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Abstract Neuron morphology is crucial for neuronal
connectivity and brain information processing. Com-
putational models are important tools for studying
dendritic morphology and its role in brain function.
We applied a class of probabilistic graphical models
called Bayesian networks to generate virtual dendrites
from layer III pyramidal neurons from three different
regions of the neocortex of the mouse. A set of 41
morphological variables were measured from the 3D
reconstructions of real dendrites and their probability
distributions used in a machine learning algorithm to
induce the model from the data. A simulation algorithm
is also proposed to obtain new dendrites by sampling
values from Bayesian networks. The main advantage of
this approach is that it takes into account and automat-
ically locates the relationships between variables in the
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data instead of using predefined dependencies. There-
fore, the methodology can be applied to any neuronal
class while at the same time exploiting class-specific
properties. Also, a Bayesian network was defined for
each part of the dendrite, allowing the relationships to
change in the different sections and to model heteroge-
neous developmental factors or spatial influences. Sev-
eral univariate statistical tests and a novel multivariate
test based on Kullback–Leibler divergence estimation
confirmed that virtual dendrites were similar to real
ones. The analyses of the models showed relationships
that conform to current neuroanatomical knowledge
and support model correctness. At the same time,
studying the relationships in the models can help to
identify new interactions between variables related to
dendritic morphology.

Keywords Pyramidal cells · Virtual dendrites ·
Morphology simulation · Dendritic structure ·
Bayesian networks

Introduction

Dendritic morphology is essential for understanding
neuronal connectivity and is a crucial feature in infor-
mation processing and brain function. Pyramidal neu-
rons are key elements in the functional organization
of the cerebral cortex, where they are the most fre-
quent neuronal type (70–85%) and the main source of
cortical excitatory synapses. Another important feature
of pyramidal cells is that their dendritic surfaces are
covered by spines, which represent the major postsy-
naptic elements of excitatory synapses (Feldman 1984;
White 1989; DeFelipe and Fariñas 1992; Yuste and
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Bonhoeffer 2004; Spruston 2008). Moreover, the struc-
ture of the dendritic tree itself affects the process of
integration, whereas its size influences the topographic
sampling map and the mixing of inputs (Wen et al.
2009). The branching patterns of the dendritic trees
are related to the processing of synaptic inputs (Koch
et al. 1982; Koch and Segev 2000; Häusser and Mel
2003) and define the electric behaviour of the neu-
rons (Mainen and Sejnowski 1996; Vetter et al. 2001;
Chen 2009). Different parts of the dendrites can op-
erate semi-independently according to the spatial lo-
cation of synaptic connections (Shepherd 2004). As a
result, there is considerable interest in the analysis of
the microanatomy of pyramidal cells since it constitutes
an excellent tool for better understanding cortical infor-
mation processing.

Despite recent advances in molecular biology and
new discoveries related to neuronal development, cur-
rent knowledge about neuron structure is still incom-
plete, and it is hard to find a set of anatomical traits
that unambiguously define a neuron type (Ascoli et al.
2008). Computational stochastic models have been
used for the last two decades to measure geometric
parameters of real neuronal arborizations and simu-
late virtual neuron morphologies. These simulations
can be used to identify the basic structures and im-
portant features in neuronal classes, to study neuronal
development and neurite outgrowth or to examine re-
lationships between morphology and neuronal func-
tion. As 3D reconstruction of real cells is a time- and
resource-consuming process, the data compression and
amplification that can be achieved with these tech-
niques are also important advantages (Ascoli et al.
2001; Ascoli 2007). However, a major obstacle to the
creation of virtual neurons is method validation be-
cause data on the complete dendritic tree of real neu-
rons is rather scarce. Indeed, labeled processes are
frequently incomplete because, during the tissue slicing
procedures some parts of the neuron morphology are
missing in a varying degree, depending on the thickness
of the sections and the relative localization of the la-
beled neuron within the slice. Usually, this problem can
only be overcome using serial sections to reconstruct
the cell in 3D. However, neuronal processes are not
always easy to trace and they may at times get lost in
the background noise (DeFelipe 2008). Together, these
obstacles make it very laborious and time-consuming to
obtain meaningful measurements from neurons. In this
study, we have used data from fully reconstructed basal
dendrites of pyramidal cells. Indeed, there is a spatial
segregation of different inputs into different regions of
the dendritic arborization, which can be divided into
two major compartments: the apical dendrite with its

collateral branches and the dendritic tuft, and the basal
dendrites. The basal dendritic arbors of pyramidal cells
represent about 90% of the dendritic length of cortical
pyramidal neurons from layers II/III and V (Larkman
1991). The whole basal dendritic arbor can be fully
reconstructed in single horizontal sections (Elston and
Rosa 1997). Thus, they are particularly valuable for
validating the simulated virtual neurons.

Existing models for simulating dendritic morphol-
ogy can be grouped in two categories: growth and
reconstruction models (Van Pelt and Uylings 2005).
Growth models try to capture the behavior of growth
cones during neuron development and, thus, are able
to simulate dendritic structure at its different stages
of maturity. These models usually consider that the
neurite tips elongate and taper as they grow away
from the soma until a bifurcation occurs or the neu-
rite ends. They estimate the probabilities for each of
these events taking into account some of the different
factors involved in neuron development, e.g., molecular
gradients (Hentschel and van Ooyen 1999), electric
field presence (Robert and Sweeney 1997), neuritic
tension (Li and Qin 1996), segment length or centrifu-
gal order (Van Pelt et al. 2001), neurotrophic parti-
cles (Luczak 2006), etc. One of the recent works that
implements this kind of model (Koene et al. 2009) has
simulated complete networks of neurons. The prob-
ability functions include complex elements, e.g., the
influence of competition between dendrites when de-
ciding if a bifurcation should occur, the distance be-
tween dendrites and axons when establishing synaptic
connections, etc.

On the other hand, reconstruction models measure
relevant variables from real neurons and use their
statistical distributions to describe the dendritic tree
structure. Then, a simulation algorithm samples the
distributions to output virtual dendrites that should be
indistinguishable from real ones. Donohue and Ascoli
(2005a, b) propose an algorithm that samples 2D
virtual dendrites from the univariate marginal statistical
distributions of some basic parameters (segment length,
width and bifurcation probability). Later, they consider
conditional relationships between the variables and
three other fundamental parameters (centrifugal order,
segment radius and path length) and compare the
models at length (Donohue and Ascoli 2008). They
use common predefined parametric distributions, like
Gaussian, Gamma or uniform distributions, to fit the data.

Parametric distributions might not accurately fit the
real distributions, and other models use non-parametric
approaches to avoid that problem. Lindsay et al. (2007)
apply kernel density estimation (KDE) to simulate
2D dendritic structures taking into account conditional
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relationships between features. Torben-Nielsen et al.
(2008b) use conditional KDE to generate dendrites and
angle information is included to obtain 3D simulations.

Variations of L-Systems (Rozenberg and Salomaa
1980) have also been used in neuronal morphology
simulations because of their ability to create branching
structures (Hamilton 1993; Ascoli and Krichmar 2000).
Recently, evolutionary computation has been used to
output L-Systems that generate virtual neurons that are
similar to a single real one (Torben-Nielsen et al. 2006,
2007, 2008a). They also include a postprocessing step to
filter out non-biologically plausible neurons.

The above models only measure univariate marginal
probability distributions or define a priori conditional
relationships ad hoc (e.g., Lindsay et al. 2007; Anwar
et al. 2009). Considering variables to be independent
keeps models simpler, which makes them easy to an-
alyze. However, the independence assumption does
not hold since complex interactions with extracellular
elements and intrinsic factors have been widely re-
ported for real neurons (McAllister 2000; Scott and
Luo 2001). Other works define relationships between
model parameters according to some predefined crite-
rion and study the simulated neurons to check whether
or not the hypotheses are correct (e.g., Samsonovich
and Ascoli 2003; Donohue and Ascoli 2008). This
methodology is more likely to be biased towards expert
knowledge and disregards important information that
could be inferred from the data.

In this paper, we present a novel methodology for
the 3D simulation of dendritic trees based on a compu-
tational model called Bayesian networks (Pearl 1988;
Koller and Friedman 2009). The goal is to simulate
virtual dendrites that are visually and statistically in-
distinguishable from real ones. The whole process is
summarized in Fig. 1. Our proposal can be classed
as a reconstruction model, i.e., we measure key fea-
tures in 3D reconstructions of real pyramidal neu-
rons and estimate their joint probability distribution
to define the Bayesian networks used to build up
the model. We then simulate from the Bayesian net-
works to output a set of virtual dendrites, which we
compare with the original data to verify the model’s
ability to capture the dendritic tree structures. Sta-
tistical tests are performed to check whether or not
the variables included in the model have the same
distribution in the original and simulated data. Other
emergent features measured from the whole dendritic
trees and branches, not used in model learning, are
also compared, e.g., total dendritic length, asymmetry
index, etc. Wilcoxon rank-sum, Kolmogorov–Smirnov
and Kullback–Leibler divergence-based tests are used
to compare each variable independently. We also pro-

Fig. 1 Our reconstruction model approach

pose a multivariate test that uses a Kullback–Leibler
divergence estimation to compare the joint probability
distribution over a set of variables. Finally, examples
of real and simulated dendrites are shown for visual
comparison.

This approach has a number of advantages over
previous models. First, Bayesian networks use the
conditional (in)dependencies between the variables to
model the joint probability distribution. In fact, the
possible use of Bayesian networks to consider the
relationships between morphological variables has al-
ready been noted (Torben-Nielsen et al. 2008b). Since
these statistical relationships are found automatically
by analyzing the data, the whole process is data-driven
and widely applicable. Thus, instead of changing the
model to consider different kinds of relationships and
analyzing the results to gather relevant information,
we let the data speak. The resulting model is studied
to gain insights into the processes underlying dendritic
morphology. We believe that this approach is less con-
strained by a priori assumptions based on current bio-
logical knowledge and is not affected by disagreements
between domain experts.

Second, the model learns and uses a Bayesian net-
work for each part of the dendrite. This way, the rela-
tionships can change to take into account the dendritic
tree location. This is an important characteristic, since
there is evidence supporting the idea that heteroge-
neous parts of the dendrites could be regulated by
different developmental factors (Donohue and Ascoli
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Fig. 2 Application of Bayesian networks to the modeling and simulation of basal dendritic trees. The figure shows the measuring of
variables from the real trees, the learning of the Bayesian networks and the sampling of values to simulate the virtual dendritic trees

2005a). The model is flexible enough to capture and
exploit low-level relationships.

Third, the model uses an extensive set of variables
that include commonly used dendritic tree measure-
ments along with new features to model context factors,
such as the morphology of the subdendrite or the dis-
tance to the nearest segment. Finally, the use of several
univariate tests and a novel multivariate test makes the
evaluation more robust and reliable. A supplementary
material website has been set up with additional results
(see “Information Sharing Statement”).

Methods

We provide details about each of the steps involved
in the methodology presented in this paper. The data
acquisition and preparation section explains how the
variables used in the model were measured from the
real dendrites and the data were preprocessed. We in-
troduce the Bayesian networks paradigm and describe
the algorithm used for learning from data. Then, the
simulation algorithm that uses the Bayesian networks
to generate virtual 3D dendrites is shown. Finally, the
evaluation methodology comparing virtual and real

dendrites is presented. Figure 2 shows a schematic
overview of the whole process.

Data Acquisition and Preparation

We have used a set of 3D reconstructions of 90 pyra-
midal neurons from the mouse neocortex (two BC57
Black mice, 2 months old). These neurons were labeled
with Lucifer Yellow using an intracellular injection
method that covers the full extent of the basal den-
dritic arbor. The neurons were located in layer III of
different cortical regions: the secondary motor cortex
(M2), the secondary somatosensory cortex (S2) and the
lateral secondary visual cortex and association tempo-
ral cortex (V2L/TeA). Therefore, three databases1 of
reconstructions were built according to their cortical
area. The whole basal dendritic trees of the neurons
were traced using the Neurolucida package (Glaser and
Glaser 1990, MicroBrightField) and stored in digital

1The term “database” refers to the sets of 3D reconstructions of
basal dendrites from each of the three cortical areas. The term
“dataset” is used to refer to the values of the variables measured
for each pair of sibling segments in those reconstructions.
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Fig. 3 Basal dendritic arbor of a pyramidal neuron from the sec-
ondary motor cortex. Each dendritic tree is drawn in a different
color

files in the ASC Neurolucida format. The tissue prepa-
ration and injection process are detailed in Benavides-
Piccione et al. (2006). The reconstructions are publicly
available at www.neuromorpho.org (Ascoli et al. 2007)
as part of DeFelipe’s laboratory archive. Each basal
dendritic arbor is made up of approximately 6 (mean
± SD, 5.7 ± 0.9, range 4–8) main trunks, which are in
turn made up of several dendrites, as shown in Fig. 3.

For the sake of simplicity and unless otherwise stated,
we called these single trunks of basal dendritic arbors
dendritic trees.

The 3D reconstructions were made up of the Carte-
sian coordinates of the points where the dendrites
branched. Each dendritic tree was isolated and its co-
ordinates were moved and rotated such that the root
point was placed at the coordinate system origin and
the root segment was on the vertical axis. We consid-
ered a segment as the straight line between two branch
points. The dendritic trees with multifurcations (branch
points that are the source of three or more segments)
were discarded.

A set of 41 variables was measured for each pair
of sibling segments (Table 1). Some of the variables
were selected because they have been widely used to
describe dendritic morphology (Hillman 1979; Verwer
et al. 1992; Uylings and van Pelt 2002; Brown et al.
2008), whereas other new variables have been included
to capture context influence and neuritic competition.
Two types of variables were identified: evidence (E)
and construction (C) variables. Construction variables
define the morphology of a segment. In the simulation
step, construction variables are sampled by the model
to incrementally build the virtual dendritic trees. On
the other hand, evidence variables measure the part
of the dendritic tree morphology previous to a pair
of sibling segments. Evidence variables are measured

Table 1 Variables measured from the real dendritic trees and used for learning the model

No. Type Variable No. Type Variable

1 E Subtree degree (no. endings) 22 E Neighbor distance
2 E Subtree no. bifurcations (no. nodes) 23 E Neighbor inclination
3 E Subtree total length 24 E Neighbor azimuth
4 E Subtree width 25 E Neighbor extension
5 E Subtree height 26 E Neighbor angle
6 E Subtree depth 27 E Parent segment length
7 E Subtree box volume 28 E Parent segment inclination
8 E Subtree max distance between nodes 29 E Parent segment azimuth
9 E Subtree max distance to soma 30 E Root segment length
10 E Subtree max length 31 E Root segment inclination
11 E Subtree min length 32 E Root segment azimuth
12 E Subtree max order 33 E Segment centrifugal order
13 E Subtree min order 34 C Left segment length
14 E Subdendrite length 35 C Left segment inclination
15 E Subdendrite width 36 C Left segment azimuth
16 E Subdendrite height 37 C Left segment bifurcates
17 E Subdendrite depth 38 C Right/root segment length
18 E Subdendrite box volume 39 C Right/root segment inclination
19 E Subdendrite distance to soma 40 C Right/root segment azimuth
20 E Subdendrite inclination 41 C Right/root segment bifurcates
21 E Subdendrite azimuth

We distinguished two variable types: evidence variables (E), which provide information about the subtree and subdendrite, and
construction variables (C), which describe the segment length, orientation and bifurcation

www.neuromorpho.org
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during the simulation process and used as information
to accurately sample the construction variable values.

• Evidence variables (E), which provide information
about the context of the segments and how the
dendritic tree is constructed (variables 1–33). These
features include (Fig. 4):

– Morphological data from the subtree (variables
1–13). Given two sibling segments with order
= x, the subtree is defined as the part of the
dendritic tree considering all the segments with
order < x. For example, Fig. 4a and b show a
pair of sibling segments with a centrifugal order
value of 5 (in red). The subtree (blue area)
includes all the segments with an order value
from 0–4. This information could be interesting
for considering dendritic size when deciding if a
segment should branch or to control the spread
and direction of the dendritic tree.

– Variables that describe the subdendrite (vari-
ables 14–21). Given two sibling segments, the
subdendrite is the path from the soma to the
segments’ branching point. The dotted area in
Fig. 4a represents the subdendrite for the two
sibling segments (in red), including the seg-
ments along the path with lower centrifugal
order, i.e., the segments in the path with order
0–4. These data could be used as a way to
capture neuron tropism and determine segment
direction or to bound segment length.

– Information about the nearest segment (neigh-
bor in Fig. 4c) in the dendritic tree that is not a
part of the subdendrite (22–26). These variables
have been inspired by previous studies about
the branching patterns of trees in the field of
ecology (Sumida et al. 2002; Miina and Pukkala
2002), where several competition indexes and
measures are given to model tree growth when
the influence of neighboring trees is acknowl-

Fig. 4 Scope of the variables
used in the model. a shows
the subtree (blue area),
subdendrite (dotted area),
parent and root segments for
the two sibling segments (in
red). The numbers refer to
the centrifugal order of the
segments. b illustrates the
variables measured from the
sibling segments subtree.
c shows the variables related
to the segment closest to the
segment starting point
(neighbor). d shows a
spherical coordinate system
where a segment is defined by
the spherical coordinates
(r, θ, ϕ) of its end point taking
the starting point as the
origin: r is the Euclidean
distance between the two
points, θ is the inclination
angle and ϕ is the azimuth
angle

ba

dc
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edged. Following these approaches, we calcu-
lated five variables to take into account possi-
ble competition for resources between different
branches, e.g., distance to the neighboring seg-
ment, angle between the subbranches of the
two segments, etc.

– Variables 27–29 describe parent segment mor-
phology and enable interactions between the
three segments that are involved in a bifur-
cation (Fig. 4a). These variables are included
to consider relationships between consecutive
segments.

– Root segment variables (30–32) correspond to
the first segment of the dendrite that grows
away from the soma (Fig. 4a). These variables
could also help to capture dendritic tropism.
Subdendrite information, along with parent
and root segment measures, have already
been used to model neurite growth direction
(Samsonovich and Ascoli 2003).

– The centrifugal order of the segment (branch
order), i.e., the number of bifurcations along
the path to the soma (variable 33).

• Construction variables (C) completely specify seg-
ment morphology (variables 34–41). This group
determines whether or not the segments branch, as
well as the spherical coordinates of each end point
taking the starting point as the origin (Fig. 4d). A
distinction between the two segments in a bifur-
cation was made based on the azimuth angle of
their end points. We defined the left segment in
a bifurcation as the one having a higher absolute
azimuth value. Therefore, the right segment is the
one with a smaller absolute value of the azimuth
angle.

We formed four datasets by centrifugal order of
segments: root segments (order 0), first-order segments
(order 1), second-order segments (order 2) and seg-
ments with a higher order (order > 2). Finally, each of
the 41 variables in each dataset was discretized by mim-
icking their histograms. Two or three discrete values
were defined for each variable trying to preserve the
shape of the empirical distributions while ensuring that
enough data was available in each interval to accurately
estimate Bayesian network probabilities.

Basics of Bayesian Networks

Bayesian networks (also known as probabilistic net-
works or belief networks) are the representation of
choice for uncertainty in artificial intelligence (Koller
and Friedman 2009). In this work, the model is made up

of a Bayesian network with discrete variables for each
one of the datasets.

Bayesian networks are a kind of probabilistic graph-
ical model with two main elements: the graphical com-
ponent and the probabilistic component. Formally,
a Bayesian network can be defined as a pair B =
〈G(X, A), P〉:
• The graphical part G(X, A) is a directed acyclic

graph (DAG) used to capture the structure of the
problem. A graph is defined by a set of nodes (X)
and a set of edges connecting the nodes. A DAG
is a graph that contains only directed edges (called
arcs, A) without a cycle, i.e., there is no directed
path Xi → ... → Xk where Xi = Xk. In a Bayesian
network, the variables in the problem domain are
represented by the nodes (X) in the DAG, and the
probabilistic conditional (in)dependence relation-
ships between the variables are codified with arcs
(A) connecting the nodes.

• The probabilistic component P includes the condi-
tional probability distributions P(Xi|�i) associated
with the variables Xi, i = 1, ..., n in the problem.
For each variable Xi, we define the set of its parents
as �i = {Y ∈ X|(Y, Xi) ∈ A}.

A Bayesian network encodes a factorization of the
joint probability distribution over all the variables in X:

P(X) =
n∏

i=1

P(Xi|�i) (1)

These models have been widely used to solve
different kinds of problems (classification, regression,
simulation...) because they can compactly represent the
problem domain, and factorization enables efficient
computations that would be intractable otherwise.
Moreover, these models can perform any type of rea-
soning: predictive, diagnostic, bidirectional, abductive...

Bayesian Network Learning and Model Construction

There are several methods for learning both the graphi-
cal structure and probabilistic distributions of Bayesian
networks (Heckerman 1996; Krause 1998). Two main
approaches can be identified for network structure
learning:

• Detecting conditional independencies between
variables. This approach is based on performing
statistical tests to the data in order to identify the
conditional independencies between the variables.
Then, the Bayesian network structure (DAG) can
be generated from the set of independencies.
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• Applying a score+search method. These methods
use a score function to estimate the quality of a
model and a search algorithm to find the best struc-
ture according to that score.

We focused on the second approach (score+search).
The Bayesian Information Criterion, BIC (Schwarz
1978), was used as a score function to evaluate the net-
work structures. This score measures the log-likelihood
� of a Bayesian network (B = 〈G, P〉) given a dataset
(D) with M cases. A penalization is included to take
into account the structure’s dimension (number of pa-
rameters to completely define the Bayesian network)
and avoid very complex networks. The BIC score is
given by the expression

BIC(B : D) = �(〈G, P〉 : D) − dim(G)

2
ln M. (2)

We would like to learn the model based only on the
data, so every network structure has to be considered.
However, the number of possible networks for any real
problem makes an exhaustive evaluation infeasible.
Therefore, a search method is necessary to find and
explore a subset of reasonably good structures, where
the quality of a network is given by the BIC score,
which should be maximized.

In this research, the K2 heuristic search algo-
rithm (Cooper and Herskovits 1992) was applied to
efficiently examine the space of network structures.
Table 2 outlines the K2 algorithm at a high level.

The maximum number of parents (u) allowed for
each variable was set to three in our experiments.
K2 needs the variables in X to be ordered (step 1).
Leray and Francois (2006) proposed using the maxi-
mum weight spanning tree algorithm (MWST) to com-
pute such ordering. First, each possible edge is given
a weight that corresponds to the BIC score variation
when the variables are related. Then, Prim’s algorithm
uses those weights to build an undirected tree, and a
root node is selected so that the edges can be oriented.
The centrifugal order (variable 33) was always used as

the root node. Finally, a topological sorting method
was applied to partially order the variables. Evidence
variables were forcibly placed at the top of the list,
followed by the construction attributes.

After ordering the variables, K2 incrementally builds
the Bayesian network (Table 2). At each iteration, one
variable is selected according to the ordering of vari-
ables (step 4). All the previous variables in the ordering
are considered as candidate parents. The candidate
variable that gives the highest BIC score is selected
as a parent, until the score decreases or the maximum
number of parents allowed per variable is reached.
The process is repeated until all variables have been
considered. Evidence variables can condition construc-
tion variables and give information about them because
they appear first in the ordering.

Once the structure is known, the probabilistic com-
ponent of the Bayesian network can be calculated. Es-
timating each variable probability distribution amounts
to counting the relative frequency of each value given
its parent values. This is equivalent to the maximum
likelihood estimate

P(Xi = xi|�i = π i) = freq(Xi = xi, �i = π i)

freq(�i = π i)
. (3)

The Bayesian network is completely defined when
the DAG and the probability distributions of all its vari-
ables have been specified. Bayes Net Toolbox for Mat-
lab was used to run these algorithms (Murphy 2001),
and a Bayesian network was learned for each of the
four datasets. Thus, the model comprises four Bayesian
networks that capture the relationships between the
variables at the different levels of the dendritic trees
(see Fig. 2).

Simulation Algorithm for Generating Virtual
Dendritic Trees

The simulation process uses the Bayesian networks
included in the model to generate the virtual dendritic
trees. An iterative algorithm (Table 3) measures the

Table 2 K2 search algorithm Given a dataset D and a maximum number of parents u.
1. Order(X).
2. Create an empty Bayesian network B = 〈G(X, A), P〉.
3. BICmax = BIC(B : D).
4. Repeat for each variable Xi ∈ Order(X):
4.1. If the number of parents of Xi is equal to u, go to next variable in Order(X) (step 4).
4.2. Find X j ∈ {X1, ..., Xi−1} that maximizes BIC(B′ = 〈G(X, A′), P〉 : D)

where A′ = A ∪ (X j, Xi).
4.3. If BIC(B′ : D) < BICmax, go to next variable in Order(X) (step 4). Else, set B = B′,

BICmax = BIC(B′ : D) and go to step 4.1.
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Table 3 Simulation algorithm for generating virtual dendritic trees

Repeat while there are incomplete dendrites
1. Select the appropriate Bayesian network depending on the centrifugal order of the segment to be sampled.
2. Measure evidence variables from the dendritic tree built so far.
3. Discretize the variables and set their values in the Bayesian network.
4. Sample the construction variable values from the Bayesian network.
5. Transform the spherical coordinates of the segments back to Cartesian coordinates to build the segments.
6. If a segment bifurcates, consider that the dendrite is still incomplete. Else, the dendrite has ended.

evidence variables and uses that information to increas-
ingly build the virtual dendrite. The algorithm simulates
the dendritic tree in a breadth-first way according to the
centrifugal order (see Fig. 2), i.e. first the root segment
is created, then order-1 segments are generated, fol-
lowed by order-2 segments for the previous branching
segments, etc.

In the Data Acquisition and Preparation, the vari-
ables were discretized and the Bayesian networks were
learned with those discrete values. Therefore, the val-
ues sampled from the Bayesian networks were also
discrete (step 4 in Table 3). These discrete values had

to be converted back to continuous values in order to
build a virtual dendritic tree.

Bayesian network learning prevents the discretiza-
tion process from making a high number of bins and
ensures that enough data is available for accurately
estimating the probability distributions. However, a
low number of discrete values produces wide intervals
with complex and heterogeneous data distributions.
Therefore, it is not appropriate to use a central ten-
dency measure as the mean or the median to convert
a discrete into a continuous value. Parametric fitting
of the data to some theoretical distribution was also

Fig. 5 Example of the transformation of discrete values
to continuous values. The conditional histogram of the
real continuous values that were discretized to the values

subdendrite_length=long and segment_length=short is calculated.
Then, one bin is selected randomly and the median of its values
is the corresponding continuous value
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avoided because of the high complexity of the models
that work with such distributions and a low goodness of
fit due to unusual data shapes.

Thus, we applied a method that samples a continuous
value exploiting the original data without making any
assumption about its shape. Figure 5 shows an example
where, as the result of the sampling, the construction
variable segment_length is given the value short and
the parent variable subdendrite_length has the value
long. The method was based on the conditional his-
tograms of the real continuous values. For each simu-
lated construction variable Xi ∈ X, i ∈ {34, ..., 41} that
takes the discrete value xi and whose parents values
are �i = π i, the values (Xi = xi, �i = π i) were found
in the discretized real dataset. Then, the corresponding
continuous real values were retrieved (M is the number
of selected samples). We built a histogram with those
continuous values using

√
M equal-width bins. One bin

was then selected randomly, where the bin probability
was proportional to the number of data in the inter-
val. The final continuous value corresponding to the
discrete value xi was the median of the data in the
selected bin.

The continuous values were finally converted to the
Cartesian coordinates used to simulate the virtual den-
drites (step 5 in Table 3).

Evaluation Methodology

The last step in the methodology is to check if the
virtual dendrites are statistically and visually indistin-
guishable from the real ones. This would mean that
the model is able to accurately capture the processes
underlying dendritic morphology and can be analyzed
to extract relevant knowledge. Van Pelt and Uylings
(1999) compared real and simulated dendritic trees
using both optimized parameters included in the model
and predicted variables that emerged as an outcome of
their growth model. Later on, Ascoli et al. (2001) pro-
posed three ways of validating a reconstruction model:
comparing real and simulated statistical distributions
of the variables used in the model, comparing real
and simulated emergent parameters not included in the
model, and performing a visual inspection by experts in
neuroanatomy.

We can evaluate each variable independently using
univariate statistical tests. However, since Bayesian
networks model the joint probability distribution over
all the variables in the problem, a method that com-
pares this multivariate distribution in real and simu-
lated data would be desirable. Therefore, a test based

on Kullback–Leibler divergence that can be applied
to both univariate and multivariate data was designed.
Kullback–Leibler divergence (Kullback and Leibler
1951) measures the “distance” from a true probability
distribution p(x) to a reference distribution q(x) and is
a commonly used technique to quantify the difference
between distributions. We refer to these tests as the
univariate and multivariate KL tests, respectively.

In this research, we counted the number of dendritic
trees in the original database and simulated the same
number of virtual dendritic trees from the model. Each
run was repeated 100 times to consider statistical vari-
ability. After that, a sign test was performed for each
test to check if the number of rejections was significant
in the 100 repetitions. A significance level of α = 0.05
was used for all statistical tests.

Univariate Analysis For each feature, we applied
three univariate statistical tests to assess whether or not
the simulated and original variables were significantly
different. The three tests are non-parametric so they
can be applied without making any assumption about
the shape of data:

• The two-sample Wilcoxon rank-sum test checks
if two samples have an equal median, and can
also be used to test for equal distribution of sam-
ples (Wilcoxon 1945; Fay and Proschan 2010).

• The Kolmogorov–Smirnov test checks the hypothe-
sis that two samples come from the same underlying
distribution.

• The univariate KL test uses the KL divergence
value to compare two univariate marginal proba-
bility distributions p(x) and q(x) on R. The KL
divergence is defined in Eq. 4:

KL(p||q) =
∫ ∞

−∞
p(x) log

p(x)

q(x)
dx. (4)

Computing the expression in Eq. 4 when a closed
form cannot be found is not a trivial task, so we used
the bioDist package (Ding et al. 2010) for R statistical
software (R Development Core Team 2009) to estimate
the KL divergence for each continuous feature. The
design of the statistical test that uses the divergence
values is detailed below in this section.

Multivariate Analysis The above tests are univariate,
i.e. they only consider each variable independently.
However, a test using all the variables at the same
time would be useful as we could compare the joint
probability distributions on real and simulated data. We
used the multivariate KL estimator for continuous data
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in Eq. 5, which is based on k-nearest neighbors (kNN)
density estimation (Wang et al. 2006):

K̂L(p||q) = n
Np

Np∑

i=1

log
υDq(i)

ρDp(i)
+ log

Nq

Np − 1
. (5)

This expression estimates the divergence between
the densities p and q from two datasets Dp and Dq with
n-dimensional samples of sizes Np and Nq, respectively.
The term ρDp(i) represents the Euclidean distance from
the sample xi ∈ Dp to its nearest neighbor in Dp \ {xi}.
On the other hand, υDq(i) is the Euclidean distance
from xi ∈ Dp to its nearest neighbor in Dq. Each fea-
ture was first normalized to the interval [0,1] to avoid
the different scales in the features affecting the distance
measure.

We performed a statistical test based on a bootstrap
method (Efron and Tibshirani 1986) that uses the KL
divergence to check whether or not the simulated and
real distributions are different. If the real dataset Dr

contains N samples, two datasets Dr1 and Dr2 of size N
are sampled with replacement from Dr, and both uni-
variate (Eq. 4) and multivariate (Eq. 5) KL divergences
are calculated. This process was repeated 100 times and
the 95-percentile was stored as a threshold for each
set of KL divergence values. When applying the KL
test, the divergence value between the simulated and
real dataset had to be higher than the threshold for
the null hypothesis stating distributions are equal to be
rejected. A sign-test was applied to check if the number
of rejections was significant.

Finally, the model can be visually validated by com-
paring the pictures of real and virtual dendritic trees.
Since it is not possible to portray 3D data through 2D
projections, a website has been set up with examples
of real and simulated dendritic trees (see “Information
Sharing Statement”).

Results

This section examines simulation results with different
databases of basal dendritic trees. We established three
databases of neurons according to their cortical area,
and each dendritic tree was considered independently.
Table 4 shows the number of dendritic trees included
in each database. This section illustrates the statisti-
cal comparison for the three areas. The analysis of
the Bayesian network structures focused on the M2
area, since the basal trees in this area have more com-
plex branching patterns and dimensions (Benavides-

Table 4 Number of dendritic trees in each database

Region Database #Dendritic trees

Motor cortex M2 104
Somatosensory cortex S2 103
Lateral visual and V2L/TeA 156

association temporal cortex

Number of trees included in each database according to the
cortical region from where the neurons were sampled

Piccione et al. 2006). The Bayesian networks structures
for the S2 and V2L/TeA areas are available at the
supplementary material webpage (see “‘Information
Sharing Statement”).

These experiments were run on an Intel Core2 Quad
CPU at 2.49Ghz with 6GB RAM. The algorithms were
implemented in Matlab under Windows Vista. Table 5
shows runtime intervals for each algorithm, i.e., the
minimum and maximum runtime in the 12 runs (4
Bayesian networks for each one of the three cortical
areas).

Analysis of Bayesian Networks

The Bayesian network structure learned from the data
encodes the conditional (in)dependence relationships
between the variables in the problem. The model can
be validated by verifying if those relationships conform
to current biological knowledge. On the other hand, a
thorough analysis of the relationships could help to dis-
cover new factors involved in neuron development and
dendritic morphology. Figure 6 shows the structure of
the four Bayesian networks built from the M2 database,
corresponding to the root segments, first-order seg-
ments, second-order segments and the other segments
with higher centrifugal order. As described earlier (see
“Bayesian Network Learning and Model Construc-
tion”), the ordering established during Bayesian net-
work learning ensured that the construction variables
(shaded) were always influenced by either evidence
variables or other construction variables. On the other

Table 5 Runtimes of the algorithms

Algorithm Runtime (seconds)

MWST algorithm 3.02–4.52
K2 search algorithm 4.29–9.76
Simulation algorithm 1.53–3.86

(100 virtual dendritic trees)

Runtimes of the different algorithms implemented in the meth-
ods section
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Fig. 6 Structure of the four
Bayesian networks learned
from the M2 database. The
numbers in the nodes refer to
the variables in Table 1.
Shaded nodes represent
construction variables and
evidence variables are shown
on a white background. The
four Bayesian networks
correspond to root segments
(a), first-order segments (b),
second-order segments (c)
and segments with a higher
order (d)

ba

dc

hand, evidence variables (with a white background)
could only be influenced by other evidence variables.

In the first Bayesian network (Fig. 6a) only four con-
struction variables and the centrifugal order evidence
variable are shown. This Bayesian network was used to
generate the root segment of the dendrite. There were
no evidence variables to measure because no dendritic
segment had yet been simulated. At this level, only one
segment (the root segment) has to be sampled, and
it is not possible to distinguish between left and right
segments. Therefore, we decided to use variables 38–
41 to encode the root segment morphology. Variables
38–41 refer to the right segment in the other Bayesian
network structures (Fig. 6b–d). In the Bayesian net-
work for first-order segments (Fig. 6b) only variables
22–26 were unavailable. Those variables could not be
measured at this level because the neighboring segment
could not be defined, since the root segment was the
only segment that had so far been simulated. On the
other hand, the other two structures (Fig. 6c and d)
contained all the variables in Table 1 because the simu-
lated part of the dendritic tree was complex enough to
measure all the evidence features.

At first sight, it is clear that network complexity
grew as we considered segments of a higher centrifu-
gal order. For example, the number of relationships
(line plot in Fig. 7) steadily increased from three re-
lationships in the first to 55 relationships in the last
Bayesian network. When we counted the number of
variables with 0–3 parents (bars in Fig. 7), we found

that variables with a higher number of parents were
also more frequent in the higher-order networks. Since
0 and first-order Bayesian networks did not include
all the variables, fewer relationships were expected.
However, the complexity growth was higher than the
number of variables added, and it also increased in the
last two networks, including all the variables. The sub-
tree from where the evidence attributes were measured
grows and gets more complex as we consider high-order
segments. Thus, a more widely connected network was
necessary to model the relationships in the dendritic
tree structure. Besides, the last Bayesian network was
learned for segments with different centrifugal order
and a higher variability in the data was observed. The

Network A Network B Network C Network D
0

10

20

30

40

50

60
No. nodes without parents
No. nodes with 1 parent
No. nodes with 2 parents
No. nodes with 3 parents
Total number of arcs

Fig. 7 Bayesian networks complexity analysis. The line plot
shows the number of arcs in each Bayesian network from Fig. 6.
The bars represent the number of variables with different num-
bers of parents in each network
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Bayesian network needs more information to model
this variability. This is a possible explanation for why
variables had more parents.

One way to distinguish between global and cen-
trifugal order-specific relationships is to count the
number of times two variables are connected in the
different networks, without taking into account the di-
rection of the relationship. Frequent edges could repre-
sent order-independent global relationships and scarce
edges could encode context-specific interactions that
only appear at a certain level. Additionally, the con-
ditional probability distributions in each variable (not
shown) could be analyzed to check how the variable
values change depending on the parent values. The only
edge that appeared in all Bayesian networks (Fig. 6)
was the one that related segment length and bifurcation
occurrence for both the left (variables 34 and 37) and
the right segments (variables 38 and 41) in a bifurcation.
This relationship encoded the knowledge that terminal
segments in basal dendrites were longer than interme-
diate segments. In fact, dendrites usually branch when
they are close to the soma, producing short segments;
whereas the segments that do not branch spread away
from the soma. Figure 8 confirms this relationship, as
there is a clear difference between terminal and inter-
mediate segments at each branch order.

Segment angles also exhibited consistent relation-
ships in the different Bayesian networks. Segment az-
imuth (variables 36 and 40) was related in different
ways to the subdendrite azimuth (variable 21) and
the parent segment azimuth (variable 29). Subdendrite
inclination (variable 20) and parent segment inclina-
tion (variable 28) also influenced segment inclination
(variables 35 and 39). Parent and subdendrite angles
(variables 28–29 and 20–21) were frequently interre-
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Fig. 8 Mean length of intermediate and terminal segments of
real dendrites. The figure shows the mean length of the interme-
diate (black) and terminal (white) segments of each centrifugal
order in real basal dendrites of pyramidal neurons from the M2
area. Differences between intermediate and terminal segments
can be identified

lated too. Both parent and subdendrite vectors were
used by Samsonovich and Ascoli (2003) to success-
fully model dendritic tropism. They hypothesize that
dendritic guidance might be controlled by the host
cell rather than by exclusively external factors, so our
model found relationships that had already been shown
to be relevant. We show that segment orientation is
mainly controlled by the orientation of the previous
segments, reflecting how the dendrites extend away
from the soma without making any sharp change of
direction. We believe that the fact that our model simul-
taneously considers and makes a distinction between
the two sibling segments at a bifurcation is possibly
a key strength. Segment angles in a bifurcation are
assumed to be related since they do not grow in the
same direction. Thus, it could be important to consider
these interactions when modeling dendritic orientation,
e.g., the azimuth and inclination of different segments
were related (arc from 36–9 in Fig. 6c).

Other subdendrite measurements can also directly
influence some construction variables. In Fig. 6c, the
width component of the subdendrite (variable 15)
influenced segment bifurcation (variable 37), prevent-
ing it from splitting when this parameter showed high
values. This helped to constrain tree size and could
be related to resource division and competition be-
tween branches. In the above Bayesian network again,
inclination angles (variable 35) were more likely to
be small when subdendrite height (variable 16) took
higher values. This makes the dendrite grow straight in
one direction instead of the branches spreading when
the segments are far from the soma and helps to model
dendritic tropism. On the other hand, the subdendrite
width was used to regulate segment azimuth (variable
36) and control the dendritic tree spread in the next
network structure (Fig. 6d). Therefore, the dendritic
trees tend to first spread rapidly when they are close to
the soma and then, once they have reached a minimum
size, grow straight away from the soma. Figure 9 shows
two interesting facts that support these explanations.
First, when considering bifurcations of the same order,
complex dendritic trees with a high maximum centrifu-
gal order (fourth and fifth order trees) have wider
angles than less complex trees (first, second and third
order trees). Second, when considering dendritic trees
of the same complexity, the mean angle between sibling
segments steadily decreases as we consider higher order
bifurcations. Therefore, sibling segments grow to fill
up the area defined by the angle of the first-order
segment.

Subdendrite length also bounded dendritic size (arcs
14 → 41 in Fig. 6d and 3 → 38 in Fig. 6b). Note that
variable 3 equaled variable 14 in Fig. 6b since only the
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Fig. 9 Angles formed between sibling segments. Mean values of
the angles formed between the two sibling segments in a bifurca-
tion for real M2 basal dendrites. The dendritic trees are grouped
by their maximum centrifugal order. Each data point shows the
mean value of the angles (in degrees) between segments at each
bifurcation node

root segment had been simulated. When the subden-
drite is short, the simulation is still near the soma and
more bifurcations are supposed to occur. On the other
hand, a long subdendrite tends to stop the simulation
by ending the dendrite with a long terminal segment.

In general, information related to the subdendrite
appears to be more important for the simulation
process than the whole subtree measurements be-
cause construction variables were almost always re-
lated to subdendrite variables. Summing up, segment
orientation was defined by the orientation of previous
segments (subdendrite) to ensure that the dendrites
showed no angles causing a rough change of direction.
On the other hand, the length of the path to the soma
was used to control segment size and whether or not it
bifurcated, bounding the total length of the dendrites.
Although this could lead to the understanding that den-
drites grow independently from each other, influences
from other branches could be important for modeling
competition and resource availability factors.

Evaluation of Features Used in the Model

We compared the original and simulated values of the
features included in the Bayesian networks to check
if the model accurately reproduces those variables.
Figure 10 shows the results in the three areas for the
datasets compared using the Kullback-Leibler multi-
variate test designed in the Evaluation Methodology
section. At least 61 rejections were considered to be
significant, as this corresponded to the rejection region
limit of a sign test with 100 observations. In the three
cortical areas, a significant number of rejections was
found when comparing the real and simulated values
in the last dataset. This could be caused by its higher
data variability. This dataset was the only one that

contained segments with different centrifugal order
(from three to five) so the subtrees and subdendrites
where evidence features were measured are also more
diverse.

The univariate comparison of features could help
to analyze which variables were causing such a result.
The number of rejections in the three univariate tests
are summarized in Fig. 11a for the M2 database. Only
14 variables out of the 123 variables (11.38%) used in
the four Bayesian networks had a significant number
of rejections in at least one of the tests: the rejected
variables correspond to variables 5, 6, 7, 8, 9, 10, 11, 14,
16, 17, 18, 19, 26 and 30 in Table 1. If we only count
the variables where at least two tests gave a significant
number of rejections, nine variables are selected: 9, 10,
11, 14, 16, 18, 19, 26 and 30. All those variables belong
to the fourth dataset, so they might have decreased the
performance of the whole dataset when multivariate
comparison was applied (Fig. 10).

The variables with rejections were evidence features,
mostly from the subtree and the subdendrite. As pre-
viously mentioned, this dataset includes information
from different orders, and the higher variability could
be an obstacle to their simulation. We tried to decrease
this variability by further dividing this dataset according
to the centrifugal order of the segments. We created a
dataset for each order, and learned as many Bayesian
networks as the maximum order value. However, this
was not a feasible solution due to the low number of
higher order segments, as there has to be enough data
to accurately estimate the probabilities included in the
Bayesian networks.

Despite the rejections in evidence variables, the
number of rejections for construction variables was
never significant. In fact, only two of the rejected vari-
ables, i.e., subdendrite length (14) and subdendrite box
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Fig. 10 Multivariate comparison of datasets used in the models.
The number of rejections in the Kullback–Leibler multivariate
test is shown for each of the four datasets according to the
centrifugal order of the segments. The horizontal line represents
the threshold (61 rejections) for rejections to be considered
significant
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Fig. 11 Univariate
comparison of variables used
in the model. The number of
rejections for the Kullback–
Leibler test (blue squares),
Kolmogorov–Smirnov test
(green circles) and Wilcoxon
rank-sum test (red crosses)
are shown. The horizontal
axis represents the variables
in each Bayesian network
ordered according to their
number in Table 1. The
numbers at the top of the
graph indicate the rejected
variables. At least
61 rejections are considered
to be significant as indicated
by the horizontal line.
The figures correspond to
areas M2 (a), S2 (b) and
V2L/TeA (c)
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volume (18), were directly related to any construction
variable in Fig. 6d. Moreover, the simulated dendritic
trees with a maximum order value greater than two
were indistinguishable from real ones (see the next
section). This means that the model was robust against
false or heterogeneous evidence and was still able to
simulate correct values for the variables used to build
the virtual dendrites.

The results for the S2 area were quite similar
(Fig. 11b), where 21 of 123 variables (17.07%) had a
significant amount of rejections. Most of these rejec-
tions appeared in the last dataset, like M2 results. On
the other hand, the tests in the V2L/TeA area (Fig. 11c)
gave 20 variables with significant rejections (16.26%).
Note, however, that in the first-order dataset, the sub-

dendrite, subbranch, parent segment and root segment
refer to the same information, since only one segment
has been simulated. Thus, rejections for variables 21,
29 and 32 in that dataset were interrelated and also
related to the azimuth rejections in the order 0 dataset
(variable 40). Similarly, pairs of variables 4–15, 5–16
and 7–18 represent the same values. Moreover, when
we analyzed the meaning of these variables, we could
see that they were related to the azimuth value that
was rejected in the root segments dataset, i.e. width,
height and box volume closely depend on the azimuth
value. Azimuth angle is defined in a circular domain
so it is a difficult feature to model, specially when
considering discrete values, and could be contributing
to the rejections. However, it was the only case in which
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a construction variable had a significant number of
rejections.

Comparison of Emergent Parameters Not Used
in the Model

A set of 12 new variables was measured from the com-
plete real and simulated dendritic trees (see Table 6).
Ascoli et al. (2001) proposed the term “emergent para-
meter” to refer to these global variables not included in
the model that can be used to describe and compare the
dendritic morphology. Model variables and “predicted
variables” were previously compared by Van Pelt and
Uylings (1999).

In this work, the emergent parameters are variables
that can be measured at the level of the whole tree, as
opposed to subdendrite or subtree variables, which are
measured from a part of the tree. First, these emergent
parameters are measured from the real dendritic trees.
Then, the simulation step generates a set of virtual
dendritic trees. Finally, the emergent parameters are
calculated for the virtual dendritic trees, and both the
multivariate and univariate statistical analyses are con-
ducted again.

The number of rejections when all the real and
virtual dendritic trees were tested was very high in the
three areas. We hypothesized that it might be wrong to
consider all the dendrites together since we could find a
high diversity of dendritic morphologies. For example,
comparing a dendritic tree that extends away from the
soma without branching (has only a root segment) with
a complex dendritic tree that branches extensively is
expected to return a high number of mismatches. To
check that statement we repeated the analyses compar-
ing only real and virtual trees with the same maximum
centrifugal order. The bars in Fig. 12 show a low num-
ber of rejections when we compared these subgroups

Table 6 Emergent
parameters measured from
the whole dendritic tree

Emergent parameters not
included in the model. The
values of these features are
used to describe and compare
the morphology of the whole
dendritic trees

No. Variable

1 Degree (no. endings)
2 No. of bifurcations
3 Total length
4 Mean asymmetry index
5 Dendritic tree width
6 Dendritic tree height
7 Dendritic tree depth
8 Box volume
9 Max distance between

nodes
10 Max distance to soma
11 Max centrifugal order
12 Min centrifugal order
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Fig. 12 Multivariate comparison of emergent parameters not
included in the model. The number of rejections in the Kullback–
Leibler multivariate test is shown when only trees with the same
maximum centrifugal order are compared. The horizontal line
represents the threshold as of which the rejections are considered
significant

of dendritic trees, suggesting that simulated dendrites
were in fact similar to real ones.

The horizontal line in Fig. 12 shows the rejection
threshold (61 in a sign test with 100 observations). How-
ever, there were some runs in the 100 repetitions where
no dendritic trees with a given centrifugal order value
were simulated. In the M2 area, only 94 repetitions
generated dendritic trees with order 5 and the rejection
threshold was decreased to 57. In the S2 area, dendritic
trees with a maximum centrifugal order value of 0 were
simulated in 81 repetitions and trees with order 5 were
generated in 90 repetitions. Therefore, the rejection
threshold was set to 50 and 55 accordingly. The breaks
in the horizontal line in Fig. 12 (and Fig. 13) show the
above changes in the rejection threshold.

The analysis of each feature independently (Fig. 13)
showed that the number of rejections also decreased
when grouping the dendritic trees by their centrifugal
order. The most rejected variable in the three areas
and in the different groups was the dendritic tree depth
(variable 7 in Table 6). Dendritic depth is highly de-
pendent on the resolution of the z-dimension when
tracing the neurons, which is lower than the x and y
dimensions. Thus, the z-dimension measurements are
a common source of uncertainty and errors (Steuber
et al. 2004) that could also be limiting the model’s
ability to accurately capture dendritic depth.

In the M2 database, dendritic depth (7) and maxi-
mum Euclidean distance from the soma to the terminal
tips (10) were the only variables with a significant
number of rejections (Fig. 13a). Although there were
more rejections for these two features than for the
other features in the three tests, only the Kullback-
Leibler test yielded a significant number of rejections.
Figure 14 shows that, while the median value in real and
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Fig. 13 Univariate
comparison of emergent
parameters not used in the
model. Results for 12
emergent parameters
(Table 6) using univariate
tests: Kullback–Leibler (blue
squares), Kolmogorov–
Smirnov (green circles) and
Wilcoxon rank-sum (red
crosses). This figure shows
the number of rejections
when the dendritic trees are
grouped according to their
maximum centrifugal order.
The horizontal line indicates
the number as of which
rejections are considered
significant. The figures
correspond to areas M2 (a),
S2 (b) and V2L/TeA (c)
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Fig. 14 Boxplots for the real
and simulated values of the
emergent parameters. The
boxes show the values when
all the dendritic trees from
the M2 area are compared
and no subgroups are
considered. The numbers
refer to the variables in
Table 6, whereas R and S
stand for real (with white
background) and simulated
(shaded) data, respectively
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Fig. 15 Examples of real and
virtual dendritic trees. The
figure shows 2D projections
of real (top) and simulated
(bottom) main trunks of basal
dendrites from M2 pyramidal
neurons. Virtual dendrites
are similar to the real ones
and show some distinctive
traits of basal dendritic trees
from pyramidal cells

simulated data was quite similar, the whiskers in the
simulated data were wider, and the number of outliers
was also higher. These mismatches could be due to the
discretization process, since it might attach a higher
probability to some infrequent data.

In the S2 and V2L/TeA areas (Fig. 13b and c), a
high number of rejections were identified in zero-order
dendrites. There were very few such dendrites in the
S2 area, where only 3 out of 103 dendritic trees were
selected (2.91%), so the tests might be influenced by
this shortage of data. On the other hand, zero-order
dendrites were more frequent in the V2L/TeA area (27
out of 156, 17.31%). As previously noted in the evalua-
tion of the model variables, the difficulty of modeling
root segment azimuth in this area might be causing
these rejections.

Visual Comparison

A visual comparison between real and simulated den-
drites (Fig. 15) confirms that the model is able to gen-
erate virtual dendrites that show some of the defining
features of pyramidal basal dendritic trees, e.g., long
terminal segments or more frequent bifurcations at
closer distances from the soma. 3D morphologies can
be accessed (see “Information Sharing Statement”) to
further check this correspondence and allow for a qual-
itative validation of the simulated dendritic trees.

Discussion

We have presented a new reconstruction approach
for the simulation of 3D dendritic morphology. The
methodology uses Bayesian networks, a probabilistic
graphical model, to capture the interactions between
the variables in the problem domain. A complete set of
evidence and construction variables is measured from

the dendrites, and a learning algorithm is applied to find
the structure and estimate the probability distributions
included in the Bayesian networks. Then, a simulation
algorithm is used to build the virtual dendrites sampling
values from the Bayesian networks and a thorough
evaluation is performed to show the model’s ability to
generate realistic dendrites.

Bayesian networks encode a factorization of the
joint probability distribution over the variables, and
can model an extensive set of variables by exploiting
the local properties of the probability distributions.
Discrete Bayesian networks have a solid mathemati-
cal background, their theoretical properties have been
widely studied and applications in different fields have
been successful (Pourret et al. 2008). In this work,
the analyses of the robustness of the network struc-
tures (Friedman et al. 1999) and the minimum sample
size that guarantees that there is a high probability of
the learned and the true distributions being close to
each other (Friedman and Yakhini 1996) confirmed the
stability of the models (see the “Information Sharing
Statement”).

This proposal has an important advantage over pre-
vious research because the relationships between the
variables in the model are found by directly mining the
data. Therefore, it is not necessary to previously specify
all the interactions between the morphological features.
Instead, we have a computer algorithm find the model
that best fits the data. Applying machine learning al-
gorithms to discover dependencies between parameters
and simulate virtual morphologies is useful when com-
plete information on the structure of the problem is not
available. Since the model is learned from the data, the
methodology can be applied to any neuronal class with-
out the need for any modification. We should note that
the model presented here is implicitly conditioned by
the centrifugal order of the segments. The datasets are
split during the data acquisition and preparation step.
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This means that different Bayesian networks (different
relationships and probability distributions) are learned
for different orders. This is a commonly used feature
in the literature (e.g., Devaud et al. 2000; Donohue
and Ascoli 2008; Anwar et al. 2009). However, once
the datasets have been created, the Bayesian network
learning process is completely data-driven.

Other reconstruction models either do not explic-
itly include relationships between variables, which is
an overly simplistic approach, or include predefined
relationships (e.g., Lindsay et al. 2007; Donohue and
Ascoli 2008; Koene et al. 2009; Anwar et al. 2009).
However, it is very difficult to find common relation-
ships that apply to every neuronal class, and, if this is
possible, their validity would have to be checked every
time a new class is modeled. On the other hand, if a
model has explicit relationships to accurately represent
a neuronal class, changes will have to be made to fit
the model to other classes that do not comply with
those hypotheses. The methodology proposed here
is generally applicable, whereas the models are data
specific. Common interactions among neuronal classes
can be identified by looking for similarities between
the different models, whereas rare relationships could
capture unique features in a given class. This approach
addresses knowledge extraction from the models in a
more straightforward way.

Furthermore, although reconstructions of neurons
from diverse classes are available online in several
public databases (Ascoli et al. 2007), the high tracing
process heterogeneity between labs and researchers can
negatively affect the model’s behavior (Ascoli 2007).
In our study, we have used data from basal dendritic
arbors of pyramidal cells from the same laboratory.
Additionally, they are fully reconstructed basal den-
dritic arbors, so they are particularly valuable for val-
idating simulated virtual neurons. On the other hand,
segment diameter is commonly used in the literature
to determine segment length or branching probability,
as it is highly correlated with structural factors like the
microtubule density (Hillman 1979). Since measuring
segment diameter is prone to errors and noise (Steuber
et al. 2004), diameter values were not considered in the
reconstruction of the real neurons; and, consequently,
have not been included in our simulation model. All
these factors will have to be taken into account when
we study dendrites from other neuronal classes traced
in different labs.

Our model comprises four Bayesian networks that
encode the relationships between the variables at
different levels of the dendritic tree. A number of stages
have been described during neuron development, and
different parts might have different morphologies

and be regulated by different factors (Donohue and
Ascoli 2005a). Making a distinction between segments
at different centrifugal orders is useful for identifying
context-specific interactions. In fact, the Bayesian net-
works found for the different levels are quite different
(see the “Analysis of Bayesian Networks”). Bayesian
multinets (Geiger and Heckerman 1996), a generaliza-
tion of Bayesian networks where different relationships
can be considered depending on the values of some
variables are also worth investigating for this problem.
These models can identify the changes in the problem
structure for different parts of the dendrites without the
need for more than one Bayesian network.

The analysis of the Bayesian networks showed some
interesting results. Segment length is always related
to the branching probability, indicating a statistical
difference between intermediate and terminal seg-
ments (Uylings et al. 1986; Larkman 1991; Van Veen
and Van Pelt 1993). In fact, some of the models in
previous works separate root, intermediate and ter-
minal segments when modeling or evaluating segment
length (e.g., Lindsay et al. 2007; Torben-Nielsen et al.
2008b; Anwar et al. 2009). In our case, that distinc-
tion was inferred automatically from the data by the
learning algorithm and not predefined on the model.
Segment orientation is mainly controlled by parent
segment and subbranch azimuth and inclination angles
to successfully capture dendritic tropism. Other rela-
tionships with subbranch measurements were found,
supporting the idea that host cell influence might be
more important in neuron development and neurite
outgrowth than expected. It is important to keep in
mind that the pattern of dendritic arborization is the
result of a complex interaction between intrinsic ge-
netic programs and external modulators, e.g., neuro-
transmitters or patterns of activity (Kaufmann and
Moser 2000; Cline 2001; Benavides-Piccione et al. 2004;
Wen et al. 2009; Ballesteros-Yáñez et al. 2010). Thus,
adding variables to model some environmental factors
and checking the relationships that are established with
them will help to clarify this issue (Torben-Nielsen
et al. 2008b). If relationships between construction vari-
ables and subdendrite or subtree evidence variables
still occur in the model when environmental features
are included, it will suggest that intrinsic factors are
relevant and cannot be ignored.

The results were fully evaluated to verify that the
virtual dendrites were accurate. Univariate and mul-
tivariate analyses were conducted to compare model
variables and emergent features. A statistical test using
Kullback-Leibler divergence was designed based on
a bootstrapping method to compare both univariate
and joint probability distributions over the variables.
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Applying several statistical tests proved to be useful
because some of the mismatches were only detected by
one method. The univariate KL test was applied along
with Kolmogorov-Smirnov test and Wilcoxon rank-sum
test to check if the values of the real and virtual den-
drites came from the same distribution. On the other
hand, the multivariate KL test allows for a comparison
of the joint probability distribution over all the features
at the same time. As far as we know, this is the first time
that such a multivariate test has been used to evaluate
the joint probability distribution over a set of variables
that describe dendritic morphology. Usually, univariate
statistical tests that compare each variable indepen-
dently are used (Lindsay et al. 2007; Torben-Nielsen
et al. 2008b), or plots are visually inspected to evaluate
bivariate or conditional densities (Donohue and Ascoli
2005a; Koene et al. 2009). More complex evaluation
methods are still needed in order to accurately compare
dendritic morphology. Measures for quantifying den-
dritic branching patterns and tree structures are rather
simple and not very informative, although some efforts
are being made to propose such advanced measures, as
in Heumann and Wittum (2009).

Future work will focus on using Bayesian networks
that can directly manage continuous features with-
out the need for discretization. Current state-of-the-
art algorithms for hybrid Bayesian networks, which
include both discrete and continuous variables, usually
impose some assumptions on the shape of the data:
Gaussian distributions, mixtures of truncated exponen-
tials (Romero et al. 2006), etc. However, our data may
not fit any of these distributions, so non-parametric
alternatives will also be considered. Learning and sim-
ulating from this kind of models are difficult and inter-
esting tasks, as illustrated by the amount of research in
the area.

The Bayesian network computational model may
be useful for identifying new aspects of the morpho-
logical specializations of pyramidal cells related to
cortical functions or evolution. For example, a re-
markable characteristic of pyramidal cells is the huge
variations in the pattern of their dendritic arborization
in different cortical layers, areas and species (Jacobs
and Scheibel 2002; Elston 2007). Future work will ad-
dress the generation of the whole basal arborization of
pyramidal cells. This implies studying the distribution
of the dendritic trees, i.e., number of trees, orientation,
complexity, interactions between trees, etc. This work
will include a complete analysis and comparison of
the models presented here against the models for the
complete basal arborizations. This will help to identify
whether the differences between basal dendrites in the
cortical areas (Benavides-Piccione et al. 2006) are due

to significant differences in the individual trees or in
their distributions, i.e., how the dendritic arbor is built
from the dendritic trees. Additionally, we would like to
extend this research using neurons grouped by species,
cortical area, layer, age, etc.

Also, subgroups of dendrites can be formed using
other features apart from maximum centrifugal order
to evaluate real and simulated data, e.g., number of ter-
minal segments, total dendritic length, etc. Since there
is no commonly accepted way to make this division, the
results might be different when other features are used.

Finally, our model may also help to develop algo-
rithmic methods for repairing or recovering the miss-
ing parts of the neuron morphology (Markram 2006;
Anwar et al. 2009) using different sampling meth-
ods. Such a repair method would make it possible to
examine pyramidal neurons in coronal sections and
cover both the apical and basal dendritic systems, help-
ing to generate a complete picture of pyramidal cell
morphology.

We conclude that probabilistic graphical models are
useful techniques for simulating 3D dendrites, as illus-
trated by this proposal based on Bayesian networks.
We hope that further research in this area and the
implementation of more complex models (Bayesian
multinets, hybrid Bayesian networks, causal networks,
etc.) will provide an excellent tool for examining
dendritic structure.

Information Sharing Statement

A website has been set up containing all the informa-
tion about the experiments reported in this paper. The
Bayesian networks learned for the different cortical ar-
eas (M2, S2 and V2L/TeA) and the results of the statis-
tical evaluation of the models are available. An analysis
of the stability of the network structures obtained by
the learning algorithm and the study of the sample
size are included. The results of the tests performed
to assess the quality of the real and simulated data
and to evaluate the multivariate KL test can also be
accessed. Examples of the 3D dendritic morphologies
of real and virtual dendrites from the three areas can be
explored online using an applet based on CVAPP soft-
ware (Cannon et al. 1998). The code has mainly been
developed using Matlab. The website is available at
http://www.dia.fi.upm.es/~concha/dendriticsimulation.
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