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Combining Bayesian classifiers and estimation of distribution
algorithms for optimization in continuous domains

TERESA MIQUÉLEZ, ENDIKA BENGOETXEA, ALEXANDER MENDIBURU
and PEDRO LARRAÑAGA*

Intelligent Systems Group, Computer Engineering Faculty, University of the Basque Country,
San Sebastian, Spain

This paper introduces a evolutionary computation method that applies Bayesian classifiers to
optimization problems. This approach is based on Estimation of Distribution Algorithms (EDAs)
in which Bayesian or Gaussian networks are applied to the evolution of a population of individuals
(i.e. potential solutions to the optimization problem) in order to improve the quality of the individuals
of the next generation. Our new approach, called Evolutionary Bayesian Classifier-based Optimization
Algorithm (EBCOA), employs Bayesian classifiers instead of Bayesian or Gaussian networks in order
to evolve individuals to a fitter population. In brief, EBCOAs are characterized by applying Bayesian
classification techniques – usually applied to supervised classification problems – to optimization in
continuous domains. We propose and review in this paper different Bayesian classifiers for imple-
menting our EBCOA method, focusing particularly on EBCOAs applying naïve Bayes, semi-naïve
Bayes, and tree augmented naïve Bayes classifiers. This work presents a deep study on the behavior of
these algorithms with classical optimiztion problems in continuous domains. The different parameters
used for tuning the performance of the algorithms are discussed, and a comprehensive overview of
their influence is provided. We also present experimental results to compare this new method with
other state of the art approaches of the evolutionary computation field for continuous domains such as
Evolutionary Strategies (ES) and Estimation of Distribution Algorithms (EDAs).

1. Introduction

Evolutionary computation approaches, which are based on storing more than a solution
every iteration, have undergone an important development with paradigms such as genetic
algorithms (GAs) (Holland 1975, Goldberg 1989), evolutionary strategies (ES) (Rechenberg
1973, Hansen et al. 2003, Hansen 2006), and estimation of distribution algorithms (EDAs)
(Larrañaga and Lozano 2001, Lozano et al. 2006, Paaß 1996, Mühlenbein et al. 1999, Pelikan
et al. 1999, Pelikan 2005, Sebag and Ducoulombier 1998). These are examples of classi-
cal approaches that have been the object of a lot of experimentation and literature for many
years. Also, many other evolutionary computation paradigms have been proposed in recent
years, in which the main ideas of these three paradigms are combined together with other
techniques that are able to consider other types of relationships and combinations among
individuals. Examples of the latter are the learnable evolution model (LEM) (Michalski 2000),

*Corresponding author. Email: pedro.larranaga@ehu.es

Connection Science
ISSN 0954-0091 print/ISSN 1360-0494 online © 2007 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/09540090701725524



298 T. Miquélez et al.

and the evolutionary Bayesian classifier-based optimization algorithms (EBCOAs) (Miquélez
et al. 2004).

The main difference between all these evolutionary computation paradigms is the way of
improving the set of solutions, the so-called population of individuals, in order to obtain
fitter solutions to a concrete optimization problem. In GAs and ES the evolution is based on
using crossover and mutation operators, without explicitly expressing the characteristics of the
selected individuals within a population. EDAs take into account these explicit characteristics
by considering the interdependencies between the different variables that form an individual,
and by learning a probabilistic graphical model to represent them.

The approach of LEM, EBCOAs, and other similar methods in this direction (Llorà and
Goldberg 2003, Muñoz 2003) have the distinctive characteristic of applying classification
techniques to build models. These models represent the main features that determine individ-
uals in the same population to be among the fittest or less fit ones. Nevertheless, the added
value of these paradigms is that they are able to also take into consideration less fit individ-
uals of the population in order to enhance and estimate the differences between the best and
worst approaches. This knowledge is later used for instantiating new individuals for the next
generation.

EDAs and EBCOAs can also be regarded as new hybrid soft computing paradigms
(Bonissone et al. 1999) where probabilistic reasoning is combined with evolutionary
computing. In this case, Bayesian networks and Bayesian classifiers are used respectively
to evolve a generation of solutions to a fittest one.

The main motivation to develop EBCOAs was to try to overcome some performance draw-
backs of EDAs. In most optimization problems EDAs obtain quite positive results, although
there are some other specific results for which EDAs converge too fast leading to premature
convergence to local optima. We believe that this behavior could be avoided by paying more
attention to the difference in fitness of the individuals in the population. In that sense, in the
graphical probabilistic model of EDAs (a Gaussian network (Shachter and Kenley 1989) in
continuous domains) only the values of the predictor variables of selected individuals are taken
into account, but once selected, the learning step of EDAs does not distinguish individuals
regarding their relative fitness value†. This learning step is crucial in EDAs since it determines
the convergence success of the whole search, and we deem that the search process could be
considerably improved if the relative fitness value of each of the selected individuals is also
reflected in the learning of the probabilistic graphical model. We propose to do this by adding
a discrete variable to our population. This will enable us to group all the individuals in the pop-
ulation regarding their performance measured by their respective fitness value. In EBCOAs,
individuals are classified – in different subgroups – according to their fitness, and this infor-
mation is used to generate a probabilistic graphical model by applying a Bayesian classifier.
Following this approach, EBCOAs are able to evolve a fitter generation by constructing models
that take into account more aspects than simply a subset of the fittest individuals.

This paper introduces EBCOAs (Evolutionary Bayesian Classifier-Based Optimization
Algorithm) for continuous domains. Continuous EBCOAs generalize the approach presented
in (Miquélez et al. 2004) that was only applicable to discrete domains by applying classifi-
cation techniques in the form of conditional Gaussian networks to improve a population of
individuals every generation. Furthermore, this paper also provides a comprehensive study of
the behavior of EBCOAs on classical continuous optimization problems depending on how
they are parameterized, and compares their performance to other optimization algorithms in
the evolutionary computation field.

†Except from some especial cases such as bit-based simulated crossover (Syswerda 1993).
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The paper is organized as follows: the next section describes the different classification
techniques in the form of conditional Gaussian networks that will be applied in the learning
step of EBCOAs. Section 3 describes EBCOA in continuous domains paying special attention
to the step of learning the classification model which is the core of the whole algorithm, as this
step is the key for a proper evolution to fitter individuals. In this step, the classifiers reviewed
in the previous section are constructed taking into account not only the dependencies between
the different variables that form an individual, but also the respective fitness values of each
individual in the population. Section 4 describes the experiment that we have carried out in
classical optimization problems in the continuous domain, presenting a comprehensive study
of the behavior of this new method, and compares the results obtained by other well known
evolutionary computation techniques. Finally, section 5 provides the conclusions and future
work perspectives on this new method.

2. Bayesian classifiers for continuous domains

Literature reviews suggest several examples of classifiers combined with evolutionary com-
putation techniques. One of the first examples is the LEM algorithm (Michalski 2000) which
makes use of rules to build classifiers that record the main differences between the groups of
best and worst individuals of each population.

In EBCOAs, the classifiers that are used for the same purpose are based on the learning
of probabilistic graphical models. More specifically, in the case of continuous domains, we
apply Bayesian classifiers based on conditional Gaussian networks (Lauritzen and Wermuth
1989). This section starts with a formal description of the supervised classification problem,
followed by a revision of classifiers of this type that have been proposed in the literature for
continuous domains so that they can be applied to continuous EBCOAs.

2.1 The supervised classification problem

The supervised classification problem with n continuous predictor variables consists of assign-
ing any vector x = (x1, . . . , xn) ∈ Rn to one of the |C| classes of a class variable C. The class
value is denoted by c and, therefore, we have that c ∈ {1, 2, . . . , |C|}. As a result, a classifier
in supervised classification is defined as a function γ : (x1, . . . , xn) → {1, 2, . . . , |C|} that
assigns class labels to observations.

The criterion to compare classifiers depends on the use of a cost function that measures the
cost of any misclassified vector. In the specific case of supervised classification, the 0/1 loss
function is defined as the function that considers 1 to be the cost of misclassifying an element
–and 0 if the classification is correct. When such a loss function 0/1 applies Duda and Hart
(1973) proved that the Bayesian classifier that minimizes the total misclassification error cost
is the one that assigns to the example x = (x1, . . . , xn) the class with the highest a posteriori
probability, that is

γ (x) = arg max
c

p(c|x1, . . . , xn) (1)

All the Bayesian classifiers reviewed in this section were originally proposed for discrete
supervised classification problems, and in this paper we show how to adapt them to continuous
domains. Note that our aim when choosing a Bayesian classifier for EBCOAs is to have a
relatively effective learnable algorithm that can be built in a reasonable time, since it is to be
applied every iteration. That is why a balance between effectiveness and induction complexity
is considered when deciding the type of classifier to be used in EBCOAs.
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Similarly, as with continuous EDAs, continuous EBCOAs can be categorized depending
on the order of the Bayesian classifier applied, i.e. depending on the maximum number of
dependencies between variables that the classifier is able to take into account. The resulting
classifier has the form of a conditional Gaussian network.

2.2 Naïve Bayes

The Bayesian classifier that considers all the variables X1, . . . , Xn to be conditionally inde-
pendent given the class value C is known as naïve Bayes (Minsky 1961). In this case, the
probabilistic graphical model can be considered to be a fixed structure as illustrated in
figure 1(a). In continuous domains it is usual to assume that the joint density function follows
a n-dimensional normal distribution, and because independence between the variables – given
the class variable C – is assumed, this is factorized by a product of one-dimensional and con-
ditionally independent normal densities. Therefore, when classifying a new individual using
the naïve Bayes classifier we have:

p(C = c|X1 = x1, . . . Xn = xn) ∝ p(c) · f (x1|c) · f (x2|c) · . . . · f (xn|c)
where

f (xi |c) = 1√
2πσic

e−1/2((xic−μic)/σic)
2

for all i = 1, . . . , n and c = 1, . . . , |C| with μic and σic representing the mean and the standard
deviation of Xi |C = c, respectively.

The main advantage of naïve Bayes is that they have a fixed structure, which simplifies
the learning process to uniquely estimate the probabilities that are to be considered following
this conditional Gaussian network. In order to apply a naïve Bayes classifier in EBCOAs, the
estimation of the a priori probability of the class, p(c), as well as the parameters μic and σic

of the conditional density functions, f (xi |c), are carried out from the database of selected
individuals at each generation.

Note that this Bayesian classifier is more suited for optimization problems in which the
variables are indeed independent given the class.

2.3 Semi-naïve Bayes

The semi-naïve Bayes classifier (Kononenko 1991) provides more complexity than the former
since it takes into account dependencies between groups of variables. This method represents
the variables found to be related as a merged node in the conditional Gaussian network,

Figure 1. Example of structures of Bayesian classifiers that can be obtained as a result of the different classification
model building algorithms, in a problem with four variables X1, . . . , X4 and the class-variable C: (a) naïve Bayes,
(b) semi-naïve Bayes, and (c) tree augmented naïve Bayes.
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that is the semi-naïve Bayesian classifier proposed to group some variables in a single node
of the structure. Figure 1(b) illustrates the structure of a semi-naïve Bayesian classifier for a
problem with four variables, treating each of these grouped variables as a single super-variable
regarding the factorization of the probability distribution. When grouping variables, all the
inter-dependencies between them are taken into account implicitly in the Bayesian classifier.
Note that as illustrated in figure 1(b), in a semi-naïve Bayesian classifier it is also possible
to ignore some variables and therefore not to include them in the final probabilistic graphical
model, which has the effect of considering these variables not to be relevant for labeling
vectors.

Compared to the naïve Bayes classifier, the semi-naïve Bayes mode requires an additional
step in its construction in order to learn the most suited probabilistic graphical model structure
following this approach. Pazzani (1997) introduced a greedy algorithm to detect irrelevant
as well as dependent variables (susceptible to being grouped) and to propose variables that
are likely to be ignored in a Bayesian classifier, although this is described only for discrete
domains. We propose to adapt it to the case of continuous domains by grouping dependent
continuous variables as a single multidimensional variable in the form of one node in the
conditional Gaussian network. The resultant pseudocode of the algorithm that is applied to
build a semi-naïve Bayes classifier model for continuous domains is illustrated in figure 2.

Considering that the example in figure 1(b) is a semi-naïve Bayes model structure learned
for a particular supervised classification problem, an individual x = (x1, x2, x3, x4) will be
assigned to the following class:

c∗ = arg max
c

p(c)f (x1|c)f (x2, x4|c) (2)

Following this approach, in cases in which a variable Xi is estimated to be conditionally
independent from the rest given the class variable (such as variable X1 in the latter example),
f (xi |c) will be computed as

f (xi |c) = 1√
2πσic

e−1/2((xic−μic)/σic)
2

Analogously, for the case of dependencies with a number p of grouped variables over a single
node in the structure, similar to variables X2 and X4 in our example, the corresponding factor
will be assumed to follow a p-dimensional normal distribution for each value of variable C.
Considering that zj represents the j th group of p variables, we have

f (zj |c) = 1√
(2π)p|�jc|

e−1/2(zj −μjc)�
−1
jc (zj −μjc)

T

.

where �jc is a p × p matrix representing the variance–covariance matrix of the j th group of
p variables when C = c and μjc denotes its corresponding expectation.

Figure 2. Pseudocode of the algorithm to build semi-naïve Bayes models.
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2.4 Tree augmented naïve Bayes

Another Bayesian classifier that takes into account dependencies between variables is the
tree augmented naïve Bayes classifier (Friedman et al. 1997). Its name comes from the fact
that structures obtained as a result of its learning approach have the form of a tree. The
corresponding pseudocode is illustrated in figure 3. This two-step algorithm constitutes an
adaptation of the Chow-Liu algorithm (Chow and Liu 1968) for predictor continuous variables
that apply the following expression to estimate the mutual information between two univariate
normal distributions conditioned to the class (Cover and Thomas 1991):

I
(
Xi, Xj | C

) = −1

2

|C|∑
c=1

p(c) log
(
1 − ρ2

c (Xi, Xj )
)

(3)

where i < j and j = 2, . . . , n.
Figure 1(c) shows the type of structures that could be obtained when applying the tree

augmented naïve Bayes algorithm to a similar problem as for the two previous Bayesian clas-
sifiers. Following this particular example, an individual x = (x1, x2, x3, x4) will be assigned
to the class

c∗ = arg max
c

p(c)f (x1|c, x2)f (x2|c)f (x3|c, x4)f (x4|c, x2) (4)

Note that in this case, the calculation of f (xi |c, xk(i)), where Xk(i) represents the predictor
parent variable of variable Xi in the case that this parent exists, can be computed as

f (xi |c, xk(i)) = p(c) · f (xi, xk(i)|c)
p(c) · f (xk(i)|c) = f (xi, xk(i)|c)

f (xk(i)|c)

3. Description of evolutionary Bayesian classifier-based optimization algorithm
(EBCOAs)

This section introduces the continuous evolutionary optimization algorithms EBCOAs (Evo-
lutionary Bayesian Classifier-based Optimization Algorithms) which are based on combining
Bayesian classifiers such as the ones described in the previous section, together with evolu-
tionary computation. The justification for this approach is to provide a new mechanism to
solve an optimization problem. In each generation this population evolves towards a fitter
one in a completely different manner to Genetic algorithms (GAs) or Estimation of Distri-
bution Algorithms (EDAs). In GAs the evolution towards a fitter population of individuals

Figure 3. Pseudocode of the tree augmented naïve Bayes algorithm for continuous predictors.
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is performed by applying crossover and mutation operations, while in EDAs the evolution
is based on learning a probabilistic graphical model built uniquely considering a subset of
selected fit individuals. On the other hand, in EBCOAs this evolution is performed by build-
ing a Bayesian classifier model which considers the characteristics between the best and worst
individuals of each population. That is, in EDAs the result of the learning process is a Gaussian
network – in continuous domains – or a Bayesian network – in discrete domains – while in
EBCOAs the learning follows a very different approach by building a Bayesian classifier. As
a result, in EBCOAs the less fit individuals are also taken into consideration when building
the probabilistic graphical model.

Figure 4 illustrates the EBCOA approach.

(1) First, the initial population D0 formed by R individuals is generated. The generation of
these R individuals is usually done by assuming an uniform distribution on each variable,
and next each individual is evaluated.

(2) Second, the population Dl is subdivided in a number |K| of classes depending on the
relative fitness value of the individuals on that population. The result of this step is denoted
by DK

l .
(3) Third, as differences between the individuals of the very close k classes of k ∈ K are

usually not big enough to allow a clear classifier to be built, a subset C ⊆ K of those
is selected and the rest are simply ignored for the next steps. Therefore, this is a class-
selection step. The resultant population is denoted by DC

l .
(4) Fourth, the n-dimensional Bayesian classifier that better reflects the differences between

the different classes (usually between the fittest and the less fit ones) is built. The structure

Figure 4. Description of the optimization process in EBCOAs in continuous domains.
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of this Bayesian classifier contains the C variable as the parent of the rest, apart from all
or some of the predictor variables X1, X2, . . . , Xn.

(5) Finally, the new population Dl+1 constituted by M new individuals is obtained by carrying
out the simulation of the probability distribution learnt in the previous step. This new
population Dl+1 is combined with some representative individuals from the different
classes of DK

l in order to obtain a total of R individuals for the next generation. The latter
is a population-combination step.

Steps 2, 3, 4, and 5 are repeated until a stopping condition is verified. The pseudocode of
the EBCOA approach for continuous domains as described here is shown in figure 5. We next
review some notation as well as each of these steps in detail.

3.1 Notation

Let X = (X1, . . . , Xn) be a n-dimensional random variable and x = (x1, . . . , xn) one of its
possible instantiations – that is, one of the possible individuals. The probability of a single
variable X to take one of its values x will be denotedp(X = x)– or simplyp(x).The conditional
probability of the variable Xi given the value xj of the variable Xj will be written as p(Xi =
xi |Xj = xj ) – or simply as p(xi |xj ).

Let Dl be the population of the lth generation that has to evolve to the next generation
(l + 1). In EBCOA, as a preliminary step to the learning of the Bayesian classifier, individuals
are ordered by fitness value and they are divided in a fixed number of |K| different classes,
assigning to each individual a k label where 1 ≤ k ≤ |K| and K being the class variable. We
denote by DK

l the population after it has been subdivided in |K| classes.
Since all the classes are not usually relevant for the learning due to slight differences among

some of them, previously to learning the Bayesian classifier we choose |C| ≤ |K| classes and
the rest are simply ignored for learning purposes. Let DC

l be the subset of DK
l that will be used

for the learning. We also denote by C the variable that assigns a class c – with 1 ≤ c ≤ |C| –
to each of the individuals in DC

l .
The aim of this learning step is to build a probabilistic graphical model – that is, a conditional

Gaussian network in the continuous domain. In EBCOA, this conditional Gaussian network
is a Bayesian classifier that takes into account the variables X1, X2, . . . , Xn as well as the
variable C.

3.2 The supervised classification step: labeling the individuals and the class-selection
process

In contrast to EDAs in which a subset of individuals (usually the fittest) are selected previously
to the learning step to ignore the rest, in EBCOAs all the population is initially classified in

Figure 5. Pseudocode for the EBCOA approach in continuous domains.
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a fixed number |K| of different classes. These classes are formed by ordering the whole
population in groups of individuals from the fittest ones to the less fit ones. This procedure
assigns to each individual in Dl a label k ∈ {1, 2, . . . , |K|} such that each class k contains the
same number of individuals. As a result, we obtain the population DK

l .
As the main motivation for EBCOAs is to take into account in the evolution of the population

the main characteristics that make individuals potentially fit or not, some of the classes in DK
l

could be ignored to facilitate the learning by enhancing these differences. An example is to
ignore the middle classes in DK

l for the learning of the Bayesian classifier, so that the classifier
is induced taking into account the most distant classes. This procedure is called class-selection.
DC

l is the result of removing from DK
l the individuals labeled to classes that are ignored for

the learning, and C is the class variable that is used for the learning as the root of the Bayesian
classifiers, with |C| ≤ |K|.

3.3 The learning step: building the Bayesian classifier

The most difficult step for EBCOAs is actually to estimate satisfactorily the probability dis-
tribution pl(c|x), as the computation of all the parameters needed for obtaining optimum
classifiers in the form of a conditional Gaussian network is very time consuming (Pérez et al.,
2006). Bearing in mind that our aim is to be able to distinguish potentially fitter individuals
over the ones that are clearly worse, it is important to realize that in our case we are not inter-
ested in obtaining the best possible Bayesian classifier to represent a strictly correct classifier
that will be ignored in the next generations. That is why several approximations propose to
factorize the probability distribution according to a Bayesian classifier that is able to perform
relatively well in a reasonable computation time.

The learning step in EBCOAs is performed by applying an algorithm to induce a Bayesian
classifier in the form of a conditional Gaussian network in which the root is the variable C

representing the labels of the individual (C is treated as another variable), and the rest of
variables X1 to Xn can also be present. This conditional Gaussian network will be formed
following different classifier induction algorithms such as the ones described in the previous
section, and it will contain a maximum of n + 1 nodes (variables X1 to Xn and C), with the
variable C always being the root and the parent of all the others present in this probabilistic
graphical model. As a result of this learning procedure, the probability distribution can be
represented by a factorization of the form pl(c|x) ∝ pl(c)fl(x|c).

We will use the following notation to describe the different types of EBCOAs depending on
the Bayesian classifier that they apply in their learning phase: EBCOANB (for the one based
on naïve Bayes), EBCOATAN (for the one based on the tree-augmented network), and so on.

The complexity of the Bayesian classifier that is chosen for the EBCOA, that is, the degree
of interdependencies between the different variables X1, X2, . . . , Xn, and C determines the
capability of the Bayesian classifier to better reflect the main differences between the fitter
and less fit individuals of the population.

3.4 The simulation step: instantiating new individuals for a new population

The instantiation of the probabilistic graphical model to obtain the next population Dl+1 is
performed in a similar way as in EDAs, although there is an important difference due to
the inclusion of the C variable in the conditional Gaussian network. Every individual will
be generated using a specific criterion, for instance by means of the probability distribution
fl(x|c) according to pl(c). In this way, the simulation of the individual is performed following
the probability distribution learnt in the previous step.
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However, the main difference between EDAs and EBCOAs is that EBCOAs reflect the
different characteristics that make individuals among the fittest or the worst classes in the
forthcoming generations. That is why it is important that in the next population Dl+1 individ-
uals from all the most relevant classes in C are present. Our proposal is to generate M new
individuals by assigning a different number of representatives per each class c ∈ C from DC

l

by instantiating the probability distribution of all the classes proportionally to p(c), knowing
that in case of a maximization problem we have

p(c) ∝
∑

x| γ (x)=c

F (x) (5)

where F(x) is the fitness value of the individual x, and γ (x) is the class assigned to the
individual x in DC

l . We denote by Dl+1 the population of the M newly generated individuals.
After generating Dl+1, we combine these M individuals with some individuals of the pre-

vious generation’s population DK
l , and discard individuals from this combination in order to

obtain a total of R individuals that will form the next generation’s population DK
l+1.

The reason for such a complex simulation process is to ensure that individuals from all the
classes will be present in the next generation, while allowing at the same time individuals from
the fitter classes to have a bigger chance to be present in Dl+1 according to the need to provide
fitter individuals in the next population. Following this procedure, individuals from the less
fit classes will also be instantiated every generation, ensuring that the differences between
the fittest individuals and the less fit ones are still preserved as the algorithms converge to the
optimum solution. The fact of keeping these differences (and not simply concentrating on the
fittest individuals) is important since the convergence of EBCOAs is based on the ability of
the Bayesian classifier to model the main characteristics that make an individual be among
the fittest found in the whole search process.

3.5 Evolving the populations from one generation to the next

Once the new population Dl+1 has been created after instantiation of the Bayesian classifier
built in the previous learning step, there are many different options to generate a new population
Dl+1.

The initial step of creating DK
0 starting from the initial population D0 is performed by

directly assigning the class c to each individual depending on its corresponding individual
fitness value in the population, as described in the previous section. This is the only alternative
that provides us with the most logical way of building the different classes.

However, in the successive generations we create M new individuals instantiating the
Bayesian classifier. At this stage, it is also recommendable to keep track of some of the
individuals from the previous generation DK

l . Note that DC
l simply serves as an intermediate

step for the learning phase of EBCOAs. The inclusion of a minimum of individuals from
the previous population DK

l has the aim of providing some memory of the characteristics of
individuals from the less promising regions of the search space previously visited in former
generations. This fact advises us to combine individuals from DK

l (where |DK
l | = R) and the

newly generated population Dl+1 (where |Dl+1| = M) in order to form the population DK
l+1

that will constitute the population of the (l + 1)th generation (also with |DK
l+1| = R). Figure 6

shows an example of this process.
On the other hand, the combination of populations should also be done in a way that preserves

at least a minimum number of promising individuals both from DK
l and Dl+1. EBCOAs show

a better performance when the individuals to be kept in DK
l+1 are the ones that best suit the

characteristics of each of the classes of K . Note that at every generation the population DK
l
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Figure 6. Illustration of the EBCOA step called population-combination, which is applied in EBCOAs for providing
the transition between DK

l and Dl+1 to DK
l+1.

keeps the same size of R individuals, and therefore, each of the |K| classes in which this
population is divided at every generation contains the same number of individuals.

It is important to note that the way of combining individuals DK
l and Dl+1 in order to form

the new population DK
l+1 directly influences the performance of the EBCOA, since a total of R

individuals of any of these populations will be discarded. Since the convergence of EBCOAs
towards a better population is fully dependent on the ability of the learning step to provide a
comprehensive structure that represents the differences between the fittest and less fit classes,
this convergence will depend on the complexity of the optimization problem to be solved,
the number of classes considered (|K| and |C|), and the size of the whole population (R).
From our experience we concluded that the most advisable practice is to ensure that the best
individuals of both DK

l and Dl+1 are at least preserved in DK
l+1, in order to ensure that the

class of the fittest of the next generations will be at least composed of the best individuals
found during the whole search process so far. The latter will ensure at the same time that these
individuals will provide the learning algorithm with the information of the best characteristics
that exhibit the most promising individuals.

3.6 Variables that could be omitted in the conditional Gaussian network

Section 2 describes the semi-naïve Bayes approach as one example that can be applied in
EBCOAs and that could induce, as a result of the learning step, a Bayesian classifier in whose
structure some of the predictor variables X1, X2, . . . , Xn are not present. Not having a variable
Xi present in the final Bayesian classifier structure implies that the values assigned to such
a variable in the individuals of all the |C| classes are not relevant to distinguish them. This
has an important reading, since it does not mean that the value assigned to such variables is
not important when classifying the individual. Note that the individual constitutes a point in
the search space for a specific problem, and that all the values assigned to the variables are
usually relevant for obtaining a fit individual and therefore converge to the optimum solution.
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As the search process goes on, it is likely that some variables have the same values in the best
and worst classes, and therefore in the learning step of some EBCOAs these will be removed
from the Bayesian classifiers.

The way of instantiating variables that are not present in the conditional Gaussian network
is another important issue to take into account. Note that the instantiation of new individuals
using such a model is a completely different situation than having these variables present but
having no arcs in the probabilistic graphical model. When a variable is disconnected it has a
density function that has been learned and therefore it has a corresponding estimated fl(x)

that allows simulating new individuals.
Since in EBCOAs it is possible to employ Bayesian classifiers that can omit some predictor

variables in the conditional Gaussian network (e.g., the semi-naïve Bayes), the question of how
to instantiate these in order to generate the values for the corresponding variables in the new
M individuals must be addressed. A method is needed to generate new individuals with values
in all the variables (including the ones not appearing in the Bayesian classifier). We propose to
solve this issue by distinguishing the two different reasons that make predictor variables not
present in the structure: irrelevant variables (i.e., variables that have in all the classes the same
probability distribution) and redundant variables (i.e., those which appear to be very similar
to other variables that are already present in the probabilistic graphical model and therefore
their inclusion in the structure is not relevant to reflect differences in the characteristics of the
classes). For the former, we consider that the estimated probability for an irrelevant variable
Xi to take its kth value is computed as f (xi) = f (xk

i |c). For the latter type of variables, we
consider that the probability distribution is uniform.

3.7 The stopping criterion

All the previous steps are repeated in EBCOAs until a stopping condition is verified. Examples
of stopping conditions are: achieving a fixed number of populations or a fixed number of
different evaluated individuals, uniformity in the generated population, and the fact of not
obtaining an individual with a better fitness value after a certain number of generations.

4. Experiments on standard optimization problems in continuous domains

A set of different experiments were carried out in order to measure both the behavior and perfor-
mance of EBCOAs when applied to classical optimization problems in continuous domains.
The optimization problems selected for this purpose are the ones proposed in Bengoetxea
et al., (2001) to compare evolutionary computation algorithms in continuous domain, namely
Ackley (Ackley 1987 and Bäck 1996), Griewangk (Törn and Zilinskas 1989), and Sphere
model. These optimization problems are briefly described next.

(1) Ackley: the fitness function of this minimization problem is defined as:

F(x) = −20 · exp

⎛
⎝−0.2

√√√√1

n
·

n∑
i=1

x2
i

⎞
⎠ − exp

(
1

n
·

n∑
i=1

cos(2πxi)

)
+ 20 + exp(1).

(6)

hence the optimum value is 0, which is obtained when the individual has all its variables
at 0. The problem is defined with −20 ≤ xi ≤ 30, i = 1, . . . , n.
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(2) Griewangk: this is a minimization problem defined as:

F(x) = 1 +
n∑

i=1

x2
i

4000
−

n∏
i=1

cos

(
xi√
i

)
. (7)

where the range of all the components of the individual is −600 ≤ xi ≤ 600, i = 1, . . . , n,
and the fittest individual corresponds to a value of 0 which only can be obtained when all
the components of the individual are 0.

(3) Sphere model: this is a simple minimization problem. It is defined following −600 ≤
xi ≤ 600, i = 1, . . . , n, and the fitness function is:

F(x) =
n∑

i=1

x2
i . (8)

The fittest individual is the one whose all components are 0, which corresponds to the
fitness value 0.

These functions have been chosen for the experimentation phase due to the very different
nature that they exhibit. For instance, the Sphere model does not contain any local optimum,
while Ackley has many local optima that are bigger in the case of Griewangk. These optimiza-
tion problems are widely known in the literature and their diverse nature will serve to study
the behavior and performance of our new method as well as to compare it with such of EDAs
and CMA-ES.

Regarding the parameters of EBCOAs, we chose for all the experiments the following:
|K| = 3 and |C| = 2. The size of each of the three classes of DK

l was fixed at R/3, where
R is the size of the population DK

l . The influence of this choice of parameters in the final
result will be left for a future work, and in this paper we concentrate on studying the general
behavior of EBCOAs having fixed these.

We next describe how the simulation process is performed in our experiments. As described
in section 3.4, it is important to ensure that individuals from each of the C classes of DC

l are
included in Dl+1, having to follow the proportionality principle described in equation (5). Since
in our particular case we have two classes in DC

l , the number of individuals to be instantiated
by each of the two classes to have M new individuals in Dl+1 is obtained according to the
following proportion: A total of F̄ l

H /(F̄ l
H + F̄ l

L) · M individuals are instantiated from class

c = 1, and the other F̄ l
L/(F̄ l

H + F̄ l
L) · M will be instantiated from class c = 1 for the case of

a maximization optimization problem, where F̄ l
H is the mean of the fitness values of the class

of the best individuals and F̄ l
L is the less fit one. Both F̄ l

H and F̄ l
L are computed assuming that

all the individuals have a positive fitness value, otherwise they would have to be normalized
accordingly. Using this procedure we generate in total M new individuals, so that the bigger
the difference between F̄ l

H and F̄ l
L the more individuals from the best class (c = 1) will be

generated. The purpose of this mechanism is that the number generated from the class of best
individuals is adapted in order to avoid too direct a convergence and minimize the risk of
falling into local optima.

Finally, regarding the type of EBCOAs that we apply in our experiments, we decided to
concentrate mainly on the ones based on naïve Bayes and TAN (EBCOANB and EBCOATAN).
The former is characterized by the lack of a learning phase, while EBCOATAN contains a
learning phase that includes the induction of a new structure every generation. These two
EBCOAs will serve as representatives from different learning step types of EBCOAs in our
experiments.
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4.1 The choice of class-selection and population-combination procedures

The aim of setting the number of initial classes to |K| = 3 is to enhance the general differences
between the fittest and less fit classes, since having set |C| = 2 we will consider only two of
these three classes for the learning process. Therefore, there are two reasonable ways of
proceeding with the class-selection step for the transition from DK

l to DC
l :

(1) Ignoring the middle class and keeping for DC
l only the top and bottom classes. We will

represent this choice as CS1+3.
(2) Ignoring the bottom class and keeping for DC

l the two better ones, which will be
represented by CS1+2.

The other possible option (i.e., ignoring the class of the fittest individuals, or CS2+3) will not
ensure that the new generation would contain individuals at least as promising as before, and
that is why it has not been considered.

The class-selection step is an important parameter of EBCOAs that determines the success of
the search process due to its direct link with the learning phase. However, another important
parameter that also influences directly both the learning and the simulation phases is the
population-combination phase. This is represented in figure 4 as the transition from Dl+1

to DK
l+1. As explained previously, it is recommended to ensure that a number of individuals

from the lth generation will remain in the generation l + 1. This practice is beyond the pure
elitist approach of GAs (as well as some EDAs) of keeping the best individual of the previous
generation, since in EBCOAs it is also necessary in some cases to record some of the less
promising individuals. Therefore, we also have the choice of at least three comprehensive
options to combine the individuals from DK

l and Dl+1 in order to create the population DC
l+1.

4.1.1 Considering only the best and worst classes. This option is illustrated in figure 7a.
This provides the most different individuals found during the whole search process in all the
previous generations to the learning step in EBCOAs. This option is more likely to be applied
with the class-selection CS1+3 of DK

l (the fittest and worst individuals). In doing so, the best
and worst individuals found during all the generations would be kept in DK

l+1.
This option has also the characteristic of keeping in all the generations both the best and

worst individuals ever found in any of the previous generations. The former individuals are
appropriated in all the cases, but the latter would create the drawback, for some EBCOAs,

Figure 7. Examples of possible alternatives for the population-combination step of EBCOAs between DK
l and

Dl+1. The dark regions represent the individuals that would be present in DK
l+1 and the rest would be discarded. In

the (a) and (c) options all the individuals of DK
l and Dl+1 are considered, whereas in the (b) case the worst R/6

individuals from DK
l are removed from the very beginning before recombination with Dl+1.
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of confusing the learning step since in most of the complex optimization problems the worst
individuals of the search process are visited usually on the first generations. Therefore the
characteristics of those EBCOAs would not be representing concrete regions on which search
algorithms concentrate as the search process advances.

4.1.2 Keeping worst individuals of recent generations only. The combination of pop-
ulations in this option is illustrated in figure 7b. This option is similar to the previous one,
although in this case the R/6 worst individuals of the population from the previous generation
DK

l are not considered for DK
l+1. This removal ensures that the class of the worst individuals

in DK
l+1 will contain a set of less promising individuals newly generated in Dl+1, as well as the

best half of the worst class in the previous generation from DK
l . This adds the notion of aging

to the worst individuals, while preserving the most promising in the successive generations,
in the hope that EBCOAs will be able to concentrate more on specific regions of the search
space as the search progresses.

4.1.3 Elitist combination. The two previous options are more appropriated for combina-
tion with the CS1+3 class-selection type on the transition from Dk

l to DC
l . However, in some

concrete optimization problems it is likely that convergence will be improved if the two top
classes are preserved for DC

l . This would be adequately combined with a combination of
populations as illustrated in figure 7c.

In order to illustrate the behavior of EBCOAs, we performed an experiment combining
the class-selection and population-combination choices already presented. Table 1 shows
the performance of EBCOANB and EBCOATAN for every alternative of class-selection and
population-combination types. Since the population size plays an important role in the general
performance of EBCOAs (section 4.2 provides the explanations with regard to this), this table
shows different population sizes for each algorithm in order to provide a fair comparison,
showing for each algorithm the population size that obtained the best mean performance
for 30 runs in the three optimization problems. As the stopping criterion, a maximum of

Table 1. Mean results after 30 executions with each EBCOA combining class-selection and
population-combination methods for DK

l and Dl+1 to obtain DK
l+1.

Ackley Griewangk Sphere

CS1+2 CS1+3 CS1+2 CS1+3 CS1+2 CS1+3

Cv. E Cv. E Cv. E Cv. E Cv. E Cv. E

EBCOANB
Population combination
Best/worst classes 93 45,615 83 35,749 90 34,030 80 28,201 97 40,000 77 32,931
Best/recent worst 83 44,099 77 39,221 90 33,057 83 30,090 97 38,991 63 35,276
Elitist combination 93 40,746 80 37,886 93 30,690 70 28,818 90 35,932 90 33,588

EBCOATAN
Population combination
Best/worst classes 100 56,319 100 30,375 87 55,907 93 28,248 100 47,891 100 26,567
Best/recent worst 100 55,000 100 32,651 80 56,159 97 24,419 100 47,599 100 30,295
Elitist combination 100 40,564 100 31,688 100 39,174 93 29,003 100 34,805 100 27,260

Note: A population size of 200 and 25 was set for EBCOANB and EBCOATAN, respectively. The Cv. column represents the percentage
of convergence, and E the evaluations number for only those runs in which the algorithm converged. A maximum of 60,000 evaluations
was allowed.
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60,000 evaluations were allowed unless convergence was reached. This serves for providing
an appropriated comparison regardless of the different population sizes.

The results obtained are very different for both types of EBCOAs, and these have to be
understood in the differences that the learning phases of these two algorithms present. If we
consider the case of EBCOAs for which there is no learning step to be done (i.e., EBCOANB

has a fixed structure) or this step is not very complex, the behavior is similar to that of con-
tinuous UMDA (UMDAc) if the proportion F̄ l

H /F̄ l
H + F̄ l

H is very close to 1. This proportion
is maximized providing a quicker convergence when choosing CS1+2 and the first of the
population-combination types presented. However, this convergence speed is very appropri-
ated in problems such as Sphere model and Ackley in which the local optima are non existent
or small, but when local optima are deeper such as in the Griewangk problem, the algorithm
performs better when the class-selection and population-combination choices are CS1+2 and
the elitist combination. The reason for the latter is probably that the problem complexity
recommends concentrating on the best individuals with the support of the medium-fitted indi-
viduals in order to provide a means to escape from these local optima by searching on regions
around the fittest one.

For the case of other EBCOAs in which the learning phase allows considering more depen-
dencies or more complex procedures, other selection and population-combination options
apply. This is the case of the EBCOATAN, for which the learning phase needs to construct a
new structure each generation. Therefore, different options of class-selection and population-
combination would lead to very different convergence rates. The nature and complexity of the
optimization problem also determines the best type of parameters that EBCOAs should apply
as table 1 shows, although for the type of problems chosen for our experiments the best choice
was a class-selection of CS1+2 with an elitist combination for EBCOANB. On the other hand,
in EBCOATAN the best option is to take a population-combination of Best/Worst classes type
and a class-selection type of CS1+3.

4.2 The influence of the population size

As many other paradigms in evolutionary computation, EBCOAs also have a set of parameters
that directly affect their performance. The previous section provides some ideas on some of
these parameters, although a deeper study is necessary.

Since the performance of EBCOAs is very dependent on the way that different individuals
of each class represent distinct regions of the search space, the algorithm will converge more
appropriately when the size of the population is chosen according to the complexity of the
problem. The population size R has to be set in such a way that the division in classes represents
also individuals with similar fitness regions, since this parameter compromises the convergence
rate at least as much as the class-selection and population-combination ones. Furthermore,
this parameter is very problem-dependent and its choice has to be adapted to each problem’s
particularities to allow an appropriate performance in EBCOAs. The plots in figure 8 illustrate
this aspect for the case of the Ackley, Griewangk, and Sphere optimization problems. This
shows that, to get a comparable behavior, the size of the population for EBCOATAN needs to be
much smaller than for EBCOANB. The different nature of these three optimization problems
show the behavior of EBCOAs when there is no local optimum (Sphere model) or when
the local optima are less deep or deeper (Ackley and Griewangk, respectively). This figure
suggests that the size of the population influences the overall performance of EBCOAs, and
our experiments showed that its effect is even bigger than the choice of the class-selection or
the population-combination parameters.
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Figure 8. Three examples of how the population size affects the overall performance of EBCOAs. In the three
problems (Ackley, Griewangk, and Sphere with n = 100) the range of population sizes in EBCOATAN for a full
convergence is smaller than that for EBCOANB. Experiments with EBCOANB and EBCOATAN were performed with
the best class-selection and population-combination values obtained for each of the problems as shown in table 1.
The x-axis represents the population size (R) while the y-axis is the best fitness obtained (0 being the global optimum
in all the optimization problems).

4.3 Study of the tuning parameters of EBCOAs and their most adequate values

In order to have an illustrative overview of the relative dependencies and importance when
setting the parameters in EBCOAs, we proceeded to a general study in which the main param-
eters were tuned in different ways. Analogous type of studies of dependencies between the
different configurations of parameters for GAs to provide the best tuning has been an important
research trend for a long time (Barr et al. 1995, Ballester et al. 2005).

In this section, we present such a study for EBCOAs in the format of a Bayesian network
that represents the interdependencies between EBCOA parameters for the three optimization
problems defined previously. As mentioned before, each different combination of parameter
values was executed a total of 30 times. The different execution parameters that were combined
in the tests are the following:

(1) Optimization problem: Ackley, Griewangk, Sphere model.
(2) Size of individuals of the problem: 50, 100, 150.
(3) EBCOA type: EBCOANB, EBCOATAN.
(4) Population size: 10, 15, 20, 25, 50, 100, 150, 200, 400.
(5) Class-selection type: CS1+2, CS1+3.
(6) Population-combination type: best/worst classes, best/recent worst, elitist combination.

For each run, we recorded the outcomes of the execution in the form of three variables:
whether convergence was reached before the maximum of 60,000 evaluations (Cv.), number
of evaluations performed (E) and best fitness value obtained (F(x)).

A Bayesian network was created for each EBCOA type to best illustrate the dependencies
and relative importance that the different parameters have in the final performance of EBCOAs,



314 T. Miquélez et al.

Figure 9. Bayesian networks that illustrate the results of the experiments combining all the different parameters for
EBCOAs. The first Bayesian network is for EBCOANB and the second for EBCOATAN. The nodes of the Bayesian
networks represent the population size (R), individual size (n), optimization problem (problem), class-selection type
(class-selection), population-combination type (population-combination), convergence (Cv.), evaluation number (E),
and best fitness value obtained (F(x)).

adding to it the three outcomes (Cv., E, and F(x)). Figure 9 shows the two Bayesian networks
obtained. As expected, these Bayesian networks show that one of the most important param-
eters for a good performance on EBCOAs is the population size. This conclusion is shown
in figure 8, although the Bayesian networks evidence that this parameter is among the most
important ones. In addition, the main differences that exhibit EBCOANB and EBCOATAN for
their learning phase are also confirmed to be very important to bear in mind when choosing
the execution parameters, since the class-selection and population-combination parameters
appear to not be very significative for EBCOANB whereas for EBCOATAN these are critical
ones. This result was also expected since in the case of EBCOATAN the convergence of the
algorithm is improved or worsened depending on the accuracy of the learned Bayesian classi-
fier to represent the characteristics of the more and less promising individuals, and these two
parameters are essential to determine the nature of individuals that DC

l will contain in each
of the classes. In naïve Bayes the fact of having a fixed structure makes the algorithm less
dependent on these parameters.

As regards the relationships between the three outcome variables (Cv., E, and F(x)) and their
relative dependence to the parameter optimization problem shown in figure 9, it must be noted
that all these three optimization problems have their optimums in the same fitness value 0,
which explains why the arcs between these nodes have different directions and characteristics
in both Bayesian networks.

4.4 Comparative performance of EBCOAs and other evolutionary computation
techniques in continuous domains

An experiment was carried out in order to test the performance of continuous EBCOAs com-
pared to other continuous EDAs and ES. This section describes the experiments and the results
obtained.
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For the comparison, we have chosen continuous EDAs that take into account a different
number of dependencies between variables: UMDAc, MIMICc, and EGNAee.† Other EDAs
for continuous domains that do not have restrictions in the type of dependencies such as
EGNABGe were tested in Miquélez et al. (2006) for simpler problems, and we have not included
them here due to poor comparative performance that they showed regarding the mentioned
EDAs. In addition, the overall performance was compared to ES (Schwefel 1995). We chose
Evolutionary Strategy with Covariance Matrix Adaptation (CMA-ES) (Hansen et al. 2003,
Hansen and Kern 2004) which is considered as one with better performance.‡

The experiments have been carried out with individuals of 100 variables (n = 100) for
the three optimization problems described previously. In order to carry out a fair comparison
between the different EBCOAs, EDAs and CMA-ES, different population sizes were tested
and table 2 uniquely presents the results obtained with population sizes R for which each
algorithm obtained the best three results.

In the case of EBCOAs, we set the same parameters as in the previous experiments: |K| = 3
and |C| = 2, the size of each of the classes was chosen to be R/3 (R being the size of DK

l ).
In the case of continuous EDAs, the learning of the probabilistic graphical model is done after
selecting the R/2 best individuals of the population, and applying an elitist approach. Finally,
for CMA-ES we set μ = λ/2 (maximum number of parents), being λ the population size
(using the original authors notation), while the rest of parameters were left with the default
values suggested by the original authors.

The stopping criterion for all the algorithms and fitness functions was satisfied when the
optimum solution was found (assuming this case when the result obtained was closer than 10−6

from the global optimum fitness), or when a maximum of 60,000 evaluations was reached.
Each algorithm and combination of parameters was run 30 times for each of the optimization

problems, and the results shown in table 2 are the mean values of these for each problem and
algorithm. In order to illustrate more clearly the performance of the different algorithms, these
mean values have been computed in this table as follows:

(1) Cv. indicates (in percentage) the convergence rate.
(2) E or number of evaluations, was calculated taking into account only those runs in which

the algorithm converged.
(3) F(x) or fitness value, includes only the executions that reached the maximum number of

evaluations without converging.

Even if a competitive comparison was not the main purpose of this article, the results
of table 2 show that, in general, EBCOAs perform quite well in the different optimization
problems, particularly EBCOATAN.

From the results, we can observe that EDAs’ behavior is quite poor, not being able to reach
convergence in most of the problems. Only the simplest one, UMDAc, obtains acceptable
results when using a population of 200 individuals. Looking at the characteristics of EDAs,
these results are not surprising since they often need to use a large number of generations to
converge, and in this case the number of evaluations has been limited to 60,000.

Regarding CMA-ES, this approach is the one that shows the best performance of all the
algorithms, reaching a convergence rate close to 100 in almost all the problems. Competitive
results are obtained by EBCOATAN as it obtained convergence for all the problems and most
of the population sizes, even if the number of evaluations required for convergence is slightly
larger than in CMA-ES.

†See (Larranñaga and Lozano 2001) for a deep review on these algorithms.
‡For the simulation step we have applied the MATLAB program cmaes.m version 2.34 which is available on the

web at http://www.icos.ethz.ch/software/evolutionary_computation/cmaes.m.
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Table 2. Mean results after 30 executions with each algorithm and objective function. The Cv., F(x) and E

columns represent, respectively, the execution converge rate (expressed in percentage), the mean fitness value, and
the mean evaluations number.

150 200 400

EBCOANB Cv. F(x) E Cv. F(x) E Cv. F(x) E

Ackley 30 6.0E−2 28,050 90 1.6E−3 40,746 0 1.3E−4 –
Griewangk 40 3.0E−2 26,747 90 2.4E−3 30,690 100 – 56,034
Sphere 30 2.3E−1 30,512 90 9.5E−5 38,991 0 1.2E−4 –

15 20 25

EBCOATAN Cv. F(x) E Cv. F(x) E Cv. F(x) E

Ackley 20 2.1E+0 21,706 100 – 23,049 100 – 30,375
Griewangk 80 8.8E−3 13,286 90 9.9E−3 30,265 100 – 39,174
Sphere 100 – 11,603 100 – 15,620 100 – 26,567

200 400 600

UMDAc Cv. F(x) E Cv. F(x) E Cv. F(x) E

Ackley 20 1.2E−1 49,950 0 3.7E−3 – 0 1.0E−1 –
Griewangk 100 – 29,692 100 – 59,532 0 4.1E−3 –
Sphere 100 – 35,980 0 4.3E−4 – 0 2.4E−1 –

200 400 600

MIMICc Cv. F(x) E Cv. F(x) E Cv. F(x) E

Ackley 0 5.4E−5 – 0 8.3E−4 – 0 3.3E−2 –
Griewangk 0 2.1E−5 – 30 1.1E−5 51,339 0 5.4E−4 –
Sphere 0 2.2E−5 – 0 3.0E−5 – 0 3.7E−2 –

400 600 800

EGNAee Cv. F(x) E Cv. F(x) E Cv. F(x) E

Ackley 0 5.2E+00 – 0 5.1E+00 – 0 6.0E+00 –
Griewangk 0 1.6E−01 – 0 6.4E−03 – 0 2.6E−02 –
Sphere 0 1.3E+01 – 0 2.7E−01 – 0 1.7E+00 –

25 50 100

CMA-ES Cv. F(x) E Cv. F(x) E Cv. F(x) E

Ackley 100 – 18,312 100 – 26,587 100 – 43,212
Griewangk 80 7.4E−3 17,268 100 – 25,112 100 – 38,962
Sphere 100 – 11,530 100 – 17,077 100 – 28,182

A last comment has to be made on the computation cost of the different algorithms. Exper-
iments with EDAs and EBCOAs have been performed in a UNIX machine with a 2.7 GHz
processor, 16 GB RAM and 512 KB cache. These algorithms were implemented on C++.
CMA-ES is implemented in Matlab, and for running it we have used a PC under Windows XP
with a 3 GHz CPU, 1 GB RAM and 512 KB cache. The best computation times were obtained
with EBCOANB, where each execution lasted approximately 5 s in all the cases. EDAUMDA

and EDAMIMIC were next with approximately 15 s, and close to the 20 s required by CMA-ES.
In the case of EBCOATAN, execution times per run are longer, around 40 s each. In all the
cases EDAEGNAee is the slowest algorithm, since each run could last more than an hour – in
our experiments between 27 min and up to 1 h and 58 min is required.

To sum up, the results obtained through this experiment have been useful to demonstrate
that EBCOAs are a new promising approach to improve the performance of continuous EDAs,
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and that if their parameters are appropriately tuned they can show a better performance than
EDAs. On the other hand, since this paper constitutes a step towards applying EBCOAs to
optimization in continuous domains, further work is required in order to improve reaching the
results obtained with other classical paradigms such as ES.

5. Conclusions and further work

The original contribution of this paper is to generalize EBCOAs to continuous domains by
applying Bayesian classifiers adapted for these types of domains. EBCOAs combine evolution-
ary computation techniques and Bayesian classifiers in order to solve optimization problems.
Experimental results to compare the performance of this new approach on typical optimiza-
tion problems in continuous domains have been provided, and they have been with existing
continuous EDAs and ES.

In the light of the results we can conclude that continuous EBCOAs have proved to be
a new method able to obtain comparable results to continuous EDAs and ES. On the other
hand, EBCOAs appear to be very sensitive to the running parameters, requiring some concrete
conditions to ensure a good performance such as an appropriate population size. However,
there are still many different aspects that need to be analyzed and tested and that could result
in a considerable improvement in the performance of this model.

Future research will include the study and experimentation of other Bayesian classifiers for
continuous domains, especially more complex classifiers capable of taking into account more
interdependencies between variables that could be useful for more complex problems, such
as Bayesian multinets (Kontkanen et al. 2000).

An additional research trend is the possibility to substitute in the conditional Gaussian net-
work the discrete class variable C by the actual fitness value provided by the fitness function
F without discretization to group all the individuals in the population regarding their perfor-
mance measured by their respective fitness value. However, this extension requires a careful
consideration due to the higher computational cost that it carries out.

Finally, regarding the type of optimization problems for which EBCOAs can be applied, we
assume that in other more complex problems than the ones presented here the class-selection
CS1+3 will be a good choice for avoiding a premature convergence to local optima, although
this is again left for future work.
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