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ABSTRACT

Motivation: Nowadays, publishers of scientific journals face the
tough task of selecting high-quality articles that will attract as many
readers as possible from a pool of articles. This is due to the growth
of scientific output and literature. The possibility of a journal having
a tool capable of predicting the citation count of an article within
the first few years after publication would pave the way for new
assessment systems.
Results: This article presents a new approach based on building
several prediction models for the Bioinformatics journal. These
models predict the citation count of an article within 4 years
after publication (global models). To build these models, tokens
found in the abstracts of Bioinformatics papers have been used as
predictive features, along with other features like the journal sections
and 2-week post-publication periods. To improve the accuracy
of the global models, specific models have been built for each
Bioinformatics journal section (Data and Text Mining, Databases
and Ontologies, Gene Expression, Genetics and Population Analysis,
Genome Analysis, Phylogenetics, Sequence Analysis, Structural
Bioinformatics and Systems Biology). In these new models, the
average success rate for predictions using the naive Bayes and
logistic regression supervised classification methods was 89.4% and
91.5%, respectively, within the nine sections and for 4-year time
horizon.
Availability: Supplementary material on this experimental survey is
available at http://www.dia.fi.upm.es/∼concha/bioinformatics.html
Contact: aibanez@fi.upm.es

1 INTRODUCTION
Publishers nowadays face the problem of deciding which of the
many papers they receive are of higher quality for publication in
their journals. The current method used for article assessment is
peer review. This process involves two or more authors reading and
discussing different papers to determine the validity of the ideas and
results, and their potential impact on the world of science.

Although if used properly peer review is assumed to be the most
reliable system, it is slow, expensive and unwieldy (Cobo et al.,
2007; Mulligan, 2005; Scarpa, 2006). Other authors contest this
appraisal (Hanks, 2005; Horrobin, 2001). This difference of opinion
among authors has led to the development of several quantitative
metrics associated with scientific production. One such metric is
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citation count. Citation count is the number of citations received
by a paper in a period of time. Although citations are a measure of
visibility, they can be considered as an indirect measure of article
quality. The aim of this measure is to mirror the impact and quality
of papers (Bornmann and Daniel, 2008).

Our work is based on the construction of predictive models to
forecast the citation count of a paper within 4 years after publication.
For this study we focus on papers published in Bioinformatics from
January 1, 2005 to December 31, 2007. The supervised classification
methods used in this article are Bayesian networks (naive Bayes and
K2), logistic regression, decision trees and the K-nearest neighbor
(K-NN) algorithm. These methods will be compared with each other.

2 RELATED WORK
In recent years, several researchers have investigated the prediction
of citation count. Their work differs primarily as regards the
prediction time horizon for the citation count and the predictive
features used.

Several papers predict the number of citations using information
gathered after publication. Brody et al. (2005) used download data
within 6 months after publication as a predictive feature. However,
the aim was to show the Open Access advantage. Castillo et al.
(2007) used the number of citations, the authors’ reputation and the
source of the paper citations as predictive features. Lokker et al.
(2008) used features related to the article and journal, like number
of authors, pages, references and so on.

These three works used measures taken after the paper was
published to predict its citation count in the future. The main
disadvantage of using this feature is that the required values are
not available until after publication.

On the other hand, others papers like Fu and Aliferis (2008)
attempt to forecast citation count with the information available
at the time of publication. Fu and Aliferis (2008) predict citation
count within 10 years after publication with bibliometric information
(number of articles for the first author, number of citations for the
first author, number of authors, number of institutions and so on),
the journal impact factor and the content of the article (title, abstract
and MeSH terms). All these features are available at the time of
publication. Support vector machine classification models were used
as the learning algorithm. Predictions were made for a simple binary
response variable that is defined by a set of citation thresholds to
determine if an article is labeled positively or negatively. For a given
threshold t, a positive label means that an article received at least
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t citations within 10 years after publication. These thresholds were
20 (mildly influential), 50 (relatively influential), 100 (influential)
and 500 (extremely influential). Depending on the threshold used,
the models output area under the receiver operating characteristic
(ROC) curve (AUC) values ranging from 0.857 to 0.918.

As in Fu and Aliferis (2008), we also deal with the response
variable as a discrete variable. Unlike Fu and Aliferis (2008), the
variable that counts the number of citations is discrete rather binary
but, taking three possible values (few, some and many citations).
This leads to the use of classification methods rather than regression
models to predict citation counts. Unlike Fu and Aliferis (2008)
that use only support vector machines, we will take into account
several classification methods and analyze which one provides
better predictions for the problem. Moreover, our models will be
constructed especially to predict annual time horizons (each of
the first 4 years after publication) and for each Bioinformatics
journal section. The information required from each article is its
abstract content and the number of 2-week periods after publication.
Hence, as opposed to other previous models described above that
require information that is not available until after publication, our
predictions will be available at publication time. Also, we will
exploit the information output by the model, like the identification of
key features (e.g. words in the abstract) that increase the chances of
citation. This method can actually inform publishers about which
articles will have a bigger impact in the future before they are
published.

3 METHODS

3.1 Dataset
In the following, we illustrate the different phases for building the predictive
models. In this article, we will build two different types of predictive models:
global models and specific models. Global models attempt to predict the
number of citations received by an article within each of the 4 years after
publication, using information on all papers published in Bioinformatics over
3 years, from January 1, 2005 to December 31, 2007. Specific models have
the same objective but, in this case, they use the information related to articles
published within a specific Bioinformatics journal section.

The collection of abstracts published in Bioinformatics is the starting point
for the construction of predictive models.

3.1.1 Collecting abstracts We selected Bioinformatics as the journal
for this study. The basic elements of this work are the abstracts
published in the Bioinformatics journal sections (Data and Text Mining,
Databases and Ontologies, Gene Expression, Genetics and Population
Analysis, Genome Analysis, Phylogenetics, Sequence Analysis, Structural
Bioinformatics and Systems Biology) from 2005 to 2007. Before that
date, no such sections existed. We accessed the Bioinformatics web site
(http://bioinformatics.oxfordjournals.org/) to collect these abstracts. Once
we had gathered this information, we stored the abstracts, the journal section
and the number of 2-week periods from the beginning of the year to the
publication date in a database designed for this purpose. This database is
available at our web page.

3.1.2 Indexing abstracts The objective of this step was to use one of the
Lucene library functions to build an index. Using this index, which references
all abstracts in the corpus, we can more easily build datasets.

Lucene is an open source information retrieval library originally
implemented in JAVA (http://lucene.apache.org/). It is used for programming
search engines. Its main objectives are document indexation and retrieval.

3.1.3 Documenting citation count The next phase after collecting and
indexing abstracts was to get the number of citations received by each
article within each year after publication until December 31, 2008. For this
purpose, we accessed the information available in the Web of Knowledge
(http://www.isiknowledge.com/). The Web of Knowledge platform is
composed of several databases. We chose the Web of Science (WoS) database
as our citation count source. The information collected was stored in our
database. This data will belong to the predictive models’ training set.

3.1.4 Extracting tokens Different abstracts will be used depending on the
model to be built (global models or specific models). In the case of global
models, all the abstracts available in our database will be used, whereas
abstracts belonging to the selected section will be used to build specific
models.

The first step of this process is to output a ranking of tokens ordered by
frequency of occurrence in the abstract set. This ranking is composed of
one-, two- and three-word tokens.

The second step is to filter the ranking to reduce the large number of
different tokens. The proposed filter is based on removing tokens that appear
only occasionally in the abstract set. In this way, tokens that have a frequency
of occurrence of less than three will be removed.

The next phase eliminates tokens that are repeated frequently and are
irrelevant to the case study. For example, prepositions and articles are classic
examples of stopwords. Generally, these tokens appear in all abstracts, and
play no role in building the predictive model.

The last step is to associate tokens with their morphological root. We used
the Porter algorithm provided by Lucene.

3.1.5 Building the dataset To construct the final dataset we need the
information stored in our database, the tokens output by the above process
and data from searches in the Lucene index.

In this step, we must design the dataset structure. The dataset structure
will be different depending on the model to be built. The dataset structure of
global models is made up of the Section, Date, Token-1, ..., Token-n features
and Citation variable; whereas the specific models have the same structure
except for the Section feature, which is constant.

In the case of global models, Section can take the values: 1-Data and
Text Mining, 2-Databases and Ontologies, 3-Gene Expression, 4-Genetics
and Population Analysis, 5-Genome Analysis, 6-Phylogenetics, 7-Sequence
Analysis, 8-Structural Bioinformatics and 9-Systems Biology. These values
correspond to the different Bioinformatics journal sections.

The feature Date refers to the number of 2-week periods from the
beginning of the year to the publication date. It can take the values
{1, 2, ... , 24}.

Token-i are the features that belong to the list of the tokens output in
Section 3.1.4. These features are binary, and take the value 1 or 0 depending
on whether or not the token is present in the selected abstract.

Finally, the Citation variable corresponds with the class label. It can take
the values {few, some, many}. The first value, few, describes papers that
receive at most one citation in a specific year according to the WoS. The
value some applies to papers that receive 2, 3 or 4 citations in a year. And
finally, the value many refers to papers that receive a number of citations
equal to or greater than five.

3.2 Supervised classification methods
3.2.1 Selecting features To determine whether all dataset features are
equally important or necessary to discriminate between the values {few,
some, many}, we ran feature selection. The objective of feature selection
is to build parsimonious models. Features that are irrelevant or redundant
will not appear in these models. The benefits of applying feature selection
include better classification performance, faster classification models,
smaller databases and the ability to gain more insight into the process that
is being modeled (Saeys et al., 2007).
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Table 1. Distribution of the data (papers), according to nine journal sections and citation count (few, some and many) across the 4-year time horizon

Number of papers

First-year Second-year Third-year Fourth-year

Total f s m Total f s m Total f s m Total f s m

1-Data and Text Mining 88 81 7 0 88 39 31 18 50 10 17 23 24 8 7 9
2-Databases and Ontologies 37 32 3 2 37 13 14 10 25 6 8 11 15 6 3 6
3-Gene Expression 283 253 26 4 283 107 114 62 192 38 66 88 107 23 37 47
4-Genetics and Population Analysis 46 41 5 0 46 19 16 11 27 7 9 11 21 1 11 9
5-Genome Analysis 103 93 9 1 103 26 46 31 82 19 27 36 53 11 22 20
6-Phylogenetics 28 23 4 1 28 6 14 8 20 2 9 9 11 2 4 5
7-Sequence Analysis 190 170 16 4 190 73 77 40 141 49 46 46 82 22 31 29
8-Structural Bioinformatics 150 130 19 1 150 49 55 46 103 22 35 46 54 6 13 35
9-Systems Biology 161 140 20 1 161 56 65 40 100 14 32 54 53 3 12 38

All journal sections 1086 963 109 14 1086 388 432 266 740 167 249 324 420 82 140 198

f = few, s = some, m = many. Numbers in boldface represent the total number of papers belonging to a journal section in a particular year.

In this case, we used correlation-based feature selection (CFS) (Hall,
1999) as our feature selection algorithm. The basic idea behind this algorithm
is to find a good set of features that are highly correlated with the class to be
predicted (in our case Citation), but are not correlated with each other. CFS
is a filter (Kohavi and John, 1997) that uses a correlation-based heuristic
algorithm to evaluate each feature subset.

3.2.2 Naive Bayes This method (Minsky, 1961) is a Bayesian classifier.
It is based on the Bayes’ theorem under the assumption of conditional
independence of predictors given the class.

3.2.3 K2 This algorithm greedily learns a Bayesian network from a
dataset by using the marginal likelihood score (Cooper and Herskovits,
1992). Starting from the empty graph and a fixed order of the variables,
this algorithm adds a variable as a parent to a given variable whenever its
inclusion represents an improvement in the marginal likelihood score.

3.2.4 Logistic regresion The probability of an event is assumed to be
a logistic function of certain variables that are considered potentially
influential. The parameters of the model are estimated using the method
of maximum likelihood and describe the size of the contribution of each
variable to the model (Hosmer and Lemeshow, 2000).

3.2.5 C4.5 The C4.5 algorithm aims at inducing a decision tree that
represents the knowledge of the problem with a tree structure by a recursive
division of the predictors’ space. This algorithm is an improvement of the
ID3 algorithm (Quinlan, 1993).

3.2.6 K-NN The basic idea of the K-NN method is that a new case will
be classified as the most frequent class among its K-NN. Euclidean distance
is used to estimate the nearest neighbors of a given case (Hart, 1968).

3.3 Assessment procedure
We chose k-fold cross-validation as the procedure for estimating the
probability of models classifying new cases according to the value of the
predictive features. This method divides all cases from the dataset into k
disjoint subsets of approximately equal size. Each subset is used to test a
model that is learned from the other k−1 subsets. The k percentages of
well-classified cases are averaged to output the estimated value of the model
learned from all cases to classify new cases (Stone, 1974).

4 RESULTS
We used an open source machine learning package called Weka
(Witten and Frank, 2005) to output the results shown below.
In this research, we used the following Weka implementations:
NaiveBayesSimple for naive Bayes, BayesNet (K2) for general
Bayesian networks, Logistic for logistic regression, J48 for decision
trees and IBK for the K-NN algorithm.

4.1 Data distribution
Table 1 shows the distribution of the articles selected in this research.
This table illustrates the number of papers belonging to a journal
section in a particular year. Furthermore, it shows the distribution
associated with each value of the class to be predicted.

The number of articles selected to build the predictive models
varies depending on the year. To construct the models assigned
to the first- and second-year, articles published in the years 2005,
2006 and 2007 were used (1086 papers). On the other hand, the
models for the third-year used papers published in 2005 or 2006
(740 papers), and finally, the predictive models for the fourth-year
used articles published in 2005 only (420 papers). Clearly, the longer
the prediction horizon is the fewer papers are used to induce the
models.

To give an understanding of the meaning of Table 1, some
examples are explained below. The value (All journal sections;
Second-year; Total) shows that 1086 articles are available to induce
the global models in the second-year. According to the number of
citations received, these articles are further divided into few (388),
some (432) and many (226). Table 1 also lists the number of papers
used in the specific models. For example, the models associated with
5-Genome Analysis and third-year use 82 papers.

Analyzing Table 1, we find that the number of articles used in the
first-year is 1086. Section 3-Gene Expression accounts for 26.01%
of all these articles. This is the section with most associated articles.
At the other end of the spectrum, the sections with fewer papers in
the first-year are 2-Databases and Ontologies (3.41%), 4-Population
Genetics and Analysis (4.23%) and 6-Phylogenetics (2.58%). The
sections with more and fewer papers are the same across all years.
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4.2 Global models
Several global models have been constructed for predicting the
citation count of all the articles within 4 years after publication.
Each model is associated with one of the 4 years to be predicted and
one of the five supervised classification methods studied. Table 2
shows the results for each model.

These results could be better since apart from first-year models,
model accuracy is <80%. There are some classification methods that
provide better results than others. In this case, Bayesian classifiers

Table 2. Accuracy and SD of global models

All journal sections

First-year Second-year Third-year Fourth-year

NB 91.4± 1.62 57.4± 6.08 68.9± 5.07 75.9± 6.39
K2 89.7± 2.54 57.4± 5.38 65.3± 4.48 69.1± 6.83
LR 84.7± 3.95 56.6± 2.75 59.3± 5.56 62.8± 7.20
C4.5 88.2± 0.47 48.8± 4.02 48.6± 4.69 55.0± 4.74
K-NN 88.5± 0.73 44.6± 4.72 38.5± 4.55 54.3± 4.95

NB = naive Bayes, K2 = K2 algorithm, LR = logistic regression, C4.5 = C4.5.

have a higher average success rate within the 4 years (naive Bayes:
73.40% and K2: 70.37%), whereas logistic regression (65.85%),
decision trees (60.15%) and K-NN (56.47%) yield the worst results.

Although the first-year model has a much higher success rate than
the models for the other years, the results are not satisfactory. This is
because most cases belong to the few class (Table 1), and this is an
obstacle to learn about the some and many classes since models avoid
classifying cases into these classes. The C4.5 and K-NN methods
especially tend to make this error for the first-year time horizon,
whereas Bayesian classifiers and logistic regression are not prone to
this error. The confusion matrices associated with these models are
available at our web page.

4.3 Specific models
In response to accuracy concerns in the global models, new specific
models were developed. Each model is associated with one of the
nine journal sections, one of the four time horizons and one of the
five supervised classification methods studied. Table 3 shows results
for the new models.

Table 3 shows that the results depend of the journal section, the
time horizon and the supervised classification method used. The
highest percentage of correctly classified cases is 100%, which

Table 3. Accuracy and SD of specific models

Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Section 8 Section 9

First-year 7 features 7 features 30 features 5 features 11 features 18 features 33 features 54 features 48 features

NB 96.6± 5.42 91.9± 12.1 94.0± 4.42 95.6± 8.45 93.2± 4.73 100 ± 0.00 95.8± 3.58 97.3± 3.42 96.9± 3.32
K2 95.6± 5.74 92.5± 12.1 94.0± 3.26 98.0± 6.32 92.3± 4.09 96.7± 10.5 96.3± 3.55 95.3± 4.50 96.3± 3.20
LR 98.9± 3.53 86.5± 17.7 90.8± 2.55 95.7± 8.46 94.2± 5.06 92.9± 14.0 94.7± 4.36 92.0± 4.26 91.9± 4.81
C4.5 92.0± 5.42 86.5± 13.2 90.1± 2.22 89.1± 10.5 90.3± 0.48 82.1± 17.6 89.5± 2.53 86.7± 3.19 88.2± 3.59
K-NN 92.0± 5.42 86.5± 13.2 89.4± 0.22 89.1± 10.5 90.3± 0.48 82.1± 17.6 89.5± 0.00 86.7± 0.00 87.0± 1.65

Second-year 71 features 50 features 187 features 52 features 109 features 29 features 128 features 134 features 106 features

NB 82.9± 12.3 89.2± 21.9 86.2± 6.23 84.8± 14.1 86.4± 6.59 89.3± 16.1 85.3± 6.65 88.7± 7.20 87.0± 8.52
K2 69.3± 15.4 72.5± 23.3 75.3± 7.39 78.0± 15.3 70.6± 14.5 70.0± 24.6 80.0± 7.94 68.0± 12.1 80.8± 11.5
LR 96.6± 5.43 94.6± 12.4 90.1± 5.42 95.7± 9.62 95.1± 6.93 92.9± 14.0 95.3± 5.87 94.7± 7.60 93.2± 6.17
C4.5 56.8± 11.4 37.8± 11.3 53.7± 6.06 58.7± 22.8 61.2± 14.9 57.1± 30.6 58.9± 8.03 54.0± 6.90 56.5± 9.60
K-NN 53.4± 9.34 73.0± 20.1 62.2± 8.94 50.0± 17.1 63.1± 15.5 60.7± 24.6 57.4± 7.91 72.7± 15.5 60.2± 9.35

Third-year 58 features 37 features 143 features 37 features 87 features 18 features 149 features 109 features 83 features

NB 90.0± 14.1 80.0± 21.9 85.9± 6.81 88.9± 22.5 95.1± 6.34 85.0± 24.1 86.5± 7.14 89.3± 11.0 84.0± 11.7
K2 72.0± 21.5 73.3± 25.1 70.8± 7.23 63.3± 28.1 72.9± 14.4 90.0± 21.1 71.7± 14.2 77.0± 15.4 77.0± 14.9
LR 94.0± 9.78 100 ± 0.00 90.6± 7.74 92.6± 14.0 93.9± 6.66 100 ± 0.00 95.7± 5.09 93.2± 6.70 93.0± 8.20
C4.5 50.0± 14.1 48.0± 12.3 66.7± 7.86 48.1± 21.4 54.9± 9.78 70.0± 35.0 58.2± 9.23 58.3± 11.1 57.0± 11.6
K-NN 64.0± 15.8 52.0± 12.3 54.7± 8.70 92.6± 21.1 58.5± 14.2 75.0± 26.3 58.9± 9.12 65.1± 11.4 60.0± 6.70

Fourth-year 32 features 12 features 91 features 25 features 58 features 10 features 80 features 39 features 22 features

NB 91.7± 21.1 80.0± 24.1 86.0± 4.53 90.5± 18.0 90.6± 9.93 81.8± 42.2 93.9± 10.6 87.0± 12.0 90.6± 13.9
K2 73.3± 33.5 70.0± 34.9 71.3± 16.9 86.7± 21.9 77.7± 22.7 80.0± 42.1 75.6± 15.7 83.7± 9.90 88.3± 13.8
LR 91.7± 18.0 66.7± 45.9 93.4± 10.8 85.7± 24.9 88.7± 15.7 63.7± 51.6 95.1± 12.1 81.5± 19.8 90.6± 19.4
C4.5 33.3± 24.1 26.7± 35.4 55.1± 15.8 66.7± 27.7 41.6± 14.1 63.7± 47.4 59.8± 10.2 59.3± 18.6 69.8± 11.1
K-NN 83.3± 24.1 53.3± 40.8 72.9± 14.8 66.7± 27.7 58.5± 16.3 45.4± 49.7 63.4± 19.9 68.5± 9.30 71.7± 8.80

Numbers in boldface represent an average success rate better than 95%.
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was achieved on three occasions by the naive Bayes and logistic
regression methods. On the other hand, the results were poorest for
the C4.5 and K-NN methods that output values of <50%.

Table 3 also shows the number of features accounted for the
different predictive models. Fixing a specific journal section and
analyzing the average number of features within the 4-year time
horizon, we observe that sections with fewer features are 6-
Phylogenetics (18.75) and 2-Databases and Ontologies (26.5),
whereas the sections with most features are 3-Gene Expression
(112.75) and 7-Sequence Analysis (97.5).

Looking at the behavior of the classifier for each value to be
predicted {few, some, many}, Table 4 shows the confusion matrices
of the models associated with sections 1-Data and Text Mining and
2-Databases and Ontologies, and with the logistic regression and
decision trees methods, respectively. These models were chosen
because they are the ones that are most and least accurate within
each of the four time horizons, respectively (Table 3).

To check the good behavior of the logistic regression method,
we focus, for example, on the confusion matrix of 1-Data and Text
Mining and the second-year model. This matrix shows that the total
number of cases to be predicted is 88. Of these, 85 cases are well
classified (96.6%) and three cases are wrongly classified (3.4%).
Analyzing each value of the class, we find that the success rate for
the values few and some is 100%, whereas three errors are made
for the value many, where one is classified as few and two as some.
On the other hand, the confusion matrix of the 2-Databases and
Ontologies and fourth-year model is an example of the poor behavior
of C4.5. In this case, the model tries to predict 15 cases, of which
four are well classified (26.7%) and the rest are wrongly classified
(73.3 %). Analyzing the different values of the class, we find that
the success rate for the values for few and many is 33%, whereas
success for the value for some is 0%, where all instances of this
value are classified as many rather than as some.

Figures 1 and 2 illustrate the results of these new specific models.
In Figure 1, the height of the bars indicates the average percentages
for the different classifiers within the four time horizons, with a
fixed journal section. Taking the first bar as an example, the value

displayed is 90.3%. This value is the mean accuracy for naive Bayes
applied to 1-Data and Text Mining averaged across the four time
horizons.

Figure 1 shows that the journal section predicted with the highest
success rate is method dependent. Logistic regression and naive
Bayes achieve some notable results. Logistic regression predicts the
1-Data and Text Mining journal section with a 95.30% success rate
across the four time horizons, whereas naive Bayes predicts the
5-Genome Analysis with an average accuracy of 91.32% across the
four time horizons. On the other hand, the 4-Genetics and Population
Analysis journal section has the highest average percentage of cases
well classified by all five algorithms (80.82%), whereas 2-Databases
and Ontologies is the journal section with the lowest percentage of
well classified cases with an average accuracy of 73.05% for all the
tested algorithms.

On the other hand, the height of the bars in Figure 2 indicates the
average percentages scored by the different classifiers for the nine
journal sections studied with a fixed year of publication. Taking the
first bar as an example, the value displayed is 95.70%. This value is
the mean accuracy of applying the naive Bayes classification method
for the first-year of publication averaged over all journal sections.

The best average results are for the first time horizon at 92.06%
across all classifiers. The second, third and fourth time horizons
have many similarities with each other, where percentages range
from 73% to 75%. Looking at the scores for each algorithm, note
that naive Bayes, K2, C4.5 and K-NN predict the first-year more

Fig. 1. Average accuracy within the four prediction years by each section
and classification method.

Table 4. Confusion matrices of two specific models (logistic regression and decision trees models).

Section 1-Data and Text Mining (logistic regression)

First-year (98.9± 3.53) Second-year (96.6± 5.43) Third-year (94.0± 9.78) Fourth-year (91.7± 18.0)

a b c← Classified as a b c← Classified as a b c← Classified as a b c← Classified as
81 0 0 | a = few 39 0 0 | a = few 10 0 0 | a = few 8 0 0 | a = few
1 6 0 | b = some 0 31 0 | b = some 0 17 0 | b = some 0 7 0 | b = some
0 0 0 | c = many 1 2 15 | c = many 0 3 20 | c = many 2 0 7 | c = many

Section 2-Databases and Ontologies (C4.5)

First-year (86.5± 13.2) Second-year (37.8± 11.3) Third-year (48.0± 12.3) Fourth-year (26.7± 35.4)

a b c← Classified as a b c← Classified as a b c← Classified as a b c← Classified as
32 0 0 | a = few 7 5 1 | a = few 1 0 5 | a = few 2 0 4 | a = few
3 0 0 | b = some 7 6 1 | b = some 2 0 6 | b = some 0 0 3 | b = some
2 0 0 | c = many 6 3 1 | c = many 0 0 11 | c = many 2 2 2 | c = many

Numbers in boldface represent the total number of well-classified cases in each class.
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accurately. However, logistic regression predicts the third-year more
accurately, although this result is not significant compared with first-
and second-year results (Fig. 2).

After analyzing all results, we can conclude that logistic
regression and naive Bayes are the supervised classification
methods that solve the problem more accurately. Comparing these
methods, logistic regression achieves a higher success rate, scoring
91.55% on average across the nine sections within the four time
horizons, whereas naive Bayes attains 89.38%. Additionally, these
methods are the only ones that correctly classified 100% of cases
for a specific year and section (Table 3). Regarding the journal
sections and time horizons, logistic regression specializes in section
1-Data and Text Mining (95.30%) and in the third-year (94.78%),
whereas naive Bayes specializes in 5-Genome Analysis (91.32%)
and the first-year (95.70%).

4.4 Exploiting the best models
The purpose of this section is to find out whether there are any tokens
that influence an article’s citation counts within the journal sections

Fig. 2. Average accuracy within the nine journal sections by each prediction
year and classification method.

and time horizons. This analysis shows the results of predicting the
number of citations of a new article using the models of the journal
section 6-Phylogenetics in the third-year learned by naive Bayes and
logistic regression models (18 features, see Table 3). Other models
and more predictions are available at our web page.

Analyzing the probability distributions stored in the features of
the naive Bayes model, we find that the fact that an article receives
few, some or many citations determines the probability of occurrence
of tokens in the article. Similarly, if some tokens appear in an article,
they influence the citation count, and thus determine the value of the
class to be predicted.

The three probability columns P(Xi|f ), P(Xi|s) and P(Xi|m)
in Table 5 show the distributions of each token subject to our
class values. These distributions show that there are some tokens
like linear, probability, discussed, automated, time and nucleotide,
which tend to appear more frequently in the papers with few
citations. On the other hand, for papers that have some citations,
these tokens are time, nucleotide, dynamic, entire, independent,
compared, interaction, clustering and protein. Finally, parameter,
performance, analyze, researchers, likelihood based, linear and
probability are the tokens with a higher frequency of occurrence
in articles that receive many citations.

The above probabilities and the marginal probability of each class
value P(C=c) with c= f, s, m (Table 1), are the basic elements of
the naive Bayes model used to predict the citation count of a specific
paper (xxx). This model is

P(C=c |xxx)∝P(C=c)
n∏

i=1

P(Xi=xi |C=c).

On the other hand, the logistic regression model requires some
coefficients (βi) to calculate the class value with higher a posteriori

Table 5. Parameters that define naïve Bayes and logistic regression models

P(Xi=1|C=c) Coeff . LR New article

Feature (Xi) P(Xi|f ) P(Xi|s) P(Xi|m) β
f
i βs

i xxx

Parameter 0.25 0.09 0.27 −6.76 −10.93
Performance 0.25 0.09 0.27 −6.76 −10.93
Analyze 0.25 0.09 0.36 −12.35 −11.57

√
Researchers 0.25 0.09 0.27 −7.53 −10.93

√
Likelihood based 0.25 0.09 0.27 −8.13 −10.93
Linear 0.50 0.09 0.27 −13.17 −11.57
Probability 0.50 0.09 0.27 −3.18 −11.57
Discussed 0.75 0.09 0.09 28.34 −10.93
Automated 0.50 0.09 0.09 26.85 −10.35

√
Time 0.50 0.36 0.09 12.38 7.22
Nucleotide 0.50 0.36 0.09 12.38 7.22

√
Dynamic 0.25 0.27 0.09 5.22 12.19

√
Entire 0.25 0.27 0.09 5.22 12.20

√
Independent 0.25 0.36 0.09 5.53 12.91
Compared 0.25 0.45 0.09 5.88 13.72

√
Interaction 0.25 0.27 0.09 5.22 12.20
Clustering 0.25 0.27 0.09 5.22 17.42

√
Protein 0.25 0.45 0.09 5.88 13.72

Intercept (β0) −16.1833 −3.6972

Naive Bayes and logistic regression models have been used for predicting the number of citations in the third year of a new
article published in section 6-Phylogenetics. Numbers in boldface represent the highest probability values in each class.
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probability. These coefficients are shown in the middle columns

(βf
i and βs

i ) of Table 5. The models used for these predictions are

P(C= f |xxx)= e(βf
0+

∑n
i=1β

f
i xi)

1+e(βf
0+

∑n
i=1β

f
i xi)+e(βs

0+
∑n

i=1β
s
i xi)

P(C=s |xxx)= e(βs
0+

∑n
i=1β

s
i xi)

1+e(βf
0+

∑n
i=1β

f
i xi)+e(βs

0+
∑n

i=1β
s
i xi)

P(C=m |xxx)=1−P(C= f |xxx)−P(C=s |xxx).

The new case to be predicted is shown in the last column of
Table 5. This new case is a paper abstract. Analyze, researchers,
automated, nucleotide, dynamic, entire, compared and clustering
are the tokens that appear in the abstract. After propagating this
evidence, the results predicted by naive Bayes are P(f |xxx)=0.30,
P(s|xxx)=0.67 and P(m|xxx)=0.03. On the other hand, the results
predicted by logistic regression are P(f |xxx)=0.18, P(s|xxx)=0.81 and
P(m|xxx)=0.01.

The results of both models show that an abstract with the above
tokens published in the journal section 6-Phylogenetics will receive
some citations (i.e. 2, 3 or 4 citations) in the third-year after
publication.

5 CONCLUSIONS
The use of models capable of predicting the citations that an article
will receive in the first few years after publication can be a useful
tool for publishers’ assessment process. For this reason, we focus
on building models to predict the citation count of articles that are
published in Bioinformatics. We predicted citation count in each of
the first 4 years after publication. This time horizon was chosen
considering that it can help to estimate the journal impact factor.

The construction of specific models for each section of
Bioinformatics solved the problems associated with global models.
As a whole, the results of specific models achieved a greater
rate of success across the 4 years than the global models. Model
specialization affects not only the Bioinformatics journal sections,
but also each of the 4 years in the time horizon.

The logistic regression and naive Bayes classification methods
output high average scores in the nine journal sections and across
the four time horizons, achieving rates of 91.5% (AUC = 0.943) and
89.4% (AUC = 0.983), respectively.

We found that the appearance of certain words in the paper
abstracts can influence the number of citations received. The
probabilities assigned and the tokens selected depend on the journal
section and chosen time horizon. The selected tokens could be used
as a point of reference to identify the hot topics.

Unlike the models developed by Brody et al. (2005), Castillo et al.
(2007) and Lokker et al. (2008), the predictions of our models are not
based on information available after publication. Our models use the
information content of the article abstract. In this way, predictions
can be made at publication time, and it is not necessary to wait until
the end of a data collection period to predict citation count.

It could be worthwhile comparing our models with models
proposed by Fu and Aliferis (2008) because, although they use
different features, datasets, response variable and prediction horizon,
they both attempt to predict citations before publication with
tokens contained in the article abstract. However, in our case the
accuracy of the naive Bayes (AUC = 0.983) and logistic regression

(AUC = 0.943) supervised classification methods were higher than
the accuracy achieved by models developed by Fu and Aliferis
(2008) (AUC = 0.918).

In the future, our target will be to build new models that
incorporate other paper-based features (title, keywords, conclusions,
etc.), new author-based features (h-index, number of papers, number
of citations, etc.) and new journal-based features (impact factor,
immediacy index, category, etc.). These models would be induced
using different machine learning methods. The way citation count is
handled influences the results. It could be modeled as a continuous
variable using other methods like regression, regularized regression,
or local regression. Finally, the number of citations could vary
depending on the source consulted (Google Scholar, Scopus, ISI
WoS, etc.) (Bar-Ilan, 2008; Meho and Yang, 2007), which is a point
to be taken into account.
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