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Abstract

When modelling multivariate continuous time series, a

common issue is to find that the original processes that

generated the data are nonlinear or that they drift away

from the original distribution as the system evolves

over time. In these scenarios, using a linear model such

as a Gaussian dynamic Bayesian network (DBN) can

result in severe forecasting inaccuracies due to the

structure and parameters of the model remaining

constant without considering either the elapsed time

or the state of the system. To approach this problem,

we propose a hybrid model that combines a model tree

with DBNs. The model first divides the original data set

into different scenarios based on the splits made by the

tree over the system variables and then performs a

piecewise regression in each branch of the tree to

obtain nonlinear forecasts. The experimental results

on three different datasets show that our model

outperforms standard DBN models when dealing with

nonlinear processes and is competitive with state‐of‐
the‐art time series forecasting methods.
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1 | INTRODUCTION

One of the most common types of data faced when modelling industrial processes are
multivariate time series (TS).1 With the increase in the number of sensors and their widespread
usage in monitoring industrial processes, understanding the interactions between variables in a
system and treating the TS resulting from these sensors has become a pressing matter.

In a multivariate setting, we must take into account the effects that fluctuations in a
variable have on the rest of the system. This means that we face a set of coupled univariate TS
where variations in one series can generate linear or nonlinear changes in the others. As a
result, modelling a multivariate process over time requires updating the state of the system and
forecasting the evolution of all variables simultaneously.

One kind of model that can deal with this type of data is dynamic Bayesian networks
(DBNs).2 A DBN models the probabilistic conditional independence relationships of the
variables in data over time, representing the effect that past instants have on the present. This
model also allows for a better understanding of a system through its graphical representation
and can perform probabilistic reasoning over any desired set of objective variables given that
others have been observed. In addition, a DBN model can work both as a forecasting tool by
predicting the evolution of all variables in a system and as a generative model by simulating the
behaviour of a process given some fixed evidence.

In recent years, DBN models have seen a lot of use in industrial settings due to their
characteristics as TS forecasting models and their interpretability, which has changed DBNs
into more general use models. They have been applied to stock market forecasting,3 to
ecosystem changes prediction based on climate variations,4 to topic‐sentiment evolution
analysis over time,5 to assess the remaining useful life of structures,6,7 to monitor aircraft wing
cracks evolution over time8 and to identify abnormal events during cyber security threats,9

among others. However, in a continuous case, where Gaussianity is typically assumed, DBNs
present some drawbacks: DBN models are inherently linear models, and they do not allow the
insertion of discrete variables without the introduction of additional constraints.10 Over time,
industrial processes commonly follow complex nonlinear relationships or have changing
distributions of the variables as the system evolves, incurring in a phenomenon called concept
drift.11 In both scenarios, a traditional DBN presents weaknesses inherent to the model that will
result in severe inaccuracies when modelling and forecasting this kind of pattern. In the
aforementioned applications, Gaussian DBNs are used to fit nonlinear problems. In those cases,
the authors have to either assume Gaussianity in their experiments, discretize the variables to
be able to apply discrete DBNs or modify the DBN architecture with nonlinear conditional
probability distributions that do not allow exact inference and need Markov Chain Monte Carlo
sampling.5

To address the linearity issue of Gaussian DBNs, we propose a new hybrid model called
model tree dynamic Bayesian network (mtDBN). This model combines a classification and
regression tree (CART)12 with DBNs in a manner similar to that of model trees.13 First, a tree is
fitted over the data with the desired variables, with the possibility of adding the elapsed time as
a variable too. This tree structure is used to classify all instances of the data set into different
subpopulations depending on which leaf node they correspond to. Finally, a DBN model is
fitted to each of the subsets of data in the leaf nodes. This way, we obtain several DBN models
tuned specifically for certain contexts of the feature space defined by the tree splits instead of a
unique global network. When performing forecasting, we first classify the current state of the
system with the tree structure, and then we perform inference with the appropriate model. This
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results in a piecewise regression,14 which is closer than a linear model to the real behaviour of a
nonlinear or nonstationary system. Another advantage of this model is that in the presence of
discrete variables, one can use all or several of them in the construction of the tree structure
and then train Gaussian DBNs on each leaf node, thus avoiding switching to DBN models with
discrete and continuous variables and their limiting constraints.

To compare the results obtained with DBN and mtDBN models with another state‐of‐the‐art
TS forecasting model, we use long short‐term memory (LSTM) neural networks15 and high‐
order fuzzy cognitive maps (HFCM).16 LSTM models have found much use and popularity in
recent years,17 and they have been applied to a wide range of TS forecasting problems. On the
other hand, fuzzy cognitive maps are graph‐based TS forecasting models. They share
similarities with recurrent neural networks and use fuzzy sets to represent the relationships
between the variables in real world problems. They have seen much use in recent decades and
many studies have been presented introducing new variations of this framework.18

The main contribution of this study is the definition of a hybrid model between model trees
and DBNs, which allows nonlinearity in the forecasting via piecewise regression. Our results
in three different data sets show that the mtDBN model outperforms DBN models and is
competitive with other state‐of‐the‐art TS forecasting models. The mtDBN model learning and
inference are also distributed as an open source R package to facilitate its future possible
applications.

The rest of the paper is organized as follows. In Section 2, we introduce the background of
DBN models. Section 3 defines our proposed mtDBN model. In Section 4 we explain the
experimental methods and compare the results of the mtDBN and state‐of‐the‐art methods.
Finally, in Section 5, we give some final remarks and conclusions.

2 | DBNs

Bayesian networks (BNs)10 are probabilistic graphical models that represent conditional
dependence relationships between variables using a directed acyclic graph (DAG). Each of
the nodes in the graph corresponds to a variable in the original system, and the arcs
represent their probabilistic relationships. Depending on the type of variables, in the
majority of cases these nodes define either multinomial distributions or Gaussian
distributions. This leads to three popular different types of models: discrete BNs, Gaussian
BNs and conditional linear Gaussian BNs, with the latter being used for mixed types of
variables. Each of these models also has particular learning and inference algorithms. In this
study, we will focus on Gaussian BNs.

2.1 | Gaussian BNs

A Gaussian BN represents a joint distribution p X( ) factorized as

 p p XX Pa( ) = ( ),
i

n

i i

=1
(1)

where X XX = { , …, }n1 is the set of all nodes in the network and X XPa = { , …, }i i k i1( ) ( ) is the set of
parent nodes of node Xi in the graph. Given that we are in the Gaussian scenario, p X( ) is a
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multivariate Gaussian distribution, and the local probability density of each node in Equation (1) is
defined by a conditional probability distribution (CPD) given its parents:

  ( ) ( )p x β β x β x σ μ σPa( ) = + + … + ; = ; .i i i i i ki k i i i i
Pa

0 1 1( ) ( )
2 2i (2)

In Equation (2), β β, …,i ki0 are the regression parameters associated with each parent node in
Pai, and σi

2 is the unconditional variance of Xi that does not depend on its parents. When all the
nodes in the network have this kind of CPD, according to Equation (1) the joint probability
distribution of the network can be written as

 ( )p μ σX( ) = ; .
i

n

i i
Pa

=1

2i (3)

An advantage that this model provides is that it can be transformed into its multivariate
Gaussian equivalent form:
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where μ μ, …, n1 are the marginal means of the nodes, σi
2 is the variance of node Xi, as in

Equation (2), and σij is the covariance of nodes Xi and Xj. The form in Equation (4) is very
useful to perform fast inference with the multivariate Gaussian equivalent instead of using
the marginal and conditional distributions of the Gaussian BN. This is a specific advantage
of Gaussian BNs over other BN models, where inference can be very time consuming.

2.2 | Dynamic extension

To apply Gaussian BNs to TS data, we need to extend them to DBNs so that they can take time
into account. This extension discretizes time into consecutive time slices that influence each
other. Each time slice can have a local structure, whose arcs we refer to as intra‐slice, and can
be connected with previous and posterior time slices with arcs that we denominate inter‐slice.
Inter‐slice arcs can only go from previous time slices to more recent ones, so they pose no
problem to the DAG condition of BNs, as they cannot introduce cycles. Inter‐slice arcs
represent the effects of the past in the current state of the system.

To calculate the joint probability distribution, we now take into account all previous time
slices up to the horizon T we want to predict:

  p p p pX X X X X X( , …, ) ( ) = ( ) ( ),T T

t

T
t t0 0: 0

=0

−1
+1 0: (5)

where X X XX = { , , …, }t t t
n
t

1 2 is the set of nodes at time slice t . However, DBNs usually assume

that the past only affects the present up to a certain order. We call this the Markovian order of
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the network, and it simplifies the DBN model greatly. With this assumption in place, the joint
probability distribution of the network can be represented as

  p p p pX X X X X X( ) = ( ) ( ) ( ),T

t

m
t t

t m

T
t t m t0: 0

=0

−1
+1 0:

=

−1
+1 ( − +1): (6)

where m is the Markovian order of the network. A very common assumption is to set the
Markovian order to 1 so that only the last instant affects the next state of the system. This
further simplifies the general formula in Equation (6) to the specific case of m = 1:

 p p pX X X X( ) = ( ) ( ).T

t

T
t t0: 0

=0

−1
+1 (7)

The assumption in Equation (7) can be relaxed to allow inter‐slice arcs from older time
slices when the autoregressive order of the TS we are treating indicates to do so. An example of
the structure of a DBN with Markovian order 2 is shown in Figure 1.

Another common simplifying assumption is to avoid having a local structure in each time
slice and allow only inter‐slice arcs. This dilutes the effect that the variables have on other
variables in the same instant, but in return makes it easier to avoid cycles in the creation of
network structures and results in sparser graphs.

One advantage that DBN models present is that they do not need to be trained with TS of
the same length. Due to the Markovian order assumption in Equation (6), we only need to
recover several batches ofm + 1 size from the original TS to learn the structure and parameters
of the network. We can use several unequal length TS recovered from the same stochastic

FIGURE 1 Example of the structure of a DBN with three time slices t0, t1 and t2 and Markovian order 2
showing both its inter‐ and intra‐slice arcs. DBN, dynamic Bayesian network. [Color figure can be viewed at
wileyonlinelibrary.com]
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process to train a DBN model from data. The reason for this is that we only need the values of
the variables inside the temporal window defined by the Markovian order to train our model, so
the total length of the TS is not relevant in the learning phase. This helps when applying this
kind of model to real‐world problems, where the length of the data from industrial processes
can vary depending on circumstances outside of the system.

3 | TREE ‐BASED DYNAMIC BAYESIAN NETWORKS

3.1 | Hybrid definition: mtDBN

Our proposed mtDBN model consists of a hybrid between model trees13 and DBNs in a similar
fashion to Bayesian multinets19 in a dynamic scenario. The objective of the tree is to divide
instances from the original data set into different contexts leading to each leaf node.
Afterwards, we train several DBN models using the different instances attached to each leaf
node. Similar to a multinet architecture, all the networks in the leaf nodes are related to each
other, given that they model different situations from the same process, and the tree structure
serves as a switch that selects the appropriate model for some new instance that we want to
forecast. We chose model trees as the switch in our hybrid because it allows the DBN model to
retain its interpretability. The leaf nodes in a tree are clearly differentiated by each branch split,
and one can easily see the characteristics of the instances in each leaf node. This way, we can
evaluate the specific DBN fitted to a leaf node knowing the context of that leaf node.

Typically, model trees require a response variable to be predicted, although in DBN models any
variable can be the objective of inference. Thus, depending on the problem, we can choose any
variable in the system as the objective variable for both growing the tree structure and forecasting
in the network. Moreover, there is also the possibility of growing a multivariate regression tree20

and performing inference over several variables at the same time with multi‐output regression.
Similar to a model tree, we may have a Gaussian DBN model in each leaf node instead of a

linear regression. Given a data set D, we can fit either a univariate or multivariate tree model
and then evaluate which leaf node each of the instances belongs to. With these subdatasets, we
can train each of the aforementioned DBNs and store them in a vector M of models and link
each leaf node with one position of this vector. Then, while performing forecasting, a new
instance is sorted down the tree to find its corresponding leaf node, and then we use the
network insideM that is attached to that leaf node to forecast. Afterwards, if we are predicting
up to a certain horizon in the future, the results of the forecasting are processed again with the
tree to select a new DBN model to continue the forecasting. This way, we select an appropriate
network based on the state of the system at each instant. Given that the inference performed by
Gaussian DBNs is linear, with this hybrid we can augment it to perform piecewise linear
regression to achieve pseudo nonlinear forecasting with DBN models. The architecture of the
hybrid mtDBN model is depicted in Figure 2.

In our case, we opted to use a CART model12 with reduced variance splitting criterion for the
tree structure that classifies instances into different leaf nodes. We chose this model due to its
generality and simplicity as a starting point for the hybrid. CART models are well established and
extended, and variance reduction splitting can be applied as a general method for continuous data.
The model that defines the multinet, in our case the CART model, can potentially be swapped for
more appropriate ones in different applications, such as a clustering method or another type of
tree‐based model. The splitting criterion can also be defined differently to prioritize specific
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behaviours, for example, using information gain21 or change point detection methods on TS.1 In
this first version, we want to establish a more general approach that can be specialized to different
scenarios. The pseudocode of the learning phase of our hybrid model is shown in Algorithm 1. We
will refer to specific lines during the remainder of this section.

Our data set D contains all instances of our regressor variables Xj inside a table structure:

⋯

⋮ ⋱ ⋮
⋯













x x

x x
D X X= [ , …, ] = ,n

n

l nl

0

00 0

0

(8)

where l denotes the total length of the data set. The specific value of variable Xj in instance k is
thus defined by xjk. In Algorithm 1, we provide D as input data.

We begin by defining an objective response variable to grow the tree. In our
implementation, we allow both univariate and multivariate model trees, but in this section,
we focus on univariate trees for simplicity. Note that, no matter the kind of model tree used, the
mtDBN model will always perform multivariate inference. Once we set the response variable Y ,
which is one of our Xj variables, we grow the tree defining cut‐offs on some regressor variable
Xj based on the sum of squares of Y :

SS y y= ( − ¯) ,
i

i
2

(9)
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where yi is the value of Y in an instance of our data set and ȳ is the sample mean. The only
difference with multivariate trees is that this sum of squares would be calculated for a vector Y
of response variables instead of a single response variable. We calculate the cut‐off point that
generates two new tree nodes by maximizing the reduction of SS on both branches rooted at Xj
compared to the parent node:

δ SS SS SS= − ( + ),tree p l r (10)

where δtree is the total improvement of a split, SSp is the sum of squares of the parent tree node,
SSl is the sum of squares of the left branch and SSr is the sum of squares of the right branch. We
calculate the best δtree for all Xj variables available and then choose the one that maximizes it.
Given that our regressor variables are continuous, there are potentially infinite possible cut‐off
points. To solve this issue, we only check the cut‐off points defined by the values of Xj in our
data D; that is, we evaluate Equation (10) for X xj jk in the left branch and X x<j jk in the right
branch. During the growing phase, we grow a univariate or multivariate tree until either none
of the possible new splits obtain a positive δtree or we reach a maximum tree depth defined by
the user in line 2 of Algorithm 1. The input parameters homogen and mv in Algorithm 1 are
used to determine whether a homogeneous or nonhomogeneous and univariate or multivariate
tree is built. Once we grow the tree, we prune it by fixing an ∈α (0, 1] parameter that defines a
threshold over δtree. If a split does not satisfy δ αδtree tree

P , where δtree
P is the total improvement of

the previous tree node, then that subtree is pruned. The growing and pruning of the tree is
encapsulated from line 2 to line 7 of Algorithm 1. In addition, we want to focus some attention

FIGURE 2 Schematic representation of the mtDBN architecture. The tree structure is initially used to
divide the original data set D into several data sets Dleaf . Each one of these data sets is then used to fit a DBN
model, which will be stored in the model vector M. Afterwards, the tree structure will be used to classify new
instances according to the appropriate DBN model inside M. mtDBN, model tree dynamic Bayesian network.
[Color figure can be viewed at wileyonlinelibrary.com]
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on line 5 because it labels each row in D to its corresponding leaf node in the pruned tree and
generates the Dclass dataset. This will be key in the next steps of the algorithm when we use
specific instances to learn each DBN model.

It is important to note that we apply the splitting criterion to the TS data in a static fashion,
without taking into account the time difference between instances. This is because we want to
be able to select the appropriate DBN model based on the current state of the system in each
instant. If one wants to add the temporal component to the tree construction, the time passed
since the beginning of the process may be added as a variable. This could potentially give the
tree an idea of how long the system has been running, and it allows splits based on how much
time has passed.

When we obtain an adequate tree model, we use the splitting rules defined by the tree to
process the original dataset and assign each instance to its corresponding leaf node, generating
several subdatasets. Afterwards, we use these subdatasets to fit a different DBN model for each
leaf node. This way, each of the DBNs is tuned to its specific context as defined by the tree
structure. This process is shown in Algorithm 1 from line 8 to line 14. These models can be
homogeneous if they all share the same network structure learned from the whole dataset in
lines 8 and 9, but each has different parameters fitted in line 14, or nonhomogeneous if both the
structure and the parameters of each network are learned from the local instances of each leaf
node in lines 12 to 14. The loop in line 11 iterates over the different subdatasets Dleaf generated
by the classification in line 5. Each Dleaf contains only those instances corresponding to a
specific leaf node to fit the DBN with that specific part of the complete data set D.

As a reliability measure, we added themin inst_ parameter that sets a minimum number of
instances per leaf node. This avoids training DBN models with few data. We perform this by
pruning the tree structure and checking the number of instances per leaf node with that
structure. If it has fewer instances than the minimum allowed, we increase the parameter α by
a constant defined by the user with the inc cte_ parameter and repeat the pruning process to
generate shallower trees from line 5 to line 7. In particular, in line 6, we declare a pruned tree
valid or invalid by recounting the number of instances in each leaf inside Dclass and checking
that they are all above the minimum.

3.2 | Forecasting

Once a tree is obtained and all necessary DBN models are fitted, they can be used
simultaneously to perform forecasting over some time horizon T . We begin the forecasting
procedure with an initial evidence vector s0 defined as

( )( ) ( )x x x x x xs x x x= ( , , …, ) = , , …, , …, , , …, ,t
n

t t
n
t

0
0 1

1
0

2
0 0

1 2 (11)

where n is the number of variables per time slice and t + 1 is the number of time slices in the
network. This vector s0 defines the state of the system at the initial point of the forecast. The
t‐th time slice represents the variables in the present, and only x x( , …, )t

n
t

1 will be processed by

the tree structure to determine which of the DBN models in the mtDBN will be the most
suitable to forecast the next instant. Inspired by model trees, we also fit a DBN model on the
tree nodes just before the leaf nodes. When we perform the forecast, we use both the
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correspondent DBN model attached to the leaf node of the tree and the DBN attached to the
parent node of that leaf. Afterwards, we average the forecasting results of both DBN models to
obtain a final forecast of the next state of the system. This step helps the hybrid model obtain
smoother transitions between the DBNs of each leaf node. Once we obtain the new forecasted
vector x x xx̂ = (ˆ , ˆ , …, ˆ )t t t

n
t+1

1
+1

2
+1 +1 from the inference of the two DBN models, we delete the

oldest x0 and insert x̂t+1 as the new xt, moving all the evidence for the remaining time slices
forward in a sliding window fashion. The whole process is illustrated in Figure 3.

The new s′ vector obtained after all the evidence is moved forward is used in the next
forecasting step and processed by the tree before the next forecast. This way, when forecasting
with our hybrid model to some horizon, a DBN will be dynamically selected in each forecasting
step based on the current state of the system. This provides the desired nonlinear behaviour
with piecewise forecasts and allows the model to adapt to both nonlinear systems and sudden
interventions or drifts.

4 | EXPERIMENTAL RESULTS

To test the effectiveness of our proposed model, we set up several experiments with both
synthetic and real‐world data from nonlinear processes. By analysing the forecasting results, we
can assess how the mtDBN model fits nonlinear processes in comparison with classical DBN
models, LSTM neural networks and HFCMs, which are well behaving and popular models.

FIGURE 3 Representation of the mtDBN forecasting a single instant. The state vector is classified by the tree,
and the correspondent DBN leaf and parent models are used to predict the next state vector. DBN, dynamic Bayesian
network; mtDBN, model tree dynamic Bayesian network. [Color figure can be viewed at wileyonlinelibrary.com]
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All the programming code of the models, experiments and data sets can be found online in a
GitHub repository (https://github.com/dkesada/mtDBN). The DBN and mtDBN models are
written in both R and C++, the latter used for expensive computations, and distributed as R
packages on CRAN and GitHub. All experiments were performed on an Ubuntu 18 machine
with an Intel i5‐4790k processor and 16 GB RAM.

4.1 | Simulated nonlinear problem: Fouling phenomenon

To obtain performance results in a controlled environment, for our first experiment we
generated a synthetic data set from a nonlinear process defined by a system of ordinary
differential equations (ODEs). Our scenario defines a chemical reaction that occurs inside
industrial furnaces. As we heat a chemically reactive fluid to some desired temperature, this
fluid can be prone to depositing solidified impurities on the inside of the pipes. As time passes,
these impurities can generate an insulating layer that will force us to progressively increase the
furnace temperature to keep the fluid temperature inside the pipes constant. This process is
called fouling, and it is the cause of severe costs in terms of efficiency loss.22 Due to the
inherently nonlinear nature of the physical relationships that define this phenomenon, it can
be used as an example to test the effectiveness of our hybrid model.

To generate our data set, we used a system of ODEs that define a simplified fouling
phenomenon without spatial dimensions. We modelled the following 10 variables: the fluid
temperature T1, the tube wall temperature T2, the thickness of the fouling layer Sc, the
concentration Ca of particles in the fluid prone to depositing, the amount of fuel mc

administered to the furnace heaters, the density ρ1 of the fluid and its thermal capacity Cp1, the
flow inside the tubesQin, the volume vol and concentration of particlesCain in the fluid prone to
depositing that is renewed at each instant. The details about the simulation construction and
definition are further discussed in Appendix A.

Once the simulation was created, we generated independent and identically distributed
multivariate TS of 100 time instants running a cycle. Each cycle represents the case where the
furnace is reverted to an initial state after cleaning the fouling layer inside the tube, and we
performed 100 time instants of operation as the time horizon. For each cycle, we set random
starting values for the fluid properties and several different behaviours for the temperature and
flow variations so that different fluids and furnace configurations were seen in the data. In
total, we generated a data set of 1000 cycles of 100 time instants each, that is, 100,000 instances
and 10 variables. Then, we performed a 30‐fold cross‐validation where 967 cycles were used in
training and 33 were used for testing in each of the 30 hold‐out processes. In our experiments,
we used the first instance of each cycle as evidence, and we forecast T1 until the last time
instant. The mean absolute error (MAE) and mean absolute percentage error (MAPE) were
estimated in all instants and then averaged in all cycles to obtain the accuracy of each model.
The DBN structures were learned using a particle swarm algorithm.23

To assess our proposed model, we compare mtDBN variations that employ multivariate and
univariate trees and homogeneous and nonhomogeneous DBN structures for the models
attached to the leaf nodes. Univariate trees can be better suited for problems where we are only
interested in forecasting one variable. With our DBN models, we always forecast the complete
multivariate state vector, but the tree structure can focus on a single objective variable that is of
interest. With multivariate trees, we can cover situations where we may have several objective
variables that we are interested in forecasting. On the other hand, nonhomogeneous models
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can perform better when the process that we are trying to model is nonstationary, given that the
conditional independence relationships defined by the DBN structures can differ from one leaf
model to another. Homogeneous models are expected to work better in modelling processes
that are nonlinear in nature but do not drift over time because the dependence between
variables will always have the same structures but different parameters underneath. We set the
Markovian order of the DBNs to 1, given that we know beforehand that our ODE system is
autoregressive of order 1 and only uses the last time instant to generate the next one.

We also tune and fit LSTM and HFCM models in the experiment for the sake of comparing
the performance of DBN‐based models with other state‐of‐the‐art models for TS forecasting.
LSTM models are specifically tailored to forecast both univariate and multivariate TS, and their
recurrent structure can be used to perform forecasts of arbitrary length, similar to the case of
DBN models. The code of these models and the experiments can also be found online in a
GitHub repository (https://github.com/dkesada/kTsnn). HFCM are also graphical models that
can be used for multivariate TS forecasting, and serve as a middle ground between DBNs and
LSTMs because they share characteristics with both models. Our version of the HFCM comes
originally from a project (https://github.com/julzerinos/python-fuzzy-cognitve-maps) that
applies HFCMs to the uWave data set, which is a data set used to train gesture recognizers.
An autoregressive version of HFCMs has been programmed by using a sliding window that
transforms the predictions of the model into inputs for the next instant. This was necessary to
perform the long‐term and midterm forecasting in two of the experiments. The code of both the
model and the experiments can also be found online in a GitHub repository (https://github.
com/dkesada/HFCM).

The results in Table 1 show that the mtDBN models obtain better MAE and MAPE results
than the baseline DBN model at the cost of longer training and execution times. The MAE result
of the best hybrid model is almost half the baseline MAE of the regular DBNmodel. In the case of
nonhomogeneous models, where each leaf node has a different DBN structure, the training time
increases due to having to run the structure learning algorithm for all the different contexts. In
this experiment, we can see that the model that excels is the homogeneous and multivariate
mtDBN. This can be explained from the point of view of the process that we are modelling. Our
simulation generates traces from a nonlinear system of ODEs that does not change over time.
This means that the relationships established between the variables remain constant throughout,

TABLE 1 Results in terms of the MAE, MAPE, training and execution time of the models for the fouling
experiment.

Homogen? Tree MAE MAPE Train (m) Exec (s)

DBN – – 80.23 13.42 7.99 0.58

mtDBN Yes Univariate 60.33 9.72 8.08 1.388

mtDBN Yes Multivariate 49.60 8.07 8.29 1.387

mtDBN No Univariate 79.52 12.83 32.91 1.388

mtDBN No Multivariate 54.15 8.90 32.04 1.387

LSTM – – 59.81 10.20 7.09 0.08

HFCM – – 177.32 27.29 59.27 1e‐3

Abbreviations: DBN, dynamic Bayesian network; HFCM, high‐order fuzzy cognitive maps; LSTM, long short‐term memory;
MAE, mean absolute error; MAPE, mean absolute percentage error; mtDBN, model tree dynamic Bayesian network.
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and this is best represented by homogeneous models. Multivariate trees also seem to outperform
their univariate counterparts, likely because the DBN models perform multivariate inference
themselves. The execution time in the mtDBNs is consistently higher due to having to classify the
state of the system in each forecasting step with the tree structure to select the appropriate DBN
model and having to forecast with both the leaf node model and the parent node model to
smooth the results. However, given that the forecasting process of all the mtDBN models is the
same, all their execution times are equivalent. When we compare the best resulting mtDBN
model with the baseline unique DBN, we can see that we do not sacrifice too much training and
execution time in exchange for a significant reduction in the MAE and MAPE.

Given that our proposed mtDBN model combines DBN models with model trees, we want
to ensure that the results obtained with the hybrid are statistically significant when compared
with the baseline model. For this purpose, we performed pairwise Wilcoxon rank‐sum tests to
check that the mean accuracies obtained from the mtDBN models are statistically significantly
better in comparison with the baseline model. We chose this non‐parametric test because the
samples do not follow Gaussian distributions. The results shown in Table 2 show that all
mtDBN models reject the null hypothesis of equal performance in MAE. We also performed
this test between the baseline model, the best mtDBN model and the LSTM model with
multiple comparisons and observed from the p‐values that they all reject the null hypothesis of
equal performance in MAE, as shown in Table 3. Given that we have more than two data
samples from all the tested models, we also performed the Kruskal‐Wallis test on our results.
This allows us to perform a non‐parametric test that does not rely on pair wise tests between
the models. The test obtains a p‐value of 2.2e‐16, which indicates that at least one of the sample
results from the models is better and statistically significant from the others.

TABLE 2 Resulting p‐value of the Wilcoxon rank‐sum tests for the forecasts of the different hybrid models
in comparison with the baseline DBN model for the fouling experiment.

Homogen? Tree p‐value

Yes Univariate 2.200e−16

Yes Multivariate 2.200e−16

No Univariate 1.471e−11

No Multivariate 2.200e−16

Abbreviation: DBN, dynamic Bayesian network.

TABLE 3 Resulting p‐value of the Wilcoxon rank‐sum tests in the multiple comparisons between the
baseline DBN model, the homogeneous multivariate mtDBN, the LSTM and the HFCM model.

DBN mtDBN LSTM HFCM

DBN – 2.20e−16 1.82e−08 2.20e−16

mtDBN 2.20e−16 – 2.20e−16 2.20e−16

LSTM 1.82e−08 2.20e−16 – 2.20e−16

HFCM 2.20e−16 2.20e−16 2.20e−16 –

Note: All the tests reject the null hypothesis of equal performance in MAE.

Abbreviations: DBN, dynamic Bayesian network; HFCM, high‐order fuzzy cognitive maps; LSTM, long short‐term memory;
mtDBN, model tree dynamic Bayesian network.
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In comparison with the LSTM model, the MAE results are much better than the baseline
and similar to the hybrid models. In terms of time costs, training times of the LSTM model are
similar to the DBN and homogeneous mtDBN models, and its execution time is the second best,
only behind the HFCM model. They are very powerful models in this kind of settings, and their
only remarkable downsides are that they are black box models and that the tuning process can
be very time consuming due to the large number of parameters and network architectures that
may be evaluated before finding some optimal configuration being guided blindly. In contrast,
the HFCM model works noticeably worse than the rest of the models in this synthetic long‐
term case. This is due to the fact that fuzzy cognitive map models perform well on short‐term
predictions, but worse on long‐term predictions.24 The training time ramps up due to the
internal optimization of the weight matrix having to work with long cycles of 100 instances
each, and the accuracy of the model is almost twice as worse than the baseline DBN model. In
terms of execution time though, it is by far the fastest model.

Figure 4 shows an example of the tree structure from an mtDBN model. This tree structure is
interpretable and can garner valuable insights into the problem at hand. For example, in this
particular case, we know that the amount of fuel mc administered to the furnace is an external
parameter decided by a human operator. Highermc on the right branch of the tree generates higher

FIGURE 4 Example of the tree structure of a homogeneous multivariate mtDBN model. The resulting tree
has five different leaf DBN nodes, represented in various colours. The splitting rules are shown in the branches,
and the average value of the objective temperature T1 and the number of instances N per node are shown inside
the tree nodes from the initial 96,700 instances in the training data set at the root of the tree. From the tree, we can
identify that the mc variable reduces the sum of squares the most in the different scenarios. From the root node,
lower quantities of fuelmc administered to the furnace will result in slower processes with lowerT1 and vice versa.
In the case of extremely high T1, the most severe cases are defined by a high flow of fluidQin entering the system.
DBN, dynamic Bayesian network; HFCM, high‐order fuzzy cognitive maps; LSTM, long short‐term memory;
mtDBN, model tree dynamic Bayesian network. [Color figure can be viewed at wileyonlinelibrary.com]
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fluid temperaturesT1 and promotes a faster creation of the insulating fouling layer Sc. This increase
in Sc means that increasingly higher values ofmc will be needed to maintain a highT1. Additionally,
the reaction is further characterized by the flow rateQin on the rightmost branch with the highestT1
cases. A fast flow rate can only be coupled with high T1 if the furnace is near its maximum
temperature and the process has not been running for long, because it is very unlikely to achieve a
highT1 along with a fast flow rate and an already thick insulating layer. This differentiation with Sc
of whether the furnace is working at different capacities improves the overall performance of the
mtDBN compared to the baseline DBN by allowing the hybrid to switch between models in the
middle of forecasting based on the current state of the system. It is important to note that we can
explain the cuts performed by the tree structure more in‐depth because we already know the
underlying process that we are modelling. In a real case scenario, the tree structure offers valuable
information on how this process operates, but we will likely not reach the level of interpretation
shown in this example without the insight of an expert on the problem.

For illustration purposes, we also interpret the structure of a DBN model in the
homogeneous multivariate mtDBN in Figure 5. We see how theT1 andT2 values at the previous
instant affect the predictions of the current value of T1, which is directly defined in the
underlying system of equations. Both mc and Qin affect the objective temperature, as hinted at

FIGURE 5 Example of the DBN structure of the homogeneous multivariate mtDBN model. The objective
variable T1 at the present instant is represented as the blue node, and all the parent nodes in red represent those
variables at the previous instant. With these parent nodes, we can see the autoregressive component and the most
relevant variables in the inference of T1, that is, Sc, T2, mc, Qin and vol. DBN, dynamic Bayesian network; HFCM,
high‐order fuzzy cognitive maps; LSTM, long short‐term memory; mtDBN, model tree dynamic Bayesian network.
[Color figure can be viewed at wileyonlinelibrary.com]
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by the tree structure, and finally, both Sc and the volume are also relevant to the variation inT1.
By using both the tree and DBN structures, we can identify the key variables that intervene in
the estimation of our objective variable T1 in the underlying process, and we can check the
specific effect that these variables have in the inference performed by the DBN.

To put the profile of the forecasted temperature curves into context and to illustrate what
the predictions look like, an example of forecasting a cycle with the best mtDBN model is
shown in Figure 6. In total, four different leaf node models are used in that specific forecasting
to obtain the desired piecewise prediction of the temperature.

4.2 | Real data application: Electrical motor

To observe the effectiveness of our hybrid model using real world‐data, we set up a similar
exercise using public experimental data collected from an electrical motor.25 The motor
speed, temperature in different sections, voltages and torque were recovered each instant
from sensors, generating a multivariate TS data set of several recording sessions with a total
of 11 variables. The objective is to forecast the rotor temperature of the motor, given that this
feature is not easily monitored inside electric motors and obtaining accurate predictions can
increase the efficiency due to being able to predict overheating situations ahead of time and
prevent them.

FIGURE 6 Example of predicting the fluid temperature T1 of a 100 instant trace using the homogeneous
multivariate mtDBN. The model used for forecasting is changed three times during forecasting based on the
predicted state of the system at each instant. It is important to note that we only show the fluid temperature in
the figure, but all variables in the system are jointly forecasted simultaneously to obtain the state of the system at
the next instant. mtDBN, model tree dynamic Bayesian network. [Color figure can be viewed at
wileyonlinelibrary.com]
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The data set consists of 69 different recording sessions. A session consists of recordings of
the active motor from an initial idle state up to some point in time. The values of the sensors
were recorded with a frequency of 2 Hz, that is, each row is separated by 0.5 s. There are a total
of 1,330,816 instances in the data set, with the shortest session spanning 2176 instances
(18.13 min) and the longest 43,971 (6.12 h). In this scenario, we face two problems: high
dimensionality in terms of the number of instances and sessions of different lengths in the data.
Performing long‐term forecasting of complete cycles from a single starting point seems
unreasonable due to the length of the TS. To aggravate this problem, the profile of the curves is
very irregular, and interventions in the system affect the tendency during sessions, as seen in
Figure 7.

To approach the dimensionality issue, we reduce the frequency of the data to 0.03̇Hz so that
rows are separated by 30 s each. When reducing the frequency, the mean of each 60‐instance
bin is returned as the new value. After this process, the data set is reduced to 22,247 instances
total, with sessions ranging from 37 to 734 rows. To check that we are not losing too much
information with this reduction of frequency, we compute the average distance between the
original TS and the reduced ones using the dynamic time warping distance implemented in the
dtw R package.26 Given that the TS are not too noisy, as seen in Figure 7, and that we are
averaging binwise, we do not expect the reduced versions to be very distant from the original
ones. The total average normalized distance between the series is 0.1291, and this coupled with
the alignments depicted in Figure 8 indicates that there was not a severe information loss
during the frequency reduction step.

To address cycles of different lengths, we forecast up to fixed intervals of time instead of the
whole sessions. We perform several consecutive forecasts of 20 instants. In the DBN models, we
fixed the Markovian order to 2 for the structure of the networks because this real case scenario

FIGURE 7 Example of the objective temperature in two different sessions in our data set. Session 10 is
rather irregular, with several interventions drastically changing the tendency of the series. Session 12 is a more
common case in our data, with only one significant intervention after 6000 s.
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does not necessarily have an autoregressive order of one. The MAE result of these predictions
were calculated, and the total MAE of a model is the global mean value of all the forecasts. To
divide the data set into training and test partitions, we used threefold cross‐validation to form
groups of 66 sessions for training and three sessions for testing. This way, the groups were
formed randomly and all cycles appear in the test once.

The results of the experiments show that the mtDBN models also improve the MAE and
MAPE results of the baseline DBN model in this experiment, as seen in Table 4. In this scenario
of midterm forecasting, the different DBN models are able to fit the contexts defined by the tree
better than a global linear DBN model. The execution and training times of the hybrid models
present the expected characteristics, taking longer to compute, similar to the synthetic case.

FIGURE 8 Example of the alignment of two TS sessions of the objective variable in the original and reduced
data sets. The alignment being almost a straight diagonal line indicates that no displacement in time is seen and
that no drastic jumps in values are present. TS, time series.
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The best resulting model was the nonhomogeneous univariate mtDBN, which indicates that
the underlying process is probably nonstationary and thus better modelled with different DBN
structures, although not by a large margin. The univariate trees obtaining better results than
the multivariate trees could be due to defining less significant subsets of data in the leaf nodes
for the objective of predicting a single temperature. In this midterm scenario, focusing on
forecasting the objective variable with univariate trees can lead to a better accuracy if the error
on the prediction of the rest of the variables does not add up. In this case, all models perform
better than in the synthetic one, which can be seen in the MAPE being lower in Table 4 than in
Table 1. The MAPE indicates that the predictions in this experiment are more accurate than in
the previous experiment, which is due to performing shorter term forecastings.

We also performed statistical significance tests in this case. The p‐values shown in Table 5
indicate that we reject the null hypothesis of equal performance with respect to the unique
DBN model for all mtDBN models. As in the previous experiment, we also performed pairwise
Wilcoxon rank‐sum tests between the models to check for statistically significant differences in
performance in terms of the MAE, and all the models rejected the null hypothesis, which can
be seen in Table 6. The Kruskal‐Wallis test also obtained a p‐value of 2.2e‐16, which shows that
at least one of the models obtains better, statistically significant results from the others.

The tree structure shown in Figure 9 identifies the two temperatures inside the motor,
stator tooth_ and stator yoke_ , as those that better differentiate the different contexts of the
objective temperature, and in the case of very high temperatures, the electric current id helps

TABLE 4 Results in terms of the MAE, MAPE, training time and execution time of the models for the
motor data set.

Homogen? Tree MAE MAPE Train (m) Exec (s)

DBN – – 1.616 2.970 8.53 0.102

mtDBN Yes Univariate 1.499 2.602 8.73 0.215

mtDBN Yes Multivariate 1.574 2.807 8.74 0.214

mtDBN No Univariate 1.484 2.558 36.45 0.214

mtDBN No Multivariate 1.553 2.806 36.59 0.215

LSTM – – 2.289 3.937 2.21 0.083

HFCM – – 2.958 5.150 37.07 2e‐4

Abbreviations: DBN, dynamic Bayesian network; HFCM, high‐order fuzzy cognitive maps; LSTM, long short‐term memory;
MAE, mean absolute error; MAPE, mean absolute percentage error; mtDBN, model tree dynamic Bayesian network.

TABLE 5 Resulting p‐value of the Wilcoxon rank‐sum tests for the electric motor data set with respect to
the regular DBN model.

Homogen? Tree p‐value

Yes Univariate 1.540e−03

Yes Multivariate 1.633e−03

No Univariate 1.764e−06

No Multivariate 2.079e−03

Abbreviation: DBN, dynamic Bayesian network.
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TABLE 6 Results of the Wilcoxon rank‐sum tests in the multiple comparisons for the motor experiment.

DBN mtDBN LSTM HFCM

DBN – 1.764e−06 8.981e−16 2.200e−16

mtDBN 1.764e−06 – 2.200e−16 2.200e−16

LSTM 8.981e−16 2.200e−16 – 1.894e−05

HFCM 2.200e−16 2.200e−16 1.894e−05 –

Note: Similar to the synthetic case, all the pairwise tests reject the null hypothesis of equal performance in MAE.

Abbreviations: DBN, dynamic Bayesian network; HFCM, high‐order fuzzy cognitive maps; LSTM, long short‐term memory;
MAE, mean absolute error; MAPE, mean absolute percentage error; mtDBN, model tree dynamic Bayesian network.

FIGURE 9 Example of the tree structure of the nonhomogeneous univariate mtDBN model in the case of
the electric motor. In this case, the initial cuts are made around the yoke and tooth temperatures inside the
motor. It makes sense that temperatures at other points of the motor are useful in determining our objective
temperature pm, and for very high temperatures, the electric current id defines the two most extreme groups.
mtDBN, model tree dynamic Bayesian network. [Color figure can be viewed at wileyonlinelibrary.com]
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determine whether we are in the case of the highest temperatures of the data set. In the case
of temperatures, the relationships between the variables do not increase linearly as the
temperature increases. The baseline DBN model approximates the global behaviour of
the system, while the mtDBN model defines different splits based on these temperatures. The
hybrid structure allows the model to switch between the leaf node models depending on the
current temperatures of the system, both at the beginning of the prediction and while
performing forecasting. This helps improving the accuracy of the mtDBN models.

We can also look at the DBN structure shown in Figure 10 for further insight. Given that the
model is nonhomogeneous, this structure corresponds to the third leaf node, the one with the
higher number of instances in the training data set. We can see that, apart from the variables used
in the tree, the DBN also uses the ambient and the stator winding_ temperatures to perform
inference. This information could help an expert in the field understand the relationships of the
variables in the problem and identify the most important physical relationships inside the system.
In our case, we cannot extract a level of information as deep as in the synthetic case, but it can help
us understand which are the most important variables in the system model and subsequently
which interventions will affect it the most and what variables the model bases its forecasts on.

The LSTM model results remain in a similar range and are specially good in terms of training
and execution time. The performance in terms of the MAE does not differ much from the rest of the
models, given that this kind of model excels when trained with a large number of instances and the
dimensionality is drastically reduced in the preprocessing. In this scenario, the biggest drawback we
could find is in terms of interpretability of the model. The forecasts and times of the LSTM model
are very competitive, but it offers no insight into how the system works and what the model bases

FIGURE 10 Example of the objective variable pm (in blue) and its parent nodes inside the DBN structure in
the nonhomogeneous mtDBN model of Markovian order 2. Apart from the autoregressive component of pm on
itself, we can see that two variables are also used in the tree structure, stator tooth and id, and two other
temperatures, stator winding and ambient, are used by the DBN model to predict pm. Intra‐slice arcs are not
permitted due to the structure learning algorithm used. mtDBN, model tree dynamic Bayesian network. [Color
figure can be viewed at wileyonlinelibrary.com]
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its predictions on. The HFCM model obtains much better results in this experiment compared to
the long‐term scenario of the synthetic data. The MAE and MAPE results obtained are comparable
to the LSTM results but slightly worse, because it still suffers from the midterm predictions. On the
other hand, the execution time is the best of all the models once again, but the training time is the
slowest, even slower than the homogeneous mtDBN models.

4.3 | Real data application: Taiwan Stock Exchange Corporation
(TSEC) stock index

One of the most popular real world applications of time series forecasting models is in financial
data from the stock market.27 In this experiment, we have chosen the TSEC weighted index,
which aggregates the stock values of almost 900 Taiwanese companies, as our objective index.
The original data was obtained from yahoo! finance (https://finance.yahoo.com/quote/%
5ETWII?p=%5ETWII).

We extracted 16 months worth of daily values from the 1st of January 2021 to the 29th of
April 2022. The data set is composed of five variables: the opening value of the index (Open),
the closing value (Close), the maximum value during that day (High), the minimum value
(Low), and the volume of transactions (Volume). In contrast with the other experiments, we
have a reduced data set of 319 instances in total, given that the stock market closes during
the weekends and on specific holidays, with four out of five variables which are deeply
correlated due to being specific values that the index took during a single day. This
correlation can be seen in Figure 11. In this scenario, our objective will be to forecast the
opening value that the index will take on the next day. This case offers a clear contrast with
the previous experiments and can be used to evaluate the performance of the mtDBN model
with reduced training data and very short‐term predictions. Our objective variable has a
mean value of 17205, with a maximum value of 18,620 and a minimum of 14,937. We also
set a minimum of 50 instances per leaf node as a safety measure, given that the number of
instances in the data set is very low.

FIGURE 11 Heatmap showing the correlation between the variables in the TSEC stock data set. Most of the
variables have a correlation very close to 1, except for the volume of daily transactions. TSEC, Taiwan Stock
Exchange Corporation. [Color figure can be viewed at wileyonlinelibrary.com]
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The results of the experiment in Table 7 show that all the hybrid mtDBN models obtain
better accuracy results than the baseline DBN model in both MAE and MAPE. The MAPE
results show that this is the most accurate scenario for all the fitted models, largely due to
the fact that we are performing single‐step forecasting. In this case, given that we are
predicting only the next instant, it is not possible to perform piecewise regression, because
only a single prediction with a single model is performed. As a result, the only difference
between the baseline and the mtDBN models is in which DBN model is used to perform
forecasting. This is clearly evidenced in Table 8, where only the homogeneous univariate
mtDBN obtains statistically significant results when compared with the baseline. A
univariate tree is the most effective in this experiment due to most of the variables being
deeply correlated with one another. There is little improvement from adding another
variable as the possible objective of the tree when they all encode redundant information.
Ultimately, the univariate homogeneous mtDBN model is able to obtain statistically
significantly better results than the baseline because the tree structure is able to
differentiate appropriate scenarios where a specifically trained DBN model can perform a
single prediction more accurately than a global DBN model.

The tree structure of the model can be seen in Figure 12. We can appreciate that the tree
structure separates the values of the variable High into three groups: one for the instances
under the mean value of the stock index, one for the instances around that value and one

TABLE 7 Results in terms of the MAE, MAPE, training time and execution time of the models for the stock
index data set.

Homogen? Tree MAE MAPE Train (m) Exec (s)

DBN – – 64.55 0.385 21.08 0.009

mtDBN Yes Univ 55.18 0.327 20.68 0.011

mtDBN Yes Multiv 61.12 0.362 20.88 0.008

mtDBN No Univ 56.88 0.336 11.73 0.011

mtDBN No Multiv 61.47 0.364 13.69 0.008

LSTM – – 77.48 0.460 0.96 0.112

HFCM – – 84.87 0.504 6.58 3e−5

Abbreviations: DBN, dynamic Bayesian network; HFCM, high‐order fuzzy cognitive maps; LSTM, long short‐term memory;
MAE, mean absolute error; MAPE, mean absolute percentage error; mtDBN, model tree dynamic Bayesian network.

TABLE 8 Resulting p‐value of the Wilcoxon rank‐sum tests for the stock index data set with respect to the
regular DBN model.

Homogen? Tree p‐value

Yes Univariate 0.033

Yes Multivariate 0.542

No Univariate 0.193

No Multivariate 0.120

Abbreviation: DBN, dynamic Bayesian network.
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for the instances above. With the information at hand, this kind of division is the most
interesting one, given that stock indexes values behave differently while on their highest
and on their lowest based on the effects of market operations of selling and buying. Another
interesting result from the tree structure is that the number of instances in each leaf node is
so low that it takes less training time to learn three networks in the nonhomogeneous
models than a single network with all the instances in the homogeneous ones in Table 7.
This result is not seen in the other experiments because they both have thousands of
instances per leaf node, which ramps up the structure learning time.

The DBN structure in Figure 13 shows that the value of the Open variable is mainly
decided by the last two opening values of the stock index and the closing value of the last
day. It makes sense that the opening value of the next day is directly influenced by the
closing value of the previous day, and using the lowest values of the index in the two
previous days can help mitigating the cases where the index tanked its value one day, but it
recovered on the other one.

In this case, both the LSTM and HFCM models obtain comparable accuracies to the
DBN‐based models. The LSTM model has the best training time, while the HFCM
has the fastest execution time. The tests in Table 9 show that the results of the LSTM and
the HFCM are equivalent in terms of accuracy, given that their differences are not
statistically significant. When comparing all the algorithms with the Kruskal–Wallis test,
we obtained a p value of 3.12e−05. Ultimately, the results obtained by the homogeneous

FIGURE 12 Tree structure of the homogeneous univariate mtDBN model. The splits define three cases
depending on the highest value that the stock index took that day. From left to right, the leaf nodes define the
cases where the stock index was lower than the mean, the cases where it was around the mean and the cases
where it was higher than the mean. mtDBN, model tree dynamic Bayesian network. [Color figure can be viewed
at wileyonlinelibrary.com]
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univariate mtDBN are statistically significantly better than the other models for this
specific scenario.

5 | CONCLUSIONS

In this article, we propose a hybrid model, mtDBN, that performs piecewise forecasting of
nonlinear multivariate time series combining a model regression tree and DBN models. The
tree model divides the contexts represented in the training data set, and different DBN models
are fitted to each. Then, the tree structure is used as a model selector in a multinet architecture
for deciding which DBN model to use in each instant of the forecast. Thus, we overcome one of
the shortcomings of Gaussian DBN models when applied to real data, that they can only model

FIGURE 13 Example of the DBN structure of the homogeneous univariate mtDBN model in the stock data
set. The opening index value of the next day is obtained taking into account the lowest values of the last two
days and the closing value of the previous day. DBN, dynamic Bayesian network; mtDBN, model tree dynamic
Bayesian network. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 9 Results of the Wilcoxon rank‐sum tests in the multiple comparisons for the stock index
experiment.

DBN mtDBN LSTM HFCM

DBN – 0.033 1.165e−3 3.280e−3

mtDBN 0.033 – 1.430e−4 4.636e−5

LSTM 1.165e−3 1.430e−4 – 0.405

HFCM 3.280e−3 4.636e−5 0.405 –

Note: The pairwise tests show that the LSTM and HFCM models do not present significant differences in their results.
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linear processes. Our results on both synthetic and real data show that the hybrid mtDBN
model effectively reduces the error of a baseline DBN when applied to nonlinear problems at
the cost of a higher training time and a similar execution time. The hybrid model proved to be a
viable alternative when applying DBN models in this kind of setting. To make the experiments
replicable, we made all code available online, and we created a simulation for the first
experiment that is publicly available and used public data from real‐world problems for the
second and third experiments. We also offer the hybrid mtDBN model on a public repository
inside an R package that makes it ready to use and deploy.

In this study, the most elemental version of the mtDBN is presented. In future work,
we would like to try different splitting criteria for growing the tree model. In particular,
given that we are working with time series data, it could be interesting to define a tree
model that separates time series based on their similarity with a metric such as dynamic
time warping.28 Another open option is the use of a different partition method, for
example, clustering or more complex tree structures such as random forests, to perform
the initial data set division and classification of new instances during forecasting.
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APPENDIX A: ORDINARY DIFFERENTIAL EQUATION SYSTEM FOR
THE FOULING PHENOMENON
The main idea of our simulation is to generate an environment where we have a fluid flowing
through a tube and a heat source heating the walls of said tube. Meanwhile, as this fluid is
heated, it precipitates materials that create an insulating layer inside the tube over time. This is
a process called fouling.22

Our aim is to define a simplified version of this phenomenon, one that reflects the nonlinear
relationships of the variables and respects the underlying physical process. Our first
simplification is that the simulation does not have a spatial component, so heat will transfer
from the heat source to the tube walls by radiation from a single point to another and from the
tube walls to the fluid by convection. This generates a heating component that increases the
temperature of the fluid. As the fouling process occurs, the thermal conductivity of the system
decreases, and the heat transferred from the tube walls to the fluid is reduced. To dissipate heat
from the system, we have a flow component that renews fresh cooler fluid at each instant. All
fluid volumes are heated as a whole and move in and out of the system as a singular unit.
Initially, the fluid heats easily, but as the fouling layer grows, it becomes increasingly harder to
keep the fluid temperature high.

The first component that we define is the growth of the insulating layer over time:



S

t
A k C= ,c

a1 1 (A1)

where Sc is the thickness of the insulating layer, t is the time, A > 01 is a control constant, k1 is
the reaction speed at which particles prone to fouling precipitate and Ca is the concentration of
particles prone to fouling in the fluid. Equation (A1) controls the rate at which the fouling layer
grows and is dependent on the value ofCa, which is a property of the fluid, and on k1. The value
of k1 is defined by

k A e= ,1 2
A

RT
− 3

1 (A2)

where A > 02 is a constant pre‐exponential factor, A > 03 is an activation energy constant, R is
the ideal gas constant and T1 is the temperature of the fluid. A higher fluid temperature will
accelerate the growth of the insulating layer.

The second component is the evolution of the concentration of particles prone to
fouling Ca:



C

t
A k C= − ,a

a4 2 (A3)

k A e= .2 2
′

A

RT

− 3
′

1 (A4)

The process is very similar to the previous one, but in Equation (A3), the concentration
diminishes each instant. In this case, a high T1 increases the consumption rate of Ca, but it also
affects the growth rate of Sc.

Once we have modelled the fouling layer and the concentration of particles that generate it,
we can define the evolution of the fluid temperature T1 and the flow component:
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In Equations (A5) and (A6), ρ1 is the density of the fluid, Cp1 is the thermal capacity of the
fluid, Qin represents the flow of new fluid inside the system each instant, T T TΔ = −in 1 is the
difference of temperature between the fresh fluid entering the system and the fluid currently in
the system, T2 is the temperature of the tube wall and A5 and A6 are control constants. In
essence, the convective component of the equations will transfer heat from the tube wall to the
fluid, and as Sc from Equation (A1) increases, this convective component will degrade. The flow
component Qin in the system adds the effect of cold fluid entering the system each instant
through the area of the tube.

In Equation (A7), vol is the volume of fluid going through the system each instant, and r is
the radius of the tube. The effect of this component is written in Equation (A5) as the product
A Q TΔin5 of the flow rate and the difference in the fluid temperature TΔ . The cold fluid
entering the system translates into a loss of temperature in the fluid from the previous instant.
This is of vital importance because it adds a mechanism to reduce the temperature of the
system. Without it, the simulation will only increase its temperature monotonically. Now, with
both Sc and the new flow, there can be situations where the heat transfer betweenT2 andT1 is so
low that the fluid loses temperature over time due to the effect of the colder flow. It also adds
the volume inside the tube as a variable that can be manipulated by an agent to perform
interventions in the system.

The last equations define the temperature of the tube walls T2 and the temperature of the
furnace T3:
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( − ).min m max min3 − c

(A10)

In Equations (A8) and (A9), T2 is defined by its interactions with T1 and T3, the latter being
the main factor that defines the value of T2 because T3 represents the temperature inside the
furnace. In the previous equations, ρ2 is the density of the tube wall alloy material, Cp2 is its
thermal capacity and A7 is a control constant. The tube wall temperature is raised by radiation
from T3 and is decreased by induction due to the colder fluid inside, but this effect is more
insignificant than the radiation.

In Equation (A10), we define how T3 is calculated. The furnace temperature changes
inside a range defined by a minimum temperature Tmin and a maximum Tmax depending on
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the amount of fuelmc administered to the furnace heaters. This simulates the behaviour of
a valve with a sigmoid function, where an operator can modify the heat inside the furnace
by varying mc.

The variables that can be manipulated to generate traces from the same process are the fluid
properties such as the initial values of Sc and Ca, the values of ρ2 and Cp2, the furnace state
variables such asmc and the volume vol. These can be modified to obtain different behaviours
in the traces generated, but the other parameters remain constant. The idea is to circulate
different types of fluids through the same furnace and increase or decrease the temperatures
inside the furnace through interventions on mc and vol.

With this ODE system, we can generate a synthetic data set with an arbitrary number of
traces from the fouling process and use it to train our models. The code of the simulation and
the functions to generate the seeded datasets are readily available in a public repository online
(https://github.com/dkesada/mtDBN). An example of the kind of traces it generates is shown
in Figure A1.

FIGURE A1 Example of a 100 time instant trace created by the simulation. Several time series with data
and some noise of each variable are generated.
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