . . ,N . Then, we can obtain the parameters β∗, σ 2 and α2 that maximize the expected MAP function by means of
the expectation–maximization (EM) algorithm (Dempster et al., 1977). We consider β∗ to be the latent variable.

From Eqs. (2) and (3), the expectation of the complete-data log likelihood function is

E[log p(β∗, y|α2, σ 2)] = E[log p(y|β∗, σ 2)] + E[log p(β|α2)]

= −
Nw

2
log(2πσ 2)−

E[ (y − ŷ)2]
2σ 2  

E[log p(y|β∗,σ 2)]

−
p
2
log(2π)−

1
2
log det(6)−

E[βt6−1β]

2
,  

E[log p(β|α2)]

, (8)

where Nw =
N

i=1w
2
i , and we approximate (Loader, 1999)

E[ (y − ŷ)2] ≃

N
i=1


wiyi − wiβ0 − wixtiβ

2
.

In the E-step, we obtain the values of β∗ that maximize the expectation in Eq. (8). Setting the derivatives of
E[log p(β∗, y|α2, σ 2)] (in Eq. (8)) with respect toβ∗ to zero, for some estimates σ̂ 2 and α̂

2, we obtain the parameter estimate
at this step as

β̂
∗

= σ̂−2ŜX∗
t
Wy, (9)

whereW = diag(w2) and Ŝ is the estimated covariance matrix of the posterior distribution of β, computed as

Ŝ =


diag−1(0, α̂2

)+
1
σ̂ 2

X∗
t
WX∗

−1

. (10)

In the M-step, we estimate the values of σ 2 and α2 that maximize Eq. (8) for the current estimation of β∗. We set the
derivatives of Eq. (8) with respect to σ 2 to zero to obtain

σ̂ 2
=

E[ (y − ŷ)2]
Nw

≃

N
i=1
(wiyi − wiβ̂0 − wixit β̂)2

Nw
. (11)

To estimate α2, we first have

∂ log det(6)
∂α2

j
=

∂ log


p

j′=1
α2
j′


∂α2

j
=

1
α2
j
. (12)
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Algorithm 1 Iterative algorithm for regularized local MAP estimation
Initialize h = h0, σ

2
= σ 2

0 , α
2

= ∞.
Repeat until convergence:

Compute ĥ as described in Section 3.
Compute w with Eq. (1).
Repeat until convergence:

Update β̂
∗

with Eq. (9).
Update σ 2 and α2 with, respectively, Eqs. (11) and (14).

On the other hand, using the definition of variance, we have

∂ E[βt6−1β]

∂α2
j

=
∂ E[Σp

j′=1β
2
j′/α

2
j′ ]

∂α2
j

=

∂
p

j′=1
E[β2

j′ ]/α
2
j′

∂α2
j

= −
β̂2
j + ŝj+1,j+1

α4
j

, (13)

where ŝj+1,j+1 is the (j + 1)th element of the diagonal of Ŝ .
Putting results (12) and (13) together and reorganizing terms, we can estimate α2

j as

α̂2
j = β̂2

j + ŝj+1 j+1. (14)

By means of the automatic relevance determination principle, values α̂2
j that correspond to irrelevant variables for the

estimation of β∗ will be close to zero at convergence.
Note that the estimation of β depends on σ 2, whose estimation depends itself on β. The same happens with α2, whose

estimation depends recursively on itself through S . Iterating the estimation of β̂ with Eq. (9) and the estimation of σ 2 and
α2 with Eqs. (11) and (14), and repeating until convergence, the EM algorithm is able to find a MAP solution for a fixedw in
a finite number of steps. We summarize the MAP estimation in Algorithm 1.

We can make use of sparsity as defined in Section 2 by restricting the above computations to those variables that are
currently included inΩ . This can save computation time and, since it increases the ratio N/p, can improve the estimation.
Note that we are handling sparsity at two levels. First, the sparsity of function m(·) is determined by the magnitude of
the bandwidths. Second, the sparsity of β̂ is handled by automatic relevance determination. For example, βj = 0 does not
necessarily means that Xj is dispensable. Hence, we cannot use sparsity in β̂ to simplify the estimation of h.

5. Estimation by Monte Carlo sampling

In this section, we evolve from the MAP approach to a sampling method for determining the posterior distribution of
β∗, σ 2 and α2, and then the predictive distribution.

5.1. Parameter distribution

First, we estimate the posterior parameter distribution of β∗, defined by the sufficient statistics E[β∗
] = β̂

∗

and
Var[β∗

] = Ŝ . Instead of sampling from the joint posterior of h,β∗, σ 2 and α2, we sample from the complete-data parameter
posterior of σ 2 and α2, given the current estimates of β∗ and h. We alternate between two steps.

In the first step, given the current posterior density estimate, the objective is to obtain L samplesΘl ≡ {σ 2(l),α2(l)
}.

First, from the current estimate of h, we computew by Eq. (1) and Nw =
N

i=1w
2
i . We shall now be able to sample from

p(σ 2,α2
|y) by following the hierarchy defined above. For each l, we can sample 1/σ 2(l) from a Gamma distribution with

parameters

aσ 2 =
Nw

2
+ 1 and bσ 2 =

1
2

N
i=1

(wiyi − wiβ̂0 − wixit β̂)2, (15)

where β̂
∗

is the current MAP estimate of β∗ obtained from Eq. (9). Since the mode of the Gamma distribution is given
by (aσ 2 − 1)/bσ 2 , this is consistent with the result in Eq. (11). Also, we sample 1/α2

j
(l), for j = 1, . . . , p, from a Gamma

distribution with parameters

aα2j =
3
2

and bα2j =
1
2
(β̂2

j + ŝj+1 j+1), (16)

where ŝj+1,j+1 is the (j + 1)th element of the diagonal of Ŝ .
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Algorithm 2 Sampling algorithm for finding the posterior distribution of β∗, σ 2 and α2

Initialize the posterior distribution of β∗ and ĥ. Obtain w.

Step (i):
Draw L samplesΘl given that:
σ 2 is Gamma distributed with parameters given by Eq. (15).

α2 are Gamma distributed with parameters given by Eq. (16).

For eachΘl, estimate ĥ
(l)

as described in Section 3.
For each ĥ

(l)
, compute w(l) with Eq. (1).

Step (ii):
For each l, using w(l), iterate until convergence:

Compute β̂
(l)

and Ŝ
(l)

with Eqs. (9) and (10).
Update σ̂ 2(l) and α̂

2(l) with Eqs. (11) and (14).

Update the posterior distribution of β̂
∗
(l)

and Ŝ
(l)

with Eq. (17).
Compute ĥ =

L
l=1 ĥ

(l)
.

Update the posterior distribution of σ 2 and α2 with (15) and (16).

Repeat steps (i) and (ii) until the posterior distribution of β stabilizes.

Eqs. (15) and (16) were obtained by ‘‘completing the square’’ on the product of the logarithm of the non-informative
prior density (i.e., a Gamma distribution with a = b = 0) and the log likelihood given by Eq. (8).

Finally, for each sampleΘl, we estimate the optimal bandwidth, ĥ(l), as described in Section 3, and computew(l) by Eq. (1).
In the second step, we update the posterior distribution of the parameters using thew(l) samples. For each vectorw(l), we

iteratively estimate β̂
∗
(l)

and Ŝ (l) with Eqs. (9) and (10), and update σ̂ 2(l) and α̂
2(l) with Eqs. (11) and (14) until convergence.

Once we have the posterior estimate of the parameters for each sampleΘl, we perform the following update:

β̂
∗

=
1
L

L
l=1

β̂
∗
(l)

and Ŝ−1
=

1
L

L
l=1

Ŝ (l)
−1
. (17)

Since L is finite, this involves an approximation, which is biased (because so is the estimation of β∗), and whose variance
is proportional to 1/L.

Note that it is not straightforward to formulate an estimate of the posterior distribution of σ 2 and α2 as a function of the
samples σ 2(l) and α2(l) . However, we can still approximate these distributions via β̂

∗

and Ŝ−1, using Eqs. (15) and (16). We
also need ĥ, which can be estimated as ĥ =

L
l=1 ĥ

(l)/L.
We summarize the method in Algorithm 2.

5.2. Predictive distribution

Next, we formulate the predictive distribution

p(y|y) =


p(y|β∗, σ 2, y) dβ∗dσ 2,

which can be shown to be Student t ,

y|y ∼ St

µ = β̂0, ι = σ̂−2

+ ŝ0 0, ν = N − p

,

where µ is the mean, ι is the precision, and ν is the number of degrees of freedom of the distribution.

6. Computational complexity

The dominant step of the twoproposed algorithmswith regard to the computational cost is the calculation of the diagonal
of the Hessian with Eq. (6).

For the point estimation in Section 4, an iteration takes 2Nz |Ω| matrix inversions, of dimension (|Ω| − 1)× (|Ω| − 1),
where Nz is the number of data points such that z(xi) ≠ 0. The cost of each matrix inversion is (|Ω| − 1)2.376 with the
Coppersmith–Winograd algorithm (Coppersmith andWinograd, 1990). Then, the cost per iteration is 2Nz |Ω|(|Ω| − 1)2.376.
The overall cost of the algorithm thus depends on the sparsity degree of m(·) and the choice of z(·) and ε. For the sampling
method, the cost per iteration is 2LNz |Ω|(|Ω| − 1)2.376.
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Fig. 2. Absolute change of β̂
∗

per iteration with respect to the last iteration. The solid line represents Algorithm 1 and the dashed line represents
Algorithm 2.

Table 1
Regression function for each model.

Model 1 m(x) = x21 + x22
Model 2 m(x) = sin(πx1 + πx2)
Model 3 m(x) = sin(πx1) sin(2πx2)
Model 4 m(x) = 0.5 sin(πx1)+ 0.5 sin(4πx2)
Model 5 m(x) =


(x1 − 0.5)2 + x22


sin(2πx3)

Model 6 m(x) = sin(πx1 + 0.5πx2 + 2x3 + 0.5πx4)
Model 7 m(x) = x21x

2
2

Model 8 m(x) = 2(x1 + 1)3 + 2 sin(10x2)
Model 9 m(x) = −K


(x1 − 0.3)/0.3


sin(πx2)+ K


(x1 − 0.7)/0.3


sin(πx3)

To give an example, the computation time for some data set with N = 500 samples, p = 10 covariates, and 2 relevant
variables, taking z(xi) ≠ 0 for 50 data points, ε = 0.1, and L = 5, is 21.73 s for the point estimation and 97.39 s for the
sampling method. Rodeo takes 12.322 s. Times correspond to an Intel Core 2 Duo processor (2.26 GHz).

The memory requirements of Algorithm 1 are slightly higher than for rodeo, because we need to store the estimated
Hessian at each point such that z(xi) ≠ 0. Since we need to keep L estimates of the parameters, the amount of memory is
higher for the sampling algorithm.

Fig. 2 compares Algorithms 1 and 2 in terms of convergence, showing the absolute change of the parameters β̂
∗

with
respect to the last iteration for some synthetic toy data set with N = 500 samples and p = 10 covariates.

Note that the current estimate is only valid for x. If an estimation is required over a wide range of input values, then the
proposed approach, like most local methods, can be computationally demanding. In this case, we can still run the method
for a selected set of points in the data set and extrapolate the incoming data points to the closest data items in this set,
whose bandwidths have already been estimated. If such data items are close enough, it is reasonable to use their bandwidth
estimates for the new data points.

7. Experiments

In order to show the performance of the proposed approach,we have runAlgorithm1on both synthetic and real data sets.
First, we consider 100 data sets generated from nine differentmodels. In all cases, there areN = 500 samples and p = 10

covariates, sampled from the uniform distribution on [0, 1]. We have set σ 2
= 0.1. The test point is randomly sampled, for

each data set, within the interval [0.3, 0.7]p. Table 1 shows the regression functionm(·) for each model.
The six former regression functions were taken from the experimental section of Yang and Tschernig (1999), the seventh

and eighth functions were taken from the work by Lafferty andWasserman (2008), and the last function was introduced for
evaluating the method’s behavior when the sparsity pattern varies over the input domain.

Wehave also tested rodeo, the asymptotically optimal bandwidth fromYang and Tschernig (1999) (ob for short, wherewe
use oracle values forΛ(xi) andσ 2), and somenon-local non-parametric regressionmethods: the additivemodel (am) (Hastie
and Tibshirani, 1990), random forests for regression (rf ) (Breiman, 2001), the component selection and smoothing operator
(cosso) (Lin and Zhang, 2006), and projection pursuit regression (ppr) (Friedman and Stuetzle, 1981). As a benchmark, we
present results from ordinary least squares (ols). For our method, we have used ε = 0.1 and h0 = 1/ log(logN).

Table 2 reports the mean absolute error (and standard deviation) along the 100 data sets for sbase (MAP estimation) and
the other methods. Statistical significance is checked by means of the t-test. The performance of the proposed approach is
better than that of ob in six out of nine models, and always better than that of rodeo. Compared to non-local methods, sbase
always outperforms am and ols, and is mostly better than rf. The accuracy of sbase is somewhat comparable to that of cosso
and ppr. For Model 9, however, where the sparsity pattern is locally defined, sbase clearly beats the non-local approaches.
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Table 2
Mean (and standard deviation) of the absolute error for each model and method. The best result for each row is highlighted
in bold.

sbase rodeo ob am

Model 1 0.021 (±0.02) 0.097 (±0.08) 0.028 (±0.02) 0.174 (±0.06)
Model 2 0.042 (±0.03) 0.170 (±0.16) 0.045 (±0.04) 0.252 (±0.13)
Model 3 0.068 (±0.04)* 0.285 (±0.20) 0.087 (±0.05) 0.389 (±0.19)
Model 4 0.134 (±0.11) 0.292 (±0.20) 0.117 (±0.07) 0.402 (±0.17)
Model 5 0.094 (±0.08) 0.126 (±0.15) 0.054 (±0.05) 0.111 (±0.13)
Model 6 0.151 (±0.10) 0.437 (±0.33) 0.206 (±0.18) 0.510 (±0.32)
Model 7 0.018 (±0.02)* 0.059 (±0.05) 0.023 (±0.02) 0.032 (±0.02)
Model 8 0.396 (±0.45) 0.805 (±0.54) 0.300 (±0.20) 1.656 (±1.03)
Model 9 0.070 (±0.05)* 0.261 (±0.20) 0.087 (±0.06) 0.355 (±0.17)

rf cosso ppr ols

Model 1 0.032 (±0.02) 0.009 (±0.01)* 0.041 (±0.05) 0.174 (±0.06)
Model 2 0.110 (±0.07) 0.198 (±0.10) 0.017 (±0.01)* 0.252 (±0.13)
Model 3 0.130 (±0.07) 0.168 (±0.08) 0.146 (±0.09) 0.389 (±0.19)
Model 4 0.133 (±0.09) 0.019 (±0.02)* 0.070 (±0.07) 0.402 (±0.17)
Model 5 0.052 (±0.04) 0.112 (±0.08) 0.103 (±0.08) 0.111 (±0.13)
Model 6 0.260 (±0.18) 0.372 (±0.29) 0.041 (±0.10)* 0.510 (±0.32)
Model 7 0.023 (±0.02) 0.023 (±0.02) 0.030 (±0.02) 0.032 (±0.02)
Model 8 0.624 (±0.41) 0.026 (±0.02)* 1.076 (±0.89) 1.656 (±1.03)
Model 9 0.149 (±0.11) 0.233 (±0.1) 0.324 (±0.25) 0.355 (±0.17)
* The difference to the second best method is statistically significant with a significance level of 0.05.

Table 3
For each model, accuracy ranking of the methods.

sbase rodeo ob am rf cosso ppr ols

Model 1 2 6 3 7 4 1 5 8
Model 2 2 5 3 7 4 6 1 8
Model 3 1 6 2 8 3 5 4 7
Model 4 5 6 3 7 4 1 2 8
Model 5 3 8 2 5 1 7 4 6
Model 6 2 6 3 7 4 5 1 8
Model 7 1 8 4 7 2 3 5 6
Model 8 3 5 2 7 4 1 6 8
Model 9 1 5 2 7 3 4 6 8

Mean 2.2 6.1 2.7 6.9 3.2 3.7 3.8 7.4

Table 4
Percentage of times that each variable has been selected by sbase across the 100 experiment replications.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Model 1 1.00 1.00 0.35 0.25 0.32 0.27 0.25 0.31 0.21 0.29
Model 2 0.99 0.99 0.30 0.24 0.13 0.32 0.17 0.17 0.21 0.17
Model 3 1.00 1.00 0.29 0.17 0.20 0.15 0.05 0.26 0.20 0.12
Model 4 1.00 0.96 0.14 0.18 0.14 0.16 0.16 0.17 0.15 0.17
Model 5 0.21 0.12 0.97 0.32 0.31 0.34 0.33 0.24 0.26 0.48
Model 6 1.00 0.75 1.00 0.88 0.13 0.08 0.08 0.08 0.05 0.06
Model 7 0.94 0.93 0.33 0.29 0.24 0.37 0.24 0.22 0.27 0.23
Model 8 0.96 0.96 0.34 0.42 0.31 0.31 0.23 0.24 0.32 0.27
Model 9 0.99 1.00 1.00 0.06 0.08 0.03 0.03 0.08 0.06 0.06

Table 3 shows, for each model, an accuracy ranking of the methods. It can be observed that sbase is the best ranked
method on average (last row).

Table 4 shows the number of times that each variable has been selected by sbase across the 100 experiment replications.
Note that, for most models, sbase basically selects the correct covariates. For Model 5, however, it often discards variables X1
and X2. Interestingly, the accuracy of sbase (ranked the third) is no much worse here than that of ob and rf, the best methods
for this data set.

Fig. 3 shows, for some run on Model 1, the progression of the bandwidths. Note that the bandwidths of most of the
irrelevant variables (dashed lines) are increased at each iteration. Conversely, the bandwidth of the relevant covariates
become steady at a low value after a few iterations. For illustration purposes, we have not removed the covariates from the
computation once hj > τj.

Fig. 4 shows boxplots of the bandwidth vector for sbase and rodeo. For ob (not shown), there is a much bigger difference
between the relevant and the irrelevant covariates.We can observe that, evenwhen rodeo tends to assign higher bandwidths
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Fig. 3. Progression of the bandwidths for the sbase algorithm, for Model 1. The solid lines represent the relevant variables, the dashed lines represent the
irrelevant variables, and the horizontal dotted line represents the threshold τj .

to the irrelevant covariates, the separation between relevant and irrelevant covariates ismuchmore obvious for sbase, which
explains its better accuracy.

Fig. 5 (top left graph) shows, for Model 9, the predicted response of sbase, rodeo, and rf (the best non-local method for
Model 9) over a grid of values of X1, the variable that defines the local sparsity pattern. Note that sbase exhibits a smoother
and more accurate prediction than rodeo.

The other three graphs of Fig. 5 illustrate howmodel selection varies in different parts of the data set. For clarity, we have
included only variables X1, . . . , X5. Interestingly, the top right graph indicates that sbase assigns a higher bandwidth for
variable X2 (or X3) in those parts of the input domain where it is less present. The bandwidths of the irrelevant variables are
not shown here because their orders of magnitude are ten-fold higher, and this tarnishes the appreciation of the differences
between X2 and X3. Recall that a high bandwidth amounts to discarding this variable. The bottom left graph displays the
bandwidths estimated by rodeo. Note that it is not clear where X1 dominates X2 and vice versa. The bottom right graph
shows a measure of importance proposed by Breiman (2001) for each variable across the data set. It can be observed that rf
fails to locally discriminate variables, giving an almost identical importance to X2 and X3 in the entire data range.

In these experiments, the sampling method introduced in Section 5 produces very similar results than the point
estimation method of Section 4, and is not shown. To gain more insight into the Monte Carlo sampling method introduced
in Section 5, we have run Algorithm 2 on data generated from the models described above, using different values for the
variance of ei: σ 2

∈ {0.1, 0.2, 0.4}. Also, to introduce more uncertainty, we add some Gaussian noise to the relevant
covariates (after computing the response y with the regression functions in Table 1), and then we redo the experiments.
More precisely, we make xij := xij + ϱij, where j corresponds to a relevant variable, i = 1, . . . ,N , and ϱij ∼ N (0, 0.2).

To give an example, Fig. 6 shows the predictive distribution for some execution and Model 1. As expected, the more
uncertainty the model has, the higher the variance of the response distribution is. This applies both for σ 2 and covariate
noise.

Next, we consider the Computer Hardware data set, taken from the UCI repository (http://archive.ics.uci.edu/ml). The data
set has N = 209 samples and p = 6 covariates. The response is the measured relative CPU performance for a number of
machines.We have evaluated themethods at 30 data points, whichwe selected to be inner to the input domain. Specifically,
the chosen points are those with theminimum infinity-norm distance to the average, defined as ∥xi − x̄∥∞ = maxj |xij − x̄j|,
where x̄ =

N
i xi/N . We have again set ϵ = 0.1.

Fig. 7 shows a boxplot of the absolute and squared errors for each method. The proposed approach performs the best
among the local methods, although the difference is not big. It also exhibits a lower error than all the non-local methods
excepting rf, which has the lowest error of all methods. It is worth noting that sbase selects only three covariates (minimum
main memory, maximum main memory, and cache memory), whereas rodeo and ob do not discard any covariate. These
three variables match the three variables that are given the highest importance coefficient by rf, the most accurate method
for this data set.

Finally, we consider the Concrete Compressive Strength data set (from the UCI repository), whose response function is
highly nonlinear. Here, we have N = 1030 and p = 8. We have evaluated the methods on 30 data points, selected as for the
Computer Hardware data set. We have used ϵ = 0.1.

Fig. 8 displays a boxplot of the absolute and squared errors for each method for this data set. In this case, the difference
between sbase and the rest of the methods, both local and non-local, is more obvious. Note that rf is again the exception.
This method clearly outperforms the other global methods and is comparable to sbase. With regard tomodel selection, sbase
selects variables X1, X5, X7, and X8 for most testing points. On the other hand, rf gives the highest importance to variables
X1, X5, X7, X8, and X4. These results are relatively coherent for the two algorithms, excepting for variable X4.

Like in the synthetic experiments, the results for the sampling method (not shown) are very similar to those for the
simpler sbase in both real data sets.

http://archive.ics.uci.edu/ml
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Fig. 4. Boxplots of the bandwidth vector. From top to bottom, Models 1–9 are illustrated. Left graphs correspond to sbase and right graphs correspond to
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Fig. 7. Boxplots of the absolute and squared errors for each method and the Computer Hardware data set.

8. Concluding remarks

This paper introduces a sparse regularized local regression method, showing how to give both a point estimation and
the posterior distribution estimation of the regression coefficients β∗, the noise variance σ 2, and parameter variance α2.
For bandwidth selection, we devise an approach that is adequate for inputs of moderate dimension and sparse regression
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Fig. 8. Boxplots of the absolute and squared errors for each method and the Concrete Compressive Strength data set.

functions, which is integrated with the estimation of the regression parameters. This sparse bandwidth selection procedure
is based on optimal bandwidth selection methodology. For the method introduced in Section 5 to be Bayesian, we should
define a proper distribution on the bandwidth h, so that, eventually, wewould obtain the posterior distribution of h and also
the posterior inclusion probabilities for the covariates. Unfortunately, it is not straightforward to give a coherent distribution
on h and derive reasonable algorithms for inference in this setting. The method introduced in Section 5, however, still
produces the posterior distributions of the remaining parameters and a sample of h.

Note that other estimation methods for the subproblem of obtaining the regression parameters are possible as long as
they provide an estimate of σ 2 and α2, which are required for the bandwidth selection procedure introduced in Section 3.
The Bayesian formulation is, however, a good choice, as it naturally provides estimates of σ 2 and α2.

It is worth noting that sbase relies on some assumptions that can be removed in exchange for computational cost. For
example, we assume homoscedasticity. This is to avoid the need for estimating σ 2

i at each point. Also, we are implicitly
assuming that the estimated optimal regularization parameters α̂

2 are adequate for all points of the data set, whereas, in
fact, they are locally estimated. Note that the estimated optimal regularization parameters α̂

2 are globally used to estimate
theHessian for each data pointwithin the optimal bandwidth estimation procedure. One possibilitywould be to perform the
described EM algorithm for each data point, i.e., to alternate Eqs. (9), (11) and (14) for all xi. We have empirically observed,
however, that, with regard to α̂

2, the results of the algorithm do not change much with this modification.
A further step would be to consider a fully adaptive ridge regression procedure, where the regularization penalty is a

symmetric positive definite matrix (no longer diagonal). The minimax efficiency of adaptive ridge regression for quadratic
losses was studied, for example, by Strawderman (1978). As future work, we plan to examine the statistical efficiency of this
method for both vector and full matrix penalties.

Another potential extension of the proposed approach is to use full-matrix bandwidths instead of diagonal bandwidths.
For example, Horová et al. (2013) have recently explored the estimation of full matrix bandwidths in the related context of
density estimation. How to integrate this sort of approach within the proposed methodology is also a possible future work
direction. Note that variable selection may be more involved in this setting.
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