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Multi-label classification problems require each instance to be assigned a subset of a 
defined set of labels. This problem is equivalent to finding a multi-valued decision function 
that predicts a vector of binary classes. In this paper we study the decision boundaries of 
two widely used approaches for building multi-label classifiers, when Bayesian network-
augmented naive Bayes classifiers are used as base models: Binary relevance method
and chain classifiers. In particular extending previous single-label results to multi-label 
chain classifiers, we find polynomial expressions for the multi-valued decision functions 
associated with these methods. We prove upper boundings on the expressive power of 
both methods and we prove that chain classifiers provide a more expressive model than 
the binary relevance method.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We consider a multi-label classification problem [24,20] over categorical predictors, that is, mapping every instance 
x = (x1, . . . , xn) to a subset of h labels:

� = �1 × · · · × �n → Y ⊆ Y = {y1, . . . , yh},
where �i ⊂ R, |�i| = mi < ∞. As usual the problem could be transformed into a multi-dimensional binary classification 
problem, that is, finding an h-valued decision function f that maps every instance of n predictor variables x to a vector of h
binary values c = (c1, . . . , ch) ∈ {−1, +1}h:

f : � = �1 × · · · × �n → {−1,+1}h

(x1, . . . , xn) �→ (c1, . . . , ch),

where ci = +1 (−1) means that the ith label is present (absent) in the predicted label subset Y . We consider the predictor 
variables X1, . . . , Xn and the binary classes Ci ∈ {−1, +1} as categorical random variables. Real examples include classifi-
cation of texts into different categories [8], diagnosis of multiple diseases from common symptoms and identification of 
multiple biological gene functions [3,23].

The easiest way to approach a multi-label classification problem is to divide it into a set of single-label classification 
problems (equivalent to binary classification problems). Each binary problem is then solved independently and thus h binary 
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Fig. 1. Naive Bayes classifier structure in Example 1.

classifiers, one for each class variable Ci , are built. Each binary classifier is learned from predictor variables and Ci data 
only. At the end the results are combined to form multi-label prediction. Known as binary relevance, this method is easily 
implementable, has low computational complexity and is fully parallelizable. Therefore it is scalable to a large number of 
classes. However, it completely ignores dependencies among labels and generally does not represent the most likely set of 
labels.

Chain classifiers [18,6] relax the independence assumption by iteratively adding class dependencies in the binary rel-
evance scheme. The kth classifier in the chain predicts class Ck from X1, . . . , Xn, C1, . . . , Ck−1. Sucar et al. [19] employed 
naive Bayes within chain classifiers.

In this paper, we study differences in the expressive power of these two methods when Bayesian network (BN) classi-
fiers [1] are used. Expressive power of a classifier over categorical variables could be seen simply as the number of distinct 
decision functions that a given type of classifier induces.

In Varando et al. [22] the expressive power of one-dimensional binary, or one-label classifiers has been studied. In 
particular, the results of Minsky [11] and Peot [14] about the decision boundary of naive Bayes have been extended to a 
broader class of Bayesian network classifiers. A polynomial representation of the decision functions induced by Bayesian 
network-augmented naive Bayes classifier is described, and in absence of V -structures a stronger characterization is shown 
to hold. In this paper, we extend these results to multi-label classifiers. Moreover, we suggest some theoretical reasons 
why the simple binary relevance method can perform poorly when relationships among labels exist, and we prove that 
chain classifiers provide more expressive models. A broader chain classifiers class than in Varando et al. [21] is considered 
and studied extensively and a bounding on the expressive power of those models is proved. Moreover we present novel 
illustrative examples both about the one-dimensional results and about multi-label ones.

In Section 2 we review previous work on one-dimensional binary classifiers. We describe the binary relevance method 
and compute its expressive power in Section 3. We analyse chain classifiers in Section 4. In Section 5 we compare the two 
methods, proving that actually chain classifiers are more expressive than binary relevance and in Section 6 we present our 
conclusions and some ideas for future research.

2. Expressive power of one-dimensional BN classifiers

We report here previous results on the decision boundary and expressive power of one-label, or equivalently one-
dimensional binary, BN classifiers [22]. We restrict to binary classifier and we can assume that the class variables takes 
its values on {−1, +1}. Classifiers where the class variable takes more than two values are more complex to study, the as-
sociated decision functions could be seen as combinations of binary decision functions and thus some of the results of this 
section could probably be extended. In the present work we prefer to remain in the binary case. Moreover binary classes 
are the variables needed to define multi-label classification problems.

In particular, we look at Bayesian network-augmented naive Bayes (BAN) classifiers [7].
BAN classifiers are Bayesian network classifiers where the class variable C is assumed to be a parent of every predictor 

and the predictor sub-graph G can be a general BN. We observe that every BAN classifier is determined by the predictor 
sub-graph G , because the class variable C is superposed as parent of every variable of G . As we focus only on Bayesian 
network, we will use the word graph to refer only to a directed acyclic graph, the structure of a Bayesian network (For 
general notations see Table 2).

For every BAN classifier, the induced decision function is

f BAN
G (x1, . . . , xn) = arg max

c∈{−1,+1} P (C = c, X1 = x1, . . . , Xn = xn), (1)

and P (C = c, X1 = x1, . . . , Xn = xn) is factorized according to BN theory [13] as

P (C = c)
n∏

i=1

P
(

Xi = xi|C = c,Xpa(i) = xpa(i)
)
,

where Xpa(i) are the parents of Xi in the predictor sub-graph G . Moreover, pa(i) denotes the set of indexes defining the 
parents of Xi that are not C and Mi = ×s∈pa(i){1, . . . , ms}, the set of possible configurations of Xpa(i) .

Example 1. Consider a naive Bayes classifier (structure in Fig. 1), that is, the simplest BAN, over predictor variables X1 ∈
{0, 1, 2}, X2 ∈ {0, 1}. In this case the joint probability over (C, X1, X2) is factorized as
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Table 1
Conditional probability tables for X1 and X2 in Example 1.

P (X1|C) X1

0 1 2

C
−1 0.3 0.3 0.4
+1 0.1 0.7 0.2

P (X2|C) X2

0 1

C
−1 0.5 0.5
+1 0.1 0.9

P (C = c, X1 = x1, X2 = x2) = P (C = c)P (X1 = x1|C = c)P (X2 = x2|C = c).

We consider a uniform prior probability over the class P (C = +1) = 0.5, P (C = −1) = 0.5, and conditional probabilities 
tables as in Table 1.

The induced decision function f NB(x1, x2), defined in Equation (1), could be computed easily and it is exactly:

f NB(x1, x2) =
{−1 if (x1, x2) ∈ {(0,0), (0,1), (2,0), (2,1)}

+1 if (x1, x2) ∈ {(1,0), (1,1)}

We describe decision functions through polynomial representations, in particular we use the following concept [12]:

Definition 1. Given a decision function f : � → {−1, +1}, where � ⊂ R
n , |�| < ∞ and r : Rn �→ R is a polynomial, we say 

that r sign-represents f if

f (x) = sgn(r(x)) for every x ∈ �.

Moreover, given a set of polynomials P , we denote by sgn(P) the set of decision functions that are sign-representable by 
polynomials in P and by {−1, +1}� , the set of all 2|�| decision functions over �.

Where the sign function sgn(t) is defined as,

sgn(t) =
{+1 if t > 0

−1 if t < 0.

Example 2. We consider � = {−1, 2} × {0, 4} and the decision function over �

f (x1, x2) =
{+1 if (x1, x2) = (−1,0), (2,0), (2,4)

−1 if (x1, x2) = (−1,4).

We have that the polynomial r(x1, x2) = 2x2
1 − x2 + 1 sign-represents f over �, that is,

r(−1,0) = 2 > 0, r(2,0) = 9 > 0, r(2,4) = 5 > 0 and r(−1,4) = −1 < 0.

For every predictor variable Xi ∈ �i = {
ξ1

i , . . . , ξ
mi
i

}
, we define the Lagrange basis polynomials over �i

�
�i
j (x) =

∏
k 	= j

(x − ξk
i )

(ξ
j

i − ξk
i )

for every j = 1, . . . ,mi and x ∈R. (2)

Example 3. The Lagrange basis polynomials over � = {0, 1, 2, 3} are

��
1 (x) = (x − 1)(x − 2)(x − 3)

(0 − 1)(0 − 2)(0 − 3)
= (x − 1)(x − 2)(x − 3)

−6

��
2 (x) = x(x − 2)(x − 3)

1(1 − 2)(1 − 3)
= x(x − 2)(x − 3)

2

��
3 (x) = x(x − 1)(x − 3)

2(2 − 1)(2 − 3)
= x(x − 1)(x − 3)

−2

��
4 (x) = x(x − 1)(x − 2)

3(3 − 1)(3 − 2)
= x(x − 1)(x − 2)

6

We have the following result, that describes in polynomial form the decision function induced by a BAN classifier [22]:
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Fig. 2. Decision boundary of NB classifier in Example 1.

Lemma 1. If f is the decision function induced by a BAN classifier for a binary classification problem with n categorical predictor 
variables {Xi ∈ �i ⊂ R, |�i | = mi}n

i=1 , then there exists a polynomial of the form

n∑
i=1

mi∑
j=1

�
�i
j (xi)

∑
k∈Mi

βi( j|k)
∏

s∈pa(i)

�
�s
ks

(xs)

that sign-represents f , where we write 
∑

k∈Mi
βi( j|k) 

∏
s∈pa(i) �

�s
ks

(xs) = βi( j) when a variable Xi does not have parents different 
from C , that is, pa(i) = ∅.

In particular when the prior probability over the class is uniform, the coefficients βi( j|k) could be chosen as

βi( j|k) = ln

(
P (Xi = ξ

j
i |Xs = ξ

ks
s , ∀s ∈ pa(i), C = +1)

P (Xi = ξ
j

i |Xs = ξ
ks
s , ∀s ∈ pa(i), C = −1)

)
, (3)

where k = (
ks

)
s∈pa(i) , ks ∈ {1, . . . , ms}.

Example 4. We show now how to compute the polynomial that sign-represents the decision function of NB in Example 1, 
more examples could be found in Varando et al. [22]. For NB classifiers Equation (3) reduces to the more simpler form

βi( j) = ln

(
P (Xi = ξ

j
i |C = +1)

P (Xi = ξ
j

i |C = −1)

)
(4)

since the NB predictors sub-graph has no connections among the nodes. Thus

p(x1, x2) = β1(1)�
�1
1 (x1) + β1(2)�

�1
2 (x1) + β1(3)�

�1
3 (x1)

+ β2(1)�
�2
1 (x2) + β2(2)�

�2
2 (x2),

where ��1
1 , ��1

2 , ��1
3 are the Lagrange basis polynomials over �1 = {0, 1, 2} and ��2

1 , ��2
2 are those over �2 = {0, 1}. Using 

the definition of βi( j) given in (4) and the values of Table 1 we obtain,

p(x1, x2) = ln

(
0.1

0.3

)
�
�1
1 (x1) + ln

(
0.7

0.3

)
�
�1
2 (x1) + ln

(
0.2

0.4

)
�
�1
3 (x1)

+ ln

(
0.1

0.5

)
�
�2
1 (x2) + ln

(
0.9

0.5

)
�
�2
2 (x2)

= ln

(
0.1

0.3

)
(x1 − 1)(x1 − 2)

2
+ ln

(
0.7

0.3

)
x1(x1 − 2)

−1
+ ln

(
0.2

0.4

)
x1(x1 − 1)

2

+ ln

(
0.1

0.5

)
x2 − 1

−1
+ ln

(
0.9

0.5

)
x2

1

In Fig. 2 the decision boundary correspondent to p(x1, x2) is shown.
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Definition 2. Given a directed acyclic graph G , a V -structure [5] in G is a triplet of nodes X1, X2, X3 in G such that both 
X1 and X2 are parents of X3 and X1, X2 are not directly connected in G .

When the predictor sub-graph G does not contain V-structures, the inverse implication of Lemma 1 is shown to be true 
and the following theorem [22] holds.

Theorem 2. Let G be a directed acyclic graph with nodes Xi , i ∈ {1, 2, . . . , n} and f a decision function over categorical predictor vari-
ables Xi ∈ �i = {ξ1

i , . . . , ξmi
i }. Assume that G does not contain V -structures, then we have that f is sign-represented by a polynomial 

of the form

r(x) =
n∑

i=1

mi∑
j=1

�
�i
j (xi)

∑
k∈Mi

βi( j|k)
∏

s∈pa(i)

�
�s
ks

(xs),

if and only if f is induced by a BAN classifier whose predictor sub-graph is G .

Theorem 2 applies in a lot of practical cases as naive Bayes (NB) classifier [11], tree augmented naive Bayes (TAN) classi-
fier [7] and super-parent one-dependence-estimator (SPODE) classifier [9], because the corresponding predictor sub-graphs 
do not contain V-structures.

Theorem 2 is useful because it completely characterizes the set of decision functions induced by BAN with a given 
structures G with no V -structures. In particular, the theorem implies that when G does not contain V -structures the family 
of polynomials PG , defined as

PG =
⎧⎨
⎩r(x) =

n∑
i=1

mi∑
j=1

�
�i
j (xi)

∑
k∈Mi

βi( j|k)
∏

s∈pa(i)

�
�s
ks

(xs) s.t. βi( j|k) ∈R

⎫⎬
⎭ (5)

sign-represents the set of decision functions induced by BAN classifiers, that is, sgn(PG) is exactly the set of decision 
functions induced by BAN classifiers whose predictor sub-graph is G .

Remark 1. In the simplest NB classifier case, that is, when the predictor sub-graph G is a graph without any arc, we have 
that

PG ≡ PNB =
⎧⎨
⎩r(x) =

n∑
i=1

mi∑
j=1

βi( j)��i
j (xi) s.t. βi( j) ∈R

⎫⎬
⎭

is exactly the set of polynomials used to sign-represent decision functions induced by NB classifiers as in Theorem 2.

The set PG , when G does not contain V -structure, is a vectorial space of dimension

n∑
i=1

⎛
⎝(mi − 1)

∏
s∈pa(i)

ms

⎞
⎠ + 1.

As in Varando et al. [22], it is useful to consider spaces PG as subspaces of the vector space of polynomials that can 
interpolate every function over �. That is, the space

PFBN =
{∑

k∈M
γkδk(x) s.t. γk ∈R

}
,

where FBN stands for full Bayesian classifier, M = ×n
i=1{1, . . . , mi} and δk(x) = ∏n

i=1 �
�i
ki

(xi) are the polynomials that inter-
polate the Dirac’s delta over �, that is,

∀k ∈ M, δk(x) =
n∏

i=1

�
�i
ki

(xi) =
{

1 if x = (ξ
k1
1 , . . . , ξ

kn
n )

0 if x ∈ � \ {(ξk1
1 , . . . , ξ

kn
n )}.

Observe that in this case PFBN =PG , where G is a full Bayesian network (FBN) over the predictors, it is a Bayesian network 
with the maximum possible number of arcs. The polynomials {δk(x)}k∈M form a basis of PFBN (we show an example of the 
basis construction in Example 5). Therefore the dimension of PFBN is equal to 

∏n
i=1 mi , where mi is the number of values 

the ith predictor assumes.
Obviously we have that for every Bayesian network structure G over predictor variables X1, . . . , Xn ,

PNB ⊆ PG ⊆ PFBN,



G. Varando et al. / International Journal of Approximate Reasoning 68 (2016) 164–178 169
and

sgn(PNB) ⊆ sgn(PG) ⊆ sgn(PFBN) = {−1,+1}�.

We can now define the interpolating polynomial of every function over � as follows,

Definition 3. Given a function f over � = �1 × · · · × �n , with �i = {ξ1
i , . . . , ξmi

i }, we define the interpolating polynomial

π f (x) =
∑
k∈M

f
(
ξ

k1
1 , . . . , ξ

kn
n

)
δk(x),

where M = ×n
i=1{1, . . . , mi}. And we have π f (x) = f (x) for every x ∈ �.

Polynomial π f is just a way to see function f as an element of the vectorial space PFBN .

Example 5. We show here an example of interpolating polynomial, we consider f the following decision function over 
� = {0, 1} × {4, 6},

f (x1, x2) =
{−1 if (x1, x2) ∈ {(0,4), (1,6)}

+1 if (x1, x2) ∈ {(0,6), (1,4)}.
The Lagrange basis over {0, 1} is composed by,

�
{0,1}
1 (x1) = 1 − x1 �

{0,1}
2 (x1) = x1,

and the Lagrange basis over {4, 6} is composed by,

�
{4,6}
1 (x2) = 6 − x2

2
�
{4,6}
2 (x2) = x2 − 4

2
.

Thus the basis of PFBN , {δk(x)}k∈M in this case is formed by the following four polynomials in (x1, x2).

δ(1,1) = �
{0,1}
1 (x1)�

{4,6}
1 (x2) = (1 − x1)(6 − x2)

2
δ(1,2) = (1 − x1)(x2 − 4)

2
,

δ(2,1) = x1(6 − x2)

2
δ(2,2) = x1(x2 − 4)

2
.

We now compute the interpolating polynomial directly with Definition 5,

π f (x1, x2) = f (0,4)δ1,1 + f (0,6)δ1,2 + f (1,4)δ2,1 + f (1,6)δ2,2

= (2x1 − 1)(10 − 2x2)

2
.

As we can see from substitution, π f = f over �.

Remark 2. We observe that if f : � �→ {−1, +1} is a decision function, obviously the interpolating polynomial π f sign-
represents f . But there exist a lot of polynomials that sign-represent f without interpolating it over �. A polynomial 
sign-represents a decision function if it agrees on the sign of f over �, while interpolating refers to actually having the 
same values over the points of �. For example consider p ∈PNB and f = sgn(p), thus f is induced by a naive Bayes classi-
fier. Consider now π f . Could it be interesting to know if π f ∈PNB? This question is important when studying the expressive 
power of chain classifiers, and in Lemma 6 we will answer it completely.

Thanks to Theorem 2 it is possible to place an upper bound (Corollary 3) on the number of decision functions repre-
sentable by BAN classifiers without V -structures [22].

Corollary 3. Consider a BAN classifier over predictor variables Xi ∈ �i , |�i| = mi for every i = 1, . . . , n. Moreover suppose that the 
predictor sub-graph G does not contain V -structures. Then we have

|sgn(PG)| ≤ C(M,d) = 2
d−1∑
k=0

(
M − 1

k

)
,

where d = ∑n
i=1

(
(mi − 1)

∏
s∈pa(i) ms

)
+ 1 and M = ∏n

i=1 mi .



170 G. Varando et al. / International Journal of Approximate Reasoning 68 (2016) 164–178
Fig. 3. Total number of decision functions over n binary predictors (solid grey) and the bounding C(M, d) of Corollary 3 (dashed black) for NB classifiers (a) 
and for 3-dependence BAN classifiers (b).

Table 2
Table of notations.

Xi categorical predictor variable
C, Ci binary class variable
�i i-th predictor values space
mi cardinality of �i

ξ
j

i j-th element of �i

� ×n
i=1�i predictors space

M ×n
i=1{1, . . . ,mi} indexes of predictors space �

Xpa(i) vector of parents of Xi

pa(i) subset of {1, . . . ,n} relative to the parents of Xi

Mi ×s∈pa(i){1, . . . ,ms} configuration of Xpa(i)

G,Gi ,Hi predictor sub-graph
PNB space of polynomials sign-representing NB classifiers
PG space of polynomials sign-representing BAN with sub-graph G
PFBN space of polynomials sign-representing all classifiers over �

�
�i
j j-th Lagrange polynomial over �i

δk k-th polynomial interpolating the Dirac’s delta over �

π f polynomial interpolating f over �

Remark 3. If � = �1 × · · · × �n , we observe that |{−1, +1}�| = 2|�| = 2M . Thus Corollary 3 implies that in the case of the 
NB classifier the quotient of the number of decision functions representable by NB classifiers over 2M becomes vanishingly 
small as the number n of predictors increase. Fig. 3a shows the total number of decision functions, 2|�| (solid grey) and 
the bounding of Corollary 3 for NB classifiers with n binary predictors, C(M, d) (dashed black). Note that in this case 
d = ∑n

i=1(mi − 1) + 1 = n + 1. Observing that the scale of the graph is logarithmic, the graph shows that the number of 
decision functions induced by NB classifiers is small compared with all possible decision functions over �.

Remark 3 could be extended to every type of BAN classifier, such that for every variable Xi , the number of parents is 
bounded (Corollary 19 in Varando et al. [22]), that is, |pa(i)| < K . Fig. 3b shows the total number of decision functions (solid 
grey) and the bounding of Corollary 3 (dashed black) for a BAN structure such that |pa(i)| ≤ 3.

Remark 4. When the predictor sub-graph G of a BAN classifier contains V-structures, Lemma 1 is still valid and there exists 
a polynomial sign-representing the induced decision function. The problem is that the associated family of polynomials is 
not a linear space as in (5), thus is not possible to employ the same techniques as in Varando et al. [22] and thus prove the 
bounding in Corollary 3.

3. BAN binary relevance classifiers

We consider the binary relevance method built upon BAN classifiers as base models, that is, for every class variable Ci
we learn a BAN classifier with predictor sub-graph Gi . Thus we actually transform our multi-label problem into a number 
of single binary-class problems. The results of last section are then straightforwardly applied.
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Fig. 4. Two NB classifiers in Example 6.

Table 3
Conditional probability tables in Example 6 for the NB of C1.

P (X1|C1) X1

0 1

C1
−1 0.25 0.75
+1 0.5 0.5

P (X2|C1) X2

2 3 4

C1
−1 0.1 0.7 0.2
+1 0.3 0.5 0.2

From Lemma 1 it follows that if f = ( f1(x), f2(x), . . . , fh(x)) is the h-valued decision function induced by the h BAN 
classifiers, then there exist

p1(x) ∈ PG1 , . . . , ph(x) ∈ PGh ,

such that fk(x) = sgn(pk(x)) for every k ∈ {1, . . . , h}. We have then that the multi-valued decision function has a polynomial 
representation as,

f(x) = (
sgn(p1(x)), . . . , sgn(ph(x))

)
.

When we also assume that the predictor sub-graphs G1, . . . , Gh contain no V -structures, we have that, for every sin-
gle binary-class problem, Theorem 2 apply. Thus, in Lemma 4, we bound the number of multi-valued decision functions 
representable by the BAN binary relevance method, when the predictor sub-graphs {Gk}h

k=1 do not contain V-structures.

Lemma 4. Consider h BAN classifiers to predict h binary classes. Suppose that the predictor sub-graphs are G1, . . . , Gh respectively and 
they contain no V-structures. We have that N (G1, . . . ,Gh), the number of h-valued decision functions representable by the BAN binary 
relevance method, satisfies

N (G1, . . . ,Gh) ≤
h∏

k=1

C(M,dk),

where C(M, d) = 2 
∑d−1

k=0

(M−1
k

)
, dk = ∑n

i=1

(
(mi − 1)

∏
s∈pak(i) ms

)
+ 1, pak(i) is the set of Xi parents in Gk and M = ∏n

i=1 mi .

Proof. The proof is a straightforward application of Corollary 3. �
Remark 5. We consider now, for visualization purposes, a simpler version of the above models. In particular when the 
predictors sub-graphs are all the same, that is, G j = G . The total number of h-valued decision functions over n categorical 
predictors is 2h

∏
mi = 2hM . Then the fraction of h-valued decision functions representable by the BAN binary relevance 

method is bounded by

N (G1, . . . ,Gh)

2hM
≤

(
C(M,d)

2M

)h

.

Thus, as in Remark 3, we have that if we fix the structure of the predictor sub-graph, and it does not contain V-structures, 
the number of representable multi-valued decision functions becomes vanishingly small as the number of predictors in-
crease. Moreover, using the binary relevance method, the speed at which the ratio between representable multi-valued 
decision functions and the total number of multi-valued decision functions drops to zero, is exponential in h, the number 
of classes.

Example 6. We consider two binary classes C1, C2 and two predictor variables X1 ∈ {0, 1} and X2 ∈ {2, 3, 4}. Using the 
binary relevance method we build two independent NB classifiers, see Fig. 4. Next, we list the conditional probability tables 
for both classifiers (Tables 3 and 4). Moreover, we consider uniform prior probabilities for both classes C1 and C2.

From the representation of Theorem 2 we have that there exist two polynomials p1, p2 that sign-represent the decision 
functions induced by the two NB classifiers
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Table 4
Conditional probability tables in Example 6 for the NB of C2.

P (X1|C2)
X1

0 1

C2
−1 0.4 0.6
+1 0.7 0.3

P (X2|C2)
X2

2 3 4

C2
−1 0.6 0.2 0.2
+1 0.1 0.1 0.8

Fig. 5. Decision boundaries for the two NB classifiers in Example 6, black for C1 and grey for C2. The value of the predicted classes is reported.

p1(x1, x2) = ln

(
0.5

0.25

)
x1 − 1

−1
+ ln

(
0.5

0.75

)
x1

1

+ ln

(
0.3

0.1

)
(x2 − 3)(x2 − 4)

2
+ ln

(
0.5

0.7

)
(x2 − 2)(x2 − 4)

−1

+ ln

(
0.2

0.2

)
(x2 − 2)(x2 − 3)

2

and

p2(x1, x2) = ln

(
0.7

0.4

)
x1 − 1

−1
+ ln

(
0.3

0.6

)
x1

1

+ ln

(
0.1

0.6

)
(x2 − 3)(x2 − 4)

2
+ ln

(
0.1

0.2

)
(x2 − 2)(x2 − 4)

−1

+ ln

(
0.8

0.2

)
(x2 − 2)(x2 − 3)

2
.

We have that

f(x) =
(

sgn
(

p1(x)
)
, sgn

(
p2(x)

))

is the bi-valued decision function that predicts C1, C2 from X1, X2. Fig. 5 shows the decision boundaries of the two classi-
fiers (black for C1 and grey for C2). We observe that the predictor space � = {0, 1} ×{2, 3, 4} is partitioned into four subsets 
corresponding to the four different predictions of the two binary classes. The value of the respective predicted class changes 
when one of the decision boundaries is crossed.

4. BAN chain classifiers

The easiest way to relax the strong independence assumption of the binary relevance method is to gradually add the 
predicted classes to the predictors. Specifically, suppose that we have to predict h binary classes C1, . . . , Ch from n predictor 
variables X1, . . . , Xn . We consider h BAN classifiers such that the kth BAN classifier predicts Ck from the variables

X1, . . . , Xn, C1, . . . , Ck−1.

In the predicting phase we will then use the predictor values and the previous predicted classes values ĉ1, . . . , ̂ck−1 to 
predict class Ck . From Lemma 1 we have that there exist h polynomials p1, . . . , ph
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Fig. 6. Example of naive BAN chain classifier with three classes and three predictor variables.

pk(x, ĉ1, . . . , ĉk−1) : Rn+k−1 →R

pk ∈ PGk ,

such that, if f = ( f1, . . . , fh) is the multi-valued decision function associated with a chain classifier we have that,

fk(x) = sgn(pk(x, f1(x), . . . , fk−1(x))) = sgn(pk(x,π f1(x), . . . ,π fk−1(x)) (6)

where Gk is the predictor sub-graph related to the kth BAN classifier over X1, . . . , Xn, C1, . . . , Ck−1.
From now on we will focus on a particular and simpler form of BAN chain classifier, where the previous predicted 

classes are present in a naive way in the predictor sub-graph. That is, C1, . . . , Ck−1 are not connected among them neither 
with other predictors in the sub-graph Gk . We refer to this kind of chain classifier as naive BAN chain classifier, we show an 
example in Fig. 6. As we will see those naive models have a more simpler representation of multi-valued decision functions 
and permit a deeper analysis. We observe that more complex chain models could be addressed in a similar way, using 
the interpolating polynomials to represent the decision functions of the already predicted classes. In more complex model 
however the analysis of the decision function is more difficult and not all the following results can be extended directly.

For a naive BAN chain classifier for C1, . . . , Ch , over X1, . . . , Xn we denote by Hk the sub-graph of the k-th BAN restricted 
to the original predictors X1, . . . , Xn .

Since classes C j are binary, expanding Equation (6) we obtain the following sign-representation of the k-th decision 
function in a naive BAN chain classifier:

fk(x) = sgn(pk(x,π f1(x), . . . ,π fk−1(x))

= sgn

⎛
⎝ n∑

i=1

mi∑
j=1

�
�i
j (xi)

∑
k∈Mi

βi( j|k)
∏

s∈pa(i)

�
�s
ks

(xs)

+
k−1∑
j=1

[
β j(−1)�

{−1,+1}
−1 (ĉ j) + β j(+1)�

{−1,+1}
+1 (ĉ j)

]⎞⎠

= sgn

⎛
⎝q̂k(x) +

k−1∑
j=1

[
β j(−1)�

{−1,+1}
−1 (ĉ j) + β j(+1)�

{−1,+1}
+1 (ĉ j)

]⎞⎠ ,

where q̂k ∈ PHk , ĉ j = f j(x) = π f j (x) is the predicted value of the previous classifier expressed by the interpolating poly-

nomial as a function of x, �{−1,+1}
−1 (c) = c−1

−2 and �{−1,+1}
+1 (c) = c+1

2 are the Lagrange basis polynomials over {−1, +1} and 

β j(c) = ln
(

P (C j=c|Ck=+1)

P (C j=c|Ck=−1)

)
. Rearranging the terms in the sum we obtain that the following polynomial sign-represents fk ,

qk(x) = q̂k(x) +
k−1∑
j=1

(
a jπ f j (x) + b j

)
, (7)

where f j are the decision functions of the previous predicted class in the chain, q̂k is the polynomial related to the sub-
graph Hk as in Theorem 2 and

a j = 1

2
ln

(
P (C j = +1|Ck = +1)P (C j = −1|Ck = −1)

P (C j = +1|Ck = −1)P (C j = −1|Ck = +1)

)
(8)

b j = 1

2
ln

(
P (C j = +1|Ck = +1)P (C j = −1|Ck = +1)

P (C = +1|C = −1)P (C = −1|C = −1)

)
(9)
j k j k
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Observe that we can omit constants b j in Equation (7) if analysing the expressive power. In fact constants could be 
included in the polynomial q̂k using elementary properties of Lagrange basis polynomials, see Varando et al. [22]. The 
following lemma describes the set of decision functions induced by the kth step of the naive BAN chain classifier.

Lemma 5. Consider a multi-label classification problem over predictors X1, . . . , Xn and a naive BAN chain classifier with predictor 
sub-graphs H1, . . . , Hh for classes ordered as C1, . . . , Ch. Assume that the predictor sub graphs do not contains V -structures. For 
every k ∈ {2, . . . , h} we have that, if f1, . . . , fk−1 are the decision functions for C1, . . . , Ck−1 respectively, then the following set of 
polynomials sign-represent every decision function for class Ck,

PHk + < π f1 , . . . ,π fk−1 >,

where π f1 , . . . , π fk−1 are the interpolating polynomials, < . . . > denotes the span of the included vectors and the sum is intended as 
the sum of two vectorial space, that is, the vectorial space which includes all the possible sum of elements of the two spaces, PHk and 
< π f1 , . . . , π fk−1 >.

Proof. The proof of the result is just an application of Theorem 2 and Equation (7). �
We have furthermore, that the set sgn

(
PHk + < π f1 , . . . ,π fk−1 >

)
is equal to the set of decision functions representable 

by the k-th BAN classifier of the naive BAN chain classifier if the graphs Hk do not contain V -structures. Intuitively, from 
an expressive-power point of view, we have the addition of the previous predicted classes in the kth step of a naive BAN 
chain classifier being the equivalent to the enrichment of the space of polynomials PHk , related to the original predictors, 
by a subspace generated by the interpolating polynomial of the previous induced decision functions. To analyse if and how 
the enlarged space is indeed a bigger space, in other words, that it has a grater dimension, we have to understand when 
an interpolating polynomial π f does not belong to a polynomial space of the type PG for some graph G . Thus, in this case, 
adding < π f > to PG will actually increase the dimension.

First of all we define the set of relevant variables for a given decision function.

Definition 4. Given a decision function

f (x1, . . . , xn) : � = �1 × · · · × �n → {−1,+1}
we say that a variable Xi is irrelevant for f if

f (x1, . . . , xn) = g(x−i) = g(x1, . . . , xi−1, xi+1, . . . , xn) ∀(x1, . . . , xn) ∈ �,

where we denote with x−i the (n − 1) dimensional vector obtained from x by eliminating the i-th component (in general 
x−I will denote the vector obtained eliminating the components indexed by I). A variable is said to be relevant for f if it is 
not irrelevant, and we indicate with X ( f ) the set of relevant variables for f .

As we will see relevant variables are important in order to determine if the interpolating polynomial of a given decision 
function belongs or not to some polynomial space. In real applications the task of finding relevant variables of a decision 
function is computationally expensive and moreover in reality we usually know just an estimation of a decision function or 
its value on a set of random points. The presented analysis is thus intended as a theoretical analysis.

Example 7. We show some example of decision functions and their respective set of relevant variables.

1. If f1 is a decision function over {0, 1, 2} × {−3, −2}, such that

f1(x1, x2) =
{−1 if (x1, x2) = (0,−3) or (0,−2)

+1 otherwise.

Then obviously f1(x1, x2) = g(x1), where g(x1) = −1 if x1 = 0 and +1 otherwise. Thus X2 is irrelevant for f and 
X ( f1) = {X1}.

2. If f2 is the xor-function over {0, 1} × {0, 1}, defined as follows

f2(x1, x2) =
{−1 if (x1, x2) = (0,0) or (1,1)

+1 if (x1, x2) = (0,1) or (1,0).

Then X ( f2) = {X1, X2} and f2 do not have irrelevant variables.
3. If f3 is the function over {0, 1} × {0, 1} such that,

f3(x1, x2) =
{−1 if (x1, x2) = (0,0)

+1 otherwise.

Then also in this case X ( f3) = {X1, X2}.
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We can now state the following result about the interpolating polynomial of decision functions.

Lemma 6. Consider, for a graph G without V -structures, and categorical predictors X1, . . . , Xn, the space of polynomials PG defined 
in (5). For every decision function f we have that,

π f ∈ PG ⇔ Variables X ( f ) are completely connected in G,

where a set of variables is said to be completely connected in graph G if for every couple of variables in the set, they are in a parent–child 
relationship in the graph G . In other words, it is not possible to add any arcs among this set of variables respecting the acyclic property 
of the graph.

Proof. If the relevant variables for f are completely connected in the graph G , then we have that the polynomials in PG
could interpolate, over � any function of variables in X ( f ) only. In particular, there exists a polynomial p(x) ∈ PG such 
that f (x) = p(x), ∀x ∈ � and thus π f ∈PG .

To prove the other implication we observe that if two variable Xi and X j are not directly connected in the graph G , each 
polynomial p(x) ∈PG could be split into

p(x) = p1(x−{i, j}, xi) + p2(x−{i, j}, x j). (10)

To prove the above equality we just observe that each polynomial p in PG has the following expression

p(x) =
n∑

i=1

mi∑
j=1

�
�i
j (xi)

∑
k∈Mi

βi( j|k)
∏

s∈pa(i)

�
�s
ks

(xs).

Thus two variables appear in the same product of different Lagrange polynomial basis if and only if they are directly con-
nected, that is, if and only if one variable belongs to the parents of the other. It is clear now that the sum in Equation (10)
is therefore valid.

So we have only to prove that a decision function f with two relevant variables X1 ∈ �1, X2 ∈ �2 could not be equal, 
over �1 × �2, to the sum of two functions p1(x1) and p2(x2). Since X1 and X2 are relevant variable, there exist s, s′ ∈ �1
and t, t′ ∈ �2 such that,

f (s, t) = − f (s, t′) and f (s, t) = − f (s′, t)

Suppose f (x1, x2) = p1(x1) + p2(x2), then we have,

f (s′, t′) = p1(s′) + p2(t
′)

= p1(s′) + p2(t) + p1(s) + p2(t
′) − p1(s) − p2(t)

= f (s′, t) + f (s, t′) − f (s, t) = −3 f (s, t).

And we get | f (s′, t′)| 	= 1 which is absurd given that f is a decision function. �
We return to points 2 and 3 of Example 7. In both cases the functions f2 and f3 do not have irrelevant variables, thus 

from Lemma 6 we have that π f2 , π f3 /∈ PNB . But f2 /∈ sgn(PNB) (see the results of [10]) while f3 ∈ sgn(PNB) (see proof of 
Theorem 8). As observed in Remark 2, there is a clear difference between sign-representing and interpolating.

Thanks to Lemma 6, we have the following result.

Lemma 7. Consider a multi-label classification problem over categorical predictors X1, . . . , Xn, for binary classes ordered as C1, . . . , Ch. 
Given a sequence of predictor sub-graphs H1, . . . , Hh without V -structures, let us consider f = ( f1, . . . , fh) the h-valued decision 
functions of the corresponding naive BAN chain classifier. Then, for every 1 ≤ k ≤ h, we have that∣∣sgn

(
PHk+ < π f1 , . . . ,π fk−1 >

)∣∣ ≤ C(M,dk + s) ≤ C(M,dk + k − 1),

where M = |�| = ∏n
i=1 mi , dk = dim(PHk ), and s is equal to the number of functions among f1, . . . , fk−1 such that their relevant 

variables are not completely connected in Hk.

Proof. Suppose, f i1 , . . . , f is are the decision functions among f1, . . . , fk−1 such that their relevant variables are not com-
pletely connected in Hk . From Lemma 6 we have that,

π f i1
, . . . ,π f is

/∈ PHk ,

and that
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Fig. 7. Decision boundaries for the chain NB classifier in Example 8. The value of the predicted classes is reported.

π f i ∈ PHk for every i ∈ {1, . . . ,k − 1} \ {i1, . . . , is}.
Thus we have

PHk + < π f1 , . . . ,π fk−1 >= PHk + < π f i1
, . . . ,π f is

>,

and so

dim
(
PHk + < π f1 , . . . ,π fk−1 >

) ≤ dk + s ≤ dk + k − 1.

Analogously to Corollary 3 we have the corresponding bounding. �
Remark 6. We observe that changing the order of classes in which the chain classifier is built implies a change in the 
expressive power of the resulting multi-label classifier. If the chain classifier is built with the class ordering C1, . . . , Ch , we 
have that the kth classifier for Ck is more expressive than all the previous classifiers in the chain. In fact, from Equation (7), 
we have that if f is a decision function representable by the jth step of the chain classifier, then f is representable by 
every successive steps of the chain classifier.

Example 8. We use a NB chain classifier over the prediction problems of Example 6. The NB classifier for predicting class 
C1 is the same as in Example 6 (see Fig. 4 left and Table 3). The predictors of the NB classifier for predicting C2 now 
include C1. We consider the same conditional probability tables as in Example 6 (Tables 3 and 4). Moreover we have to 
specify the conditional probabilities of C1 given C2 in the NB that predicts C2. We set

P (C1 = +1|C2 = +1) = 0.3 and P (C1 = −1|C2 = +1) = 0.7

P (C1 = +1|C2 = −1) = 0.9 and P (C1 = −1|C2 = −1) = 0.1

And, thus, coefficients a1 and b1 as defined in (8) and (9) are given by

a1 = 1

2
ln

(
0.3 × 0.1

0.9 × 0.7

)
and b1 = 1

2
ln

(
0.3 × 0.7

0.9 × 0.1

)
.

We have that the decision function to predict C2 is sign-represented by

q2(x1, x2) = p2(x1, x2) + a1π f1(x1, x2) + b1

where f1(x1, x2) = sgn(p1(x1, x2)) and p2 are defined in Example 6. The decision boundaries of the two classes are shown 
in Fig. 7. We observe that the two boundaries are no longer independent; the decision boundary for the second class C2
(dashed grey line) depends on the decision boundary of the first class C1.

4.1. Extensions to classifier trellises

Classifier trellises (CT) are a novel paradigm to multi-label classification problems, recently introduced by Read et al. 
[17]. Basically CT work as chain classifiers, but instead of adding as predictors all the previous predicted classes, just some 
of them are considered in the new step of the classifier, thus reducing the complexity of the algorithm. We just observe 
here that our results about naive BAN chain classifier could easily be extended to CT (when BAN classifiers are used as base 
models), especially when, as in naive BAN chain classifier, the classes already predicted are added in a naive way.
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5. Binary relevance vs. chain classifier

In this section, we compare the expressive power of BR and chain classifiers when BAN classifiers are used as based 
models. We recall that a full Bayesian network is a Bayesian network where all pairs of nodes are linked.

Thanks to Lemma 6, we can prove the following result that generalizes Lemma 3 in Varando et al. [21].

Theorem 8. Consider a multi-label classification problem over categorical predictors X1 ∈ �1, . . . , Xn ∈ �n, for binary classes ordered 
as C1, . . . , Ch. Given a sequence of predictor sub-graphs H1, . . . , Hh without V -structures and such that they are not full Bayesian 
networks, consider F to be the set of h-valued decision functions induced by the naive BAN chain classifier and D the set of h-valued 
decision functions induced by the corresponding binary relevance method. We have that,

|F | > |D|.
In other words, naive BAN chain classifiers are more expressive than the corresponding BAN binary relevance method.

Proof. From the results of the previous sections we have that,

D = {
( f1, . . . , fh) s.t. fk = sgn(pk), pk ∈ PHk

}
F =

⎧⎨
⎩( f1, . . . , fh) s.t. fk = sgn

⎛
⎝pk +

k−1∑
j=1

a jπ f j

⎞
⎠ , pk ∈ PHk , a1, . . . ,ak−1 ∈R

⎫⎬
⎭

Among the decision functions for the first class C1 we can always choose for every k = (k1, . . . , kn) ∈ M = {1, . . . , m1} ×
· · · × {1, . . . , mn}, fk(x) such that

fk(x) =
{

+1 if x = (ξ
k1
1 , . . . , ξ

kn
n )

−1 if x ∈ � \ {(ξk1
1 , . . . , ξ

kn
n )}

To prove the above fact is sufficient to observe that for every k ∈ M, fk belongs to sgn(PNB) ⊆ sgn(PH1 ). In fact we have 
that fk = sgn(p(x)) where

PNB � p(x) =
n∑

i=1

�
�i
ki

(xi) −
n∑

i=1

∑
j 	=ki

n�
�i
j (xi),

as it is possible to check by substitution.
Since X ( fk) = {X1, . . . , Xn} and Hk is not complete, we have, from Lemma 6, π fk /∈PHk . Thus the space PHk + < π fk >

has one dimension more than PHk , and so sgn(PHk + < π fk >) contains at least two more decision functions than 
sgn(PHk ). So we have that there exist some h-valued decision functions that belong to F but not to D. �

We can also have a roughly estimation of the gain in expressibility from BAN binary relevance to naive BAN chain 
classifier.

Lemma 9. If F and D are defined as in Theorem 8 we have that

|F \D| > |�|
(

3h−1 − 1
)

.

Proof. As in the proof of Theorem 8 we can choose, among the decision functions for the first class C1,

fk(x) =
{

+1 if x = (ξ
k1
1 , . . . , ξ

kn
n )

−1 if x ∈ � \ {(ξk1
1 , . . . , ξ

kn
n )}

Thus we have |�| = |M| possibility to choose the decision function for C1. For every fk we have two more decision functions 
representable for every other classes C2, . . . , Ck , thus counting all the combinations we get

|F \D| > |�|
h−1∑
k=1

(
(h − 1)

k

)
2k = |�|

(
3h−1 − 1

) �

As we see from the proof, the estimation given by Lemma 9 is far from being sharp. However, it helps us to understand 
that chain classifiers are not just more expressive than binary relevance, the difference goes to +∞ as the number of labels 
grows.
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6. Conclusions and future work

In this paper we have extended previous results on the decision boundaries and expressive power of one-label BN 
classifiers to two types of BN multi-label classifiers: BAN classifiers built with binary relevance method and BAN chain 
classifiers. We have given theoretical grounds for why the binary relevance method provides models with poor expressive 
power and why this gets worst for larger number of classes. In both models, we have expressed the multi-label decision 
boundaries in polynomial forms and we have also proved that chain classifiers provide more expressive models than the 
binary relevance method when the same type of BAN classifier is used as base classifier.

Extending our results to general multi-dimensional BN classifiers [4,15,2,16], that permit BN structures between classes 
and predictors, is however, a much more complicated task. In multi-dimensional BN classifiers, the multi-valued decision 
functions have to be found by a global maximum search over the possible classes values. This fact does not permit the 
employment of the same arguments used in this work. It would be interesting to extend the geometric study of BAN 
classifiers, such as the study of the space of polynomials associated with every particular BAN. A deeper comprehension of 
the structure of PG could help to precisely compute or estimate the effective gain in expressive power of chain classifier 
with respect to binary relevance when the same BAN classifiers are used as base model.
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