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Abstract

Combining the predictions of a set of classifiers has shown to be an effective way to create
composite classifiers that are more accurate than any of the component classifiers. There are many
methods for combining the predictions given by component classifiers. We introduce a new method
that combine a number of component classifiers using a Bayesian network as a classifier system
given the component classifiers predictions. Component classifiers are standard machine learning
classification algorithms, and the Bayesian network structure is learned using a genetic algorithm
that searches for the structure that maximises the classification accuracy given the predictions of the
component classifiers. Experimental results have been obtained on a datafile of cases containing
information about ICU patients at Canary Islands University Hospital. The accuracy obtained using
the presented new approach statistically improve those obtained using standard machine learning
methods. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Supervised classification; Machine learning; Stacked generalization; Bayesian networks; Genetic
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1. Introduction

During the past several years, in a variety of application domains, researchers in machine
learning, computational learning theory, pattern recognition and statistics have re-ignited
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the effort to learn how to create and combine an ensemble of classifiers. This research has
the potential to apply accurate composite classifiers to real world problems by intelligently
combining known learning algorithms.

Classifier combination falls within the supervised learning paradigm. This task orienta-
tion assumes that we have been given a set of training examples, which are customarily
represented by feature vectors. Each training example is labelled with a class target, which
is amember of a finite, and usually small set of class labels. The goal of supervised learning
is to predict the class labels of examples that have not been seen.

Combining the predictions of a set of component classifiers has shown to yield accuracy
higher than the most accurate component on a long variety of supervised classification
problems [14,16].

In this paper, we present a new multi-classifier construction methodology based on the
well-known stacked generalization paradigm [44], in which a number of classifier layers
are designed to be part of a global multi-classifier, where the upper layer classifiers receive
the class predicted by its immediately previous layer as input.

The data used in this study has been obtained at a 20-bed general, medical, surgical, and
trauma ICU of the Canary Islands University Hospital, a tertiary referral university hospital
in the Canary Islands (Spain). There is information about 1210 ICU patients, and each
patient record has the values given by medical standard methods such as the Acute
Physiology and Chronic Health Evaluation II (APACHE II, [19]), Mortality Probability
Model I MPM 11, [26]), and Simplified Acute Physiology Score II (SAPS 11, [25]), as well
as some routine information recorded for patients (sex, age, etc.). In the datafile used, the
class corresponds to Survival (996 cases, 82.31%) and not survival (214 cases, 17.69%)
information.

We have designed a two-layer classification system in which we use a set of standard
machine learning algorithms as layer-0 single classifiers, and we induce, over predictions
made, a Bayesian network structure that acts as consensed voting system at layer-1. Once
the multi-classifier is constructed, and given a new case to be classified, we run every single
classifier with the new case as input, and take the prediction as the corresponding Bayesian
network node instantiation. The second step is to propagate the evidence in the obtained
Bayesian network and select the class with the highest a posteriori probability as the
multi-classifier predicted class. Empirical results show that this multi-classifier
outperforms each of the single classifiers used.

The rest of the paper is organised as follows. The multi-classifier schemata and the
process of its construction is shown in Section 2. Section 3 shows the level-0 single
classifiers used in the experimentation. The level-1 classifier, as well as the methodology
used in its construction, is introduced in Section 4. Section 5 presents the experimental
results obtained applying the previous methodology to a database of cases containing
information about ICU patients. Section 6 presents the conclusions (Fig. 1).

2. Multi-classifier schemata

Primarily, we present a new method for the construction of a multi-classifier based on a
straightforward approach that has been termed stacked generalization [44]. In its most
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basic form, a layered architecture consists of a set of component classifiers that forms the
first layer. Wolpert calls the component classifiers the level-0 classifiers and the combining
classifier, the level-1 classifier. See Fig. 1 for the schemata of our stacked generalization
classifier.

2.1. Multi-classifier structure

Stacked generalization is a framework for classifier combination in which each layer
of classifiers is used to combine the predictions of the classifiers of its preceding layer.
A single classifier at the top-most level outputs the ultimate prediction. In our approach,
we use a two-level system that has a Bayesian network as this single classifier. The
choice is based on the idea that we can assume we are making a consensus vote system
over the predictions of the level-0 single classifiers: assuming it to be a good idea to
take the possible relations existing in the predictions given by each level-0 model into
consideration. Therefore, we induce from the datafile obtained with the machine
learning classifier predictions, a Bayesian network which tries to identify the possible
conditional independencies and dependencies existing between the results obtained by
these level-0 classifiers. This Bayesian network is used to perform the last classification
step.

2.2. Multi-classifier construction

We present, at this point, the methodology used in the construction of the multi-
classifier.

For each single classifier, we have learned the model using MLC++ library [21]. In
order to obtain a training datafile to be used for the Bayesian network structure learning
process, we execute a Leaving One Out sequence for each single classifier in which, for
each case i in the database we learn the model using the remaining n — 1 cases (all the
cases except the ith), and test the learned model with the ith case, obtaining the class
predicted for this case by the single classifier. Obtained results in this step are used as
training set in the Bayesian network construction. In Fig. 2 the construction process is
showed.

3. Layer-0 composite classifiers

As established by Skalak [41], the major objective in the selection of the composite
classifiers is to obtain diversity in the predictions given by each individual classifier, as well
as good accuracy levels. Consequently, we therefore use a variety of standard machine
learning algorithms.

In the supervised learning task, in the training database used to induce the classification
model, we know for each x sample its y label value. Starting from this form of database, we
will briefly describe the single paradigms we will use in our experiments. These paradigms
come from the world of the artificial intelligence and they are grouped in the family of
machine learning (ML) paradigms.
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3.1. Decision trees

A decision tree consists of nodes and branches to partition a set of samples into a set of
covering decision rules. In each node, a single test or decision is made to obtain a partition.
The starting node is usually referred as the root node. An illustration of this appears in
Fig. 3. In the terminal nodes or leaves a decision is made on the class assignment.

In each node, the main task is to select an attribute that makes the best partition between
the classes of the samples in the training set. There are many different measures to select
the best attribute in a node of the decision trees: two works gathering these measures are
[27,29]. In more complex works like [30] these tests are made applying the linear
discriminant approach in each node. In the induction of a decision tree, an usual problem
is the overfitting of the tree to the training dataset, producing an excessive expansion of the
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Fig. 3. Single classifier construction.
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tree and consequently losing predictive accuracy to classify new unseen cases. This
problem is overcome in two ways:

e Weighing the discriminant capability of the attribute selected, and thus discarding a
possible successive splitting of the dataset. This technique is known as ““prepruning”.

e After allowing a huge expansion of the tree, we could revise a splitting mode in a node
removing branches and leaves, and only maintaining the node. This technique is known
as “‘postpruning”’.

The works that have inspired a lot of successive papers in the task of the decision trees are
[4,34]. In our experiments, we will use two well-known decision tree induction algorithms,
ID3 [34] and C4.5 [36]. Both come from the same assumptions, but while ID3 only makes
“prepruning”’, C4.5 incorporates both pruning techniques.

3.2. Instance-based learning

Instance-based learning (IBL) has its root in the study of nearest neighbour algorithm in
the field of machine learning. The simplest form of nearest neighbour (NN) or k-nearest
neighbour (k-NN) algorithms [9] simply store the training instances and classify a new
instance by predicting that it has the same class as its nearest stored instance or the majority
class of its k-nearest stored instances according to some distance measure, as described in
[42]. The core of this non-parametric paradigm is the form of the similarity function that
computes the distances from the new instance to the training instances, to find the nearest or
k-nearest training instances to the new case.

Some topics of interest in this paradigm are: selection of good cases from training set,
reduction of storage and computing-time requirements, tolerating noise, learning attribute
relevances and discretization of continuous attributes. Some works proposing solutions to
these topics are [1,43]. In our experiments we will use two instance-based inducers:

e [B4, ainducer of the family of the IBL algorithms developed by Aha et al. [1]. IB4 stores
only misclassified instances, it keeps a classification performance record for each saved
instance and removes some of the saved instances that are believed to be noisy instances
using a significance test.

e IB, ainducer developed in the MLC++ project [21] and based on the works of Aha [2]
and Wettschereck [43]. IB is very similar to IB4, which has all the functions of IB3 with
an additional attribute weight learning capability. The attribute weights are increased for
attributes with similar values for correct classifications or for attributes with different
values for incorrect classifications, and they are decreased otherwise. The weight of
each attribute reflects the attribute’s relative importance for classification.

3.3. Rule induction

One of the most expressive and human readable representations for learned hypothesis
are the sets of [IF-THEN rules, where in the IF part, there are conjunctions and disjunctions
of conditions composed of the predictive attributes of the learning task, and in the THEN
part, the class predicted for the samples that carry out the IF part appears.
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We can interpret a decision tree like the set of rules generated by a rule induction
classifier: the tests that appear in the way from the root of a decision tree to a leaf, can be
translated to a rule’s IF part, the predicted class of the leaf also in the THEN part appears.
Some approaches in this way can be found in [35].

Some problems that may be overcome by the rule induction paradigm are: generation of
simple rules when noise is present to avoid the overfitting and efficient rule generation
when using large databases. Some works in this paradigm are [6,28,31].

In our experiments, we will use Clark and Nibblet’s [6] cn2 rule induction program, as
well as oneR [15] and Ripper [7]: cn2 has been designed with the aim of inducing short,
simple, comprehensible rules in domains where problems of poor description language
and/or noise may be present. The rules are searched in a general-to-specific way, generating
rules that satisfy large number of examples of any single class, and few or none of other
classes. To use the rule set to classify unseen examples, cn2 applies a “‘strict match”
interpretation by which each rule is tried in order until one is found whose conditions are
satisfied by the attributes of the example to classify. The oneR is a very simple rule inductor
that searches and only applies the best rule in the datafile. Ripper is a fast rule inductor
based on ideas obtained in the work made by Cohen [7].

3.4. Naive Bayes classifiers

Theoretically, Bayes’ rule minimises error by selecting the class y; with the largest
posterior probability for a given example X of the form X = (X1, X5, ..., X,), as indicated
below:

P(Y = y))P(X]Y = y))
P(X)

Since X is a composition of n discrete values, one can expand this expression to:

P(Y = yIX) =

P(Y =y)PXi =x1,.... X =x]Y =)
P(X1 = Xly--- ,Xn an)

where P(X; = xi,...,X, =x,|Y =y;) is the conditional probability of the instance X
given the class y;. P(Y = y;) is the a priori probability that one will observe class y;. P(X) is
the prior probability of observing the instance X. All these parameters are estimated from
the training set. However, a direct application of these rules is difficult due to the lack of
sufficient data in the training set to reliably obtain all the conditional probabilities needed
by the model. One simple form of the previous diagnose model has been studied that
assumes independence of the observations of feature variables X, X>, ..., X, given the
class variable Y, which allows us to use the next equality

P(Y:y]|X1 :xl,...,Xn :)Cn) =

n
P(X; =x1,.... X, = x,|[Y =) = [[P(X: = x|y =)
i=1

where P(X; = x;|Y =y;) is the probability of an instance of class y; having the observed
attribute value x;. In the core of this paradigm there is an assumption of independence
between the occurrence of features values, that is not true in many tasks; however, it is
empirically demonstrated that this paradigm gives good results in medical tasks.
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In our experiments, we use this Naive Bayes (NB) classifier. Furthermore, we use a
Naive Bayes Tree (NBTree) classifier [20], which builds a decision tree applying the Naive
Bayes classifier at the leaves of the tree.

4. Layer-1 classifier: Bayesian network

In this section we present the level-1 classifier used in the proposed approach. We use a
Bayesian network (BN) as a classifier system, using the results given by the level-O
classifiers as predictor variables that we instantiate in order to give the multi-classifier
prediction as the most probable class predicted by the BN once propagation is made. We
briefly present Bayesian networks and genetic algorithms, and then go on to show the BN
structure obtained in this experiment. We use genetic algorithms in order to carry out
the search in the BN structures space [22], as we are looking for the best BN from the
classification point of view. Obtained BN is used as a consensed voting system for
the level-0 single classifiers. There is assumed that the BN reflects the interrelation among
the different classifiers used [17].

4.1. Bayesian networks

Bayesian networks (BNs) [5,8,18,23,33] constitute a probabilistic framework for
reasoning under uncertainty. From an informal perspective, BNs are directed acyclic
graphs (DAGs), where the nodes are random variables and the arcs specify the indepen-
dence assumptions that must be held between the random variables.

BNs are based upon the concept of conditional independence among variables. This
concept makes a factorisation of the probability distribution of the n-dimensional random
variable (Xi,...,X,) possible in the following way:

P, 5 = []PGxIpat)

where x; represents the value of the random variable X;, and pa(x;) represents the
value of the random variables parents (direct precessors in the graphical representation)
of Xi.

Thus, in order to specify the probability distribution of a BN, one must give prior
probabilities for all root nodes (nodes with no predecessors) and conditional probabilities
for all other nodes, given all possible combinations of their direct predecessors. These
numbers in conjunction with the DAG, specify the BN completely.

Once the network is constructed, it constitutes an efficient device to perform
probabilistic inference. This probabilistic reasoning inside the net can be carried
out by exact methods [3,24], as well as by approximate methods [13,32]. Nevertheless,
the problem of building such a network remains. The structure and conditional
probabilities necessary for characterising the network can be either provided externally
by experts or obtained, as in this paper, from an algorithm which automatically induces
them.
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4.2. Bayesian networks as classifiers

During the last 5 years a good number of algorithms with the aim of inducing the structure
of the Bayesian network that best represents the conditional independence relationships in a
database of cases have been developed. We are using the well-classified percentage of cases
as fitness of the BNs structures. In our opinion, the main reason for continuing the research
in the structure learning problem is that modelling the expert knowledge has become an
expensive, unreliable and time-consuming job. See [12] for a good review.

4.2.1. Naive Bayes approach
This simple, but effective approach, assumes independence among all the predictor
variables given the class. In this model the Bayesian network structure is fixed, having all
predictor variables as sons of the variable to be predicted, as can be seen in Fig. 4.
Although this independence assumption seems to be very strong, this approach works
very well in the medical world, perhaps because chosen symptoms usually have some
degree of independence.

4.2.2. Markov Blanquet approach

The Naive Bayes method takes the fact that there is a special variable to be classified into
account. However, this approach does not manage the intrinsic semantics of BNs in an
adequate manner.

Taking into account that in a BN any variable is influenced only by its Markov Blanquet
(MB), that is, its parent variables, its children variables and the parent variables of its
children variables, it would therefore seem to be intuitive to do the search in the set of
structures that are MB of the variable to be classified. A general Markov Blanquet structure
with respect to the class variable C can be seen in Fig. 5.

This concept of Markov Blanquet has been used for the construction of Bayesian
network classifier by Friedman et al. [10] and by Sierra and Larrafiaga [38].

4.3. Genetic algorithm
The computing complexity inherent in a great number of real problems of combinatorial

optimisation has carried, as a consequence, the development of heuristic methods that try to
tackle these problems successfully. A heuristic is a procedure which will give a good

Fig. 4. Naive Bayes structure.
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Fig. 5. General Markov Blanquet structure.

solution — not necessarily the optimal —to problems which can be catalogued as
difficult, if you try to solve them looking for the exact solution. Although there are
heuristics developed for specific problems, in the past years there has been an explosion in
the applications of what we could call meta-heuristics, because their formulation is
independent of the problem to solve. Among the most studied meta-heuristics, we quote
simulated annealing, tabu search and genetic algorithms.

Genetic algorithms [11] are adaptive methods that can be used for solving problems of
search and optimisation. They are based on the genetic process of living organisms.
Through generations, the populations evolve in nature according to the principles of natural
selection and survival of the fittest postulated by Darwin. Imitating this process, genetic
algorithms are capable of creating solutions for real world problems.

Genetic algorithms use a direct analogy with natural behaviour. They work with a
population of individuals, each individual representing a feasible solution to a given
problem. To each individual we assign a value or score according to the goodness of its
solution. The better the adaptation of the individual to the problem, the more likely it is that
the individual will be selected for reproduction, crossing its genetic material with another
individual selected in the same way. This cross will produce new individuals, offspring of
the previous, which will share some of the features of their parents. In this way, a new
population of feasible solutions is produced, replacing the previous one and verifying the
interesting property of having greater proportion of good features than the previous
population. Thus, through generations good features are propagated among the population.
Favouring the cross of the fittest individuals, the most promising areas of the search space
are being explored. If the genetic algorithms have been well designed, the population will
converge to an optimal solution of the problem.

Fig. 6 summarises the pseudo-code for the so-called abstract genetic algorithm where
parent selection does not need to be done by assigning a value proportional to its objective
function to each individual, as is usual in the so-called simple genetic algorithm. This
selection can be carried out by any function that selects parents in a natural way. It is worth
noticing that descendants are not necessarily the next generation of individuals, but that this
generation is made by a selection done from the union of parents and descendents. As a
result, the operations of extension and reduction in the cycle are needed.
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Abstract Genetic Algorithm

begin AGA

Make initial population at random

WHILE NOT stop DO
BEGIN
Select parents from the population
Produce children from the selected parents
Mutate the individuals
Exztend the population by adding the children to it
Reduce the extended population
END

Output the best individual found

end AGA

Fig. 6. The pseudo-code of the abstract genetic algorithm.

4.4. Obtained model

In this paper, we use a methodology for automatically inducing Bayesian networks with
a Markov Blanquet structure with respect to the class variable based on genetic algorithms
[38].

In this approach, each individual in the genetic algorithm will be a Bayesian network
structure, and all the predictor variables form the so-called Markov Blanquet of the variable
to be classified.

In Fig. 7 the structure of the induced MB structure is presented. As shown, given a
datafile of cases, we learn the model for each of the level-0 classifiers, and then we learn the
structure of the Bayesian network that maximises the performance as classifier system.

5. Experimental results

In order to give a real perspective of applied methods, we use 10-fold cross-validation
[40] in all the experiments. The data has been collected at the ICU service of the Canary
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Fig. 7. Bayesian network structure.
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Table 1

ICU datafile variables

Variable Type Explanation

APACHE II Continuous Medical standard method (probability)
SAPS 1I Continuous Medical standard method (probability)
MPM 11 Continuous Medical standard method (probability)
Age Continuous Years old

Sex Discrete Patient sex

Comes from Discrete The place the patient comes from
Admission Discrete Date

Readmision Discrete Date

Cause Discrete Hospital internal code

Days before Continuous Days at hospital before charged at ICU
Diagnose code Discrete Hospital internal code

Diagnose sub-code Discrete Hospital internal code

Islands University Hospital, and have been used by Serrano et al. [37] in another kind of
medical experiments.

5.1. Datafile

The datafile used in this experimentation contain data about ICU patients at Canary
Islands University Hospital. As seen in Table 1, the probabilities given by APACHE II,
SAPS II and MPM 1I as well as some patient data have been taken into account.

The accuracy of each standard medical method in the survival classification is shown in
Table 2. This is not comparable with used methods, because it cannot be done with cross-
validation. So, we can suppose that there may be an overfitting in the percentages of well
classified cases.

We have carried out the experiments with the above datafile using all level-0 classifiers.
Table 3 shows the experimental results obtained.

As we can see, by using ML standard approaches the best results (cross-validated) are
obtained with oneR [15]. The reason for this could be found in the existence of a variable
(APACHE II) which captures vital information about a patient’s state of health, having a lot
of classification power, as can be seen in the work of Sierra et al. [39]. Therefore, more

Table 2
Accuracy level percentage of the probabilities standard medical methods with different separator numbers
(thresholds)

Threshold

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
APACHE 11 79.42 83.14 84.05 85.37 86.45 86.86 87.11 86.44
MPM II 83.64 83.47 83.80 85.12 85.70 85.79 86.61 86.52

SAPS 1I 78.43 80.00 81.16 82.07 83.06 84.63 85.15 85.62
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Table 3
Details of accuracy level percentage estimations obtained using standard machine learning algorithms and the
multi-classifier introduced

Inducer 10-Fold cross-validation accuracy
D3 73.64 £1.55
C4.5 79.59 £1.85
NB 75.64 £1.53
NBTree 62.64 £2.64
IB1 64.30 £2.84
oneR 84.55+1.35
cn2 77.52 £1.67
Ripper 80.81+1.14
1B4 63.63 £1.22
Multi-classifier 87.27+1.07

complex approaches do not induce a model as good as oneR; decision trees with 2-depth
(ID3, C4.5), Bayesian structures containing all predictor variables (NB, NBTree), nearest
neighbour approaches considering all the features (IB1, IB4), and more complex decision
rule inducers (cn2, Ripper [7]), induce models that are more complex than the one by oneR;
however, they do not necessarily outperform it, as evidenced by Holte [15].

The multi-classifier can be seen as a classification model which combines the models
and predictions induced by ML standard approaches outperforming the single model
induced by oneR and APACHE II feature.

6. Conclusion and further work

In our experiments, we have run these single methods using leave-one-out and we have
generated other datafile containing obtained classification for each case and each classifier.
Using this second datafile we have learned a Markov Blanquet Bayesian network structure
by using a genetic algorithm. We then ran this classifier using 10-fold cross-validation.

A new multi-classifier construction method is presented in this work for predicting the
survival of patients at ICU that outperform existing standard machine learning methods by
combining them.

As further work, this method will be applied taking the specificity and sensitivity of the
data we are using into account, and the method will be applied to bigger databases.
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