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Learning the structure of continuous-time Bayesian networks directly from data has 
traditionally been performed using score-based structure learning algorithms. Only recently 
has a constraint-based method been proposed, proving to be more suitable under specific 
settings, as in modelling systems with variables having more than two states. As a result, 
studying diverse structure learning algorithms is essential to learn the most appropriate 
models according to data characteristics and task-related priorities, such as learning speed 
or accuracy. This article proposes alternative algorithms for learning multidimensional 
continuous-time Bayesian network classifiers, introducing, for the first time, constraint-
based and hybrid algorithms for these models. Nevertheless, these contributions also apply 
to the simpler one-dimensional classification problem for which only score-based solutions 
exist in the literature. More specifically, the aforementioned constraint-based structure 
learning algorithm is first adapted to the supervised classification setting. Then, a novel 
algorithm of this kind, specifically tailored for the multidimensional classification problem, 
is presented to improve the learning times for the induction of multidimensional classifiers. 
Finally, a hybrid algorithm is introduced, attempting to combine the strengths of the 
score- and constraint-based approaches. Experiments with synthetic and real-world data 
are performed not only to validate the capabilities of the proposed algorithms but also to 
conduct a comparative study of the available competitors.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The analysis and processing of time series data are present in practically any field of study, such as engineering, medicine, 
economics, signal processing or cybersecurity, and are essential to understanding and automating many of their processes 
[14,15,26,29]. These data are characterised by their large size and high dimensionality [10], which are expected to keep 
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growing as they become easier to collect and at higher granularity. Therefore, designing algorithms capable of modelling 
these data more accurately and efficiently is becoming more necessary.

In this article, we focus on learning continuous-time Bayesian network (CTBN) structures from data and, more specif-
ically, structures of CTBNs that can be applied to the multidimensional classification of time series. CTBN classifiers have 
been successfully applied for one-dimensional problems such as post-stroke rehabilitation [7] or multidimensional problems 
like detecting energy consumption states [32]. Nevertheless, the study of structure learning algorithms for these classifiers 
remains largely unexplored in the literature.

The main contributions of this paper are the following:
(i) The development of the first constraint-based structure learning algorithm for CTBN classifiers (CTBNCs), which is 

conceived to learn multidimensional continuous-time Bayesian network classifiers (Multi-CTBNCs).
(ii) The introduction of the first hybrid structure learning algorithm for Multi-CTBNCs.

(iii) A comprehensive comparative study to evaluate the strengths and weaknesses of the state-of-the-art algorithms and 
those proposed in this work.

(iv) The presentation of a multidimensional classification problem that uses publicly available data to demonstrate the 
usefulness of the proposed constraint-based algorithm in a real-world setting.

(v) The development and integration of the presented algorithms into a software tool introduced in [32].
The remainder of this article is as follows. Section 2 reviews fundamental concepts. Sections 3 and 4 introduce novel 

constraint-based and hybrid algorithms for Multi-CTBNCs, respectively. Section 5 presents experiments and discusses the 
results of multiple structure learning algorithms. Section 6 concludes the article and discusses future research lines.

2. Fundamentals

A Bayesian network (BN) is a probabilistic graphical model (PGM) designed for reasoning about static processes [22]. 
Thus, such a model is unsuitable when a system exhibits temporal behaviour. For this reason, the CTBN has been proposed 
to represent the temporal dynamics of continuous-time and discrete-state stochastic processes [20], which are described by 
finite state, continuous-time homogeneous Markov processes through intensity matrices.

Definition 1 (Homogeneous Markov process). Given a discrete random variable X , whose sample space is �X = {x1, . . . , xk}, 
its transient behaviour can be described as a homogeneous Markov process X(t) with its intensity matrix:

QX =

⎡
⎢⎢⎢⎣

−qx1 qx1,x2 · · · qx1,xk

qx2,x1 −qx2 · · · qx2,xk
... · · · . . .

...

qxk,x1 qxk,x2 · · · −qxk

⎤
⎥⎥⎥⎦ ,

where qxa,xb is the intensity of leaving state xa and arriving at xb and qxa = ∑
b �=a qxa,xb is the intensity of variable X leaving 

state xa . The waiting time of variable X in a given state xa is exponentially distributed with parameter qxa . Thus, variable X
is expected to transition from state xa at time 1/qxa and to a state xb with probability qxa,xb /qxa [20].

When modelling systems with multiple variables X = {X1, . . . , Xm}, a simple solution would be to define an intensity 
matrix over the joint sample space of X . However, this approach would only be feasible with a very limited number of 
variables, as the size of the intensity matrix would grow exponentially with their number and cardinality. Therefore, in 
order to model larger systems, a factored representation of Markov processes, known as conditional Markov process, should 
be employed.

Definition 2 (Conditional Markov process). A conditional Markov process is a type of inhomogeneous Markov process whose 
intensity matrix changes over time as a function of some conditioning variables’ state. Given a discrete random variable Xi

and a set of parents Pa(Xi) of Xi in a directed graph G , a conditional intensity matrix (CIM) QPa(Xi)
Xi

describes the temporal 
dynamics of the variable. A CIM is a set of homogeneous intensity matrices Qpa(Xi)

Xi
, each encoding the dynamics of Xi given 

the state pa(Xi) of its parents Pa(Xi):

Qpa(Xi)
Xi

=

⎡
⎢⎢⎢⎢⎣

−qpa(Xi)
x1 qpa(Xi)

x1,x2 · · · qpa(Xi)
x1,xk

qpa(Xi)
x2,x1 −qpa(Xi)

x2 · · · qpa(Xi)
x2,xk

... · · · . . .
...

qpa(Xi)
xk,x1 qpa(Xi)

xk,x2 · · · −qpa(Xi)
xk

⎤
⎥⎥⎥⎥⎦ .

CIMs can be summarised with the sets of parameters qpa(Xi)
xa and θpa(Xi)

xa,xb
= qpa(Xi)

xa,xb
/qpa(Xi)

xa , the latter defining the probability 
of transitioning from state xa to another xb when a transition is known to occur.
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CTBNs describe the temporal dynamics of some discrete random variables and their dependencies on each other using 
conditional intensity matrices while providing a graphical representation of the modelled system. CTBNs have been suc-
cessfully applied in a variety of real-world problems, including intrusion detection [33], gene network reconstruction [1], 
speech-related facial action unit recognition [19] or disease monitoring [18], among others.

Definition 3 (Continuous-time Bayesian network). A CTBN N = (G, Q, P 0
X ) over a set of discrete random variables X =

{X1, . . . , Xm} consists of:

• A continuous transition model specified by a directed (possibly cyclic) graph G over X and a CIM QPa(Xi)
Xi

for each 
variable Xi .

• An initial distribution P 0
X , specified as a BN over X , representing the initial state of a temporal process.

CTBNs can be applied not only in knowledge discovery but also to perform classification tasks, which is the focus of 
this work. CTBNCs, introduced by Stella and Amer [25], extend CTBNs to classify discrete-state temporal sequences Sl =
{xt1

l , . . . , x
tTl
l , cl} (l = 1, . . . , N),1 where N is the number of sequences, which describe the transitions of feature variables X

(with values xt j

l ) and the state of a single class variable C (with values cl) that does not depend on time.

Definition 4 (Continuous-time Bayesian network classifier). Given a set of discrete random variables V = {X1, . . . , Xm, C}, a 
CTBNC is a pair C = (N, P (C)), where N is a CTBN over time-dependent feature variables X = {X1, . . . , Xm} and C is a 
time-independent class variable fully specified by the marginal probability P (C) on states �C = {c1, . . . , cr}. The graph of a 
CTBNC has the same properties as that of a CTBN but includes a class variable node with no parents, i.e., Pa(C) = ∅.

Certain classification problems require predicting simultaneously the state of multiple class variables C = {C1, . . . , Cd}, 
i.e., Sl = {xt1

l , . . . , x
tTl
l , cl}, where d is the number of class variables and cl = (cl1, . . . , cld). One classifier can be learned for 

each class variable to solve this problem. Nevertheless, this approach would fail to identify inter-class dependencies, which 
could provide relevant information for the classification. In this more complex setting, using a model such as the Multi-
CTBNC, introduced in [32], is a more appropriate alternative since it captures the probabilistic relationships of conditional 
(in)dependence among class variables.

Definition 5 (Multidimensional continuous-time Bayesian network classifier). A Multi-CTBNC M = (G, B, Q, P 0
V ) over a set of 

discrete random variables V = {X1, . . . , Xm, C1, . . . , Cd} is formed by:
• A directed (possibly cyclic) graph G = (V, A), where vertices V are divided into those for feature and class variables, 

while arcs are between class variables (class subgraph), feature variables (feature subgraph) and from class to feature 
variables (bridge subgraph).

• Class variable parameters B, which form conditional probability tables (CPTs), associated with the class subgraph.
• A set of CIMs QPa(Xi)

Xi
, one for each feature variable Xi .

• An initial distribution P 0
V , specified as a multidimensional BN classifier over V .

2.1. Structure learning algorithms for CTBNs

Structure learning of CTBNs has been traditionally addressed as an optimisation problem [7,21,31], where a structure 
is selected from a candidate space by maximising a score (score-based algorithms). The motivation may be that standard 
score-based algorithms can be straightforwardly applied to learn CTBNs. As CTBNs have no acyclicity constraints, the parent 
set of each node can even be conveniently defined in parallel without concern for reporting erroneous structures. Only 
recently has a constraint-based algorithm been proposed, which reconstructs their structures by performing conditional 
independence tests. The continuous-time PC (CTPC) algorithm, introduced by Bregoli et al. [6], is the first proposal of this 
kind, which adapts the classical PC algorithm, briefly described in Algorithm 1 (for a more detailed explanation, see [24]
and [8]), to CTBNs. As CIMs describe temporal dynamics, classical statistical tests cannot be applied. Thus, CTPC introduces 
a novel definition of conditional independence in CTBNs.

Definition 6 (Conditional independence in CTBNs). Given a CTBN over a set of discrete random variables X = {X1, . . . , Xm}, a 
variable Xi is conditionally independent of X j given a separating set SXi X j ⊆X \ {Xi, X j} iff:

Qy,s
Xi

= Qs
Xi

∀y ∈ �X j ,∀s ∈ �SXi X j
.

1 Sequences may have different timestamps; superscript l will be omitted from t for simplicity.
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Algorithm 1 PC(V).

1: Build the complete undirected graph G on node set V
2: Find the skeleton and separating sets of G . For each pair of adjacent nodes V i, V j ∈ V , remove edge V i −− V j from G iff there is a separating set 

SV i V j ⊆ V \ {V i , V j} such that V i ⊥⊥ V j |SV i V j

3: Orient the colliders using the separating sets. For any path V i −− V j −− Vk in G , such that V i �−− Vk , orient the edges as V i → V j ← Vk iff V i ⊥⊥ Vk|SV i Vk

and V j /∈ SV i Vk

4: Orient all possible undirected edges:
4.1: Given that V i → V j −− Vk and V i �−− Vk , then orient the undirected edge into V j → Vk to avoid introducing a new v-structure
4.2: Given that V i −− Vk and V i → V j → Vk , then orient V i −− Vk into V i → Vk to avoid introducing a cycle
4.3: Given that V i −− Vk , V i −− V j → Vk , V i − V w → Vk and V i �−− V w , then orient V i −− Vk into V i → Vk to avoid introducing a new v-structure or a 

cycle
5: return partially directed acyclic graph G

Definition 6 is not symmetric, which means that while a variable Xi could be conditionally independent of X j given 
SXi X j , the opposite does not necessarily have to be true. This fact has an important implication in learning the structure of 
a CTBN since it is necessary to evaluate twice as many arcs with respect to a traditional BN.

The CTPC algorithm employs two different statistical tests to establish conditional independence between some fea-
ture variables Xi and X j . First, the time-to-transition null hypothesis (Definition 7) is evaluated to determine if significant 
differences exist for the waiting times of variable Xi when X j is added (or not) to its parents. Similarly, the state-to-state-
transition null hypothesis (Definition 8) is subsequently evaluated for significant differences in the probabilities of variable 
Xi transitioning from one particular state to another. Conditional independence is not established if any null hypothesis is 
rejected.

Definition 7 (Time-to-transition null hypothesis). Given two variables Xi and X j , and a separating set SXi X j ⊆X \ {Xi, X j}, the 
time-to-transition null hypothesis of X j over Xi is defined as:

qy,s
x = qs

x ∀x ∈ �Xi ,∀y ∈ �X j ,∀s ∈ �SXi X j
.

Definition 8 (State-to-state-transition null hypothesis). Given two variables Xi and X j , and a separating set SXi X j ⊆X \{Xi, X j}, 
the state-to-state-transition null hypothesis of X j over Xi is defined as:

θ
y,s
xa,xb

= θ s
xa,xb

∀xa ∈ �Xi ,∀xb ∈ �Xi \ {xa},∀y ∈ �X j ,∀s ∈ �SXi X j
.

Bregoli et al. [6] proposed to test the time-to-transition null hypothesis using the F-test, while they explored the use 
of the two-sample chi-square and Kolmogorov-Smirnov tests for the state-to-state-transition null hypothesis. Nevertheless, 
they found the two-sample chi-square test to be marginally better for testing the latter null hypothesis, so only this test 
will be employed in the present work.

The CTPC algorithm can be easily adapted to learn the bridge and feature subgraphs of Multi-CTBNCs since only the par-
ent sets of nodes with CIMs are learned. The algorithm only has to meet the topology constraints of the model. Algorithm 2
shows the pseudocode of the CTPC algorithm used in this work, where V =X ∪C (see Definition 5). As for learning the class 
subgraph, traditional constraint-based solutions for discrete BNs can be used. We call this adaption “naive” since it tests all 
possible dependencies between feature variables, even those irrelevant to the classification task. This considerably increases 
the learning time, a problem aggravated in CTBNs since dependencies between feature variables are non-symmetric.

Algorithm 2 CTPC(X , V)a.

1: for each feature variable Xi ∈ X do
2: Set U = {V j ∈ V|V j → Xi}
3: for increasing values s = 0, 1, . . . , |U | − 1 do
4: for each variable V j ∈ U and subset SXi V j ⊆ U \ {V j}, where |SXi V j | = s do
5: if Xi ⊥⊥ V j |SXi V j then
6: Remove arc V j → Xi from G and delete V j from U
7: end if
8: end for
9: end for
10: end for
11: return directed graph G

a Adaptation of the algorithm by Bregoli et al. [6]. The first step of the original algorithm, which forms a complete directed graph, was omitted for 
convenience.
4
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Algorithm 3 MB-CTPC(X , C).

1: G ← PC(C)
2: Build the complete bridge and feature subgraphs of G on node set X ∪ C
3: G ← CTPC(X , C)
4: for each feature variable Xi ∈ X do
5: for each feature variable X j ∈ X , where X j �= Xi do
6: if PaC(Xi) = ∅ then
7: Remove arc X j → Xi from G
8: else if PaC(Xi) ∩ PaC(X j) = ∅ AND PaC(X j) �= ∅ then
9: Remove arcs Xi → X j and X j → Xi from G

10: else if PaC(Xi) \ PaC(X j) �= ∅ AND PaC(X j) �= ∅ then
11: Remove arc Xi → X j from G
12: end if
13: end for
14: end for
15: G ← CTPC(X , C ∪X )
16: return directed graph G

3. Markov blanket-based continuous-time PC algorithm

This section introduces a novel constraint-based structure learning algorithm called Markov blanket-based continuous-
time PC (MB-CTPC), specially designed to learn Multi-CTBNCs. This algorithm aims to evaluate only those dependencies 
relevant to the Markov blanket2 of the class variables, which provides sufficient information to infer these variables. To this 
end, MB-CTPC defines a set of rules to ignore irrelevant dependencies based on ancestor class variables of feature variables.

Algorithm 3 describes the pseudocode of MB-CTPC. Step 1 finds the probabilistic relationships between class variables 
using a traditional constraint-based algorithm, such as PC. Step 2 forms the complete bridge and feature subgraphs of 
G . Then, Step 3 defines the descendants of the class variables via conditional independence tests between feature and 
class variables without considering other feature variables in the separating set. Thus, a dependency of a feature on a 
class variable might exist because it is its child or there is a flow of information through intermediate feature nodes. This 
step defines a preliminary bridge subgraph that provides valuable information to reduce the statistical tests for the feature 
subgraph. If a pair of feature variables do not share the same parent class variables, information is not flowing in at least one 
direction, and at least one dependency can be removed. Steps 4 to 14 use three rules to reduce the number of conditional 
independence tests:

Rule 1 (Steps 6 and 7). Given adjacent feature variables Xi and X j , arc Xi → X j is removed iff PaC(X j) = ∅, where 
PaC(X j) denotes the parent class variables of X j .

Rule 2 (Steps 8 and 9). Given adjacent feature variables Xi and X j , arcs Xi → X j and X j → Xi are removed iff PaC(Xi) ∩
PaC(X j) = ∅, PaC(Xi) �= ∅ and PaC(X j) �= ∅.

Rule 3 (Steps 10 and 11). Given adjacent feature variables Xi and X j , arc Xi → X j is removed iff PaC(Xi) \ PaC(X j) �= ∅, 
PaC(Xi) �= ∅ and PaC(X j) �= ∅.

Finally, Step 15 further identifies conditional independence relationships using the CTPC algorithm. However, its execu-
tion time is significantly reduced, as it is limited to evaluating only those arcs the previous rules could not discard.

Example 1. Given some data sampled from the Multi-CTBNC of Fig. 1a, then Figs. 1b to 1h show the steps of MB-CTPC to 
learn the Markov blankets of the class variables. First, Fig. 1b represents the learning of the class subgraph (Step 1). Then, 
the complete bridge and feature subgraphs are built in Fig. 1c (Step 2). Afterwards, conditional independence tests, which 
consider only class variables in the separating sets, find the descendant feature variables of the class variables (Step 3). For 
example, Fig. 1d shows an arc from C4 to X6, as a direct path exists through X7 in the original structure. Subsequently, Rule 
1 removes incoming arcs of X2 and X5 in Fig. 1e since they have no dependencies on class variables. Then, Rule 2 discards 
dependencies between feature variables not sharing parent class variables. That is the case for pairs like X3 and X6 or X1
and X7 in Fig. 1f. In Fig. 1g, Rule 3 removes a dependency from one feature variable to another if the former has parent 
class variables that the latter does not, such as arcs (X1, X3) and (X6, X7). These rules discard 27 out of 42 arcs (64%) of 
the feature subgraph without performing any conditional independence test. Finally, tests are performed on the remaining 
arcs in Fig. 1h. The resulting structure of Fig. 1i shows that arcs from the original structure providing no information about 
the Markov blankets of class variables (those between X2 and X5) are discarded. �

4. Hybrid structure learning algorithm

Score- and constraint-based algorithms have their own strengths and weaknesses, making them more or less useful 
in different classification contexts. Therefore, as already done for other PGMs [2,16,27,28], we study hybrid algorithms 
for Multi-CTBNCs. These methods aim to combine the advantages of both approaches, such as faster learning speed of 

2 Given a Multi-CTBNC, the Markov blanket of a node consists of its parents, children and spouses.
5
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Fig. 1. Steps of the MB-CTPC algorithm. Dash lines represent removed arcs.

constraint-based algorithms and higher accuracy of score-based solutions (see Section 5.2.2). This section presents the first 
hybrid algorithm to learn both one-dimensional and multidimensional CTBNCs. The algorithm is divided into a restriction 
phase where conditional independence tests find an initial structure and a maximisation phase that refines it. Two variants 
are used depending on the subgraph:
• Class subgraph: the PC algorithm is used to reconstruct the skeleton of the class subgraph. Then, a hill climbing proce-

dure searches for a solution, starting from the empty subgraph but only allowing arcs included in the skeleton.
• Bridge and feature subgraphs: the CTPC algorithm defines an initial structure during the restriction phase, which serves 

as the initial solution for a hill climbing algorithm in the maximisation phase. Two aspects balance the influence of these 
algorithms. First, a maximum separating set size is established for conditional independence tests. Second, hill climbing 
only removes or adds arcs that the restriction phase has not discarded. The maximum size of the separating set dictates 
each algorithm’s influence and range of action.
Although the scope of this article is learning classifiers, this hybrid algorithm can also be applied to learn CTBNs, making 

it their first hybrid proposal to the best of our knowledge.
6
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5. Experiments

This section empirically compares the performance of Multi-CTBNCs learned with five different structure learning al-
gorithms in a variety of contexts, including synthetic datasets and a real-world problem. Score-based algorithms are 
represented by hill climbing and tabu search (tabu list of size 5), whose scores (BIC or BDe [32]) are indicated in square 
brackets, e.g., hill climbing [BDe]. Regarding constraint-based algorithms, (the naive) CTPC and the presented MB-CTPC are 
evaluated. Significance levels of 0.05 (class subgraph) and 1e−53 (bridge and feature subgraphs) are used to test conditional 
independence. Finally, the proposed hybrid algorithm is studied using the hill climbing [BIC] algorithm in the maximisation 
phase and separating sets of zero (hybrid [|SV i V j | = 0]) and one (hybrid [|SV i V j | = 1]) maximum size.

In order to guarantee an honest and fair comparison, the learned models are evaluated using several performance mea-
sures and a 5-fold cross-validation scheme. The measures under consideration are global and mean accuracy, global Brier 
score, macro and micro F1 score and learning and classification time. For the comparisons, the Wilcoxon signed-rank test 
is used with a significance level of 0.05 to verify that the results are statistically significant. Regarding parameter learning, 
Bayesian estimation is used with the following hyperparameters for their prior distributions (for more details, see [32]): 
λc j = 1 and αxa,xb = 1 for the Dirichlet prior distribution, and τx j = 0.001 (synthetic experiments) or τx j = 1 (real-world 
experiment) for the gamma prior distribution.

The experiments were run on a 4.20 GHz Intel Core i7-7700 K with 32 GB of RAM using Windows 10. The structure 
learning algorithms were developed in Java, and the software and datasets are freely available at https://github .com /carlvilla /
Multi -CTBNCs.

5.1. Performance measures

The following measures will be used to compare the performance of Multi-CTBNCs learned with different structure 
learning algorithms:

• Global accuracy [4]: ratio of sequences correctly classified for all class variables, i.e., a partially correct or completely 
incorrect classification is considered an error:

Acc = 1

N

N∑
l=1

δ(c′
l, cl),

where c′
l and cl are the predicted and actual classes of sequence l, respectively, and δ(·, ·) is the Kronecker’s delta 

function, so δ(c′
l, cl) = 1 if c′

l = cl and 0 otherwise.
• Mean accuracy [4]: mean of the accuracies obtained for each class variable separately:

Acc = 1

d

d∑
i=1

Acci = 1

d

d∑
i=1

1

N

N∑
l=1

δ(c′
licli),

where Acci is the accuracy for class variable Ci and N is the number of sequences.
• Global Brier score [9]: it measures the accuracy of probabilistic classifiers by considering the probability that assigns to 

multidimensional predictions:

Bs = 1

N

N∑
l=1

|I|∑
g=1

(
p(C = cg |xt1

l , . . . ,x
tTl
l ) − δ(cg, cl)

)2
,

where I = �C1 × · · · × �Cd is the space of joint configurations of the class variables. The closer this measure is to zero, 
the more accurate the classifier will be.

• F1 score: harmonic mean of the precision (P ) and recall (R) on a class variable C with class labels c:

F1 = 2
P R

P + R
= 2

tpc

2tpc + fpc + fnc
,

where tpc , fpc and fnc are the counts for true positives, false positives and false negatives, respectively, for class c.

Traditional equations for precision, recall and, therefore, F1 score can only be used for a unique binary class variable. Let 
B be a function that computes any of these performance measures from a confusion matrix, then the measures are obtained 
as follows:

3 The large number of hypothesis tests used to compare parameters from exponential distributions requires a very small significance level to avoid 
inaccurately dense structures.
7
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Table 1
Parameters used to generate the datasets for the ex-
periments.

Parameter Studied values

Number of feature variables 5, 10, 20
Cardinality of feature variables 2, 3, 4, 8
Number of class variables 4
Cardinality of class variables 2, 3
Density of class subgraph 30%
Density of bridge subgraph 5%, 10%, 20%
Density of feature subgraph 5%, 10%, 20%

• Macro-averaging [12]: averages the scores of each class variable Ci :

Bmacro = 1

d

d∑
i=1

BCi , where BCi =
{

1
|�Ci |

∑
ci

B(tpci
, fpci

, tnci , fnci
) if |�Ci | > 2

B(tpCi
, fpCi

, tnCi , fnCi
) otherwise,

and tnci is the counts for true negatives for class ci . Note that if the class variable Ci is binary, only the confusion matrix 
for one of its classes (tpCi

, fpCi
, tnCi , fnCi

) is considered.
• Micro-averaging [12]: aggregates the confusion matrices of each class variable:

Bmicro = B(

d∑
i=1

TPCi ,

d∑
i=1

FPCi ,

d∑
i=1

TNCi ,

d∑
i=1

FNCi ),

where

{TPCi , FPCi ,TNCi , FNCi } =
{

1
|�Ci |

∑
ci
{tpci

, fpci
, tnci , fnci

} if |�Ci | > 2

{tpCi
, fpCi

, tnCi , fnCi
} otherwise.

These two averaging methods will be used in our experiments to calculate the F1 score.4 However, since the micro-
averaging approach is equivalent to the mean accuracy when the cardinality of all class variables is the same and greater 
than two [32], it will only be considered in experiments where class variables have different cardinalities.

5.2. Experimental results on synthetic data

Due to the limited progress in the literature on the classification problem under study, publicly available real-world 
datasets are scarce. Thus, this section uses synthetic datasets drawn from various contexts to evaluate structure learning 
algorithms’ advantages and disadvantages effectively.

Synthetic datasets are sampled via probabilistic logic sampling [13] from Multi-CTBNCs whose structures and parameters 
are randomly generated. Five datasets have been sampled from each combination of parameters’ values (216 combinations) 
shown in Table 1 (1080 datasets), each with 5000 sequences that last 20 time units. The generated structures have at 
least one arc in the bridge subgraph, and feature variables are restricted to a maximum of three children to avoid memory 
problems.

Table 2 presents the results for all datasets of specific comparisons of structure learning algorithms that we found 
most relevant, whereas Table 3 includes the average results for each algorithm. In the following sections, we discuss some 
conclusions drawn from these tables and perform a more exhaustive analysis.

5.2.1. Hill climbing and tabu search
Table 2 shows that hill climbing optimising the BIC score obtains better results in all performance measures, except 

learning and classification time, for more datasets than the BDe score, improvements that were found statistically signifi-
cant. As a result, subsequent comparisons will mainly consider the BIC score. Meanwhile, learning and classification time 
differences between hill climbing [BIC] and tabu search [BIC] were statistically significant, with the latter being faster in 
more than 60% of the datasets, while no statistically significant differences were detected for other performance measures. 
The reason is that, thanks to the restrictions on the structure search imposed by the tabu list, the tabu search algorithm 
finds the structure by analysing fewer arcs. However, note that these time differences may not be very substantial since 
tabu search [BIC] achieves a sub-second improvement in 60% and 96% of the cases in terms of learning and classification 
time, respectively.

4 Henceforth referred to as macro or micro F1 score for convenience.
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Table 2
Percentage of datasets in which structure learning algorithms achieve better, worse or identical results.

Performance measure Results of ... are Better Worse Same Same or Better Than

Global accuracy Hill climbing [BIC] 10.56% 5.93% 83.52% 94.07% Hill climbing [BDe]
Hill climbing [BIC] 1.20% 0.83% 97.96% 99.17% Tabu search [BIC]
CTPC 17.69% 42.31% 40.00% 57.69% Hill climbing [BIC]
MB-CTPC 1.76% 39.26% 58.98% 60.74% CTPC
Hybrid [|SV i V j | = 0] 1.76% 0.00% 98.24% 100.00% Hybrid [|SV i V j | = 1]
Hybrid [|SV i V j | = 0] 5.56% 34.54% 59.91% 65.46% Hill climbing [BIC]
Hybrid [|SV i V j | = 0] 22.96% 20.56% 56.48% 79.44% CTPC

Mean accuracy Hill climbing [BIC] 11.39% 6.48% 82.13% 93.52% Hill climbing [BDe]
Hill climbing [BIC] 1.20% 1.20% 97.59% 98.80% Tabu search [BIC]
CTPC 21.39% 39.44% 39.17% 60.56% Hill climbing [BIC]
MB-CTPC 1.67% 40.28% 58.06% 59.72% CTPC
Hybrid [|SV i V j | = 0] 1.85% 0.00% 98.15% 100.00% Hybrid [|SV i V j | = 1]
Hybrid [|SV i V j | = 0] 9.35% 31.85% 58.80% 68.15% Hill climbing [BIC]
Hybrid [|SV i V j | = 0] 22.59% 21.76% 55.65% 78.24% CTPC

Macro F1 score Hill climbing [BIC] 12.13% 7.59% 80.28% 92.41% Hill climbing [BDe]
Hill climbing [BIC] 1.30% 1.30% 97.41% 98.70% Tabu search [BIC]
CTPC 22.41% 41.11% 36.48% 58.89% Hill climbing [BIC]
MB-CTPC 2.31% 40.28% 57.41% 59.72% CTPC
Hybrid [|SV i V j | = 0] 1.85% 0.00% 98.15% 100.00% Hybrid [|SV i V j | = 1]
Hybrid [|SV i V j | = 0] 9.91% 33.24% 56.85% 66.76% Hill climbing [BIC]
Hybrid [|SV i V j | = 0] 23.33% 22.78% 53.89% 77.22% CTPC

Global Brier score Hill climbing [BIC] 24.81% 18.89% 56.30% 81.11% Hill climbing [BDe]
Hill climbing [BIC] 5.19% 5.28% 89.54% 94.72% Tabu search [BIC]
CTPC 19.91% 59.81% 20.28% 40.19% Hill climbing [BIC]
MB-CTPC 11.85% 53.52% 34.63% 46.48% CTPC
Hybrid [|SV i V j | = 0] 3.52% 2.59% 93.89% 97.41% Hybrid [|SV i V j | = 1]
Hybrid [|SV i V j | = 0] 7.41% 49.26% 43.33% 50.74% Hill climbing [BIC]
Hybrid [|SV i V j | = 0] 34.54% 23.80% 41.67% 76.20% CTPC

Learning time (s) Hill climbing [BIC] 37.04% 62.96% 0.00% 37.04% Hill climbing [BDe]
Hill climbing [BIC] 37.96% 62.04% 0.00% 37.96% Tabu search [BIC]
CTPC 99.54% 0.46% 0.00% 99.54% Hill climbing [BIC]
MB-CTPC 98.15% 1.85% 0.00% 98.15% CTPC
Hybrid [|SV i V j | = 0] 36.11% 63.89% 0.00% 36.11% Hybrid [|SV i V j | = 1]
Hybrid [|SV i V j | = 0] 90.28% 9.72% 0.00% 90.28% Hill climbing [BIC]
Hybrid [|SV i V j | = 0] 4.63% 95.37% 0.00% 4.63% CTPC

Classification time (s) Hill climbing [BIC] 31.33% 68.67% 0.00% 31.33% Hill climbing [BDe]
Hill climbing [BIC] 34.41% 65.59% 0.00% 34.41% Tabu search [BIC]
CTPC 58.64% 41.36% 0.00% 58.64% Hill climbing [BIC]
MB-CTPC 80.25% 19.75% 0.00% 80.25% CTPC
Hybrid [|SV i V j | = 0] 44.75% 55.25% 0.00% 44.75% Hybrid [|SV i V j | = 1]
Hybrid [|SV i V j | = 0] 70.99% 29.01% 0.00% 70.99% Hill climbing [BIC]
Hybrid [|SV i V j | = 0] 57.41% 42.59% 0.00% 57.41% CTPC

Table 3
Estimated performance measures (mean ± std. deviation) over the synthetic datasets.

Algorithm Global accuracy Mean accuracy Macro F1 score Global Brier score Learning time (s) Classification time (s)

Hill climbing [BIC] 0.6287 ± 0.2691 0.8681 ± 0.1156 0.7753 ± 0.1971 0.4612 ± 0.3068 108.1529 ± 138.1886 6.6264 ± 9.8329
Tabu search [BIC] 0.6287 ± 0.2691 0.8681 ± 0.1156 0.7752 ± 0.1971 0.4612 ± 0.3068 107.2197 ± 137.5624 6.5689 ± 9.7887
Hill climbing [BDe] 0.6229 ± 0.2702 0.8655 ± 0.1163 0.7711 ± 0.1980 0.4678 ± 0.3076 106.4439 ± 136.8045 6.4251 ± 9.5402
CTPC 0.6351 ± 0.2704 0.8729 ± 0.1125 0.7821 ± 0.1925 0.4537 ± 0.3084 41.8573 ± 47.3675 7.5145 ± 10.5733
MB-CTPC 0.6132 ± 0.2601 0.8645 ± 0.1102 0.7698 ± 0.1889 0.4819 ± 0.2936 21.6225 ± 22.8988 5.9090 ± 8.4135
Hybrid [|SV i V j | = 0] 0.6211 ± 0.2725 0.8658 ± 0.1165 0.7696 ± 0.1999 0.4689 ± 0.3091 49.7194 ± 57.5774 6.4525 ± 9.6591
Hybrid [|SV i V j | = 1] 0.6210 ± 0.2724 0.8658 ± 0.1165 0.7695 ± 0.1999 0.4691 ± 0.3090 45.8935 ± 51.4961 6.4518 ± 9.6472

5.2.2. CTPC and hill climbing
Although the mean results of Table 3 suggest that CTPC may outperform hill climbing, statistical tests show that hill 

climbing significantly improves all performance measures, except learning time. This was the case independently of the 
score optimised by hill climbing. Yet, this is the case when evaluating the algorithms on all datasets. If the datasets are 
divided according to the cardinality of the feature variables, hill climbing obtains better results only when the cardinality 
is relatively low (two, three or four states). Statistically significant improvements are made with CTPC for all performance 
measures when feature variables have eight possible states.
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Fig. 2. Results of increasing feature variables’ cardinality with sequences of 10 time units.
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Fig. 3. Results of increasing feature variables’ cardinality with sequences of 20 time units.

To further study the influence of feature variables’ cardinalities, we have analysed the results of the performance mea-
sures when the cardinality is increased from two to 30. Five datasets have been sampled for each possible cardinality (145 
datasets) from a single randomly generated structure with ten feature variables, four class variables, and bridge and fea-
ture subgraph densities of 10%. Fig. 2 shows that classifiers learned with constraint-based algorithms (CTPC and MB-CTPC) 
are more robust than score-based and hybrid solutions as feature cardinality increases. The number of examples for each 
possible state transition declines as the cardinality of feature variables increases, making models learned with score-based 
algorithms less accurate. Fig. 3 shows the results of the last experiment but using sequences with twice the duration. In-
creasing the sequence duration enables score-based algorithms to achieve better results with feature variables of a higher 
cardinality. Nevertheless, they still show worse robustness than constraint-based solutions for all the studied measures. At 
first glance, we thought that the BIC penalisation negatively influenced the models’ accuracy. However, this behaviour is 
even more severe for the BDe score. We can then conclude that for problems where feature variables have high cardi-
nality and the sequence duration is relatively small, constraint-based algorithms might be more convenient due to their 
robustness. This is consistent with the findings of Scutari et al. [23] and Bregoli et al. [6] for BNs and CTBNs, respectively.

Finally, it is worth noting that constraint-based algorithms achieve much shorter learning times since the estimated 
parameters can be cached and quickly retrieved for future statistical tests. The usefulness of a cache is more limited for 
scored-based algorithms as they iteratively evaluate previously unseen parent set configurations.

5.2.3. MB-CTPC and CTPC
The MB-CTPC algorithm, compared to CTPC, achieves the same or, in a few cases, better results in about 60% of the 

datasets for global and mean accuracy and macro F1 score. Simultaneously, it reduces the learning time on most datasets 
(98%), which was its main objective. Figs. 4a and 4b show that time differences between the algorithms are very significant, 
10
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(g) Macro F1 score by feature subgraph density

5 10 20
0
1
2
3
4
5
6
7

1 1 11 1

22

3

1

Number of feature variables

A
ve

ra
ge

in
cr

ea
se

(%
)
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Fig. 4. Average increase in learning time, global and mean accuracy and macro F1 score of CTPC over MB-CTPC.

Table 4
Estimated performance measures (mean ± std. deviation) over synthetic datasets generated from Multi-CTBNCs with 30 and 5 feature and class variables, 
respectively.

Algorithm Global accuracy Mean accuracy Macro F1 score Global Brier score Learning time (s) Classification time (s)

CTPC 0.9874 ± 0.0149 0.9975 ± 0.0030 0.9597 ± 0.0851 0.0238 ± 0.0286 340.2399 ± 14.1575 217.4570 ± 37.9228
MB-CTPC 0.9590 ± 0.0403 0.9917 ± 0.0081 0.9546 ± 0.0792 0.0675 ± 0.0665 147.0353 ± 22.6594 150.1994 ± 29.0154

as the mean time increase of CTPC can reach up to 134%. The differences become more profound as the number of feature 
variables and feature subgraph density increase, as CTPC is more likely to perform an even higher number of unnecessary 
tests compared to MB-CTPC. The bridge subgraph density also influences the results, as lower density implies more signifi-
cant differences for higher dimensionality data, i.e., datasets with more feature variables. The reason for this is a decrease in 
the number of feature variables with class variables as ancestors, reducing the tests performed by MB-CTPC. Five datasets of 
higher dimensionality were sampled from randomly generated structures with bridge and feature subgraph densities of 10%. 
Due to memory limitations, 30 feature and five class variables with six and three states, respectively, were used. Table 4
shows that MB-CTPC drastically decreases the learning time, being 57% faster than CTPC, while the classification capabilities 
suffer relatively negligible differences.

The CTPC algorithm obtains better results than MB-CTPC on multiple datasets, significantly improving all performance 
measures except learning and classification time. Nevertheless, these differences may not be significant enough if our prior-
ity is to speed up the model learning. Figs. 4c and 4d show that the mean improvement of the global accuracy can go from 
as little as 1% to a maximum of 6% in the performed experiments. These differences are even lower for the mean accuracy 
(see Figs. 4e and 4f) and macro F1 score (see Figs. 4g and 4h). As for the global Brier score, differences in the percent-
ages are more significant; however, they are less than 0.01 in 50% of the datasets. The slightly lower accuracy of classifiers 
learned with MB-CTPC arises from the incorrect definition of some class variable descendants (Step 3 of Algorithm 3). Pos-
sible causes behind this may include weak relationships between variables, training datasets not sufficiently representative 
of the underlying problem or the assumption that waiting times of feature variables conditioned on a non-parent ancestor 
follow an exponential distribution.
11



C. Villa-Blanco, A. Bregoli, C. Bielza et al. International Journal of Approximate Reasoning 159 (2023) 108945
Overall, the classification time is also reduced when using the MB-CTPC algorithm. Table 4 shows a 31% reduction in 
the classification time of CTPC in the previous experiment, while a significant improvement is also seen in Tables 2 and 3. 
Alongside the learning time, this characteristic could make MB-CTPC more convenient for a streaming environment where 
models need to be incrementally updated and real-time response may be required. However, this result has to be interpreted 
with caution since, on certain occasions, the classification time improvement may benefit from the spouses of class variables 
not being defined correctly.

We can conclude that the MB-CTPC algorithm is a good choice when execution time is a priority, especially when dealing 
with high-dimensionality datasets. We also believe this kind of structure learning algorithm could be extended to real-time 
scenarios where our models have to be dynamically updated, and solutions should be provided as quickly as possible. 
Nevertheless, we should also consider that a trade-off exists between assuring better accuracy or significantly reducing the 
learning and classification times, which has to be assessed depending on the particular problem.

5.2.4. Hybrid [|SV i V j | = 0] and hybrid [|SV i V j | = 1]
Overall, varying the maximum separating set size of the hybrid algorithm from zero to one results in no change in 

most experiments except for execution time. For example, the global accuracy improves in just 1.76% of the datasets when 
only testing for unconditional independence. However, 95% of these latter datasets have in common the presence of binary 
feature variables. This outcome is coherent, given that the constraint-based algorithm, which is less accurate than the 
score-based approaches when feature variables are binary, has more influence on the solution as the maximum size of 
the separating set increases. For this reason, statistically significant improvements were obtained for most performance 
measures with the hybrid [|SV i V j | = 0] algorithm. The hybrid [|SV i V j | = 1] solution succeeded in reducing the learning and 
classification times significantly. Nevertheless, differences between using both parameter values are generally negligible in 
the performed experiments.

5.2.5. Hybrid [|SV i V j | = 0] vs. hill climbing [BIC] and CTPC
Considering all synthetic datasets, no significant differences were found in terms of classification capabilities between the 

hybrid [|SV i V j | = 0] and CTPC algorithms, but an improvement in global Brier score and classification time by the former and 
in learning time by the latter. When comparing the hybrid [|SV i V j | = 0] and hill climbing [BIC] algorithms, the classification 
capabilities of the former are significantly diminished, yet the learning and classification times are substantially improved.

Considering only datasets with low cardinality feature variables (two, three and four states), the statistical tests report 
an improvement in all performance measures, except execution times, by the hybrid algorithm with respect to CTPC while 
still notably improving the learning and, to a lesser extent, classification times of hill climbing [BIC]. Thus, the proposed 
algorithm achieves its intended purpose as an intermediate solution, as it combines the better classification capabilities 
of score-based solutions with the faster learning time of constraint-based approaches in the case of dealing with low 
cardinality feature variables. As discussed in Section 5.2.2, the CTPC algorithm performs significantly worse than the score-
based approaches when dealing with low cardinality feature variables. Then, combining these two approaches in a hybrid 
algorithm improves the CTPC performance.

5.2.6. Robustness to noisy data
In this section, we evaluate the robustness of each structure learning algorithm by progressively increasing the presence 

of noise in the data. To do so, ten Multi-CTBNCs with 20 feature variables, four class variables and bridge and feature 
subgraph densities of 10% were randomly defined. Four datasets were sampled from each of these models with the following 
degrees of noise:

• Noise-free dataset: no noise was added when sampling this dataset.
• Low noise dataset: 5% of feature variables’ transitions and class variables’ states were randomly sampled, while a Gaussian 

noise with zero mean and standard deviation 0.1 was added to feature variables’ transition times.
• Medium noise dataset: 10% of feature variables’ transitions and class variables’ states were randomly sampled, while a 

Gaussian noise with zero mean and standard deviation 0.2 was added to feature variables’ transition times.
• High noise dataset: 20% of feature variables’ transitions and class variables’ states were randomly sampled, while a 

Gaussian noise with zero mean and standard deviation 0.5 was added to feature variables’ transition times.

Overall, most algorithms were similarly affected by the increased noise in the datasets. However, this was different for 
the MB-CTPC algorithm. Table 5 compares the results of the CTPC and MB-CTPC algorithms for the given noise levels and 
shows a greater difference between them as the noise increases. As we have discussed in Section 5.2.3, the definition of 
the class variables’ descendants is a crucial step for the correct functioning of the algorithm, which is being increasingly 
affected by adding more noise. On the other hand, the CTPC algorithm is more robust, as it simply tests the dependencies 
between all possible pairs of feature variables. Nevertheless, this translates into a much higher cost in the learning time, 
which is almost twice that of the MB-CTPC algorithm, and in the classification time.
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Table 5
Estimated performance measures (mean ± std. deviation) when increasing noise in synthetic datasets.

Dataset Global accuracy Mean accuracy Macro F1 score Global Brier score Learning time (s) Classification time (s)

CTPC
Noise-free dataset 0.7927 ± 0.2217 0.9458 ± 0.0595 0.9202 ± 0.0878 0.2797 ± 0.2926 102.5735 ± 4.0715 25.0581 ± 2.9236
Low noise dataset 0.7898 ± 0.2228 0.9443 ± 0.0618 0.9198 ± 0.0899 0.2891 ± 0.2977 93.1212 ± 4.0769 22.5176 ± 2.6766
Medium noise dataset 0.7781 ± 0.2171 0.9411 ± 0.0605 0.9163 ± 0.0879 0.3028 ± 0.2857 76.6488 ± 3.8178 19.1597 ± 2.1732
High noise dataset 0.7151 ± 0.1841 0.9198 ± 0.0558 0.8885 ± 0.0796 0.3882 ± 0.2350 52.2272 ± 2.4204 13.0160 ± 1.3833

MB-CTPC
Noise-free dataset 0.7743 ± 0.2057 0.9412 ± 0.0556 0.9151 ± 0.0833 0.3065 ± 0.2692 54.2652 ± 6.0504 19.1903 ± 1.9290
Low noise dataset 0.7611 ± 0.2075 0.9360 ± 0.0591 0.9107 ± 0.0851 0.3284 ± 0.2737 47.5664 ± 3.8766 17.1980 ± 1.8136
Medium noise dataset 0.7234 ± 0.2000 0.9244 ± 0.0585 0.8982 ± 0.0811 0.3755 ± 0.2601 38.0962 ± 2.9495 14.2572 ± 1.4947
High noise dataset 0.6477 ± 0.1960 0.8933 ± 0.0696 0.8595 ± 0.0836 0.4655 ± 0.2388 25.0125 ± 1.5644 9.8222 ± 0.9120

5.3. Experimental results on a real-world dataset

This section evaluates the effectiveness of the introduced structure learning algorithms when solving a real-world prob-
lem. For this purpose, the British household panel survey (BHPS) dataset has been used, which is the result of a longitudinal 
study gathering, among others, information about the finances, health, household, work life, opinions and other personal 
aspects of UK citizens [30]. The surveys were conducted annually from 1991 to 2009 in a total of 18 waves, all of which are 
used in this work, except for the first, fourth and ninth waves, as some variables relevant to this study were not collected.

The objective of this experiment is to predict the state of certain variables related to personal information, given the 
evolution of individuals’ responses over the years. The usefulness of this work lies in the possibility of extracting relation-
ships from a particular dataset and applying them to infer new knowledge in, for example, other surveys in which specific 
information was not collected. The following seven class variables were defined for this experiment:

• Dental check-up: denotes whether the individual has had a dental check-up in the last year.
• Employment status: specifies the individual’s current employment status. This variable takes ten states: self-employed, in 

paid employment, unemployed, retired, maternity leave, looking after family or home, full-time student, long-term sick 
or disabled, on a government training scheme or others.

• Limb, back or neck problems: whether the respondent has problems or disabilities related to the arms, legs, hands, feet, 
back or neck (including arthritis and rheumatism).

• Lives with spouse or partner: whether the respondent is living with their spouse or partner.
• Responsible adult for child: whether the individual is responsible for a child under 16 years old.
• Sex: sex of the individual.
• Smoker: specifies if the individual smokes.

The BHPS dataset collects information from 29702 individuals on more than 1300 variables. For the definition of the 
feature variables, we focused on a subset of discrete-state variables related to health, work life, household and other per-
sonal information, such as marital status or residence region. Due to the nature of these data, the BHPS dataset is largely 
incomplete, as respondents could be unable or refuse to answer certain questions. Therefore, we have kept those variables 
containing no more than 3% of missing data. Altogether, 26 feature variables of different kinds have been used (see Fig. 5).

Each sequence extracted from the BHPS dataset contains the survey results of a single individual, results that are ordered 
according to the date they were collected and taking into account that the state of the class variables (class configuration) 
does not vary along a sequence. Therefore, as many sequences have been extracted for each individual as changes in the 
class configuration plus one. Sequences containing only one observation were discarded since they do not provide any 
information. This may occur, for example, if an individual took the survey on a single occasion. In total, 14925 sequences 
were extracted.

Ten cross-validations with random shuffles have been performed to statistically compare the performance of the struc-
ture learning algorithms on the BHPS dataset. The average results of this experiment are shown in Table 6. Despite obtaining 
better results in more synthetic experiments with score-based algorithms (see Fig. 2 and Section 5.2.2), a substantial im-
provement in classification performance was achieved by constraint-based algorithms on this occasion. In addition, hill 
climbing results were significantly improved by optimising the BDe score instead of BIC, which was not the case with 
the synthetic datasets. These circumstances illustrate the importance of exploring structure learning algorithms of different 
natures, as they could obtain better results in diverse settings. As for the differences between the CTPC and MB-CTPC algo-
rithms, the proposed method significantly improved all performance measures. The MB-CTPC algorithm reduced the learning 
time of CTPC by more than 50% while delivering a similar classification performance. Finally, the hybrid algorithm exhibited 
the worst overall results for this experiment, except for the classification time when using a maximum separating set size 
of two. If the size is reduced, the results worsen for this experiment and the computational time increases. In the case of 
an empty separating set, the available computational resources were not enough to learn the structures. This is because 
13
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Table 6
Estimated performance measures (mean ± std. deviation) with ten cross-validations on the British household panel survey dataset.

Algorithm Global accuracy Mean accuracy Macro F1 score Micro F1 score Global Brier score Learning time (s) Classification time (s)

Hill climbing [BIC] 0.2029 ± 0.0014 0.7772 ± 0.0009 0.5614 ± 0.0013 0.7536 ± 0.0011 0.8991 ± 0.0004 11.4602 ± 0.5081 3.7173 ± 0.0877
Tabu search [BIC] 0.2029 ± 0.0014 0.7772 ± 0.0009 0.5614 ± 0.0013 0.7536 ± 0.0011 0.8991 ± 0.0004 10.9979 ± 0.3562 3.7071 ± 0.1446
Hill climbing [BDe] 0.2184 ± 0.0023 0.7902 ± 0.0008 0.5668 ± 0.0026 0.7668 ± 0.0009 0.8855 ± 0.0017 10.8260 ± 0.2263 3.1707 ± 0.0616
CTPC 0.3799 ± 0.0020 0.8601 ± 0.0009 0.6608 ± 0.0022 0.8439 ± 0.0009 0.7931 ± 0.0014 47.5145 ± 7.7559 5.5352 ± 0.0872
MB-CTPC 0.3849 ± 0.0012 0.8614 ± 0.0005 0.6638 ± 0.0015 0.8445 ± 0.0005 0.7866 ± 0.0008 23.4605 ± 3.0436 5.2359 ± 0.0718
Hybrid [|SV i V j | = 0] - - - - - - -
Hybrid [|SV i V j | = 1] 0.1573 ± 0.0021 0.7653 ± 0.0007 0.4898 ± 0.0033 0.7303 ± 0.0025 0.9212 ± 0.0003 57.7243 ± 17.4723 3.4126 ± 0.0552
Hybrid [|SV i V j | = 2] 0.1597 ± 0.0022 0.7691 ± 0.0007 0.5072 ± 0.0031 0.7338 ± 0.0023 0.9194 ± 0.0003 17.8435 ± 0.5907 3.0866 ± 0.0769

the hybrid algorithm’s restriction phase can only remove a few arcs, reporting a very dense structure to the maximisation 
phase. This causes estimating a large set of parameters for nodes with multiple parents.

Fig. 5 shows a structure learned with the MB-CTPC algorithm. Although an exhaustive analysis of the variables’ depen-
dencies is beyond the scope of this work, some meaningful relationships can be easily identified thanks to the graphical 
capabilities of the model:

• The class variable Limb, back or neck problems is directly related to other medical variables, including those indicating 
limitations in daily and work activities for medical reasons; for example, individuals who claim to have these health 
problems are more likely to report that their health is limiting their work in the upcoming years.

• The individuals’ employment status was found to be related to their health condition, type of household or if they are of 
working age; for example, given that an individual is retired but still of working age (pre-retired), they are expected to 
be above working age earlier than if they had any other employment status. Specifically, they are expected to do so in 
about 4 to 5 years.

• The evolution of an individual’s household type is naturally affected by variables such as the number of people living in 
the household or whether the individual lives with a spouse or partner. However, this variable is also affected by other 
factors such as employment status; for example, given an employed person living with a partner in a two-person house-
hold, the likelihood of the household type changing from couple without children to couple with dependent children 
from one survey to the following is greater than if, for example, the individual is retired.

• Given an individual whose health limits their work, it is more likely that their health will also affect their daily tasks in 
a shorter time than if they did not have difficulties at work. The same is true when changing the occurrence order.

• The evolution of the household type provides information on whether an individual is living with a spouse or partner 
over a period of time; for example, it is evident that a household transition from single-parent with dependent children 
to single-parent with non-dependent children only occurs for individuals who are not living with a spouse or partner.

The interest in using a Multi-CTBNC to model the BHPS dataset lies in the fact that dependencies also exist between the 
class variables. As an example, the following relationships have been found:

• Given that an individual has had a dental check-up in the last year, they are likelier to be a non-smoker.
• Individuals are more likely to be responsible for a child when they had a dental check-up last year. We could hypothesise 

that this is due to the individual being more responsible when becoming a parent and the intention of being a healthy 
role model for their children.

• The probability that an individual is responsible for a child is higher if they are employed or self-employed than unem-
ployed. Moreover, this probability is significantly increased if the individual has indicated that their employment status 
is family or home care. On the opposite side, the probability of being responsible for a child is very low if the individual 
is retired or a student.

6. Conclusions and future work

This article introduces, for the first time, constraint-based and hybrid structure learning algorithms for continuous-time 
Bayesian network classifiers, which were specially designed to learn Multi-CTBNCs. The novel constraint-based algorithm, 
named MB-CTPC, aims to learn the structure of these classifiers by performing conditional independence tests only on 
dependencies that could be relevant to the Markov blankets of class variables. Then, the hybrid algorithm, a solution not 
even studied for CTBNs, seeks to combine the strengths of the score- and constraint-based methods.

Synthetic experiments show that the MB-CTPC algorithm significantly improves the learning and classification times of 
Multi-CTBNCs compared to other structure learning algorithms while maintaining a competitive classification performance. 
This algorithm is especially convenient when learning from high-dimensionality datasets, but significant improvements were 
obtained regardless of the number of variables, their cardinality or structure density. Furthermore, the proposed algorithm 
was statistically proven to be the best choice when used on a real-world dataset, as it matched the best results achieved by 
the constraint-based algorithm CTPC while significantly reducing the learning and classification time of the models. Finally, 
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the hybrid algorithm provides, in certain scenarios, an intermediate solution that significantly improves the results of CTPC 
and drastically reduces the learning and classification times of score-based techniques.

Multiple areas of open research were found while conducting this work:
(i) MB-CTPC may struggle to identify descendants of class variables. Using a phase distribution, such as Erlang [17], to 

model the transition times of feature variables conditioned on ancestor class variables may improve this task and the 
model’s accuracy. We would also like to study whether this improvement could contribute to mitigating the impact of 
noise.

(ii) Discerning between descendants and children of class variables may improve MB-CTPC learning time, as arcs to feature 
nodes with no parent class variables are irrelevant for the classification task.

(iii) When dealing with datasets of high dimensionality and size, multiple class variables and an underlying structure of 
considerable density, the classification phase can be computationally expensive (see, for example, Table 4). Thus, a 
class-bridge decomposable Multi-CTBNC [4] could be appropriate to improve this aspect.

(iv) Information from class variable relationships may be useful to improve the definition of class descendants and, there-
fore, the accuracy of MB-CTPC.

(v) A first hybrid algorithm was proposed to solve the structure learning problem for CTBNs. However, the improvements 
achieved compared to other solutions are limited to specific scenarios. Further study of these algorithms is needed to 
determine their usefulness in real situations, as well as to improve their results in more settings. As a starting point, 
attempts could be made to extend some ideas used in existing hybrid algorithms for other PGMs, such as [28] or [11].

(vi) The HITON algorithm [3] could be adapted for learning the structure of Multi-CTBNCs. This algorithm has already been 
successfully applied to the learning of multidimensional Bayesian network classifiers [5]. Therefore, we are interested 
in assessing the performance of this proposal with respect to the solutions studied in this paper.

(vii) Employing feature subset selection techniques prior to structure learning could improve execution times and classi-
fication results since irrelevant and redundant variables that may confuse learning algorithms are ignored. However, 
there is little literature on feature selection for categorical time series and even less on a supervised context. This 
approach would be useful for problems such as the one introduced with the BHPS dataset, which consists of more 
than 1300 feature variables.

(viii) The proposed MB-CTPC structure learning algorithm could be suitable for streaming data classification problems where 
models are dynamically updated, as the relationships between variables can change over time, and solutions are 
provided as fast as possible. Therefore, we plan to evaluate the usefulness and effectiveness of an adaptation of this 
algorithm for such a scenario.
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