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The search for the optimal ordering of a set of variables in order to solve a computational
problem is a difficulty that can appear in several circumstances. One of these situations is
the automatic learning of a network structure, for example, a Bayesian Network structure
(BN) starting from a dataset. Searching in the space of structures is often unmanageable,
especially if the number of variables is high. Popular heuristic approaches, like Cooper
and Herskovits’s K2 algorithm, depend on a given ordering of variables. Estimation
of Distribution Algorithms (EDAs) are a new paradigm for Evolutionary Computation
that have been used as a search engine in the BN structure learning problem. In this
paper, we will use two different EDAs to obtain not the best structure, but the optimal
ordering of variables for the K2 algorithm: UMDA and MIMIC, both of them in discrete
and continuous domains. We will also check whether the individual representation and
its relation to the corresponding ordering play important roles, and whether MIMIC
outperforms the results of UMDA.
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1. Introduction

Let D be an observed data set containing a sample of size N obtained from a

domain X = (X1, . . . , Xn) with n variables. Rather than obtaining the complete

Probabilistic Graphical Model (PGM) to model the problem domain composed of

the random variables based on the data set (e.g. the network structure and the

conditional probabilities of a BN), obtaining the structure S is often sufficient for

our purposes. For example, if we only want to use the PGM to discover condi-

tional dependencies and independencies among the variables that appear in a set

of cases, we do not need to determine the conditional probability assignment of the

dependencies. This work only focuses on obtaining a network structure.

The main problem is that the space of structures grows exponentially with the

number of nodes.31 Network structure learning is, generally, an NP-hard problem.9
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One of the assumptions that has become a standard to reduce the search space is

to only consider the structures that, given an ordering <o, fulfil Xi ∈ πj ⇒ i <o j

being Xi a variable of the structure and πj the set of parents of Xj . This can be

dangerous to some extent, as the set of structures obtained is quite sensitive to the

search procedure and in certain domains we do not have information on the prior

likelihood of a given structure. A subsequent search in the space of orderings plays

down this handicap.

The advantage of working with orderings rather than structures appears in se-

veral works. Not only is the convergence of the solution faster and its sharpness

smaller,15 but the space itself is also much smaller (n! rather than 2O(n2), where n is

the number of nodes). Consequently, we do not usually have to artificially reduce the

space (e.g. limiting the number of parents or rejecting very complex models) in the

cases when we would have to if we only used the search in the space of structures.

If the number of nodes is too large, practical problems arise again. Thus, we will

have to use a certain number of heuristic algorithms both in one problem and in the

other. Therefore, we have to select one paradigm to search in the space of structures

with the ordering restriction on the parents (Structure Search Paradigm, SSP) and,

on the other hand, another paradigm to search in the space of orderings (Ordering

Search Paradigm, OSP). In this work, we will use a greedy hill-climbing method as

the SSP (the K2 algorithm10) and the Univariate Marginal Distribution Algorithm

(UMDA)25 and Mutual Information Maximization for Input Clustering (MIMIC)12

as the search strategies in the space of orderings.

The rest of the paper is organized as follows: in Sec. 2, we introduce Bayesian

Networks. In Sec. 3, we review the early work on searching in the space of orderings.

In Sec. 4, the Estimation of Distribution Algorithm (EDA) paradigm is presented.

In Sec. 5, we describe the individual representation, introduce the networks that

we have worked with and also explain why we chose the EDA parameters used in

the experiments. In Sec. 6, we present the results of the experiments and in Sec. 7,

the concluding remarks.

2. Bayesian Networks

Let X = (X1, X2, . . . , Xn) be an n-dimensional random variable, where xi is an

instantiation of Xi. A Probabilistic Graphical Model (S, θs) is a graphic structure

S = (X, A) and a set of local parameters θs. X, a set of nodes, represents the

system variables and A, a set of arcs, the conditional dependence/independence

relationships among the variables of the structure. A Bayesian Network (BN) is a

PGM where the graphic structure is a directed acyclic graph (DAG), the Xi are

random discrete variables (called nodes) and the set of parameters θs = (θijk),

where k goes from 1 to ri, j from 1 to qi and i from 1 to n, represent the

local probability distributions over X, i.e. θijk is the conditional probability of

Xi being in its kth value given that the set of its parent variables is in its jth

value. Finally, ri is the number of different values of the ith variable and qi
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represents the number of possible instantiations for the set of parents of the ith

variable.

The BN paradigm can be used as a model to make inferences in domains with

intrinsic uncertainty. Although a human expert is able to construct the model, this

method can be too subjective and time consuming. A substitute for this kind of

construction is the automatic learning of the model from a given data set.

The factorization of the joint distribution that a BN represents permits an

efficient reasoning inside the model. This reasoning, i.e. the propagation of evidence

through the model, can be carried out using several algorithms. The most popular

algorithm for the retrieval of beliefs was proposed by Lauritzen and Spiegelhalter

in 1988.23 It consists of a manipulation of the BN that makes it easier and faster to

obtain the obtaining probabilities of the network nodes. Introductions and classic

textbooks about BN are available in Refs. 8, 18 and 28.

3. Previous Work in Structure Learning in the Space of Orderings

We can find several solutions in the early work on learning structures from data.

Most of the works try to learn structure searching only in the space of DAGs or

equivalence classes, based on conditional independence tests or on scoring metric

optimization (the score+search approaches). Another approach is searching in the

space of orderings: we search in the space of structures with a given fixed ordering

of the variables that determines the search itself, and we make an ulterior search

in the space of orderings. We are interested in these methods. In this section, some

of the works that use the last method are reviewed.

In Ref. 7, Bouckaert proposes the K2 structure learning algorithm and, as OSP,

an algorithm that manipulates a given ordering <o of the variables with opera-

tions similar to arc reversal. Only the operations that generate a resulting DAG

that represents the same independency model present in the structure before the

application are performed, making the set of independences bigger at each step.

In Ref. 21, Larrañaga et al. used Genetic Algorithms24 as OSP, where they learn

the DAG using the K2 structure learning algorithm of Cooper and Herskovits.10

The score of the DAG (and of the order that the K2 algorithm takes into ac-

count to obtain it) is the K2 metric. The GA used is based on the principles of

GENITOR, developed by Whitley.33 It combines several genetic operators

(crossover and mutations) to examine the convergence of the GA and its fitness.

For Friedman and Koller,15 the first goal is to compute P (S|D) ∝ P (D|S)P (S)

in order to search in the space of structures. P (D|S), the marginal likelihood of the

data given the structure, is obtained integrating all possible BN parameters. To

reduce the complexity, the authors restricted the space of structures limiting the

number of parents of a node with a constant k and a given ordering <o to restrict

the available parents of a node. They also used several computational tricks, such

as reducing the possible parents of a node and the possible families to the highest-

scoring ones by means of a precomputation. With these restrictions they could
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estimate P (S|D, <o). To search in the space of the orderings, the authors con-

structed a homogeneous Markov chain with the state space being the n! possible

orderings of the variables. In this case, the construction of the Markov chain using

a standard Metropolis algorithm sampling needed to guarantee that the invariant

distribution over the states is P (<o |D).

Acid et al.2 used the BENEDICT-step algorithm as an SSP. This algorithm

is based on a hybrid methodology that combines independence tests and scoring

metrics. The scoring metric measures the discrepancies between the d-separation

statements of a candidate network S and the one that appears in D using the

Kullback–Leibler cross entropy. However, if the number of nodes of S is large, com-

puting problems to calculate the d-separation statements arise, as their number and

complexity grow exponentially. Thus, given a candidate network S, they only take

into account the conditional independences for every two nonadjacent single vari-

ables Xi and Xj, given the set of minimum size, Ds(Xi, Xj), that d-separates both

of them.1 These d-separation statements are representative of all the d-separations

that appear in S. The search method that uses the metric is a simple greedy al-

gorithm that takes into account, as the measure of global discrepancy, the sum

of the local discrepancies and adds one arc only if the addition makes the global

discrepancy lower. This addition needs to respect a given order. As the OSP, they

use the Simulated Annealing algorithm.19

In Ref. 13, de Campos and Puerta regarded the K2 metric as the scoring function

to evaluate the quality of a structure. To obtain the structure, they used a simple

hill-climbing search of the best parent set of each node with operators of arc addition

and arc removal. As OSP, the authors used the Variable Neighborhood Search16

based on orderings. First, they selected a set of neighborhood orderings Nk (with

k = 1, . . . , k max), where N1(<o) is the neighborhood of the ordering <o that results

from the interchange of any two positions and, in general:

<′′

o∈ Nk(<o) ⇔<′′

o∈ N1(<
′

o)∧ <′

o∈ Nk−1(<o) (1)

and then, they searched in the space of these neighborhood orderings (at first, in Nk,

and if there is no improvement, in Nk+1): after selecting a random ordering from

Nk, they used a hill-climbing search in the space of the orderings with an operator

of interchange of two positions. To speed up the search process they established a

number r that limits the distance between the variables to be interchanged in an

ordering.

The search in the space of orderings proposed by Puerta30 combines the K2SN

algorithm with the Ant Colonies.14 K2SN is a modification of the K2 algorithm that

does not need a previous ordering, because K2SN itself determines the ordering. At

each step, K2SN uses the K2 algorithm to discover the node, and the set of parents

that maximizes the K2 metric, adding the node to the network and, therefore,

setting its position. In an ant colony, the election of a node is not only based on the

K2 metric, but on a pheromone quantity too. The more pheromone quantity you

have in a particular edge, the more you obtain this edge election probability. Each
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Table 1. Summary of works on structure learning in the space of orderings.

Authors SSP + OSP

Bouckaert7 K2 + Independences preservation

Larrañaga et al.21 K2 + Genetic algorithms

Friedman and Koller15 Space restriction + MCMC

Acid et al.2 BENEDICT-step + Simulated annealing

de Campos and Puerta13 Hill-climbing + VNS based on orderings

Puerta30 Hill-climbing + K2SN and Ant colonies

time the edge is selected by an ant, in this case an execution of the Ant + K2SN

algorithm, its pheromone quantity increases. For ulterior local search in the space

of each ordering proposed by the ant colony, the author proposes a hill-climbing

algorithm described in Ref. 13.

In Table 1, we can see a summary of this section.

4. Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDA)20,22,26 are a new paradigm for Evolu-

tionary Computation. As GAs, EDAs are population-based stochastic searches that

replace the crossover and mutation operators by learning the probability distribu-

tion of the best individuals of each generation and its posterior simulation. Thus,

we can capture all the relationships among the variables in an explicit way. To the

best of our knowledge, EDAs have been used as a search engine in the BN structure

learning problem in Refs. 5, 6 and 29.

4.1. General form of an EDA algorithm

Before showing the pseudocode of the EDA approach,22 we will establish some

definitions:

• z = (z1, . . . , zm) will denote the instantiation of the m-dimensional variable Z =

(Z1, . . . , Zm) called individual of m genes.

• Dl will denote the population of M individuals in the lth generation.

• Ds
l will denote the population that makes up the set of N individuals selected

from Dl.

• ρl(z) = ρl(z|D
s
l−1) will denote the joint generalized probability density function

(or the mass probability if each Zi is a random discrete variable) of z individual

at the lth generation, given Ds
l−1.

The general form of the EDA algorithm proposed in this work for searching in

the space of BN orderings can be seen in Fig. 1.

The main problem in this approach is the estimation of the probability distri-

bution ρl(z), even though there are other factors that can be important, like the



612 T. Romero, P. Larrañaga & B. Sierra

EDA
D0 ← Generate M individuals randomly (the initial population)
l← 1
Repeat

For each individual ii ∈ i1, i2, . . . , iM do

Obtain the ordering oi associated to ii
Learn the network using the K2 algorithm and the ordering oi

Calculate the score si of the network/ordering/individual using the K2 metric

If si is the best score found then bi ← ii End if

End for

Ds

l−1
← Select N ≤M individuals from Dl−1 using a fixed selection

method
ρl(z)← Estimate the probability distribution of z given Ds

l−1

Dl ← Sample M individuals (the new population from ρl(z)
l← l + 1

Until a stopping criterion is verified
Return bi

Fig. 1. Main scheme of the EDA approach.

initialization of the initial generation, the selection of the individuals used to esti-

mate the probability distribution, etc. To estimate ρl(z) and then sample the new

generation, EDAs construct and use a BN if the variables that the individuals are

made of are discrete, and a Gaussian Network (GN)32 if they are continuous. A

GN is a PGM where S is a DAG, the random variables of Z are continuous and

the set of parameters θi = (mi,bi, vi) determines the local density function (the

linear-regression model):

f(zi|π
S
i , θi) = N



zi; mi +
∑

Zj∈πS
i

bji(zj − mj), vi



 (2)

where N (z; µ, σ2) is a univariate normal distribution with means µ and variance

σ2. bi = (b1i, . . . , b(i−1)i)
t is a column vector where bji = 0 if there is no arc from

Zj to Zi in S. It reflects the intensity of the dependences of every variable. mi is

Zi’s unconditional mean and vi is the conditional variance given πS
i .

4.2. The probability distribution estimation

Several EDAs have been proposed using both kind of variables (discrete and con-

tinuous). In this work, we will use two examples of EDAs: Univariate Marginal

Distribution Algorithm (UMDA) and the Mutual Information Maximization for

Input Clustering (MIMIC). Both will be used in discrete and continuous domains.

We will present both algorithms in the discrete domain. Their adaptation to

continuous domains — denoted by UMDAc and MIMICc — can be consulted in

Ref. 22.

The UMDA algorithm, introduced by Mühlenbein,25 assumes independence

between the variables (the genes of the individuals), i.e. the model used to
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estimate pl(z) is the simplest, using the marginal frequencies to get the probability

distribution:

pl(z) = p(z|Ds
l−1) =

m
∏

i=1

pl(zi) (3)

and

pl(zi) =

∑N

j=1 δj(Zi = zi|Ds
l−1)

N
(4)

where δj(Zi = zi|Ds
l−1) is 1 if in the jth case Ds

l−1, Zi is equal to zi and 0 otherwise.

MIMIC, proposed by De Bonet et al.,12 takes dependencies between pairs of vari-

ables into account. The main idea is to search for the best permutation among the

variables, in every generation, in order to obtain the closest probability distribution

pπ
l (z) to the empirical distribution of Ds

l , using the Kullback–Leibler distance:

pπ
l (z) = pl(zi1 |zi2) · pl(zi2 |zi3) · · · pl(zim−1

|zim
) · pl(xim

) (5)

where π = (i1, i2, . . . , im) is a permutation of the indexes 1, 2, . . . , m. De Bonet

et al. obtained one approximation of π in each generation using a straightforward

greedy algorithm through the m! possible permutations.

4.3. Sampling the new generation

In order to obtain a new population of individuals, it is enough to create a database

where the probabilistic relationships among the variables are underlying.

In this work, we will use the Probabilistic Logic Sampling (PLS) method pro-

posed by Henrion.17 With PLS, the instance of a variable is generated after all its

parents have already been sampled, using the distribution p(zi|πi). Thus, variables

are in ancestral ordering before the simulation. In the case of GNs, normal distribu-

tion simulation is carried out by adding values coming from uniform distributions.

5. Searching in the Space of Orderings with EDAs

Next, we describe the adaptation of the previous ideas to the search in the space

of orderings with EDAs.

5.1. Score to evaluate each ordering

As noted earlier, in this work we use the K2 algorithm proposed by Cooper and

Herskovits10 and its K2 metric as the scoring function to evaluate the quality of an

ordering:

P (S|D) =

n
∏

i=1

qi
∏

j=1

(ri − 1)!

(Nij + ri − 1)!

ri
∏

k=1

Nijk! (6)

where qi is the number of possible different instances of πi in D, Nijk the number

of cases in D in which Xi is instanced as kth possible value and πi has its jth
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instantiation, ri the number of possible values of Xi and Nij =
∑ri

k=1 Nijk. This is

only true if the cases occur independently, if the density of the parameters, given a

structure, is uniform and if we are working with a complete data set, i.e. without

missing values. From (6), the scoring function associated with variable Xi is:

g(i, πi) =

qi
∏

j=1

(ri − 1)!

(Nij + ri − 1)!

ri
∏

k=1

Nijk! (7)

The K2 algorithm is a greedy algorithm that searches for every node the set of

parents Xi that maximizes the g(i, πi) function, adding a parent at each step until

the addition does not improve the score g(i, πi).

5.2. Individual representation

The evolution of the EDAs provides us with different individuals of m genes

(z1, z2, . . . , zm) that have to be univocally associated to a specific ordering of n

variables. With continuous EDAs, the representation of the individuals is direct,

i.e. the genes of the individual only have to be ordered and each gene instantiation

is associated to its respective number of nodes to obtain a valid ordering, i.e. in

this case m = n. For example, from the continuous individual (0.5, 1.6, 0.2, 0.1),

we obtain the ordering (3 − 4 − 2 − 1). It must be taken into account that the

redundancy of this representation is high due to the fact that different continuous

individuals can generate the same ordering.

In the event of discrete domains, the individual representation is not so simple.

If we have four variables and 4! possible permutations or orderings, we cannot use

an individual of four genes whose variables can take four instantiations at the most,

because we can obtain, for example, the instantiation (2− 3 − 4 − 4), which is not

a valid ordering.

Even though this difficulty can be overcome by penalizing the individuals that

do not verify the restrictions, or by even adapting the simulation process to sample

valid individuals,4 both can have a negative influence on the behavior. We have

developed a solution that avoids the disadvantages of prior aproximations and that

makes the individual-ordering association bijective.

We can determine a particular ordering from the n! possible permutations with

the factor decomposition of n! For example, if we have four variables, the possible

4! orderings can be generated in a systematic form, shown in Table 2. The de-

composition of 4! is 4 · 3 · 2 · 1. If we represent the individual with three variables

Z1, Z2, Z3 with r1 = 4, r2 = 3 and r3 = 2, it is easy to obtain a particular order of

the systematic list from an individual.

5.3. Networks used in the experiments

In the experiments we use the Asia and Alarm belief networks. The Asia network

(see Fig. 2) was created by Lauritzen and Spiegelhalter23 for example, purposes only.
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Table 2. Possible orderings

of four nodes.

1234 2134 3214 4231

1243 2143 3241 4213

1324 2314 3124 4321

1342 2341 3142 4312

1432 2431 3412 4132

1423 2413 3421 4123

Has tuberculosis

Visit to Asia

Has bronchistisHas lung cancer

Smoker

Positive X−ray

or cancer

Tuberculosis

Dyspnoea

Fig. 2. The Asia network.

It can be seen as a network aimed at diagnosing patients. It has eight variables,

each one with two possible states, and eight arcs. The database of 3,000 cases used

in the experiments was generated with Netica from Norsys Software Corp.11

The Alarm network (see Fig. 3) is a classical benchmark for the evaluation of

learning algorithms. It stands for A Logical Alarm Reduction Mechanism. Its goal is

to be a medical diagnostic alarm message system for patient monitoring. It was first

described by Beinlich et al.3 It has 37 variables (with 2, 3 and, at most, 4 states) and

46 arcs. The Alarm database can be obtained from the UCI repository of machine

learning databases.27 From this database, we only used the first 3,000 cases.

5.4. Choices about the parameters of EDAs

The initial generation, in our work, is generated randomly.
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1 2 3

25 18 26

17

6 5 4 27 11

19 20

987

28 29

30

10 21

32

12

34 35

14

31

33

22

15
23

37

16

13

36

24

Fig. 3. The Alarm network.

In the experiments, we always use a population size of M = 100 individuals for

Asia and M = 500 individuals for Alarm. In order to select the individuals used to

estimate the probability distribution, we select the first N = M
2 best individuals

from the actual population, i.e. the individuals with the best score (taking into

account the K2 metric). We only keep the best individual from one generation

to the next, sampling M − 1 individuals at each step or generation. To keep a

high percentage of individuals among generations worsens the results, as EDAs

cannot evolve.

Finally, the stopping method is not related to a convergence criterion. Normally,

the convergence criterion, whatever the method, does not always guarantee the

termination of the algorithm. In our work, we create a sample of the best individual

of the current generation evaluated by each M different orderings. We stop when

more than M · 50 different orderings are evaluated, in order to compare the results

with a random experiment, where we generate M · 50 different orderings (i.e. we

generate 50 samples in each experiment). With Asia, the repetition of the orderings

in the last generations is numerous; therefore, if we visit M consecutive orderings

that have been evaluated in old generations, we make a sample and sum M to the

counter of different individuals evaluated. With Alarm, the algorithm cannot stop

when exactly M · 50 individuals have been evaluated, as the current generation has

to be finished.

5.5. Information collected

In each sample of the best individual of the actual generation, we collect the

following information:
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• The value of the K2 metric (log). This is the metric to be maximized by the

EDAs.

• The Hamming Distance (HAD) between the original network structure (Asia or

Alarm) and the DAG obtained by the K2 Algorithm.

• The Skeleton Distance (SKD) takes into account the undirected graph that results

from the DAG generated by the K2 algorithm and the one from the original

network. It counts 1 for each arc that appears in one network and not in the other.

• The Mixed Distance (MID) counts 1 for each directed arc that appears in one

network and not in the other, except for the arcs that appear in the other network

but with an opposite direction, in which case it counts 0.5.

Note that the best evaluation (the value of the K2 metric) does not necessarily

imply the best value for the structural distances for a given network.

6. Experimental Results

The experiments have been carried out ten times. In Figs. 4 and 5, the histogram

of the distribution of the K2 metric for the 8! possible permutations of the nodes

for the Asia network appears, as well as for 20,000 random orderings using the

K2 search algorithm. In Fig. 6, the histogram for 20,000 random orderings for the

−Log(Evaluation)

3008,0

3003,0

2998,0

2993,0

2988,0

2983,0

2978,0

5000

4000

3000

2000

1000

0

Fig. 4. Distribution of the K2 metric for the 8! possible orderings for the Asia network.
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−Log(Evaluation)

3008,0

3003,0

2998,0

2993,0

2988,0

2983,0

2978,0

3000

2000

1000

0

Fig. 5. Distribution of the K2 metric for 20,000 random orderings for the Asia network.

−Log(Evaluation)

15550,0

15400,0

15250,0

15100,0

14950,0

14800,0

14650,0

14500,0

3000

2000

1000

0

Fig. 6. Distribution of the K2 metric for 20,000 random orderings for the Alarm network.
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Alarm network appears. Whereas the problem with Asia is easy because most of

the orderings have a good score, the one for Alarm seems to be more difficult.

Experiments — not presented in this paper — with a version of the K2 algorithm

that adds at each step not only one but the two parents that most improve the K2

metric, make the histogram even worse, moving the majority of the orderings to

worse areas of the metric. This is because the algorithm determines the generated

network too much (for example, it can have only an even number of parents for

each node), which proves that the SSP is very important in structure learning.

Note that, in certain domains (for example, the space of the structures for Asia or

Alarm network), the highest scoring model is orders of magnitude more likely than

any other, when the amount of data is large in relation to its size. However, in our

case, searching in the space of the orderings, there are many K2-structures that can

explain the data set well.

In Table 3, we can see the average best results (and its variance) for the Asia

network and Continuous EDA (the results for Discrete EDA and the random ex-

periment are the same), and in Tables 4–6 for Alarm. We can see that, with Asia,

the K2 algorithm is able to obtain networks with a better score than Asia itself

with all the methods, whereas the one for the Alarm network is the best scored

structure. Seeing how the problem with Asia is easier, all the methods can reach

the best ordering (even the random experiment).

The best average evaluation is obtained with MIMIC. MIMIC seems to outper-

form UMDA in discrete domains, whereas in continuous domains the behavior is

almost the same.

In Table 7, we can see the evaluation of the best individual found for each

method using Alarm network.

Table 3. Average results of ten executions for Asia and Continuous
EDA.

MIMICc UMDAc

Evaluation −2977.52 ± 0.00 −2977.52 ± 0.00

HAD 2.00± 0.00 2.00± 0.00

SKD 1.00± 0.00 1.00± 0.00

MID 2.50± 0.00 2.50± 0.00

%Asia (−2979.16) 100.06 ± 0.00 100.06± 0.00

Table 4. Average results of ten executions for Alarm and Continuous
EDA.

MIMICc UMDAc

Evaluation −14463.80 ± 213.23 −14463.13 ± 74.91

HAD 10.00± 7.40 10.30 ± 4.61

SKD 2.90± 0.49 2.60± 0.44

MID 13.15± 12.15 13.25 ± 5.51

%Alarm (−14412.69) 99.65± 0.01 99.65 ± 0.00
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Table 5. Average results for ten executions for Alarm and Discrete

EDA.

MIMIC UMDA

Evaluation −14423.96 ± 27.41 −14453.54 ± 69.45

HAD 4.20± 0.76 11.40 ± 5.44

SKD 1.40± 0.44 2.60 ± 0.44

MID 5.50± 1.15 15.40 ± 10.29

%Alarm (−14412.69) 99.92 ± 0.00 99.72 ± 0.00

Table 6. Average results of ten executions
for Alarm and random experiment.

Random Experiment

Evaluation −14522.30 ± 140.66

HAD 16.70± 9.21

SKD 3.40± 0.64

MID 22.25± 6.81

%Alarm (−14412.69) 99.25± 0.01

Table 7. Best scores found for the
Alarm network.

MIMICc −14437.23

UMDAc −14453.35

MIMIC −14417.86

UMDA −14435.87

Random Experiment −14499.73

In Fig. 7, we can see the evolution over the 50 samples of the average evalua-

tion of ten experiments for UMDA, MIMIC and the random experiment for Asia

network, and in the next the same evolution for Alarm network.

The search algorithm with the best score is, undoubtedly, MIMIC: the Mann–

Whitney test obtains a significance level of p < 0.001 among it and the other

methods. However, MIMICc does not have statistically significant differences rela-

tive to UMDAc, and UMDA outperforms it (significance level of p = 0.034). Finally,

UMDA outperforms UMDAc with a significance level of p = 0.049.

Note that the network obtained with the K2 algorithm and a given ordering

does not have to be exactly the original network (Alarm or Asia) at the end of

an execution of an EDA, because we are dealing with databases generated with

the original network but inevitably incomplete. We do not have all the information

needed on the database to generate the original network. In Fig. 9, we can visualize

the evolution of the network structure throughout five samples of the execution of

an EDA (after the Alarm itself). The first sample has a metric of −14, 536.26 and

a Mixed Distance of 24.0. The last sample has a metric of −14, 417.86 and a Mixed

Distance of 4.5.
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Alarm                                    Sample 1 (2 %)                    Sample 2 (12 %)

          

Sample 3  (32 %)                  Sample 4 (70 %)                  Sample 5 (100 %)

          

Fig. 9. Evolution of the K2 network over five samples for the experiments with Alarm. The first
network is Alarm itself. EDA execution percentage appears next to each sample.

7. Concluding Remarks

In this work we have introduced a new approach to the learning of Bayesian Net-

work from data. The search is done in the space of orderings using a number of

instantiations of a new evolutionary computation metaheuristic called Estimation

of Distribution Algorithms. We also present two different encodings: a continuous

one and a discrete one. The results obtained in the experiments carried out with

the different approaches of the Asia and Alarm networks show that the method is

competitive with the state of art. Moreover, we have confirmed that the represen-

tation of the individual is very important in problems related to orderings, because

if it is redundant, i.e. if we can associate two or more different individuals with

the same ordering, the results are clearly worse. Regarding the different EDAs and

domains, we can see in Fig. 8 that, in discrete domains, MIMIC outperforms all the

other methods.

Regarding future work, we plan to study different initialization methods in order

to estimate the importance of the initial generation in EDAs.
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21. P. Larrañaga, C. M. H. Kuijpers, R. H. Murga and Y. Yurramendi, Learning Bayesian
nework structures by searching for the best ordering with genetic algorithms, IEEE

Trans. Syst. Man Cybern. Part A: Syst. Humans 26 (1996) 487–493.
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