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Abstract This paper addresses the question of maximizing
classifier accuracy for classifying task-related mental activ-
ity from Magnetoencelophalography (MEG) data. We pro-
pose the use of different sources of information and introduce
an automatic channel selection procedure. To determine an
informative set of channels, our approach combines a vari-
ety of machine learning algorithms: feature subset selection
methods, classifiers based on regularized logistic regression,
information fusion, and multiobjective optimization based on
probabilistic modeling of the search space. The experimental
results show that our proposal is able to improve classifica-
tion accuracy compared to approaches whose classifiers use
only one type of MEG information or for which the set of
channels is fixed a priori.

Keywords Brain computer interface ·MEG ·Multiobjec-
tive optimization · Classification · Feature subset selection ·
Probabilistic modeling

1 Introduction

The practical and scientific implications of using brain elec-
trical activity as a way to interact with the external world are
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numerous, and their investigation is still at an early stage.
Brain computer interfaces (BCIs) (Lebedev and Nicolelis
2006; Wolpaw et al. 2002) can translate electrical signals into
commands without the need for motor intervention. They
have been used intensively to provide communication and
control to people with severe muscular or neural handicaps
(Hoffmann et al. 2008; Iturrate et al. 2009; Nicolelis 2003),
but they can also be used, for example, to conduct cognitive
experiments (Carmena et al. 2003; Tan et al. 2009), improve
human behavior, and facilitate interaction in special environ-
ments (Rossini et al. 2009), etc.

For analysis, a BCI can be divided into a signal acquisition
module and a signal processing module (Wolpaw et al. 2002).
Signal acquisition is executed using electroencephalography
(EEG), MEG, or other techniques for recording brain activ-
ity. In this paper, we focus on the analysis of MEG data. Due
to its cost and technical requirements, MEG is of limited use
in practical BCI implementations. However, it is essential
for investigating brain activity that cannot be extracted from
EEG signals. In the BCI signal processing module, features
are first selected over the original signal. The selected fea-
tures are then translated into device commands. We will focus
on the feature selection step and, in particular, on the con-
ception of accurate and robust classification strategies able
to deal with MEG data.

A variety of classification algorithms have been used to
analyze brain data in the context of BCI applications (Lotte
et al. 2007). Nevertheless, these methods have mainly been
applied to EEG data where the number of sensors is usu-
ally smaller than in MEG. Support vector machines (SVM)
(Vapnik 2000) and linear discriminant analysis (LDA)
(Mclachlan 1992) are the two classifiers mostly applied to
classification of MEG data.

Besserve et al. (2007) use a linear SVM classifier based
on spectral power and synchrony features extracted from
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continuous epochs of MEG data. SVM was also applied in
Asano et al. (2009) to features extracted using an adaptive
spatial filter approach. The MEG observations related to hand
movement were initially prewhitened by the application of
generalized eigenvalue decomposition that eliminated sta-
tionary interferences. Rieger et al. (2008) applied linear
SVM to time- and wavelet-derived frequency representations
of MEG data. The task was to predict, from single-trial-
event-related magnetic fields recorded during the encoding
of briefly visible natural scene photographs, whether a person
would be able recognize the photograph later on.

Waldert et al. (2007) applied a regularized LDA to decode
directions from MEG signals of the human contralateral
motor cortex during center-out movements (four targets).
Time domain features extracted from different time win-
dows were used as inputs to the regularized LDA classifier.
Bianchi et al. (2010) recently used MEG to investigate the
evoked response components most suitable for use in a clas-
sical P300-based BCI interface speller protocol. They used
a stepwise LDA fed with data relative to the first 800 ms
of the signal following the visual stimulations. Wang et al.
(2010) performed dimension reduction and MEG data trans-
formation using an LDA that maximized linear discrimina-
tion among different movement directions.

The analysis of brain signals is frequently based on a priori
knowledge about the physiological mechanisms that deter-
mine the brain activity (Wolpaw et al. 2002). Slow cortical
potentials, P300, μ and β rhythms, and other types of elec-
trophysiological signals used for BCI are associated with
specific brain areas, and this information is implicitly or
explicitly used by the signal acquisition or signal process-
ing modules. However, there may be cases where the exper-
imenter is interested not only in maximizing the accuracy of
the mental task prediction based on the brainwave recorded
data but also in investigating how information from different
brain areas contributes to the predictions. Even if information
is recorded from the same areas, subject and trial variabil-
ity is frequently a source of poor BCI performance. In such
cases, the interpretability of the machine learning techniques
used for processing the data is even more essential.

This paper analyzes a machine learning technique that
does not consider a priori information of how the brain data
are related to the task under consideration. We address a clas-
sification problem whose objective is to predict, based on
MEG data, the direction in which a subject is covertly focus-
ing his or her attention. In this type of problem, attention
is paid to a given stimulus without eye or head movement.
It has recently been shown that high-accuracy classification,
with potential BCI applications, can be achieved based solely
on covert attention (van-Gerven et al. 2009; van-Gerven and
Jensen 2009).

Our approach incorporates a number of novel alternatives
for dealing with common problems experienced by BCI clas-

sification algorithms. To select a convenient (informative)
original signal transformation procedure, we evaluate differ-
ent ways to process the original signals (e.g., raw data, chan-
nel time series correlations, interaction graphs). To deal with
noisy features and outliers and to increase the classifier gener-
alization capabilities, we use a fast regularization-based clas-
sifier (Zou and Hastie 2005) that can deal with thousands of
features. To further improve the classifier accuracy while try-
ing to enhance robustness (accuracy variation across differ-
ent subjects), we use a feature subset selection (FSS) method
based on multiobjective optimization with probabilistic mod-
eling of the search space. Finally, we propose new ways to
extract physiologically relevant information from the learned
classifiers.

Our analysis is in response to a challenge recently posed
as part of a brain MEG data analysis competition.1 Although
the general approach described in this paper can be applied to
other problems, we use the competition’s task-related mental
activity classification problem as an illustrative example of a
successful application.

The paper is organized as follows. In Sect. 2, the gen-
eral problem is described, and the experiments in which the
brain data were acquired are explained. Section 3 introduces
the main components of the proposed classification algo-
rithm. The optimization approach to channel subset selection
is explained in Sect. 4. The experimental framework, numer-
ical results and discussion of the experiments are presented in
Sect. 5, and work related to our proposal is briefly reviewed
in Sect. 6. Finally, Sect. 7 concludes the paper.

2 Description of the problem

What follows is a general account of the experimental pro-
cedure. The data used in this paper were originally collected
from the work presented in van-Gerven et al. (2009). For
more details see van-Gerven et al. (2009).

2.1 Experimental framework

Fifteen subjects were instructed to covertly pay attention to
different spatial locations of a screen (top, right, bottom, and
left) during the registration of MEG information. The goal
then was to analyze the recorded MEG data to detect, at the
single-trial level, which of the four directions the subjects
were paying attention to.

We focus on a 1-D version of the problem that was part
of an open challenge to evaluate the accuracy of different

1 The winner (ex aequo) of this challenge, held at the BIO-
MAG 2010 conference, was an implementation of the approach
described in this paper. See http://megcommunity.org/index.php?
option=com_content&view=article&id=2&Itemid=24 for details of the
challenge.
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machine learning techniques. The competition was focused
on attention to the left and right (i.e., the problem was defined
as one of binary classification), and data from only 4 of the
original 15 subjects were used. The rules of the competition
established that contestants should report the classification
rate (proportion of correctly classified trials) for each subject
as computed using leave-one-out cross validation and report
the classification procedure. Artifact removal was allowed,
but trials could not be rejected. Contestants were advised to
prevent overfitting, e.g., if multiple algorithms were tried,
then they were to be tested on the first subject and applied
blindly to the remaining subjects. The data used for the chal-
lenge are described in van-Gerven et al. (2009).

Using the competition as a benchmark for introducing our
approach, we are able to follow a clear evaluation method-
ology that is based on the competition rules and common to
all the participants. It also serves to facilitate future compar-
isons with other methods since the experimental procedure
and the data are publicly available.

2.2 Experimental data

The subjects viewed a screen with a central fixation cross and
four squares at 7.5◦ of visual angle to the top, right, bottom,
and left of the fixation cross. At regular intervals, a small
arrow was displayed at the location of the fixation cross to
indicate the direction to which subjects should covertly pay
attention without moving their eyes from the fixation cross.
A total of 128 trials were made per condition (top, right,
bottom, and left) in eight subsequent sessions, interspersed
by 1-min rests. Each trial started with a 400-ms presenta-
tion of the cue, after which subjects had 2,500 ms to covertly
refocus their attention in the indicated direction. After this
delay period, the square in the indicated direction turned
either green or red for 40 ms. To facilitate task engagement
and behaviorally measure task compliance, the subjects were
asked to count the number of times the target location turned
green over all eight sessions. There was a 1,500-ms rest
between trials. The task was implemented in Presentation
software (Neurobehavioral Systems, Albany, CA, USA).

Data were downsampled from 1,200 to 300 Hz. No further
artifact rejection was performed. For each trial, the power
spectrum was computed in the 5–70-Hz frequency range
using a Hanning window for the period from 0.5 to 2.5 s
after cue offset using 100-ms intervals. Preprocessed trials
for the left and right conditions of each subject were avail-
able. Each trial was 2.5 s long and started −0.5 s before the
cue, indicating which way the subject had to direct his or
her attention. A total of 274 MEG channels were measured.
Figure 1a shows a diagram of the location of the channels
from which MEG information was extracted.

(a) (b)

Fig. 1 MEG channel localization. a The complete set of 274 channels.
b 86 Channels covering occipitoparietal brain areas

3 Factors in MEG data analysis

We distinguish three main factors that influence the classifi-
cation accuracy:

• Type of information used for classification,
• Type of classifier,
• Channels from which the information is extracted.

In Sects. 3.1–3.3, these factors are explained, and we pres-
ent the particular characteristics of our approach designed to
take them into consideration.

3.1 Type of information used for classification

One of the elements that critically impacts classification is
the particular information upon which the classification task
is based. In our approach, we try different information pro-
cessing variants before applying the classifier. In all cases,
the starting point is the time series output from the Nt =
128 × 2 = 256 trials, for I = 274 channels and k = 4
subjects. There are a total of 256 × 274 × 4 = 280, 576
time series. Each original time series comprises the period
from−0.5 to 2.5 s at 100-ms intervals. Following van-Gerven
et al. (2009), we use the period from 0.5 to 2.5 s following
cue offset as the attention time only. This should counteract
the influence of cue-evoked potentials. The MEG output data
correspond to 600-component numerical vectors.

We apply four types of processing procedures (raw
data, correlations between channels, interaction graphs con-
structed from correlations, and a representation that com-
bines raw and correlation data) to the initial set of raw time
series, i.e., each processing procedure tries to extract a dif-
ferent characteristic feature from the data.

3.1.1 Raw data

In this approach, the original set of 600 time points is reduced
to a set of 60 components by averaging a time window com-
prising 10 points in each component. Following previous
work Kelly et al. (2005) and van-Gerven and Jensen (2009)
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where occipitoparietal alpha-band (8–14 Hz) EEG activity
was used as a feature for left/right spatial attention classifi-
cation, we assume that the relevant information for the classi-
fication is included in the range 0–14 Hz. Even after applying
this modification we call the resulting information type “raw
data.” The classifier will receive a vector of n = 60× 274 =
16, 440 features.

3.1.2 Correlations between channels

This approach takes advantage of any interaction between
different brain regions during the solution of a recognition
task.

We compute the correlation matrix between the time series
corresponding to all the channels for a given trial. The corre-
lation between two channels is computed as the correlation of
their respective 600-component numerical vectors contain-
ing the channel measurements at each time point. A sym-
metric matrix W274×274 is constructed for each trial. The
classifier will receive a vector of n = 274·273

2 = 37, 401
features corresponding to the upper triangular part of the
correlation matrix (without the main diagonal).

3.1.3 Interaction graphs constructed from correlations

The correlation matrix is used to construct interaction graphs
between the different channels. The idea is that further anal-
ysis of the graph using topological measures from network
theory can serve to reveal local and global information that
is not directly recognizable from the correlation values.

The interaction graph G= (V, A) is such that V =
{v1, . . . , v274} is the set of vertices (channels) and the arc
ai, j = (vi , v j ) goes from vertex vi to vertex v j . Arcs are
determined as follows:

ai, j =
⎧
⎨

⎩

(vi , v j ) if i < j and cri, j > 0.5
(v j , vi ) if i < j and cri, j < −0.5
no arc otherwise

where cri, j is the correlation coefficient between channels i
and j .

The interaction graph is an arbitrary way to represent
strong correlations (below−0.5 or above 0.5) between pairs
of channels. We expect that if there are higher-order inter-
action patterns between the channels, at least some of them
could be unveiled by a topological analysis of these graphs.
These patterns could, in turn, be more informative for a clas-
sifier than raw data or pairwise correlations between the chan-
nels.

Figure 2a shows a possible correlation matrix for five
channels. The corresponding interaction graph is shown in
Fig. 2b.

(a) (b)

Fig. 2 Example of interaction graph construction. a Correlation
matrix. b Interaction graph

Once interaction graphs have been constructed, the fol-
lowing local topological measures are computed for each
node:

1. Betweenness centrality Measure of node centrality in
graph. It is higher for vertices that occur on many short-
est paths between other vertices.

2. Pair distance Average distance (defined as the length of
the shortest path between two vertices) between each
node and the other vertices. Disconnected vertices are
assigned a very high, unattainable, distance value.

3. Node eccentricity Maximum of vertex finite distances
to all other vertices.

4. Clustering coefficient Ratio of actually existing connec-
tions between the node’s neighbors and the maximal
number of such possible connections.

5. Indegree Mean indegree of vertices.
6. Outdegree Mean outdegree of vertices.
7. Motif frequency, M=3 Motifs (Milo et al. 2002) are

small network building blocks defined by their size M
and interconnection patterns. We compute the motif fre-
quencies of all motifs of size M = 3. Since only 5 of the
13 possible motifs appear at least once in all the graphs,
these are the only motifs considered in our analysis.
These motifs are shown in Fig. 3.

8. Maximum modularity Gives a modularity value corre-
sponding to a network module decomposition computed
using Newman’s spectral optimization method, gener-
alized to directed networks (Leicht and Newman 2008).

9. Vertex participation coefficient The participation coef-
ficient (Guimera and Amaral 2005) defines how well
distributed the links of a node are between different
modules. It is close to 1 if the links are uniformly distrib-
uted among the modules and 0 if all the links fall within
one module. The same modules used to compute the
maximum modularity value are employed to compute
the vertex participation coefficient.

In addition, a number of global topological measures are
computed for the whole graph:
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Fig. 3 All motifs (M = 3) that appear in interaction graphs learned
from MEG data

1. Assortativity coefficient Computed as the Pearson cor-
relation coefficient between pairs of linked nodes.

2. Characteristic path length Global mean of finite entries
of graph distance matrix.

3. Network radius Minimum eccentricity of network ver-
tices.

4. Network diameter Maximum eccentricity of network
vertices.

5. Network density Average connection density of network,
i.e., number of connections present in network out of all
possible connections (n2 − n).

6. Number of vertices Number of vertices in the network.2

7. Number of edges Number of edges in network.

The number of local features is nlocal = 274×13 = 3, 562
and the number of global features is nglobal = 7. The clas-
sifier receives n = 3, 569 features, which is a considerably
smaller number than in the previous two approaches. Com-
putation of the topological measures is implemented using
the brain connectivity toolbox (Sporns 2002). 3

3.1.4 Approach based on raw and correlation information

We also try an approach conjointly using raw information
and correlation coefficients between channels (Raw+Corre-
lation representation). This implies the use of a vector of
n = 53,841, which is a huge amount of features. This sug-
gests the need to use efficient feature selection techniques to
reduce the number of features.

3.2 Type of classifier

The response variable Z for the classification problem
is binary (0 = subject is covertly paying attention to
the left, 1 = subject is covertly paying attention to the
right). The classifier of choice is a regularized logistic
regression classifier in which the logistic regression sig-
moid function represents the class-conditional probabili-
ties through a linear function of the vector of predictor
variables v:

2 Although this feature was automatically added to the classification
vector and used in the experiments, we noticed later that it was not
informative since all the graphs have the same number of vertices.
3 http://sites.google.com/a/brain-connectivity-toolbox.net/bct/metrics.

p(Z = 0|v) = 1

1+ e−(β0+vT β)
, (1)

p(Z = 1|v) = 1

1+ e+(β0+vT β)
(2)

= 1− p(Z = 0|v) (3)

where β0 is called the intercept and β the vector of regression
coefficients. The model is fitted by regularized maximum
(binomial) likelihood using an elastic net (Zou and Hastie
2005).

The elastic net solves the following general problem:

min
(β0,β)

[
1

2N

N∑

i=1

(zi − β0 − vT
i β)2 + λPα(β)

]

, (4)

where N is the number of observations, λ ∈ R, 0 ≤ λ ≤ 1,

Pα(β) = (1− α)
1

2
||β||2l2 + α||β||l1 (5)

=
p∑

j=1

[
1

2
(1− α)β2

j + α|β j |
]

(6)

is the elastic-net penalty, and p is the number of features.
Pα(β) is a compromise between the ridge-regression or l2
penalty (α = 0) and the lasso or l1 penalty (α = 1).

3.2.1 Classifier evaluation and selection of lambda

To evaluate the classifier accuracy for a given data set, we
use cross validation. Two possible alternatives are employed,
leave-one-out and two-fold cross validation. We use leave-
one-out cross validation as a thorough, definite validation of
the classifier. Two-fold cross-validation is used as a faster
estimate of the classifier accuracy. In this case, only one par-
tition of the data set is used for the classification experi-
ment. No variance of the classifier accuracy is computed. In
Sect. 4.1 we explain the rationale behind the use of two-fold
cross validation in this case.

An important issue for the elastic-net and other regulariza-
tion techniques is the selection of the optimal α and λ values.
In most of the experiments presented in this paper α = 1,
i.e., the lasso penalty is applied. Nevertheless, in Sect. 5, we
present results on the influence of α on prediction accuracy.
As regards the λ value, the elastic-net implementation we use
outputs the prediction attained by the classifier for a set of
λ values. This information can be employed to select the λ

to be used to evaluate the test cases. In this paper we choose
the λ that maximizes the accuracy of the training set. This
means that the classification phase involves the computation
of the model parameters and one additional validation step
where these parameters are used to predict the outcome for
the training set.
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3.3 Multiobjective FSS search

Channel selection will be used as a way to improve the clas-
sification results. On the one hand, we want to maximize the
results accuracy for each of the subjects. On the other hand
we would like to output a set of channels that, in terms of
the results accuracy, is robust across individuals. Generally,
intersubject variability determines that a subset of predictive
features that works well for a given individual may produce
poor results when used on a different subject. The set of opti-
mal channels may also depend on the type of information
selected.

To balance these two potentially conflicting goals, the
optimal channels are searched using a multiobjective approach
where each objective corresponds to the accuracy produced
by the classifier for one subject. Each possible set of channels
will have four (probably different) accuracy values, one for
each subject. The question is then how to find a set of solu-
tions x that can be considered accurate for at least some of
the subjects and robust if all the subjects are considered. One
possibility is to find the Pareto set of solutions, a common
practice in multiobjective optimization (Coello et al. 2007).

Let a binary vector x, with binary components xi ∈
{0, 1} i ∈ {1, . . . , 274}, represent a possible selection of
channels. xi = 1 means that channel i has been selected to
pass its corresponding information to the classifier, whereas
xi = 0 means that no information from channel i will be
included in the classifier. We consider a maximization prob-
lem with k = 4 accuracy objective functions fi (x) →
R, i ∈ {1, . . . , k}, where the vector function f maps each
solution x ∈ X ∈ {0, 1}n to an objective vector f(x) =
( f1(x), . . . , fk(x)) ∈ R

k .
In our application, each objective function fi (x) will cor-

respond to the classification accuracy obtained for subject i
when information extracted from the channels represented in
x is used by the classifier. We expect that informative sets of
channels will produce, on average, higher accuracies among
all the subjects. However, it is also important to detect chan-
nels that are relevant for particular subjects. The Pareto set
of solutions will contain the sets of channels that are glob-
ally and individually most informative. The concept of dom-
inance is at the heart of the Pareto front approximation. It
is assumed that the underlying dominance structure is given
by the Pareto dominance relation “y dominates x” that is
defined as ∀x, y ∈ X , x �F y ⇐⇒ fi (x) ≤ fi (y)∀i ,
where F = { f1, . . . , fk}. The Pareto (optimal) set is given
as {x ∈ {0, 1}n |
 ∃y ∈ {0, 1}n \ {x} : x �F y}. It con-
tains solutions that are nondominated. The associated Pareto
front contains the vector of function evaluations for each of
the Pareto set members. The extreme points of the Pareto set
include the solutions that maximize each of the objectives. In
our case, these solutions are the set of vectors that maximize
accuracy for each of the subjects.
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Fig. 4 Example of a Pareto front computed using as objectives the
classification accuracies for two different subjects

The computation of the Pareto set is relatively simple.
Each solution is compared to all other candidate solutions.
If a solution is not dominated by any other solution from
the candidate set, it belongs to the Pareto set of solutions;
otherwise it is discarded from the Pareto set. Figure 4 shows
an example of a Pareto front computed using the accuracies
of only two subjects. In Fig. 4, each blue dot corresponds
to a different set of channels. The location of the point is
determined by the classification accuracies for two different
subjects as computed using the information extracted from
the respective channels. The 10 nondominated solutions that
form the Pareto front are marked by a red circle.

We claim that the multiobjective approximation provides
a wider perspective of the way in which intersubject vari-
ability operates. It also serves to identify individual features
that consistently participate in solutions with a high accuracy.
The optimization algorithms used to find a Pareto-set approx-
imation are described in Sect. 4.2. Figure 5 shows how the
classification of task-related mental activity for a single sub-
ject is accomplished using different sources of information.
Figure 6 shows a diagram describing how each channel sub-
set is evaluated using the classification accuracies computed
for different subjects.

4 Channel subset selection

In the previous section we saw that accuracy results could be
improved by appropriately selecting the brain regions from
which channel information is fed to the classifier. In previ-
ous approaches (van-Gerven et al. 2009), this selection was
made based on physiological knowledge about the brain areas
thought to be involved in the mental task considered. We
take a different approach to selecting the relevant channels.
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Classification

Subject

Selected channels

Raw data

Raw+Correlations Channel correlations

Interaction network

Network measures
Problem Features

Regularized logistic regression classifier Accuracy

Fig. 5 Classification of task-related mental activity for a single subject
using different sources of information

Multi-objective optimization

Candidate solution (Selected channels)

Subject 1 Subject 2 Subject 3 Subject 4

Classification Classification Classification Classification

Accuracy 1 Accuracy 2 Accuracy 3 Accuracy 4

Four-objective vector

Fig. 6 Evaluation of candidate solutions in channel selection based on
multiobjective optimization

Channel selection is posed as a multiobjective optimization
problem where the feature multiset selection is carried out
in a wrapper way. The quality of a candidate set of channels
is based on the vector of four accuracy values, one accuracy
value for each of the four subjects.

4.1 Problem representation and function evaluation

Since we intend to use a wrapper approach assisted by an
optimization method (Saeys et al. 2007), two-fold cross val-
idation is applied in place of the leaving-one-out cross-vali-
dation method. For the analyzed problems, leave-one-out is
simply too costly to be affordable for an optimization heuris-
tic, particularly for the large number of features considered in
our case. Certainly, we can expect the same set of features to
have different accuracy values when evaluated with two-fold
or leave-one-out cross validation. However, we use two-fold
cross validation as an estimate of the desired accuracy met-
ric. This less accurate, but also less costly, metric will serve
to guide the search for optimal solutions.

4.2 Genetic algorithms and estimation of distribution
algorithms for multiobjective optimization

Evolutionary algorithms (EAs) are commonly applied to
find Pareto-set approximations in multiobjective optimiza-
tion problems. They use populations of solutions and apply
selection based on the fitness of the solutions. We try three
different EAs—one genetic algorithm (GA) (Goldberg 1989;
Holland 1975) and two estimation of distribution algorithms
(EDAs) (Larranhaga and Lozano 2002; Muhlenbein and Paaß
1996; Pelikan et al. 2002). GAs apply what are known as
crossover and mutation operators to recombine solutions and
visit new points from the search space. EDAs are similar to
GAs. However, they replace traditional crossover and muta-
tion operators by the estimation and sampling of probabilistic
models. EDAs have been successfully applied to FSS prob-
lems (Armananzas et al. 2011; Inza et al. 2000; Mendiburu
et al. 2006) and were recently proposed for application to
problems of neuroscience (Santana et al. 2010a,b). The idea
of using these three different optimization algorithms is that
together they would allow us to try different ways of explor-
ing the search space. For our analysis of the solutions, docu-
mented in the experimental section (Sect. 5), we took an equal
number of executions from each algorithm and extracted the
best solutions found from this complete set.

Our GA uses one-point crossover and bitwise mutation
(Goldberg 1989). In the case of EDAs, the choice of the
probabilistic model and the particular class of learning and
sampling methods is fundamental. The models may differ
in the order and number of the probabilistic dependencies
that they represent. A variety of learning and sampling tech-
niques can be used depending on the type of representation
and other characteristics of the optimization problem. In par-
ticular, there may be important differences between EDA
implementations for single and multiobjective problems.
Enforcing the population diversity needed to guarantee a
good covering of the Pareto set is particularly important for
multiobjective problems, and specialized learning and sam-
pling methods may be conceived to fulfill this goal.

Algorithms 1 and 2 respectively show the pseudocodes of
GA and EDA for multiobjective optimization problems. In
both algorithms, the selection method employed uses Pareto
ranking selection (Coello et al. 2007) where individuals are
ordered according to the Pareto front to which they belong.
Individuals in the first front (nondominated solutions) come
first, followed by individuals that are only dominated by oth-
ers in the first front and so on. Within each front, they are
ordered according to the average rank of their fitness func-
tions. After the entire population has been ordered, trunca-
tion selection is applied to select the best T percentage of the
population.

We use two different EDA variants. Each variant cap-
tures and uses different relationships between the problem

123



396 Biol Cybern (2012) 106:389–405

Algorithm 1: GA for multiobjective optimization

1 D0← Sample M individuals using a uniform distribution
2 t← 1
3 do {
4 Evaluate Dt−1

5 DSe
t−1 ← Select N individuals from Dt−1 using Pareto

ranking selection
6 Randomly select a mating-pool of individuals from the

selected set
7 Generate Dt by applying recombination and crossover on

the mating-pool
8 } until Stop criterion is met

variables, effectively implementing diverse search strategies.
The first variant considered uses a univariate marginal prod-
uct model in which all variables are independent, i.e., no
dependencies are represented in the model. The joint prob-
ability distribution of the univariate marginal distribution
algorithm (UMDA) (Muhlenbein and Paaß 1996) can be fac-
torized as follows:

pUMDA(x) =
n∏

i=1

p(xi ). (7)

The second model learns a probabilistic model based on
a tree. In this model, each variable may depend on no more
than one variable, called the parent. The probability distri-
bution pTree(x) used by Tree-EDA (Santana et al. 2001) is
defined as

pTree(x) =
n∏

i=1

p(xi | pa(xi )), (8)

where pa(Xi ) is the parent of variable Xi in the tree, and
p(xi | pa(xi )) = p(xi ) when pa(Xi ) = ∅, i.e., when Xi is
the root of the tree. Probabilistic trees can be represented by
acyclic connected graphs.

Algorithm 2: EDA for multiobjective optimization

1 D0← Sample M individuals using a uniform distribution
2 t← 1
3 do {
4 Evaluate Dt−1

5 DSe
t−1 ← Select N individuals from Dt−1 using Pareto-

ranking selection

6 Learn a probabilistic model from DSe
t−1

7 Dt ← Sample M individuals from the probabilistic model
8 } until Stop criterion is met

The stop criterion used for the algorithms was to reach a
maximum number of generations.

The computational cost of multiobjective optimization
EAs depends on the population size, the number of gener-
ations, and the evolutionary operators used. The main dif-

ference between the three variants of the used EAs is in the
complexity of the algorithms used for combining the solu-
tions during the reproduction step. The complexity of the GA
crossover operator is linear in the selected population size,
i.e., O(N ). The learning algorithm used by UMDA is linear
in the selected population size and the number of variables,
i.e., O(Nn). Finally, the learning algorithm used by Tree-
EDA is quadratic in the number of variables and linear in the
selected population size, i.e., O(Nn2).

4.3 Extended approach: improving accuracy by augmenting
the amount of information

In some cases, when a set of channels is given a priori or the
channels have been found using a particular type of infor-
mation, it would be interesting to find out how new different
types of information added to the classifier would modify the
classification. This will only be applied in situations where
additional information is added to the classifier for which
the currently used information is insufficient for achieving
the targeted classification accuracy. Instead of searching the
solution using the raw+correlation information, as discussed
in Sect. 3.1.4, we search for the optimal set of channels using a
particular type of information (as in Sects. 3.1.1–3.1.3). Once
the optimal set of channels has been found, new features are
added to the classifier. We apply this approach to find the set
of channels using raw data, and once the optimal channels
have been found, the classifier is invoked passing a vector
comprising the original features selected from raw data and,
additionally, the correlation features for each of the selected
channels as features.

5 Experiments

In this section we investigate the combination of factors that
produces the best classification accuracy both globally and
for each of the subjects. Our analysis is focused on the type
of information and the set of channels. In addition, we empir-
ically investigate a number of issues that influence classifica-
tion and should be taken into account to interpret the results
produced by the algorithm. We start by presenting an over-
view of the experiments and the questions these experiments
address. The subsequent sections present the results for these
experiments and discuss the results.

5.1 Overview of the experiments

As stated in Sect. 3.2, the parameter α of the logistic classifier
sets a compromise between the ridge-regression or l2 penalty
(α = 0) and the lasso or l1 penalty (α = 1). A necessary ini-
tial step for the application of the classifier is evaluating the
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influence of α in the accuracy results. In Sect. 5.2 we carry
out this evaluation for all subjects and types of information.

A fundamental question we address is whether the use of
different types of information can produce different results
in terms of accuracy. This is an important step of the experi-
mental procedure since one of the assumptions made in this
paper is that the use of different sources of information can
improve the classification results in the analysis of MEG
data. A related question is whether the use of information
from all the channels can be more effective in terms of accu-
racy than information constrained to a particular brain area
(in this case, the occipitoparietal region). The questions of
which is the most informative type of information and the
right choice of the channels are very related. Therefore, we
address them together in Sect. 5.3.

The next issue addressed in our experiments is whether the
multiobjective approximation approach is able to detect the
most informative channel sets for each of the subjects. To this
end we run the three variants of the multiobjective EAs and
compute the Pareto-set approximations using the combined
output of these three variants. Then we compute the best accu-
racies achieved for each of the subjects and each type of infor-
mation. This analysis is presented in Sect. 5.4, where we also
inspect theParetosetsand identify thebest subsetsofchannels
for each individual and type of information.

Another important question that we investigate is whether
the channel sets contained in the Pareto sets found for a num-
ber of subjects can be useful in the classification of other sub-
jects and with downsampled frequencies. We call this type of
study a robustness analysis, and it is addressed in Sect. 5.5,
where we evaluate the Pareto sets computed from the four
subjects in a larger set of 15 subjects and using less informa-
tion from the original brain signals.

Finally, in Sect. 5.6 we show how the parameters learned
by the logistic classifier can be used for determining the dif-
ferent contribution of channels to the classification accuracy.
Allowing one to determine the channel relevance is an added
value of this type of classification algorithms. We further
extend the analysis of the logistic classifier parameters by
identifying, on the basis of these parameters, the time peri-
ods of the recorded time series that are more informative for
the classification task.

All the optimization algorithms (GA, UMDA, and Tree-
EDA) are implemented using the MATEDA-2.0 software
(Santana et al. 2010c), a modular implementation of estima-
tion of distribution algorithms programmed in Matlab (The
MathWorks 2007) that can be used to implement genetic and
other classes of EAs. The computation of all network mea-
sures is implemented using the brain connectivity toolbox
(Sporns 2002). We use the Matlab implementation of the reg-
ularized logistic classifier proposed in Friedman et al. (2010),
which uses cyclical coordinate descent, computed along the
regularization path. Routines for data processing and analy-

sis of the experiments were programmed by the authors in
Matlab.

5.2 Study of the alpha parameter

As an initial step we investigate the effect of the parameter α

on the accuracy of the classification results. For each subject
and each type of information, classification accuracy is com-
puted for α ∈ {0.1, 0.2, . . . , 1.0}. To reduce the computa-
tional time overheads, channel selection is constrained to the
set of 86 occipitoparietal channels. Figure 7 shows the curves
describing the variation in the accuracy as a function of α.

A first conclusion from analyzing Fig. 7 is that there
are only minor differences in the accuracy values due to
variations in α. We also find that raw+correlation informa-
tion (black lines) achieves improvements in the classification
rate over the correlation type of information (blue lines) for
all the subjects. Compared with the use of raw information
(red lines), the raw+correlation information clearly produces
higher accuracy for subjects 1 and 2. However, for subjects 3
and 4, the difference is not so clear. We also observe that,
at least in some situations, interaction graphs (green lines)
can improve the classification given by correlation values.
This applies to the fourth subject and may indicate that, in
this case, higher-order patterns of correlations are captured
by the computed graph measures. Based on these results,
in the remaining experiments presented in this section, we
arbitrarily set α = 1, which corresponds to the lasso penalty.

5.3 Channels from which information is extracted

We conduct an exploratory set of experiments to evaluate the
accuracy of the classifier for a changing number of channels
and using the different types of information. We consider
two different scenarios: (1) the classifier receives informa-
tion from all channels (274) and (2) the classifier receives
only information about the occipitoparietal channels (86)
(Fig. 1b). Table 1 shows the results obtained for the accu-
racy where leave-one-out cross validation was always used.

Looking at Table 1, we find that the classifier accuracy is
variable depending on the channels providing the informa-
tion. Even if regularization implicitly makes a feature subset
selection by setting to zero the coefficients of features that do
not support relevant information for the classification task,
channel preselection can improve the classification results.

In Table 1, we underline the cases where using a smaller
number of channels (occipitoparietal channels) improves the
accuracy of the classifier that uses all the information. Notice
that when a channel is excluded, a complete set of variables
(those features that represent the corresponding type of infor-
mation extracted from that channel) is not given as classi-
fier input. For instance, using raw data and constraining the
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Fig. 7 Accuracy of the classification results as a function of parameter α for each of the subjects and each type of information. The initial channel
set comprises the occipitoparietal channels

Table 1 Classification accuracy with all channels (All) and occipitoparietal channels (OP) for all the subjects (rows) and the four types of information
used (in columns)

Subject Raw Correlation Graph Raw+Corr

All OP All OP All OP All OP

1 0.7362 0.7283 0.8031 0.8081 0.6596 0.7126 0.8504 0.8622
2 0.7835 0.7717 0.8071 0.7677 0.5906 0.6614 0.8189 0.8583
3 0.7323 0.7520 0.6654 0.6850 0.4528 0.5236 0.7677 0.7520
4 0.7953 0.6929 0.5669 0.5039 0.4321 0.5827 0.7677 0.7283

number of channels to 86, this means that only 86 × 60 =
5,160 features will be fed to the classifier.

5.4 Classification experiments

In the next step, we apply multiobjective optimization to
find a set of channels that, if fed to the classifier, outputs a
high classification accuracy. For each subject and each type
of information we run each of the three EAs 10 times. All

EAs use a population size of M = 50 individuals, selection
parameter T = 0.5, and a maximum of 100 generations. The
solutions evaluated by these runs are the basis of a postpro-
cessing step where the best channel sets are selected for each
type of information. All the steps that lead to finding the best
classifiers are described in Algorithm 3.

Notice that in step 4 the accuracies are computed using
leave-one-out cross validation instead of the two-fold cross
validation employed by the EAs. Consequently, PSl may not
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Algorithm 3: Steps for finding the best classifiers

1 Given a type of information l, run 10 executions of each mul-
tiobjective EA

2 Collect in the set Al all the selected populations for each gen-
eration of the EAs

3 Find the Pareto set PSl from Al

4 Using leave-one-out cross-validation, estimate the set of clas-
sification accuracies c j (x), j = 1, . . . , 4 for each vector x ∈
P Sl

5 For each subject j , find the vector x ∈ PSl such that one c j (x)
is maximized, j = 1, . . . , 4

6 Find also the vector x ∈ PSl such that 1
4

∑
j c j (x) is maxi-

mized

Table 2 Best classification results for the different types of information

Subject 1 2 3 4

Optimizing Raw information
1 0.7598 0.7992 0.7244 0.7441
2 0.6850 0.8425 0.7756 0.7874
3 0.7559 0.7677 0.7953 0.7677
4 0.6890 0.7913 0.7441 0.8425
Best mean 0.7244 0.7953 0.7835 0.8386

Correlation values
1 0.8425 0.7638 0.7087 0.6339
2 0.7953 0.8228 0.6890 0.5748
3 0.7953 0.7835 0.7520 0.5118
4 0.8189 0.7244 0.6811 0.6732
Best mean 0.8268 0.7795 0.7520 0.6417

Interaction graphs
1 0.7480 0.6535 0.5787 0.4646
2 0.6890 0.7126 0.5039 0.5315
3 0.6890 0.6339 0.6693 0.4882
4 0.6378 0.5945 0.5551 0.6063
Best mean 0.7087 0.6614 0.5827 0.5433

Raw+Correlation information
1 0.8701 0.8228 0.7638 0.7362
2 0.8031 0.8505 0.7480 0.7717
3 0.8228 0.8150 0.7913 0.7992
4 0.8228 0.8150 0.7913 0.7992
Best mean 0.8504 0.8150 0.7913 0.7874

Extended information
1 0.8701 0.7953 0.7480 0.7480
2 0.8661 0.8425 0.6693 0.7126
3 0.8386 0.8346 0.8031 0.7362
4 0.8228 0.8189 0.7323 0.8031
Best mean 0.8386 0.8346 0.8031 0.7362

be a Pareto set if the c vector values estimated in step 4
are taken as the objective values. The best accuracy value for
each subject corresponds to extreme points of the Pareto front
and are computed in step 5 of Algorithm 3. As a measure of
global behavior, the average of the accuracies is computed in
step 6.

Table 2 shows the objective vectors comprising the best
accuracy for each of the subjects when each type of infor-
mation is used. A row of the table displays the four accu-
racies estimated for a given channel set that is included in
the Pareto set of solutions. For each type of information, five

Table 3 Best absolute results achieved using all types of information

Subject 1 2 3 4 Type

1 0.8701 0.7953 0.7480 0.7480 Extended
1 0.8701 0.8228 0.7638 0.7362 Raw+Corr
2 0.8031 0.8505 0.7480 0.7717 Raw+Corr
3 0.8386 0.8346 0.8031 0.7362 Extended
4 0.8228 0.8189 0.7323 0.8031 Extended
Mean 0.8504 0.8150 0.7913 0.7874 Raw+Corrf

rows are presented. The first four rows respectively corre-
spond to the solutions that maximize the accuracy for each
of the four subjects. Therefore, the main diagonal of these
four rows comprises the best accuracy achieved among all
the channel sets for each subject. The last row (best mean)
shows the objective vector with the highest average accuracy
among the four subjects. Also, for each type of informa-
tion, Table 3 summarizes this information by displaying the
best absolute classification accuracies found for each subject.
The best classification accuracy for each subject among all
types of information is underlined. Results showed improve-
ment over previously achieved accuracies reported in van-
Gerven et al. (2009) for all the subjects. The improvement
was particularly remarkable for subjects 3 and 4 for which
previously best known accuracy values were around 0.72 and
0.65, respectively.

Figure 8 shows (as dot points) the scalp location of the
best subset of channels learned for each individual using the
raw+correlation information. The color represents the aver-
age accuracy of each channel computed from the Pareto front.
The average accuracy of channel i is computed as the average
accuracy of all objective vectors whose corresponding solu-
tion in the domain includes channel i . Green spots correspond
to channels that were not present in any of the solutions com-
prised by the Pareto set. The figure indicates that green spots
are equal across individuals, whereas the color of the other
channels changes only slightly.

The information about the best single solution for each
subject, as displayed in Fig. 8, is not very informative because
the number of selected channels is relatively large and it is
difficult to detect any particular pattern. One alternative for
refining our analysis is to identify channels that are often in
the solutions comprised by the Pareto set. Figure 9 shows
(as dot points) the scalp locations of channels included in at
least 80 % of the Pareto set for the four types of information
considered. These are expected to be channels, for the con-
sidered type of data, that reliably provide relevant features
for the classification task. In Fig. 9 the colors represent the
frequency with which each channel is present in the Pareto
sets.

Figure 9 shows that most of the channels frequently
included in Pareto solutions are located around the occipito-
parietal region. There are also channels selected from other
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Subject 1 Subject 2

Subject 3 Subject 4

Fig. 8 Best subsets of channels learned for each individual using a
raw+correlation information scheme

Fig. 9 Channels that were in at least 80 % of Pareto-set solutions for
each information type

areas; in particular some channels are detected in the fron-
tal area. These results seem to indicate that important gains
in interpretability can be attained when a set of solutions is
used instead of a single one. We must be aware, though, that
the optimal solutions found by EAs and other multiobjective
optimization methods are correlated by the way in which
the search was conducted. This could mean that a channel is
often in a Pareto set due to the way the EA works. This effect
can be countered by using several runs or different variants
of the search procedure, as in our approach.

5.5 Evaluating the robustness of the Pareto-set solutions

We are interested in further evaluating the robustness of the
solutions included in the Pareto set. We focus the analysis on
the set of 152 Pareto solutions found for the raw+correlation
type of information and extend the evaluation of the classi-
fication accuracy to the original set of 15 subjects. For each
of the 15 subjects, the brain signals are downsampled from
1, 200 to 60 Hz. This implies that we are using approximately
one fifth of the signal information that was used in the previ-
ous classification experiments for which signals were down-
sampled from 1, 200 to 300 Hz. Therefore, we do not expect
to achieve the same classification accuracy results. We do
not expect neither that the Pareto sets of channels found for
four subjects will necessarily be good for the other eleven
subjects. However, we can compare them with the subset
of occipitoparietal channels given the known physiological
mechanism involved in covert attention.

Figure 10 shows the classification accuracy achieved in
the complete set of 15 subjects and with the raw+correlation
type of information for all the channels, the occipitoparietal
channels, and the best solution of the Pareto set using only
four subjects. The best solution depends on each new sub-
ject. It is the set of channels from the Pareto set that gives
the highest accuracy (out of the 152 values) for each of the
new 11 subjects. It can be seen that for 14 out of 15 sub-
jects the classification accuracy of all the channels and the
occipitoparietal channels can be improved by using subsets
of channels that belong to the Pareto set obtained for four of
the subjects. For some subjects the accuracy improvement
can be over 10 %. What we want to emphasize at this point
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Fig. 10 Classification accuracy achieved in the complete set of 15 sub-
jects and with the raw+correlation type of information. Different sub-
sets of channels have been used: all the channels, the occipitoparietal
channels, and the best solution of the Pareto-set computed using only 4
subjects
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is that the Pareto set of solutions found for a reduced set of
subjects can be used as a reservoir of potential solutions for
other subjects. We can also think of situations where brain
signals from many subjects are available and an initial clus-
tering step is applied to select a subset of exemplar subjects
for which the channel multiobjective optimization step will
be conducted subsequently.

5.6 Analyzing the parameters of the logistic models

Through channel selection the classifier is able to reduce the
data used for classification, focusing on the most task-related
informative brain areas. However, the information coming
from all the channels is not necessarily equally relevant for
the classifier in informative terms. The relevance of a channel
will depend on the contribution of the features associated to
each channel. Notice that selecting a channel means that all
the features coming from that channel will be used for clas-
sification (e.g., for raw information there are 60 features for
each channel). One way to assess the relevance of a channel
is to inspect the logistic model parameters associated with
the feature variables coming from it. Regularized classifiers
tend to set the parameters corresponding to those variables
that are not relevant for classification to zero.

We compute the frequencies with which the parameters
corresponding to each feature have been set to zero in all the
solutions (set of channels) that belong to the Pareto set of
solutions. The most relevant features from each channel are
expected to be those most frequently selected by the clas-
sifier across solutions. Additionally, we do not expect the
channels that have the parameters for all their variables set
to zero to be important for classification. Due to the com-
plexity of the optimization problem, it may occur that chan-
nels whose features do not contribute to the classification are
selected by the optimization algorithm. Therefore, determin-
ing the feature relevance can be seen as a refinement of our
channel selection method. It will improve the quality of the
extracted biological information, discarding channels whose
corresponding features are seldom identified by the classifier
as relevant.

We analyze the set of 152 Pareto solutions found for the
raw+correlation type of information. For this type of infor-
mation a channel i may be relevant because either the vari-
ables representing raw information from channel i or the
variables representing correlation information that involves
channel i are frequently nonzero in the classifiers. To analyze
the different sources of relevance, we separate the analysis
of these two cases. Figure 11 shows the channels that, on the
basis of the analysis of their corresponding nonzero coeffi-
cients in the regularized models, are identified as relevant
because their contribution comes from the raw information.
These channels are represented by black dots. The colors
indicate the average absolute value of coefficients.

Subject 1 Subject 2

Subject 3 Subject 4

Fig. 11 Channels that were identified as relevant due to their contri-
bution coming from the raw information, as a result of the analysis
of their corresponding non-zero coefficients in the regularized models.
The raw+correlation type of information was used

Subject 1 Subject 2

Subject 3 Subject 4

Fig. 12 Channels that were identified as relevant due to their contribu-
tion coming from the correlation information, as a result of the analysis
of their corresponding non-zero coefficients in the regularized models.
The raw+correlation type of information was used

Similarly, Fig. 12 shows the channels identified as rele-
vant because their contribution comes from the correlation
information components. In this case, the figure represents
the channels involved in each pairwise correlation detected as
relevant. For the two cases considered, we set a threshold for
the minimal number of times that the coefficients correspond-
ing to the features of each channel should be different from
zero. This threshold is 80 for the raw type of information and
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50 for the correlation type of information. Only those chan-
nels whose coefficients satisfy these constraints are shown
in Figs. 11 and 12.

Figure 11 shows that the number of relevant channels
is less than the number of selected channels of the sin-
gle solution shown in Fig. 8. Selected channels are also
more related to the information available a priori about brain
areas involved in the studied brain processes. By contrasting
Figs. 11 and 12, we recognize two different situations con-
cerning the variable contribution of raw data and the channel
correlations to classification accuracy.

The first situation, illustrated by subject 1, is when the
number of channels whose contribution is due to the corre-
lations is higher than the number of channels whose contri-
bution is determined by the raw data. The second situation,
illustrated by subject 2, is the opposite. For this subject, only
a few of the channels have coefficients associated with the
correlation features that are above the fixed threshold. What

we want to emphasize here is that the information captured
by logistic regression models may be useful for classifying
individuals according to the different dynamics involved in
their mental activity. This classification could be useful to
explain intersubject variability and eventually to tailor BCI
to the particular characteristics of the subjects.

It is also interesting to look at the periods of the recorded
time series that are more informative for the classification
task. Since the raw data corresponding to each channel are
codified using 60 variables, we can look at the coefficients
learned by the models for each of these variables at each
channel. Fixing a threshold based on the number of non-
zero coefficients produced by each variable, we can give
estimates about the relevance of each time period. We have
computed the number of nonzero coefficients for each of
the 60 variables in all the solutions of the Pareto set for the
raw+correlation type of information and for each subject.
Figure 13 shows the total number of nonzero coefficients
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Fig. 13 Number of non-zero coefficients for each of the 60 variables describing the raw information component of the raw+correlation information
and summed from all channels represented by the 152 solutions of the Pareto set
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computed from all the Pareto solutions and adding all the
channels.

Figure 13 shows a very strong contribution of nonzero
coefficients during the initial periods of the time series for
subjects 1, 3, and 4. For these subjects the highest contri-
butions come from the first variables. A different trend is
observed for subject 2, where the highest contributions are
in the middle of the recorded time series. A channel-specific,
differential analysis of the informative value of the time vari-
ables can be expected to provide a better understanding of this
question. This type of analysis, which could serve to reveal
physiologically relevant information in the data, is left for
future work.

6 Related work

Several approaches that apply regularization methods to
extract information from MEG and EEG have been proposed
Haufe et al. (2010); Valdes-Sosa et al. (2005); van-Gerven
and Jensen (2009). The approach most related to our work is
presented in van-Gerven et al. (2009), where sparse logistic
regression using lasso regularization is used to solve the same
classification problem but using a different type of predict-
ing variable. In Obermaier et al. (2001), GAs are combined
with hidden Markov models (HMMs) for classification in
an offline EEG-based BCI. The authors found that the use of
asymmetrical classifiers derived from the GA-based proposal
performed significantly better than the HMM classifier.

A number of methods based on the analysis of time series
extracted from MEG have been proposed for assessing func-
tional connectivity between brain regions (Darvas and Leahy
2007). These include, for example, the use of covariance,
mutual information, coherence. de Lange et al. (2008) use
cross-frequency amplitude coupling to identify interactions
between different brain areas during imagined actions. It is
important to emphasize that just because two or more regions
share mutual information during a given task does not imply
a causal relationship between these regions. Furthermore,
correlations between the information collected by channels
may be due to artifacts in the registering procedure and not
to neuron activity.

Importantly, the use of network topological measures to
analyze graphs constructed from MEG data is not new. In
Bucolo et al. (2008) and DiGrazia et al. (2009), the syn-
chronization likelihood, a statistical measure of dependence
between channels, is used to construct an interaction graph
to investigate the occurrence of small-world phenomena in
MEG data. Bucolo et al. and DiGrazia et al. extracted topo-
logical measures (clustering coefficient, path length, mean
degree) to characterize the differences in the three different
phases of the evaluated experimental protocol.

7 Conclusions and future work

In this paper we have proposed a unified approach that com-
bines a number of methods to improve classification accu-
racy when covert spatial attention is used for BCI. We assert
that by combining raw information with features extracted
from the time series correlations, it is possible to achieve
a higher accuracy than by using only one type of informa-
tion. To further improve the results accuracy, we have shown
that multiobjective optimization using EAs is a valid alter-
native for selecting accurate subsets of channels. Using the
output Pareto set of solutions, we conducted a global anal-
ysis of the classification problem. Instead of focusing on
a single solution, we showed that by inspecting the Pareto
sets, it is possible to unveil knowledge about the chan-
nels that are more frequently involved in accurate classifi-
cation.

From our results we have confirmed that regularized
logistic regression is a very suitable classifier. It increases
the classifier generalization capabilities and incorporates
numerous features into the classification task. This is a par-
ticularly important characteristic for MEG analysis since
usually information coming from hundreds of channels is
available. The use of surrogate accuracy values in the form
of two-fold cross-validation accuracies during the EA evolu-
tion has proved to reduce the cost of the evolutionary search
and pointed the search in the right direction. Also, the idea
of extending the information passed to the classifier by add-
ing features that were not originally included in the search
for the optimal classifier has shown that it is possible to
improve accuracy with no added cost associated with the
search.

Although current BCIs use electrophysiological signals
representing brain events that are reasonably well defined
anatomically and physiologically (Wolpaw et al. 2002), the
exploration of signal features that exhibit more complex rela-
tionships to the underlying difficult-to-explain brain events
remains a promising path for BCI development. Machine
learning techniques used for classification are appropriate
for this task. They should be able to provide compact but
still legible characterizations (models) of the signal features.
Furthermore, it should be possible to identify distinctive pat-
terns in the brain dynamics of different subjects from the
analysis of these models.
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